Infrastructure Support Facilities (ISF) Gas Line - Los Alamos Townsite:

The "Peggy Sue" Bridge

Historic Building Survey Report
Los Alamos National Laboratory
Cultural Resource Management Team
Report No. 116

September 2, 1995
Survey No. 663

Archaeologist

Environmental Assessments and Resource

Abstract

In August 1995, a historic building survey of the "Peggy Sue" Bridge was conducted at Technical Area (TA) 0, Los Alamos National Laboratory (LANL), New Mexico. This is the location for a proposed LANL demolition project involving a gas line suspension bridge built in 1949 or 1950.

Based on the information gathered during this historical survey, the Peggy Sue Bridge, Laboratory of Anthropology (LA) site number 110645, is not eligible for nomination to the National Register of Historic Places. As a result of this survey, this project complies with the National Historic Preservation Act of 1966 (as amended) and with Executive Order 11593. The New Mexico State Historic Preservation Officer is requested to concur in a "Determination of No Effect".

PROVENIENCE AND ENVIRONMENTAL SETTING

```
Location: TA-0 (Townsite), Los Alamos National Laboratory (LANL)
Land Owner: Los Alamos County
Bridge/Gas Line Manager: Department of Energy (DOE)
Legal Description: Township 19 North
    Range 6 East
    N \(1 / 2\) of the SE \(1 / 4\) of the SE \(1 / 4\) of Section 9
```

Map: USGS Guaje Mountain 7.5 Minute Series (Map 1)
Topography: The bridge is located on portions of the main Los Alamos "Townsite"
Mesa and is suspended over "Acid Canyon" (a branch of Pueblo
Canyon).
Nearest Drainage: "Acid" and Pueblo Canyons
Elevation: 2170.2 meters (7120 feet)
Current Land Use: This area of Los Alamos County is characterized by
undeveloped steep canyon terrain. The Orange Street
residential area is located to the west of the bridge and the Los
Alamos Jewish Center (and downtown Los Alamos) is located
to the south of the bridge. Several county trails are located in
the "Acid" Canyon vicinity.

PROJECT DESCRIPTION

In August 1995, a historic building evaluation of the Peggy Sue Bridge was conducted by Ellen D. McGehee, Archaeologist, Environmental Assessments and Resource Evaluations Group (ESH-20), Los Alamos National Laboratory (LANL). This evaluation was conducted prior to a proposed LANL demolition project involving the pipeline suspension bridge associated with the 12-inch Infrastructure Support Facilities (ISF) gas line. Demolition project activities include the removal of the steel bridge, attached gas line piping, and associated anchors and cables. A previous cultural resource survey report documented the entire ISF gas line replacement project (Manz et al. 1993). The proposed demolition activities will take place on county land near downtown Los Alamos, New Mexico (Map 1). Access to the project area will be by existing paved and dirt roads.

SURVEY METHODOLOGY

This historic building evaluation was accomplished by first conducting a field visit to the bridge location. The bridge was recorded on a New Mexico Historic Building Inventory Form (Appendix A). Photographs were taken and are included in this report (Appendix B). Records research at Los Alamos County and at LANL was also carried

MAP 1

ISF GAS LINE - LOS ALAMOS TOWNSITE PEGGY SUE BRIDGE LOCATION

out. Bridge structural information was obtained and is included in Appendix C of this report. The bridge's designer, Black and Veatch, was consulted in order to assess the architectural significance of the bridge's design. Historical information was also acquired from the Los Alamos Historical Museum's archives. Several offices of the Gas Company of New Mexico and the Roswell office of the Transwestern Pipeline Company were contacted in order to identify similarly designed utility suspension bridges in New Mexico.

HISTORICAL BACKGROUND

Prehistoric land use on the Pajarito Plateau is characterized by Paleo-Indian and Archaic Period hunting and resource exploitation from about 10,000 B.C. to A.D. 600. A more formal Anasazi settlement of the Plateau occurred from A.D. 1100 until A.D. 1600, ending about the time of the arrival of the Spanish.

Historic land use on the Plateau begins during the Homesteading Period, from about 1890 to 1943, and was an outgrowth of earlier, undocumented, seasonal resource exploitation of the Plateau by Hispanics and Euro-Americans from neighboring communities.

In 1942, President Franklin Delano Roosevelt gave the official approval to develop the world's first atomic bomb. Brigadier General Leslie Groves was given complete military authority for the project. This project came to be known as Project Y, a subset of the Manhattan Project. Groves, in turn, chose J. Robert Oppenheimer to coordinate the design of the bomb. Because of its isolated location, Los Alamos was selected as the site of the bomb's design and construction. Project Y became a success when the world's first atomic device was detonated near Alamagordo on July 16, 1945. After the subsequent bombings of Hiroshima and Nagasaki in August of 1945, the end of WWII came fairly quickly (LANL 1994).

The Peggy Sue Bridge was designed in 1949 and constructed in 1949 or 1950. This was an important time period in the post-war history of Los Alamos. The Manhattan Project had come to a close with the end of WWII and many of the Los Alamos scientists and site workers had gone back to their pre-war existences. The future of Los Alamos was in question (LANL 1993).

In 1946, the U.S. Atomic Energy Commission (AEC) was established to act as a civilian steward for the new atomic technology born of WWII. With the beginning of the Cold War, continued weapons research was a top priority. In 1947, the AEC had formally taken over Los Alamos and had made a commitment to revitalize both the laboratory and the town. Once the decision was made to retain Los Alamos as a weapons laboratory, a new permanent facility had to be built. Although some of the earlier scientific facilities were kept operating, many buildings were torn down and new outlying facilities were constructed. This construction boom extended to the townsite as well. A post office, schools, central downtown area, library, medical center, perimeter housing areas, and associated infrastructure support facilities, like the Peggy Sue Bridge, were all built during the late 1940 s to mid 1950s (LANL 1993).

STRUCTURE DESCRIPTION

Laboratory of Anthropology (LA) 110645
The Peggy Sue Bridge, LA 110645, was designed by Black and Veatch of Kansas City, Missouri in 1949. The bridge was constructed in 1949 or 1950 by Morrison Construction Company of Austin, Texas (Kesler 1994). The Peggy Sue Bridge is a steel utility suspension bridge that supports a section of 12-inch gas line across "Acid" Canyon, a branch of Pueblo Canyon. The bridge is a cable stayed, open spandrel arch design and is approximately 550 feet long with a 3 -ft wide bridge deck. The main span is suspended from two 2 -inch diameter cables which are supported by steel towers on either side of the canyon. The cables are anchored into large concrete blocks (White and Maggard 1990). The towers are built out of $123 / 4$-inch diameter steel pipe that has a thickness of approximately $1 / 2$ inch (Black and Veatch 1949). The east tower is 55 feet tall and the west tower is 43 feet tall. According to a 1990 LANL inspection report, the anchor blocks show signs of long-term freeze-thaw damage. The bridge has loose cables and is missing some turn-buckles. Rusting is also evident on the deck and the support towers (White and Maggard 1990). Black and Veatch provided a copy of the original bridge design specifications to the Los Alamos County Public Works Department. These specifications are included in Appendix C along with copies of several LANL bridge inspection reports. Los Alamos County recently commissioned a feasibility report for the remodeling of the Peggy Sue Bridge, from its existing function as a gas line bridge to a pedestrian and bicycle bridge (Gordan and Associates 1994). While this report is not included in the appendices, it is on file at the Los Alamos County Public Works Department.

Research involving several offices of the Gas Company of New Mexico was conducted in order to identify other similarly designed utility suspension bridges in the state of New Mexico. Based on information provided by Gas Company of New Mexico personnel, three bridges were identified: the "Little Peggy Sue" effluent bridge in Los Alamos County; the Gas Company of New Mexico's suspension bridge across the San Juan River near Bloomfield, New Mexico; and the Transwestern Pipeline Company's suspension bridge across the Rio Grande near Berino, New Mexico. Owing to travel constraints, the two bridges outside of Los Alamos County were not visited, making it difficult to verify the degree of similarity between these two bridges and the Peggy Sue Bridge.

The "Little Peggy Sue" Bridge

The Little Peggy Sue Bridge is located to the west of the Peggy Sue Bridge and spans upper Pueblo Canyon, just north of an abandoned wastewater treatment plant. This bridge, although shorter than the Peggy Sue Bridge, was also designed by Black and Veatch. The AEC built the bridge across Pueblo Canyon in 1950 in order to support an 8 -inch effluent water pipeline and a 10 -inch sewer influent pipeline. The Little Peggy Sue Bridge is approximately 300 feet long from tower to tower and has a total width of 4 feet. The decking is approximately 1 ft 3 inches wide and three pipelines are located on either side of the decking (an additional 6 -inch gas line was added in 1970 and is located along the eastern side of the bridge near the 8 -inch effluent pipe). This walkway area is different than the Peggy Sue Bridge's walkway because the pipeline supported by the Peggy Sue Bridge is located underneath the decking. The Little Peggy Sue Bridge's north tower is approximately 38 feet above subgrade and the south tower is slightly taller, at 39.5 feet. The steel pipes used to construct the tower have an outside diameter of $103 / 4$ inches and are $1 / 2$ inch thick. The
main vertical support cables are $11 / 2$ inches in diameter and, like the Peggy Sue Bridge, are connected to concrete anchors at each end of the bridge (Frank Henri and Associates 1985). Photographs and drawings of the Little Peggy Sue Bridge are included in Appendix D.

LOCAL FOLKLORE

The Peggy Sue Bridge is a part of the folklore of Los Alamos. Several local myths are associated with the bridge. The most commonly repeated story concerns a girl named Peggy Sue who purportedly jumped or fell off the bridge to her death. In 1981, the Los Alamos Historical Museum collected some of the Peggy Sue Bridge stories for the museum's archives (Hunn 1981). According to this research, the name "Peggy Sue" was well associated with the bridge in the 1950's and school children from that era were familiar with the Peggy Sue Bridge stories. Several variations exist: she fell off trying to catch a falling bicycle, falling homework papers, or a falling dog. It is interesting to note that the Los Alamos Police Department had, up until 1981, no record of anyone, Peggy Sue or otherwise, who had jumped off the bridge (Hunn 1981). A recent article in the Los Alamos Monitor (1995) does, however, allude to a suicide connected with the bridge. Some associate the bridge's name with Peggy Church, an early resident of Los Alamos and the daughter of Ashley Pond. A film using the "Peggy Sue" story was made in 1978 by a Cumbres Jr. High (now Los Alamos Middle School) class. The film is supposed to be a melodrama and involves a landlord's thug throwing Peggy Sue off the bridge (Hunn 1981). A copy of this film could not be located; however, a recent documentary of the bridge is being produced for the local Los Alamos public access channel (PAC-8).

NATIONAL REGISTER ELIGIBILITY DETERMINATION

Since the bridge is not yet fifty years old, the four National Register Criteria of Eligibility can only be applied in conjunction with Criteria Consideration G , "[exceptionally important] properties that have achieved significance within the last fifty years" (U.S. Department of the Interior 1991:41).

Criterion A, "properties ... associated with events that have made a significant contribution to the broad patterns of our history" (U.S. Department of the interior 1991:12).

While the Peggy Sue Bridge was built during the early Cold War era in Los Alamos and was a product of the AEC's revitalization of the Laboratory, the activities associated with the bridge were not of exceptional historical importance. The bridge's primary purpose was to serve as infrastructure support. The Peggy Sue Bridge, since its original construction in 1950, has been a utility structure associated with the 12 -inch ISF gas line. This gas line provides natural gas to the Laboratory and to the town of Los Alamos.

The secondary use of the bridge, as an unauthorized pedestrian bridge, is of interest to the folk culture of the community but does not play an exceptionally significant role in local history.

Criterion B, "properties ... associated with the lives of persons significant in our past" (U.S. Department of the Interior 1991:14).

The bridge is not associated with the life of any historically significant person.
Criterion C, "properties ... [that] embody the distinctive characteristics of a type, period, or method of construction, or that represent the work of a master, or that possess high artistic values, or that represent a significant and distinguishable entity whose components may lack individual distinction" (U.S. Department of the Interior 1991:17).

According to Black and Veatch, the designer of the bridge, the construction of the Peggy Sue Bridge was not an architectural feat. The design is a fairly common one for the time (it was based on an existing design for a road bridge) and, as constructed, the bridge's overall dimensions are not exceptional.

Criterion D, "properties ... [that] have yielded, or may be likely to yield, information important in prehistory or history" (U.S. Department of the Interior 1991:21).

The information included in this report and in the appendices has exhausted the research potential of the Peggy Sue Bridge, LA 110645.

In view of the information presented above, the Peggy Sue Bridge is not eligible for inclusion on the National Register of Historic Places since it does not meet the requirements for eligibility under Criterion A, Criterion B, Criterion C, or Criterion D. Furthermore, the bridge is not yet fifty years old and it would have to be an exceptionally important property (Criteria Consideration G) in order to be considered for eligibility.

RECOMMENDATION

As a result of this historical evaluation, this project complies with the National Historic Preservation Act of 1966 (as amended) and with Executive Order 11593. The New Mexico State Historic Preservation Officer is requested to concur in a "Determination of No Effect".

REFERENCES CITED

Black and Veatch Consulting Engineers
1949 Specifications for Natural Gas Transmission Line, Los Alamos Project, Los Alamos, New Mexico. Invitation No. 291-49-122. On file at ESH-20, Los Alamos National Laboratory, Los Alamos, New Mexico.

Frank Henri and Associates Consulting Engineers
1985 Los Alamos County Utilities Department Pueblo Canyon Suspension Bridge, Engineering Report, Physical Inspection and Structural Evaluation. On file at the Los Alamos County Public Works Department, Los Alamos, New Mexico.

Gordan and Associates Consulting Engineers
1994 A Feasibility Report for the Remodeling of the Peggy Sue Suspension Bridge From an Existing Pipeline Support Bridge to a Trail Bridge for Pedestrians and Bicyclists. On file at the Los Alamos County Public Works Department, Los Alamos, New Mexico.

Hunn, Joyce
1981 "The Peggy Sue Bridge". Single page document on file at the Los Alamos Historical Museum's archives, Los Alamos, New Mexico.

Kesler, Joel R.
1994 Letter from Joel R. Kesler, Senior Partner, Black and Veatch, to Jim Janecek, Los Alamos County Public Works Department, July 28, 1994. Copy on file at ESH-20, Los Alamos National Laboratory, Los Alamos, New Mexico.

Los Alamos Monitor
1995 "Save Peggy Sue petition gets 100 signatures". Newspaper article, Vol. 32, No. 173, Friday, September 1, 1995.

Los Alamos National Laboratory
1993 Los Alamos: beginning of an era 1943-1945. Reprinted by the Los Alamos Historical Society, Los Alamos, New Mexico

1994 "The "City on the Hill": From Atoms to Zygotes (Part 1)" in Perspectives on Science, Vol. 1, No. 1, Winter, Los Alamos National Laboratory, Los Alamos, New Mexico.

Manz, Kari L., Steven R. Hoagland, Ellen D. McGehee, and Beverly M. Larson 1993 Infrastructure Support Facilities (ISF) Gasline - Los Alamos Townsite. Cultural Resource Survey Report \#60, Survey \#546, on file at ESH-20, Los Alamos National Laboratory, Los Alamos, New Mexico.
U.S. Department of Interior

1991 "How to Apply the National Register Criteria For Evaluation", National Register Bulletin, No. 15. National Park Service, Interagency Resources Division, Washington, D.C.

White, Kenneth R, and Samuel P. Maggard
1990 University of California, Los Alamos National Laboratory, Inspection of Utility Bridge, Project 9-LQO-Q4974. On file at ESH-20, Los Alamos National Laboratory, Los Alamos, New Mexico.

POSSIBLE SOURCES FOR ADDITIONAL INFORMATION

Los Alamos County Public Works Department
The Los Alamos Historical Museum's Archives
The Los Alamos Monitor
LANL FSS Division (Engineering Department and FSS-3 Records)
The Los Alamos Police Department
Los Alamos Public Access Channel (PAC-8): film on the Peggy Sue Bridge (in progress 1995, Susan Yurkovic, contact)

APPENDIX A

LA 110645, The Peggy Sue Bridge
New Mexico Historic Building Form

APPENDIX B

Peggy Sue Bridge Photographs

Peggy Sue Bridge with view of east tower, dir. ~ENE

Peggy Sue Bridge, view from Walnut Street playlot, dir. ~S

Peggy Sue Bridge, span west to east, dir. $\sim \mathrm{E}$

Peggy Sue Bridge, view to west, dir. \sim W

Peggy Sue Bridge, dir. $\sim W$

Peggy Sue Bridge, west tower, dir. ~W

Peggy Sue Bridge, east tower, dir. ~NE

Peggy Sue Bridge (west end), gas piping, dir. $\sim W$

Peggy Sue Bridge (west end), western-most concrete anchor, dir. ~NNE

Peggy Sue Bridge (east end), detail of anchor inside fence, dir. \sim E

Peggy Sue Bridge (west end), view of underside, dir. ~E

Peggy Sue Bridge (west end), view of pipeline, dir. ~W

Peggy Sue Bridge, walkway support detail, dir. ~NW

Peggy Sue Bridge, cable connection, dir. ~SE

Peggy Sue Bridge, east tower, dir. ~E

Peggy Sue Bridge (east end), view of old gas line, dir. ~W

Peggy Sue Bridge (east end), walkway detail and pipe, dir. $\sim \mathrm{N}$

Peggy Sue Bridge (east end), decking detail, dir. ~E

Peggy Sue Bridge, detail of decking and pipe, dir. ~down \& east

Peggy Sue Bridge (east end), cable detail, dir. ~WNW

Peggy Sue Bridge (east end), cable connection detail, dir. ~W

Peggy Sue Bridge, west tower detail showing rust, dir. ~W

Peggy Sue Bridge, west tower detail showing rust, dir. $\sim W$

APPENDIX C

Peggy Sue Bridge Drawings and Associated Engineering Reports

Peggy Sue Bridge and ISF Gas Line

SPEGIEICATIONE
FOR
Natural gas
transmission main

LOS AIAMOS PROJECT
LOS ALAMOS, NEW NEXICO

UNI TIED STATES
ATOMIC ENERGY COMMISSION
SANTA FE AREA - .
SANTA FE, NEW MEXICO

BLACK \& VEATCH
CONSULTING ENGINEFRS
1949

6-01. SCOPY.- This specification covers the furnishing of all materials and the construction of a suspension bridge for supporting the natural gas transmission main across a canyon from station $4878+80$ to station $4884+30$, in accordance with the details shown on the contract Drawings and as specified herein.

The Contractor is notified that he shall not require nor permit any of his employees to enter this canyon for any purpose without first having obtained specific permission from the Contracting Officer. The Contractor and his employees shell comply with all requirements prescribed by the Contracting Officer with reference to security or precuationary measures to be observed by persons entering this canyon.

6-02. TOWERS.- The towers shall be built of steel pipe welded into structural frames, as shown, set into the tufa formation to a depth not less than that indicated by the details. The main tower legs shall be made of $123 / 4$-inch outside diameter steel pipe having a shell thickness of approximately $1 / 2$ inch. Other portions of the tower shall be built of various sizes of black steel pipe, schedule 40, or heavier and of other steel members and details, as shown. All the $123 / 4$ inch pipe required for the construction of the pipe line will be furnished by the Government in the same manner and subject to the same conditions as the pipe for the pipe line.

6-02.01. Anchorage of Towers.- The Contractor shall excavate round holes into the tufa formation to the depth shown on the drawings, or to such increased depth as directed by the Contracting Officer. The holes for anchorage shall be accurately located in position and direction, and they shall be checked after excavation, to insure proper alignment. The holes shall then be carefully cleaned of all loose material. The bottom of each hole shall be not less than one foot lower than the bottom of the tower post as shown or indicated on the - drawings. The tower legs shall be carefully lowered into position and securely braced to prevent displacement. After they have been checked. for position and alignment, the space between the steel work and the sides and bottoms of the holes shall be slowly and carefully filled with stmuctural concrete, puddled and compacted so as to completely fill the space. The top of the concrete shall be finished, as shown. After the main tower legs have been anchored the bottom tower braces shall be accurately placed, concreted in and welded to the main posts.

VI-1
SUSPENSION BRIDGT

6-02.02. Steel Construction.- The connections of all members of the tower framework, except as otherwise shown, shall be made by welding. The tower shall be assembled in a horizontal position, and welded together in that position. In general welding methods shall be equal to those specified for making welded joints in the pipe line, and the welding shall be done by welders of equal competence and qualification. All members of the main tower framing shall be so aligned that their axes shall lie in the same straight plane. Special precautions shall be taken to prevent distortion due to heating and cooling during the process, and the work shall be maintained in alignment so that when erected all members shall be straight and free from warping or deformation of any kind. At each joint, the full area of weld shall be continuous around the pipe, and such area shall be not less than is required to develop the full strength of the weakest connection member.

Any splice in the main tower posts shall be located at approximately one-fourth the distance from one panel point to the next.

6-03. CABLES AID ANCHORS.- All wire ropes and cables shall be of the sizes shown and shall be spun from galvanized, plow steel bridge wire. They shall be the product of a recognized manufacturer of wire rope, and within the limitations of these specifications, shall be of a design suitable for the use to which they are put. All ropes or cables shall be shipped and handled to the point of their installation on suitable reels, handled in such a way as to preserve them from damage of all kinds. Care shall be taken in unreoling and handing cables to prevent loosening of strands and the kinking of the cable due to any cause. The ends of all wire ropes or cables shall therefore be properly seized, as recommended by the mamufacturer, before any cutting thereof. Because of the importance of such precautions, all handling and installation shall be done by competent workmen under the direction of a superintendent experienced in the carrying out of similar work.

6-03.01. Main Cables.- The main suspension and main side sway cables shall be of 7×19 construction. They shall be cut to proper length for installation with due allowances made for installation condition. The main suspension cables shall be installed hanging free from the towers and anchored at the ends, and adjusted at such a height in the center of span that when loaded with the dead load of pipe and bridgework the amount of sag will be that indicated on the drawings. The Contractor shall provide himself with all necessary snubbing cables and other equipment to make all preliminary and final adjustment.

The end anchorage of main suspension and side sway cables shall be made by means of steel eyebars embedded and secured in concrete anchor blocks. The cable ends shall be attached to adjustable bridge sockets which will be linked to the eyebars by pins of suitable size.

VI-2
SUSPENSION BRIDGE

The method of attaching the end of the rope or cable to the bridge socket shall be such as will develop 100 percent efficient connection. It shall be such as is approved by the wire rope manufacturer, and, except as otherwise authorized by the Contracting Officer, shall be as follows:

1. The rope shall be securely seized and served with soft wire ties before cutting, and at least two additional seizings shall be placed at a distance from the end equal to the length of the basket of the socket. The seizing shall be of adequate length, and securely wrapped with a serving iron.
2. The rope being properly seized, the end seizing shall be taken off. The strands shall then be separated. Any fiber core shall be cut off back to the first seizing, but wire strands used as a core shall not be cut. The wires shall then be separated, untwisted and broomed out.
3. The wires, for the distance that they are to be inserted in the socket, shall be carefully cleaned with benzine, naphtha, or gasoline. They shall then be dipped for a distance not greater than threequarters of the cleaned length of the wire in commercial muriotic acid for from 30 seconds to 1 minute, or until the acid has thoroughly cleaned each wire. Care shall be taken that the acid does not come into contact with any other portion of the rope.
4. Dip the ends of the wires in boiling water containing a small amount of soda to neutralize the acid. Wipe dry. Serve the end temporarily so that the socket will slip over all the Wires, being careful not to let grease or oil touch the cleaned wires.
5. Heat the socket and slip it over the end of the wires. Cut the temporary seizing, and distribute all wires evenly in the basket With the ends flush with the top. Be sure that the socket is in line with the axis of the rope.
6. Holding the rope vertically in a vise, seal the bottom of the socket from the outside with fire clay or similar substance. Check position and alignment of socket.
7. Pour molten zinc into the basket until it is full. Use only high-grade zinc, heated not above 830 degrees Fahrenheit. Do not use babbit or other anti-friction metal. When the zinc has solidified sufficiently it shall be allowed to cool. The clay shall then be removed. Remove all seizings except the one nearest the socket. If properly made, this seizing will be at the end of the socket.

The main suspension rope or cable shall be supported at the top of the towers in accordance with details, as shown on the drawings.

6-04. VERTICAL AID LATERAI TIES.- The weight of the pipe line and the walkway and their supports shall be supported at the panel points as indicated on the drawings by means of ties or suspenders attached to the main suspension cable. Likewise the bridge shall be held in line against wind load by similar ties at the panel points which are attached to the lateral sway cables.

All ties except as otherwise provided or approved, shall be 7-wire zinc coated, Siemens-Martin grade, strand With "extra galvanized" (double galvanized) zinc coating, or a galvanized strand or rope of equal size, strength and durability under service conditions.

It is important that the suspenders which carry the weight of the pipe line and walkway shall be capable of ready adjustment in order to secure uniform tension. They shall be provided with turnbuckles which shall be of a size and pattern to develop the full strength of the strand. The ties between the walkway and the side sway cables shall likewise be capable of sufficient adjustment to secure and maintain uniform tension, such adjustment being obtained with either a turnbuckle or by other approved means.

Attachments to the main cables, both suspension and lateral, shall be made with galvanized drop forged steel clips equal to genuine Crosby Perfected Suspension Clip, with specially adapted filler blocks, as made by the American Hoist and Derrick Company. Wherever the strands pass through U-bolts or eye bolts of clips, turnbuckles or other attachments, they shall be protected with galvanized oval thimbles. All eyebolts shall be welded shut. Where the length of ties is short, rods and turnbuckles may be substituted for the strand, but shall be of equal or greater strength. All fittings or parts used for making up the ties shall be heavily galvanized after fabrication.

6,05. WALKNAY AND PIPE SUPFORT.- The pipe shall be supported across the bridge on a structural steel tramework which shall include a steel grating walkway protected on each side with a railing. Construction shall conform to the details shown on the drawings.

The pipe line shall be supported at each panel point on a cast iron roller of heavy pattern, designed for service in an outdoor location.

The flooring shall be constructed of grating which shall be of a rectangular type, either welded or pressure-locked, and shall be hotdip galvanized after fabrication. The load carrying bars of the grating shall be not less in depth than 1 inch nor less than $3 / 16$ inch in thickness. The span of the grating shall be cross-wise of the bridge, the ends being positively attached to supnorting members so that the grating sections may be removed for work on the bridge or pipe, but cannot be accidentally dislodged.

The handrailing shall be composed of galvanized wire rope strands or cables of the size and spacing shown on the drawings. The ropes shall be securely attached to the posts with U-bolts of suitable design. Posts shall be strongly braced to prevent side sway.

All portions of the framework shall conform to the specifications and standards of the American Ingtitute of Steel Construction. Ungalvanized surfaces shall be shop painted.

6-O6. FENOING.- A chain-link fence is now installed along the rim of the canyon. The Contractor shall carefully take down and store such panels of the existing fencing as are in the way of construction of the suspension bridge. After construction of the bridge has been completed the Contractor shall relocate the fence to enclose the bridge end, as shown on the drawings, adding to the panels previously removed, additional sections, gates, etc., to complete the installation. The new parts shall be similar to the existing fence, and shall comply with applicable por tions of Paragraph 5-11 and its several subparagraphs of this specifications. A new fence with gate shall be constructed to enclose the other end of the bridge, as shown.

6-07. PAINTING.- After erection of the bridge, all ungalvanized metal surfaces of bridge and towers shall be given a field coat of red lead paint and two coats of oil vehicle paint of colors selected by the contracting officer.

The red lead paint shall conform to the provisions of Federal Specification TT-P-86. The succeeding coats shall be Rust-01eum "I-O", Sherwin-Williams "Metalastic," Truscon "Bar-0x", Tnemec Industrial Coatings, or equal.

Preparation of surfaces, and the handling, application of paints and other general provisions governing painting work shall be in compliance with provisions of Paragraph $5-07$ and its various subparagraphs of these specifications.

The portion of the pipe line that is exposed for the full length of the bridge shall be painted as specified herein for the tower framework, instead of being coated and wrapped, as provided for pipe laid underground.

6-18. EXPANSION LOOP AND CONCRETE ANCHORS.- An expansion loop in tne pipe line shall be constructed at one end of the bridge, as shown. The loop shall be of welded construction using the same size and thickness of pipe as used in the portion of the pipe line on the bridge together with welding tube turns having a shell thickness of at least $1 / 2$ inch. The loop shall project horizontally and shall be supported on a velded pipe framework anchored into the tufa as shown. Beyond the loop from the bridge a concrete anchorage shall be constructed to prevent creep or motion of the pipe. The loop and its steel supports shall be painted as specified for the framework of the bridge towers. A concrete anchorage shall be constructed where the pipe leaves the trench at the end of the bridge opposite the expansion loop.

6-9. MBTHOD OF PAYMENT.- Payment for the construction complete of the suspension bridge and the installation of the gas transmission main thereon as well as the expansion loop, and the concrete anchorage at either end will be made at the lump sum price stated under Item 21 of the Bid, which shall constitute compensation in full for all labor, construction plant and materials required to complete the suspension bridge and the installation of the gas main thereon as required by the contract drawings and these specifications.

Gene $=5$ - $9+=\downarrow$

Inventanata leste conditiono

Tower A.

Tiventa

U

 \qquad
 Conariting Emgineers woxk Lispensuan Bity.
 \qquad KAN8A8 CTTY \qquad COMMUTED BY. \qquad GHEGTED BY: \qquad KAN8A8 CTTY: Chrek bi by. .ntpblen TiNHGBY NiO... 4. OR

 VEATCE Congulting
Engineery
KANSA8 CTTY
 SET UPBY WRC. Cor print By \qquad
\qquad COMPUTED BY. \qquad civarat by \qquad CHECKRD BY. Apmpontrine ir \qquad no 6 or. \qquad
wind cotal

 Anea of Caliles per hoothenct

ans pedet bay. 3

Tatalunit venticial loala
Totalicunit ilporzonatata

$$
\begin{aligned}
& \text { Pupe }=65.4 \nRightarrow
\end{aligned}
$$

BLLACK VRAMOE: Conmultias Fingineerw
XANSA8 CITY
sener fhe alman new onges is \qquad datr $3-1$ \qquad 19. 4 ERrviser
\qquad SETUPBY \qquad compuriu ay
\qquad
 COMPUTBD BY. \qquad chickid br- \qquad
\qquad CHECKRD BY \qquad AppD Dor trenic ny: \qquad
no. 12 or.

 sBr UP BY $\angle N R C$. compurm ite:
\qquad COMPUTRD ' YY . \qquad shiciman: \qquad Conuulting WORK... chicckrd by \qquad Appolen timiont Hक 4 4 人

BHAOKE VRATOE
Consuittma*
Gngineery.
KANBAB CITY
 wRC co mumentit wark. Sivpelastan Redge COMPUTED BX \qquad
 \qquad
\qquad CHRCKBD BY \qquad APPD POR TMITABY:

$$
\text { no } 17
$$

or

BLACKE VEATOF: Consulting Nngincer*

KANSAS CITY
susper for alamo, nua meffio
\qquad
WORK $\operatorname{Sin} q$ QR

\qquad CHECRED BY SKTUPBY:

DATE $3-2,199$. \qquad 1915 1.3% $\%$ \%..... nre
 \qquad
\qquad M 10 crk B \qquad
\qquad Apputar typha by \qquad NO4. If or.
(

 SET UP:BY. \qquad 6othuthay \qquad VEATCII Conpalting Engincert
KANSAS CITY
work Suppan=an Rnefe COMPUTRD BY

\qquad Chicked by \qquad
 Ne, or OR

 \qquad By V10ATOH Comsulting Engineern
worx Suspehsioń Büffe SBT UP BY $M \mathbb{R} C \quad$ coMpuTri BY \qquad

- -

KANSAS CITY \qquad COMPUTED BY CHECRED BY \qquad CHECRBD BY. \qquad APPD POR TYPANG AY. \qquad

$$
\text { No. } 21
$$

op \qquad

Sag on pupe for laying.
Qsoume pipe is level at $g^{\circ} \mathrm{F}$, which quive g pag of 37 'in cable for which a monitemon thas heen domputed.
Refer to peage 1296 of Amer. Ciii Eng. Holbl.

$$
\begin{aligned}
4_{c} & =L+\frac{8 S^{2}}{3 L}=550+\frac{8 \times 37}{1650} \\
& =550+\frac{8 \times 1369}{16.50}=550+\frac{10,952}{1650} \\
& =550+6.64=556.64
\end{aligned}
$$

Increave in lenget due to teinp
14
1
2
4
3
1
0
z
0
0

$$
\begin{aligned}
& \text { of } 20^{\circ}=556.64 \times .0000095 \times 20=1057^{\prime} \\
& \text { of } 40^{\circ}=" \times \times \times 40=.2111^{\prime} \\
& \text { of } 60^{\circ}=\quad \times \quad \times \quad \times 60=.3167^{\circ} \\
& \text { of } 80^{\circ}=, \quad \times \quad \times 80=4222^{\circ} \\
& \begin{array}{l}
\text { of } 100^{\circ}=" \quad i \quad \begin{array}{l}
\times 100=5278{ }^{\circ} \\
\text { of } 120^{\circ}=\cdots \\
\times 120=.63331
\end{array}, ~
\end{array} \\
& \text { Kew lenget } 20^{\circ}=\frac{556.64+, 11=556.75}{40^{\circ}} \quad S=\frac{\sqrt{(6 \cdot 725)(166505}}{8}=\sqrt{1392.2}=37.31 \\
& 40^{\circ}=\quad "+.21=556.85 \\
& \text { ". } 60^{\circ}=\cdots+132=556.96 \\
& 80^{\circ}=\quad-\quad .42=557.06 \\
& 100^{\circ}=" \quad " .53=557.17 \\
& 120^{\circ}=-\quad \text { ". } 63=557,27 \\
& =\sqrt{14,2.6}=37.59 \\
& =\sqrt{1435.5}=37.89 \\
& =[1456=38.16 \\
& =11479=38.46 \\
& =11500=38.73
\end{aligned}
$$

\qquad 1949 RH 18 Rn \qquad
 BITㄴ…....
\qquad SET UP BY. WRC computes ax \qquad
\qquad COMPUTED BY. \qquad CHRCKPD BI \qquad
 CHBCKED BY. \qquad APLDVFORTHANGBY \qquad
KANSAS CIY \qquad

$$
\text { no } 2,3 \text {. or }
$$

Investigate Condition as if cable C_{2} was not working

$$
x=T v=T \sin \theta
$$

$$
\underbrace{x}_{-1} \underset{r_{H}}{\int_{t}^{e}}
$$

$$
\begin{aligned}
& =91,000 \times .10829 \\
& =9850 \$
\end{aligned}
$$

$$
=9850 \#
$$

9850 bears on Connecting piper x
Toy 3" pye for x

$$
\frac{l}{r}=\frac{12 \times 12}{1.16}=124
$$

pipe Can Carry 33,000

Place pipe suppsits every 11' along line Each support carries 11, of frye e © 65.4 \#/ft 11 of ovallewayle 11.5 \#/ft ie onpype 17.3 \#/ft.
ace or walkway. 2.4. \#/ft. ace or walkway 2.4. \#/Pt.
Total iveght $=11 \times 118.4=1300 \#$

\square
moment $=\frac{1300 \times 2.5 \times 172}{4}=1300 \times 7.5=9750 \%$
$\stackrel{w}{\square}$

$$
\frac{工}{c}=\frac{m}{s}=\frac{9750}{20000}=.487 \mathrm{in}^{3}
$$

Use 6"E@8z*
Roller supports

Each angl has to Carry by o" t-ry angle $2 \times 2 \times \frac{1}{4}$ " seventh as -xdelar.

$$
s=\frac{650}{5 \times \cdot .25}=\frac{650}{125}
$$

$$
=520040 \mathrm{~K}
$$

shoran $\frac{1}{2}$ "bor

$$
=\frac{650}{.1963}=33004
$$

Luze al suspender Cables

$$
\begin{aligned}
& w=118 \cdot 2 \text { \#/ft } \\
& \text { Load Cables Catry }=118.2 \times 550=65,000^{\#} \\
& \text { Number Puependess }=100 \\
& \text { Each cable Carres } \frac{65000}{100}=650^{\text {\#t }}
\end{aligned}
$$

Use $3 / 8$ "申 suppendero
Suray Qable thes
$w=43 \frac{t}{f^{t}}$ (iwind)

$$
\text { Loai }=550 \times 43=23.600
$$

number tees $=50$
Coch cable Carrues $\frac{2360 \text { of }}{54}=472 \#$
Dlee $3 / 8$ " ϕ euppenders
Broceiq ai towerz T-my 3"pyel
qreatest $\frac{l}{r}=\frac{15 \times 12}{1.16}=\frac{180}{1.16}=155$
Refor to page 248 AISC Hdluk.
Pupe Can Carty 17,000 ${ }^{\text {F }}$
We 3"

Deagn of padole
54,000 \# doto Lown or eadeave
54,000. .nd dorbble shear. Castinf ciöcunts pingle bearing.

$$
Q_{\text {gin }}=\frac{P}{s}=\frac{56,000}{3, L_{1} 000}=117539.17
$$

ILec 2"pon.
$1 \frac{1}{2}$ " quives 1.767 sq.in.
Use e' ϕ pin for ejitro protaliow.
Cach pant
Man
plan-one casting

$$
\begin{aligned}
2 / 4+32,000 & =28,000 \\
64,000 t & =28,000 \\
t & =\frac{28,000}{64,000}=437
\end{aligned}
$$

Wee $\frac{1}{2}$ "plater ffor Castingp:
Refer to jage 31 arid revireplateo to allow for win? dead on cables. at untat condition fuheel and pen phist at 0

$$
\begin{aligned}
& m=8620 \times 9+566000 \times 2 \\
&=77,580+1 / 2000=187,580^{11 \%} \\
& \text { Queabestríq atea } x-x=\frac{187,580}{20,000}
\end{aligned}
$$

Rerió vee phe tu

fateral bracing cable - soorchinate and tenciow Archorage pointa at Tonisis $A \& B$ wre change iffron 18-: from \& of gra quipe to $25^{\prime \prime} 0^{\prime \prime} D \angle B$ with
 sag roste and change tenaior.
". New Coortinates un yelane along apro of colile.

Computer tenoion wurth Dosimpetiondoaik pullirig evenly agounot calb. formula in batif references, $w=43 \# / \mathrm{ft}$ - oage 6 mandtero. $\left.f=\frac{w^{2}}{84} \sqrt{l^{4}+16 h^{2} l^{2}}=\frac{43}{8 \times 18} \right\rvert\, 91,506,250,000+16 \times 324 \times 302,500$

It was decidequith tath with DLB that thane cuspulide a forge arteng dor top of the toumead Lue to vinil pationi For this phich onspinaisin Calules And te purgenleso.ie For this a hegle the forch actinig on top of the poure livill be the fotal of the winis. lorce afting on one half of one suspenocin Calle end ctop total of the curind fronce octing on one falf the quspendere in one half th span. T. Keo losdo aroply to one pipe fles. Wand at zo $\frac{\pi}{\mathrm{ft}}$
refer topoage 3-One half length one auspenvion calle equala $930 / 2=465^{-1}$
Sugpender at II intarvals
Lougth $=\frac{550^{\prime}}{1 \prime}\left[\frac{44+6]}{\frac{2}{2}}=1250^{\prime}\right.$ in one ppes
ferg th acting on pre tound $=\frac{1250}{4}=\frac{313}{}$
Wuiv loob on cablee
maf conditon $e^{\prime \prime} \varnothing$ Cable auth $1^{\prime \prime}$ ce $\left(2^{\prime \prime}+1^{\prime \prime}+1^{\prime \prime}\right)=4^{\prime \prime}=33^{\prime}$ wind loaf $=465 \times 33 \times 20=3070^{\#}$
run Conbition (2 " ϕ cable' - novie
Winiffood $=46 \cdot 46 \times .167 \times 20=1550^{\text {\# }}$
mex: Conditho $3 / 8^{\prime \prime} \phi$ Cable unth $/$ "ince $\left(3^{\prime \prime}+1^{\prime \prime}+1^{\prime \prime} /-2.376^{\prime \prime}=198^{\prime}\right.$
Winif, loos $=313 x \cdot 198 x-20=\frac{1250}{31^{\prime \prime}} 0^{\prime}$
min conotitorn $3 / 6^{\prime \prime} \phi$ Cable no uce $3 / /^{\prime \prime}=0,013$ "
Wupid load $=313 \times 0313 \times 20=(717196$
Totofl mafimum wind loal $=3070+1250=4320$ \#
Tofal minimum umiload $=\quad 550+196=1746^{\#}$

Try load determanei pxecoine paqe on touerducuth no

Mind loai on 12 "tower leg

$$
\begin{aligned}
= & 55 \times 1 / \times 20=1100^{\#} \\
\text { Mom } & =4320 \times 55+1100 \times 27.0 \\
& =238,000+30,200=268,000 \\
\text { mom } & =1746 \times 55+1100 \times 27.5 \\
& =96,000+30,200=126,200^{1 \#}
\end{aligned}
$$ avill veduge me omentt anm to 43^{\prime} ". Mndtemum nining will perabalily not Come weth maghemin cicing Donditeon

Nfind loadon

$$
\text { Pra\% Mrom }=4320 \times 43+860 \times 21.5
$$

$$
=186,000+18,500=204,500
$$

Mun mom $=1746 \times 43+860 \times 21.5$

$$
\begin{aligned}
& =1746 \times 43+860 \times 21.5 \\
& =75.100+18,500=93600
\end{aligned}
$$

$$
\begin{aligned}
& S_{\text {max }}=\frac{M c}{I}=\frac{204,500 \times 12 \times 6.37}{361.5}=43.300 \\
& S_{\text {man }}=\frac{m c}{I}=\frac{93.600 \times 12 \times 6.37}{361.5}=19.800 \%
\end{aligned}
$$

SA\& ए 334 中娄

Inin. xeaction from "爱" ϕ calces no ece

$$
\quad \begin{aligned}
& 196 \times 2=398
\end{aligned}
$$

Bhacing ehack Tower B

Driect stiess each tower lej

$$
S_{1}=\frac{P}{a}=\frac{56,000}{19.24}=2910 \%
$$

$$
\frac{l}{r}=\frac{43 \times 12}{4.34}=119
$$

Refer to F ug 8 page 693 vulo 5 Ketchum- Otuncticrai Engo Hollo

$$
\begin{array}{ll}
K=\frac{I_{2}}{I_{1}} \cdot \frac{h}{l} \quad I_{2}=I_{1} & m_{A}=\frac{P h}{2} \cdot \frac{1+3 k}{1+6 k} \\
K=\frac{43}{13}=3.3 & m_{B}=\frac{P h}{2} \cdot \frac{3 k}{1+6 k}
\end{array}
$$

$0 \mid \therefore \quad M_{A}$ is matimam

$$
\begin{aligned}
& M_{A(n 0}(c e)=\frac{4598 \times 4.3}{2} \times \frac{10.9}{20.8}=51,600{ }^{\text {\# }} \\
& S_{2 \text { max }}=\frac{m c}{I}=\frac{110,000 \times 12 \times 6.37}{361.5}=23,300 \psi \\
& S_{2 \text { min }}=\frac{M c}{I}=\frac{51,600 \times 12 \times 6.37}{361.5}=10,9504 \\
& \text { maximum } \\
& \frac{2910}{10130}+\frac{23,200}{20,000}<1 \\
& 99 \\
& -29+1.16>1 \\
& \text { pinimum } \\
& \frac{2910}{10130}+\frac{10,950}{20,000}<1 \\
& .29+.55<1 \\
& 84<1
\end{aligned}
$$

each saddle hav to garry 56,000 \#\# diect loca for Gulule and a horizontal loal aiting on top of vheave unfech Com 1746 to $4320 \#$

Puinis uizider Souble phear, eoch plate casting io undes, single obearung. antsheoring

$$
\text { Areapor }=\frac{56,400}{32,000}=1.7639^{2} \mathrm{~m}^{2} \text { use } 13 / /^{\prime \prime} \mathrm{ppm}(2.04 \text { sq, }
$$

II Sach plate castinp takes aoperor 30,000
\square

$$
\begin{aligned}
2 t 13,000 & =30,000 \\
13000 t & =15000 \\
t & =1.16^{11}
\end{aligned}
$$

ue i/4"plates:

Bolt in pin
wind stress will Cavse bolt to be under donble stceer.
$=4 \xrightarrow{4320}$

$$
\begin{aligned}
& \text { Area balt }=\frac{4320}{40.000}=.108 \mathrm{sq} . \mathrm{m} \text {. } \\
& \text { Wee } \frac{1}{2}{ }^{\prime \prime} \phi \text { bolt }
\end{aligned}
$$

Rainsior of anichorages
Backetay anchorages Touse A ¢ B
 s' deepin rock. The Corexete in the anchora pe aloze
is not enorgh it -rest pull of galile. Pinyope of check is not enopugh to resest pull of cables. Puypope of eh

$$
\begin{aligned}
& \cup \quad \text { vieto fin out pties or nock above anchorage. }
\end{aligned}
$$

-. Shear area of rock approp $2 \cdot \frac{1^{\prime}}{2}$ degp and 17 'Ong.

$$
v_{\text {voch }}=\frac{57.000}{2.5 \times 17 \times 144}=9.3 \psi
$$

 or candatore $=1504$
Ancharage chieght
Steel-temperature $=3$ to. 4% cross sectional arec.

Use $7 /{ }^{\prime \prime} \phi$ @ 12 " eaway
pundrom in Come.
area $=\frac{108,000}{10}=5.4 \mathrm{sg} .1 \mathrm{n}$. Whe $2 \frac{1}{2}$ "ploors
BLACK \&
$V E A T C H$
CONSULTING
ENGINES
KANSAS CITY
YORK

Reivivon of ane forages
fate a avehouage tomes A \& B
See precehing page. Reperto sheet 112 of traminge. for dimenaciow?
 Tit as gil oo ot

$$
\begin{aligned}
W_{c}=\text { wt. conc: } & =8 \times 8 \times 5 \times 150=48,000 \\
\text { Overturning moment } & =91,000 \times 5-48,000 \times 4=455,000-192,000 \\
& =263,000
\end{aligned}
$$

$$
8 R=26 \frac{2}{3}, 080
$$

$$
\begin{aligned}
& R=263,000 \\
& R=32,875
\end{aligned}
$$

$V_{\text {rock }}=\frac{32.875}{2.5 \times 8 \times 14.4}=11.4 \psi$
allowable 150 \& OK
use \%"申 e 12 "e sway
Eyelor size

Wee 5"x2" eyebor

$$
\begin{aligned}
& \text { area }=\frac{104,000}{20,000}=5.2
\end{aligned}
$$

Check sage with \& without ice load
Leng th of back tie cables $=\frac{190+115}{\cos 150}=\frac{305}{1966}=$
Length of suspension cable with 37^{\prime} span.
Pg. 285 union taine Rope Handbook for formula.
w

$$
\begin{aligned}
& \quad L=2 \sqrt{\frac{5^{2}}{4}+\frac{4 d^{2}}{3}}=2 \sqrt{\frac{550^{2}}{4}+\frac{4 \times 37^{2}}{3}}=2 \sqrt{75,625+1825}=2 \sqrt{73,450} \\
& d^{2}=\operatorname{sean}
\end{aligned}
$$

n - - - -
$\frac{n}{x}$

Total length of cable $=557+316=872 \mathrm{ps}$.
From wRe calculations, ice load for $/ 1$ co se vas calculated as $65 \% / \mathrm{ft}$ on $32.5 \% \mathrm{At}$ each cable. checks stretch in cable using $30^{* /} / \mathrm{ft}$ additional load oven normal loadon hinge.
Tension in cable prom Pg. 1278 of merninan 4 piggin an civis eng. Handbook

Iron veg. 309 of Union Wire Rope Handbook, Modulus. of Elasticity of 7×19 galw. birds cable is 17400,000 . metaluc area of 211 gahanizech bridge cable is 1.97 og in. Increase incunit otreis due to ire load $=\frac{31.500}{1.97}+16,150^{7} / \mathrm{apin}$
Stretch in cable due toincreace in load

$$
=\frac{833 \times 16,150}{17,000,000}=.83^{1}
$$

Length of suspension cable often stretch due to ire laced $5 \frac{569}{}{ }^{5}+83=5577955743$
cleaning above formula par sag.

$$
=\frac{8.518}{4}=2.057
$$

$$
d^{2}=\frac{3 \times 2+58}{4}=16+8 \quad d=48,77
$$

of ripe is level without ice load, sad in pipe with ire load will be approx $3^{\prime}-3^{\prime \prime}: 2^{\prime}-3^{\prime \prime}$,

BLACK
VEATCH:

Kanaab City
sunuer Las alamos \qquad
WORK
. Pasapenasion Ouviglga

Date 3-9
smerurby D $D \angle B$
confuteo by
Checkeo By
No. 2 \qquad or
\qquad

Chech hhontennig of pipe due to isag with ies eoad Clearing pormula ar top of py il por rgan length.

$$
\begin{aligned}
& \frac{s^{2}}{4}=\frac{L^{2}}{4}-\frac{4 d^{2}}{3}=\frac{5507}{4}-\frac{4 \times 3.25}{3}=75,6.25-14.08-75,610.92 \\
& s=\sqrt{\frac{\sqrt{2}}{4}}=\sqrt{185}=549.95 . \\
& s=\sqrt{75,610.92 \times 4}=
\end{aligned}
$$

shoiteming due to sag $=105 \mathrm{pt}$.
shortenuing of pipe unith $100^{\circ} \mathrm{F}$ temperafturedrop

$$
=550 \times 100 \times .0000065 \div .36 \mathrm{fr}
$$

To be Lafe should allow for $4^{\prime \prime}$ lomgitudinal movement of pojes ar eachiend of enidge.

Las snain should he approx. level in coeo weathe and allowed to sag in har weather. Nilf use a saq of 37^{\prime} pirth pige lenel ar o ${ }^{\circ} \mathrm{F}$ and calulato sag for temperatines abave $0 \% \mathrm{~F}$ Length of calble at o 0 F-37' eag frampa $1=873^{\prime}$ Leng th of suppension portion of cable ar 37^{\prime} sagg $=556660$, coefficient of expansion of cable $=.0000066$
at. $20^{\circ} \mathrm{F}$.
Rnclease inflength $=873 \times .0000066 \times 20=5.12^{\prime}$
suppencion length $=5556.66+.12=556,72$
From pormula at top of ong. $1 \quad d=\frac{\sqrt{3\left(L^{2}-5^{2}\right)}}{16}$
where d wag, L zuspension length, s s suap. span

$$
\text { Sag }+\sqrt{\frac{3\left(556.83^{2}-30.3500\right)}{16}}=37.66^{\prime}
$$

as $60^{\circ} \mathrm{F}$
oncrease in lengon $=873 x \cdot 0000066 \times 60=.351$
Suspension lengtch $=556.60+.35=556.951$

$$
\text { Sag }=\sqrt{\frac{3\left(556.95^{\circ}-302,500\right)}{16}}=32.98^{\prime}
$$

ar $80^{\circ} \mathrm{F}$
encrease in eength $=873 \times .0000066 \times 8.0 \mathrm{~F} .46^{\prime}$
Suspension length $556.60+146=557.06^{\prime}$

$$
S a g=\sqrt{\frac{3\left(557.06^{2}-302,500\right)}{16}}=38: 28^{1}
$$

an $100^{\circ} \mathrm{F}$
Increasein length $=873 \times 100000066 \times 100=.58^{\prime}$
Suspension length $=556: 60+58=557.18$

$$
\operatorname{Bag}=\frac{\sqrt{3\left(557.18^{2}-302,500\right)}}{16}=38.61
$$

av $120^{\circ} \mathrm{F}$

PAN AM WORLD SERVICES, INC.

ENGINEERING REPORT
INSPECTION, EXAMINATION AND EVALUATION
FOR
CONCRETE ANCHOR BLOCKS
OF THE
PUEBLO CANYON $12^{\prime \prime}$ PIPELINE SUSPENSION BRIDGE

PREPARED BY:

$$
\text { at } 1315 \text { irs, } 10125 \text { : }
$$

(D) We will submit this phon for review by LANL ENG-OLT. gtructional Eager beta. gin ito hid.
(3) lon staten it is men ann l.... Am property books and is therefore our nasa ress,mmsibility, said to go ahead with mark, on In, in wild authorize us and"tahi" the hit if ar: problems came up. (Bon Instructed Fines to prone of list of where

$$
\begin{aligned}
& \text { Per discussion. }
\end{aligned}
$$

TABLE OF CONTENTS

1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0

SUMMARY OF CONCLUSIONS AND RECOMMENDATIONS
PROBLEM AND NEED
SCOPE OF ENGINEERING SERVICES TO BE PERFORMED
ALTERNATIVES DISCUSSED
INVESTIGATION WORK SELECTED AND PERFORMED

- 5.1 SONIC ANALYSIS
- 5.2 CORE SAMPLES
- 5.3 PETROGRAPHIC EXAMINATION
- $5.4 \% \mathrm{H}_{2} \mathrm{O}$ IN A SAMPLE
- 5.5 EVALUATION OF EPOXY REPAIR PRODUCTS

CONCLUSIONS AND RECOMMENDATITONS
RECOMMENDATIONS
APPENDIX
A. REPORT ($10 / 2 / 89$) FROM WESTERN TECHNOLOGIES, INC. (V-SCOPE PULSED VELOCITY ANALYSIS AND CORE SAMPLE ANALYSIS)
B. REPORT (10/9/89) FROM MICRO-CHEM LABORATORIES (PETROGRAPHIC EXAMINATION OF CONCRETE CORE)
C. PROPOSAL $(10 / 2 / 89)$ FROM VIC PEERY CONSTRUCTION, \ldots INC, (EPOXY INJECTION \& SEALING)
D. CALCULATIONS ($10 / 4 / 89$) FROM PAN AM DESIGN ENGINEERING (CABLE LOADS AND SAFETY FACTORS)
E. EXAMINATION FOR WATER CONTENT IN A CORE SAMPLE
F.. PHOTOGRAPHS
G. SPECIFICATION FOR EPOXY REHABILITATION OF CONCRETE ANCHOR BLOCKS, EMTD-EGROUT-100 (10/18/89)
H. FIELD REQUISITION (10/18/89) FOR EPOXY REHABILITATION OF CONCRETE ANCHOR BLOCKS
I. SUMMARY RECOMMENDATION FROM DESIGN ENGINEERING (10-24-89)

LAN AM WORLD GERVICES, INC.

ENGINEERING REPORT

INSPECTION, EXAMINATION AND EVALUATION
FOR
CONCRETE ANCHOR BLOCKS
OF THE

PUEBLO CANYON $12^{\prime \prime}$ PIPELINE SUSPENSION BRIDGE

1.1 All six of the anchor blocks have deteriorat and haverreached severe thaw temperatures greatly to moisture and freeze-thilica reaction between accelerated an alkant and have contributed to a minor aggregates and ceme reinforcement steel andrcablertys surchor bolts and sockets show no visuraleydence deteriorationt
1.2 Rehabilitation is recommended as soon as possible. Based on the results of physical examinations, the method of rehabilitation recommended is to fing thy bondithe cragk ind and fraced surfacel of the blocks using grout and seal: the" exposed (in accordance with Appendix a penetrating epoxy sealex (ehabilitation) with the G, Specification for expectation of exten evaluate restored blocksing ifthe several years then evatateterminetherneed eo specific adational stablilzing dey cest The bridge shóuld"be inspected regülärly (at least annually) to enable appropriate preventive maintenance.

2.0 PROBLEM AND NEED

2.1 The concrete anchor blocks that support the suspension cables of the Pueblo Canyon $1^{\prime \prime}$ Pipeline Bridge visually appear to be deteriorating rapidly and are in need of immediate attention for repair or replacement. More complete descriptions are given in Appendix I.' Pan Am Design Engineering memo (J. Garcia) (10-24-89). Utilities indicate possible changes in the function of the bridge in the foreseeable future including the remote possibility of abandoning this pipeline and bridge altogether.
2.3 However, in the absence of any clear plans for change, the current need is to restore the cable anchoring system to a safe condition as economically as possible.
2.4 The "fix" may be: 1) a quick one to carry the bridge through the next freeze-thaw season coupled with restoration work in 1990; 2) a relatively "long term" rehabilitation coupled with annual inspections and regular preventive maintenance activities; or 3) replacement of the existing anchor blocks with a "permanent" system coupled with preventive maintenance.
2.5 There is no firm required life expectancy for the \because bridge, nor is there a budget for repairing and maintaining the bridge. Acceptable repair costs must be determined as the investigation and evaluations of alternatives is developed.

3.0 BCORE OF ENGINEERING SERVICES TO BE PERFORMED:

3.1 W.O. \#4442-27 - The services requested in this work order are described as an "inspection and report on the structural integrity of the Pueblo Canyon Suspension Bridge". After an initial meeting and visit to the site, the scope was further defined and limited to include only the concrete blocks that anchor the suspension cables. Considerations of the integrity of other parts of the bridge is not included here. The following items describe the extent of work torke, performed.
3.2 Recommend the method(s) of examination and analyses required to determine the existing integrity of the six concrete anchor blocks.
3.3 Proceed with the approved methods of measuring, testing, examining, inspection and evaluating.
3.4 Recommend the most appropriate method (s) of conhecting the problems determinedin the evaluations This would include a discussion of alternatives and preparation of a technical specification for procurement of the required construction or rehabilitation services.

PAGE 2 OF 6
3.5 Analyze bids for construction or rehabilitation work.
3.6 Inspection of the work in support of the Contract Administrator, including final inspection.
3.7 Examine and evaluate the rehabilitated blocks. This is to be accomplished by pulsed velocity (sonic) analysis and interpretation of the results.

1.0 ALTERNATIVES SDISCUSSED:

4.1 Complete replacement of all, 6 anchormblocks with new blocks - same design but with low aikail concrete that would not deteriorate. Current requirements for use of low alkali cement generally eliminates the chemical reactivity, but the cost of replacement is estimated at greater than $\$ 200,000$.
4.2 Complete removal of existing blocks and meplacementy with a drilled pier/auger cast pier, of concrete and make use of concrete weight and skin friction resistance. Same conditions apply as in 4.1 above.
4.3 Removethe worst of the deterioratedrconcrete, leave the re-bar and cable anchor hardware in place, and replace voids with special concrete and bonds and cap the repair with a shell of reinforced concrete. This would be a labor-intensive repair, would require temporary restraints for the cables during repair, and has the risk that the "worst" of the concrete may finally be all of it as the removal progresses.
4.4 : Drill and grout rock anchor bolts throught thergex equing biockstinto the rock under the blocks, "utilizung large steel plates to partially bind the cracked concrete pieces together, along with some epoxy grouting of cracks and surface sealing. Some grout injection would be necessary to allow the anchor bolts to be effective, but this combination would be a temporary fix and would not stop further deterioration of concrete.
4.5 Inject an epoxy grout into the cracks and delaminations throughout the entire block and apply epoxy penetrant sealer to the exposed surface of the block with the intent to re-bond the concrete pieces and to greatly reduce, possibly eliminate, the alkali reaction by cutting off exposure to moisture and the resultant

concretteblocif; the life expectancy is several years, perhaps permanent if the chemical reactionfy can be
 lessthan ther,

5.0 INVEBTIGATION WORK SELECTED AND PERFORMED:

5.1 Pulsed velocity analysis of all blocks (a nondestructive examination) was chosen to obtain preliminary indications of the extent and size of internal cracks. It is not totally conclusive of concrete strength, but does broadly categorize the location and extent of cracking, thus permitting the best choice of core boring locations for obtaining physical evidence.
5.2 Based on the very low velocities obtained by sonic examination, a core sample was drilled and removed from the eastern main block and examined visually.

The poor condition of the concrete in that sample dictated cutting and removing a sample from the western main block to determine if all the blocks should be presumed to be badly cracked.

Results and interpretations of both cores are given in Appendix A (Western Technologies).
5.3 The severe cracks and fractures observed in the core samples indicate a significant mineral reactivity.

This prompted the next step in the investigation, a petrographic examination to obtain specific physical and mineralogical properties and to assess the degree of alkali-aggregate reactivity and degree of cement hydration.
Results and interpretations are given in: Appendix B (Micro-Chem Laboratories).
5.4 Water is required to promote mineral reactivity and to cause cracking due to freeze-thaw temperature changes. A section of core sample was examined for: 1) water content in a core sample and 2) ability of the concrete to absorb moisture. This is a factor in determining the method(s) of rehabilitation.

Results are given in Appendix E
5.5 Epoxy resins bond well to concrete and aggregate surfaces, providing a bond exceeding that of normal cement hydration and concrete strength development, and providing a water repellant product. on this premise, the following sources were reviewed and analyzed for development of specific criteria for rehabilitation of the blocks:

ASTM Standards
ACI Standards
New Mexico State Highway Department Bridge Engineers and specifications
Manufacturer's Technical Data (3 sources)
Application Contractors (2 sources)
Results and interpretations are given in: Appendix C (Vic Peery Construction)
Appendix G (Specificațion EMTD-EGROUT-100)

6.0 CONCLUSIONS:

6.1 All six of the anchor blocks are extensively cracked and delaminated throughout the mass and have reached severe to complete failure. The concrete is, for all practical purposes, a mass of tightly knit pieces of various sizes held together by the cage of \#7 steel reinforcing bars. The ability of these blocks to withstand the type loads for which they were designed has been greatly diminished; however, the life of the blocks in their current condition is indeterminate, depending entirely on the risk of ultimate safety factor loading. Reactivity will continue at an accelerated rate as long as air and moisture have access to carry on the chemical reactions.
 sound Wonditiont based on visual examinationsso
6.3 Weight, shape and placement of blocks is adequate to support the bridge as designed.

 mew, The re-bond will produce a restored, solid mass with integrity similar to normal concrete. The mass will also be water repellant. There is no way to know in advance how extensive the crack fill will be, but core sampling and sonic analysis of the work will provide reliable indicators of how well the epoxy penetrates the cracks and bonds the surfaces.
6.5 There are many suppliers of epoxy and contractors who profess to be able to properly apply the products. However, most suppliers either have no track record or their track record has been blemished by numerous law suits. And there are relatively few contractors who have a successful track record in this specialty of epoxy injection.

7.0 RECOMMENDATIONB:

7.1 Recommend rehabilitation through competitive bidding in accordance with the terms of Appendix G (Specification for Rehabilitation) and Appendix H (Field Requisition).
7.2 The work should be completed before the end of November unless: allowance is made for extensive weather protection and heating throughout the application and curing period.
7.3 The blocks should be covered temporarily now and kept covered continuously until the injection contractor can provide adequate protection from rain, snow and low temperature. Atsthe date of this reportioutifreteewis arranging forthis work..
7.4 Pan Am should prepare the site by excavating the top soil around each block down to tuff, and with a trench wide enough to allow the epoxy applicator to operate drilling and injection equipment. This work has been scheduled by Roads and 'Grounds.
7.5 After injection is complete, the blocks should be examined by selected coring and analysis to evaluate for \% of crack filling and for bonding strength through the use of compression testing.
7.6 The blocks should also be examined nondestructively by pulsed velocity (sonic) analysis after core holes have been filled and after any supplementary injections resulting from core sample analysis.
7.7 After the epoxy injection process is complete, the blocks and surrounding soils should be given a final evaluation to determine the need for any other strengthening or safety modifications such as drilling and grouting rock anchor bolts through the blocks and into the rock below the blocks. For information only, Appendix D (Calculations of Cable and Block Loads) is attached as a preliminary step toward this final

PAN AM WORLD SERVICES, INC.
MEMORANDUM

TO:
THRU: Jerome Gonzales, USTP

FROM: Sr. Materials/Geotechnical Engineer, EMTD

As requested, we have completed an investigation of the foundation supporting the two principal anchor blocks and an analysis of the potential for the installation of anchor bolts for additional support.
The attached report of this work describes the recommended type and configuration of anchors required to provide adequate support.

A contract for this installation should be about $\$ 5,000$, plus detailed design, specification preparation, administrative and inspection costs.
A copy of this report is being given to ENG-3 to give them an opportunity to review and provide any additional recommendations. This report completes our scheduled work on this phase of the project.

Thomas L. Brake
TLB:mjh
XC: C.E. Baxter, EMDO Doug Volkman, ENG-3, M984 Lamar Nowland, EDED
ATRACHMENT: Anchor Bolt Investigation Report

WORLD SERVICES, INC.
ANCHOR BOLT INVESTIGATION REPORT
Page 1 of 2
March 23, 1990
W.O. \#4442-27

ENGINEERING SERVICES - PEGGY SUE BRIDGE FOUNDATION ANALYSIS OF CONCRETE ANCHOR BLOCKS

PURPOSE: The objective of this endeavor has been the geotechnical investigation of the substratum to determine devise an anchor support pre-tensioned anchors and thechanics pertaining to the configuration that would satisfy the mechan blocks.
SUMMARY OF CONCIOSIONS: The subgrade materials are composed of incompetent tuff. Its consistency is that of a dense sand and this analogy was employed in the suggested design included. The type of anchor assumed herein for the blocks is a hollow-core prestressable anchor, adapted with a tubular hollow at its center the annulus in grout downward through the bar and upward through the annulus in the hole. example are summarized as below. Supporting details and computations are provided within the text.

1. Borings: Two borings were drilled, one adjoining each of the two major concrete blocks (see Boring Locations on page 1). Boring logs follow on the next two pages. A hollow-stem auger was used to drill the borings, with sampling taking place through the aperture. continuous sampling procedures yielded a meager recovery, indicative of the scil's lack of conerence. These disclose that the consistency of the substrata on opposite sides of the canyon are very similar. The boring on the east side of the canyon was drilled to a depth of 25 feet; that on the west-side to a depth of 23.5 feet.
2. Soils: The material encountered in both borings was material as a dense sand. The content of 0.6%.
pcf having an average moisture
3. Soil Testing: The predominant test procedure was that of these tests were direct shear test and a total The selected angle of internal completed (pp. 4 through 6) is $\varnothing=31$ and a contracted cohesion friction for design purpose is $\varnothing=31^{\circ}$ and a contracted

March 23, 1990 Page 2 of 2
of $C=250$ psf was also decided upon. The coefficient of passive lateral pressure, $K_{p^{\prime}}$ is 3.12 ; the coefficient of atrest lateral pressure, K_{0} is 0.485 . 10) to determine of stress analysis was computed (page at various depths block's contribution to vertical stresses at various depths.
5. Anchor Design: The method used for pullout resistance of the anchors was devised by Gu and Fragaszy (3) and is outlined on pages 8 and 9 . Only the resistance to pullout of the grout shaft was considered. The top resistance would apply only in the case of a buried anchor. A displacement-resistance curve necessary to attain maximum resistance (page the final and number of trial calculations (Appendix Be 13) being derived workable configuration was arrived at (page 13) being derived from the data outlined on page 14.
The suggested design requires 3-25 foot anchors having groutshafts 18 feet long. The factor of safety against overturning about the toe of the block is 1.06 .
The shear resistance to sliding provided by the material of the anchors and grout is 240 kips (page 15), coupled with frictional resistance of the block amounting to 112.5 kips plus passive pressure resistance of 140.7 kips (page 14) totals 493.2 kips. The factor of safety is 2.5 .
6. Anchor: The 1.375 inch hollow-core prestressable anchor is grouted up to the base of the block. Within the remaining 7 feet of borehole through the block, the anchor bar is sheathed and the annulus filled with a passive material to arrest corrosion. With a prestress force of 5 tons on each anchor, the uninhibited 7 feet of bar should displace about 0.019 inches. This applied force enhances sliding friction resistance. The manufacturer for this type of anchor is the Williams Form Engineering Corp (4).
7. Earthquake Data: Los Alamos lies in seismic risk zone 2. This status implies a possibility of an earthquake having an intensity of VII on the Modified Mercalli Scale. This intensity can produce a ground acceleration of from 0.07 g to 0.15 g and a velocity of from $7 \mathrm{~cm} / \mathrm{sec}$ to $20 \mathrm{~cm} / \mathrm{sec}$. The anchor bolt design should address this condition.

Respectfully submitted,

CONTENTS

Pan Am World Services, Inc.
TEST BORING LOG
PROJECT: PUEBLO CANYON BRIDGE
W.O.\#: 4442-27

BORING NO.: 1 BY: WII
ELEVATION: $\quad N \backslash A$
DATUM: $\quad \mathrm{N} \backslash \mathrm{A}$
BY: $N \backslash A$
ASSUMED ELEVATION: $N \backslash A$
DATE DRILLED: 11-09-89
WATER: NONE DEPTH: N $\backslash A$
TIME: $N \backslash A$

Pan Am World Services, Inc.
TEST BORING LOG-W.O.

Δ.

(CONTINUED)

Direct Shear Tests Peggy Sue Bridge

GENERAL DESIGN PARAMETERS USED IN THE PRESENT DESIGN ON NEXT 3 PAGES

SHAFT RESISTANCE OF THE GROUT COLUMN
IS ONLY RESISTANCE TO PULL-OUT CONSIDERED HEREIN.

RROUND ANCHORS

The load applied to a single gound anchor is carrfied jointly by the soll on the top of the grout shaft and by the soil around the shaft.
The common expression for the bearing capacity of a gound anchor is

$$
Q=Q_{T}+Q_{Q}
$$

where $Q_{T}=$ the shaft resistance; and $Q_{Q}=$ the top resistance.
Q_{T} increases rapidly as loading begins and reaches a peak value after a small displacement.
Q_{q} increases more slowly and reaches its peak value at a relatively large displacement. The soil is usually in a plastic state when Q_{q} reaches peak value due to shear failure.

Anchor Resistance formulae (3)

For a homogeneous soll and a linear overburden stress increase, the shear stress around the cylindrical grout shaft is assumed to increase linearly. The skin resistance of a dense sand is

$$
Q_{r}(s)=(\pi D L) \frac{s}{L s_{f}} \exp \left(1-\frac{s}{L s_{f}}\right)\left(c+K \gamma Z_{m} \tan \phi\right)
$$

Where $\mathrm{Z}_{\mathrm{m}}=$ the distence between the ground surface and the midpoint of the grout shaft;
$K=$ the laterel strass coefficient, which depends on the density of the soil and the injection pressure. (I) Ko for loose sand and K_{p} for dense sand.
$s=$ displacement
$s_{i f}=$ displacement at foilure in direct shear test
$L=$ length of the grout shaft
$D=$ diameter of grout shaft
$\gamma=$ unit weight of the soil
$\Phi=$ ongle of internal friction of the soll
$c=$ cohesion
The maximum value of the top resistance, st, occurs at $s=2$ to 30 ; therefore it is suggested that $3 t=2.5 \mathrm{D}$ in colculation. The total top

- resistonce is given by

$$
\begin{aligned}
& \text { is given by } \\
& Q_{q}(s)=\frac{\pi}{4}\left(D^{2}-d^{2}\right) g_{u l t} \frac{s}{2.5 D} \exp \left(1-\frac{s}{2.5 D}\right)
\end{aligned}
$$

where $d=$ diameter of tenden
$q_{u l t}=$ ultimate bearing capacity
The total capacity of the anchor is $Q(S)=Q_{\mathcal{T}}(S)+Q_{q}(S)$

OROUND ANEHOR DESUCN

NEWMARK STRESS ANALYSIS

10.

RECOMMENDED ANCHOR DESIGN

THE FOLLOWING FIVE PAGES COMPRISE. THE FINAL RECOMMENDED DESIGN
FOR ANCHORING THE CONCRETE BLOCKS.

THE DESIGN ASSUMES THE FOLLOWING:

1. THREE $13 / 8-$ INCH DIAMETER HOLLOW-CORE RE-BAR ANCHORS PER BLOCK. (4)
2. THE ANCHORS ARE 25 FEET IN LENGTH.
3. THE GROUT-SHAFT LENGTH IS 18 FEET.
4. BOREHOLE DIAMETER OF $21 / 2 \operatorname{IN}$.
5. EPOXY-RESIN GROUT.
6. ANCHOR CONFIGURATION 'E'

7.

Recommended Design
ANCHOR CONFIGURATION 'E'

$$
\begin{aligned}
& \Sigma M_{A}=1218.75^{\prime k}-1288^{i k}=-69.25^{\prime k} \mathrm{CW} \rightarrow \text { STABLE } \\
& \Sigma F_{H}=195^{k}-140.7^{k}-112.5^{k}=-58.2^{k}(\text { TO RIGHT })
\end{aligned}
$$

Shear Resistance Provided
By Anchors Against Sliding
Of Concrete Block
Assumptions:
(1) .Hollow Core Groutable Re-Bar Rock Bolt, $1 \frac{3}{8}$ in. Diameter
(1.1) hear Modulus, $E_{S}=11 \times 10^{3} \mathrm{kS} 1$
(1.2)Cross-Sectional Area $=1.48 \mathrm{in}$?
(1.3)ELASTIC LIMIT $=40 \mathrm{ks}$ I $=T$

$$
\text { (1.4) } \operatorname{Shear} \operatorname{Strain}, \phi=\tau / E_{\mathrm{s}}
$$

(2.) Epoxy Resin Grout
(2) DIAMETER $=2 \frac{1}{2} \mathrm{in}$.
(2.2) SHEAR STRENGTH $\cong 6 \mathrm{KSI}$

Steel:

$$
\begin{aligned}
& \phi=T / E_{s}=\frac{40 \mathrm{ksi}}{11 \times 10^{3} \mathrm{ksi}}=3.64 \times 10^{3} \mathrm{rad} . \\
& T=F / \mathrm{A}=E_{s} \phi=11 \times 10^{3} \mathrm{ksi} \times 3.64 \times 10^{-3} \mathrm{rad}=40.04 \mathrm{ksi} \\
& \quad F=1.48 \mathrm{in}^{2} \times 40.04 \mathrm{ksi}=59.5 \mathrm{kIPS}
\end{aligned}
$$

Epoxy:
SECTION AREA $=4.91 \mathrm{in}^{2}-1.48 \mathrm{in}^{2}=3.43 \mathrm{in}^{2}$.
SHEAR FORCE $=6 \mathrm{ksi} \times 3.43 \mathrm{in}^{2}=20.6 \mathrm{kips}$

Total Shear force Resistance Per Anchor

$$
=59.5 \mathrm{kIPS}+20.6 \mathrm{kIPS}=80 \mathrm{KIPS}
$$

APPENDIX A

REFERENCES

1. BOWLES, J. E. (1982), "Foundation Analysis and Design," 3rd ed., McGraw-Hill Book Company, New York, 816 pp.
2. DAS, B. M. (1983), "Advanced Soil Mechanics," McGraw-Hill Book Company, New York, 511 pp.
3. SU, W. and FRAGASZY, R.J. (1988), Uplift Testing of Model Anchors, Journal of Geotechnical Engineering, ASCE, Vol. 114, No. 9, September, pp. 961-983
4. WILLIAMS FORM ENGINEERING CORP., Anchor Bolting Systems, Pub. No. 198, 1988

$$
\because \quad A-1
$$

APPENDIX B

PRELIMINARY ANCHOR DESIGNS THAT WERE FOUND TO PROYIDE INSUFFICIENT RESISTING MOMENT TO PREVENT OYERTURNING OF THE CONCRETE BLOCK.
. $\mathrm{B}-1$

$$
\begin{aligned}
& \Sigma F_{H}=195^{K}-140.7^{K}-82^{k}=-27.7^{k} \quad O K \\
& \left.\left.\Sigma M_{A}=1219^{\prime k}-1041.1^{1 k}\right]=17.7 .9^{k k}\right)^{K} . \\
& \text { [UNBALANCED] }
\end{aligned}
$$

$$
\Sigma M_{A}=1218.75^{\prime k}-1101.33^{1 k}=117.4^{\prime k} \mathrm{ccw}
$$

GROUND ANCHOR DESIGN

$$
\begin{aligned}
& \Sigma M_{A}=195^{k}\left(6.25^{\prime}\right)-140^{k}\left(4.75^{\prime}\right)-140.7^{k}\left(.33^{\prime}\right)-21.5^{k}\left(6.25^{\prime}\right)-43^{k}(.7 .2 \\
& \Sigma M_{A}=1218.75^{\prime k}-1298.3^{\prime k}=-79.6^{\prime k}
\end{aligned}
$$

\therefore Sum of Resisting Moments Greater Than
Turning-Over Moment by 79.6 ft-kips
$\Sigma F_{\text {Horizontal }} 195_{\text {Left }}^{\mathrm{K}}-253_{\text {Right }}^{\mathrm{k}}=58^{\mathrm{k}} \underset{\text { RESISTANCE }}{\text { TO SLIDING }}$

* Note: IF ALL 3 anchors were placed 2 FT TO THE RIGHT OF \& $\Sigma M_{A}=1218.75^{\prime k}-1288^{\prime k}=-69.25^{\prime k}$ Resisting Moment Anchor Configuration E

University of California Los Alamos National Laboratory INSPECTION OF UTILITY BRIDGE Project 9-IQO-Q4974

Submitted by
Kenneth R. White, P.E. Samuel P. Maggard, P.E.

October 1990

INSRECTION OF UTILITY BRIDGE

Project 9-LQO-Q4974

The bridge supporting the gas utility line in the city of Los Alamos has been inspected and evaluated as requested in RFP 9-LQO-Q4974. The bridge is a cable stayed, open spandrel arch spanning pueblo Canyon. The bridge is 550 feet long and consists of one main span suspended from two 2 -inch diameter cables supported by one steel tower on each side of the canyon with the cables anchored into large concrete blocks cast into the volcanic tuff that makes up the plateau on each side of the canyon. Figure 1 in Appendix A shows a deck view of the bridge and Figure 2 shows a profile view.

The field inspection was conducted by Dr. Kenneth R. White, P.E., Dr. Samuel P. Maggard, P.E., and Mr. Ruben Gallegos on September 6-7, 1990. The inspection included a "hands-on" inspection of each joint of the bridge superstructure and careful observation of every cable anchor clamp of the bridge. The inspectors climbed the cable-support towers on each side of the canyon and carefully inspected each joint and bearing on the structures. The field inspection team checked each substructure component for deterioration or damage. The substructure components included the six concrete cable-anchor blocks and the base of the cable support towers.

The field inspection included careful visual inspection of the bridge components as well as "soundings" using a hammer. Other inspection equipment such ultrasonic probes, "feeler wires", and dye penetrant were available but were not used since
the inspection team found no signs of significant duress on the steel superstructure.

The bridge is rated as fracture critical according to the National Bridge Inspection Standards (NBIS) since failure of one of the major components (main support cable, cable support tower, or cable anchorage) would most likely result in catastrophic collapse of the bridge. However, during the field inspection the team found no indications of significant duress. Despite the age of the bridge (41 years), the structure appears to be functioning very well. The cables, joints, cable clamps, floorbeams, and stringers are all in fair to good concition. Figure 3 shows a typical view of the cables, joints, cable clamps, and floorbeams. The hinges, rollers, and bearings are all functioning and show no signs of significant duress. Figure 4 shows hinges, bearings, and rollers.

The concrete cable anchorage blocks do show signs of longterm, freeze-thaw damage. The exposed surfaces of the concrete blocks are cracked with spalling and delamination. The south main-cable anchor block has some efflorescence caused by water leaching through the cracks in the concrete. All the anchorage blocks have been treated with epoxy crack sealant that is in good condition at this time and makes the concrete much more resistant to water penetration.

Various forms of corrosion were found on a majority of the bridge components. Corrosion forms included galvanic, crevice, and pitting. The galvanic corrosion is caused by the interfacing of dissimilar metals in the presence of an electrolyte (water). The crevice corrosion occurs within the gaps of mating surfaces
of the structure where evaporation of moisture is slow. pitting is the localized formation of deeper, narrow penetrations into the steel surfaces caused by scratches and nicks in the protective paint surfaces. Eortunately, none of the corrosion has progressed to a point of causing significant loss of section and/or duress in any of the primarily structural members. Further damage from the corrosion may be prevented by cleaning and painting the bridge superstructure and support towers.

The Structural Inventory and Appraisal Ratings required by the National Bridge Inspection Standards (NBIS) for highway bridges is shown in Appendix A. Several of the items do not apply to the utility bridge. Under the structural data; the bridge is classified as a steel suspension bridge (Item 43) over a waterway (Item 42).

The Condition and Appraisal Ratings are defined in the Recording and Coding Guide for the Nation's Bridges and the appropriate definitions have been reproduced and placed in Appendix B as reference material. The applicable condition ratings are as follows:

Deck - good condition with minor problems (Item 58).
Superstructure - good condition with minor problems (Item 59).
Substructure - satisfactory condition, some structural elements show some minor deterioration (Item 60).

The applicable appraisal ratings are:
Structural condition - equal to present minimum criteria (Item 67).

Waterway adequacy - superior to present desirable criteria (Item 71).

Routine maintenance on numexous components is needed to prevent damage or further deterioration of the structure. Most of these items are associated the cable connections, e.g. replacing missing cable clamps or missing nuts, tightening the sway cables, replacing frayed cables, and replacing a few catwalk gratings. Specific maintenance items and their location are listed in detail in Appendix C.

Recommendations:

The following general recommendations are made with regard to the utility bridge.

1. Clean and paint the bridge superstructure and main cable supports. The bridge stringer, floorbeams, bearing, and walkway need protection from further corrosion damage. Typical corrosion is shown in Figure 5 .
2. It is not necessary to paint the cables at this time since they appear in good condition and show no signs of corrosion.
3. Monitor the cable anchorage blocks to check on further freeze-thaw damage cause by water penetration and any sign of movement of the anchorage blocks or cable eyebars. Freeze-thaw damage is shown in Figure 6.
4. Tighten the loose sway cables and monitor the cable tensions on a regular schedule to prevent damage from wind loading.
5. Replace the securing bolt in the pin of the main cable anchor on the west end, south side. Proper tension on this bolt holds the pin sleeve in position as originally designed. The pin arrangement is shown in Figure 6.

$$
p g-4
$$

6. The east tower requires some further preventative maintenance to minimize corrosive activity as detailed in Item 27 of Appendix C.

Appendix A

PHOTO PAGES

FIGURE 1: EAST - WEST DECR VIEW

FIGURE 2: NORTH - SOUTH ?ROFIIE

FEATURE CROSSED: PUEBLO CANYON

COUNTY: LOS ALAMOS
DATE: SEPTEMBER 7, 1990

FIGURE 3: FLOORBEAM/STRINGER/SNAY CABLE; WEST - EAST

FEATURE CROSSED: PUEBLO CANYON

FIGURE 5: TYPICAI CORROSION ON THE BRIDGE

FIGURE 6: CABIE ANCEORAGE BLOCK AND ANCEOR DIN

FEATURE CROSSED: PUEBLO CANYON

DATE: SEPTEMBER 7, 1990

FIGURE 7:
MISSING CABIE CIAMPS

EIGURE 8:
MISSING TURNBOCKIE

FIGURE 9: RUSTED X-BRACING

FIGURE 10: LEACEING OF ANCHORAGE BLOCX

Appendix B

STRUCTURAL INVENTORY AND APPRAISAL RATINGS

STRUCTURE DATA:
Item
36 - Traffic Safety Features

Not Anplicable
N/A
05
313
N/A

CONDITION:

Item	Material	Condition anal.	Rating
58-Deck	steel grate	good except one panel	7
59-Superstructure	steel	good	7
60-Substructure	concrete	satisfactory	6
61-Channel \& Ch Protection			N/A
62-Culvert ε Retain. Walls			N/3
63-Est. Remaining Life			- N/a
64-Operating Rating			N/4
65- Approach Roadway Cond			N/A
66- Inventory Rating			N/A

APPRAISAL:

	Deflelencies	Rating
67- Structural Condition	Controlled by Cond rating	6
68- Deck Geometry		N/A
69- Underclearances		N/A
70-Safe Load Capacity		3/4
71- Waterway Adequacy		9
72- Approach Roadway Alignment		N/A

Items 58 through 62 - Indicate the Condition Ratings

In order to promote uniformity between bridge inspectors, these guidelines will be used to rate and code Items $58,59,60,61$, and 62.
Condition ratings are used to describe the existing, in-place bridge as compared to the as-built condition. Evaluation is for the materials related, physical condition of the deck, superstructure, and substructure components of a bridge. The condition evaluation of channels and channel protection and culverts is also included. Condition codes are properly used when they provide an overall characterization of the general condition of the entire component being rated. Conversely, they are improperiy used if they attempt to describe localized or nominally occurring instances of deterioration or disrepair. Correct assignment of a condition code must, therefore, conside \bar{r} both the severity of the deterforation or disrepair and the extent to which it is widespread throughout the component being rated.
The load-carrying capacity will not be used in evaluating condition items. The fact that a bridge was designed for less than current legal loads and may be posted shall have no influence upon condition ratings.
Portions of bridges that are being supported or strengthened by temporary members will be rated based on their actual condition; that is, the temporary members are not considered in the rating of the tem. (See Item 103 Temporary Structure Designation for the definttion of a temporary bridge.)

Completed bridges not yet opened to traffic, if rated, shall be coded as if open to traffic.

The following general condition ratings shall be used as a guide in evaluating Items 58, 59, 60, 61, and 62:

Code Description

$N \quad$ NOT APPLICABLE
9 EXCELLENT CONDITION
8 VERY GOOD CONDITION - no problems noted.
7 GOOD CONDITION - some minor problems.

6
deterioration.
FAIR CONDITION
4
scour.
3 SERIOUS CONDITION - loss of section, deterioration, spalling or scour have seriously affected primary structural components. Local failures are possible. Fatigue cracks in steel or shear cracks in concrete may be present.
CRITICAL CONDITION - advanced deterioration of primary structural elements. Fatigue cracks in steel or shear cracks in concrete may be present or scour may have removed substructure support. Unless closely monitored it may be necessary to close the bridge until corrective action is taken.
"IMMINENT" FAILURE CONDITION - major deterioration or section loss present in critical structural components or obvious vertical or horizontal movement affecting structure stability. Bridge is closed to traffic but corrective action may put back in light service. FAILED CONDITION - out of service - beyond corrective action.

This item describes the overall condition rating of the deck. Rate and code the condition in accordance with the above general condition ratings. Code N for all culverts.

Concrete decks should be inspected for cracking, scaling, spalling, leaching, chloride contamination, potholing, delamination, and full or partial depth fallures. Steel grid decks should be inspected for broken welds, broken grids, section loss, and growth of filled grids from corrosion. Timber decks should be inspected for splitting, crushing, fastener falure, and deterioration from rot.

The condition of the wearing surface/protective system, foints, expansion devices, curbs, sidewalks, parapets, fascias, bridge rail, and scuppers shäl not be considered in the overali deck evaluation. However, their condition should be noted on the inspection form.

Decks integral with the superstructure will be rated as a deck only and not how they may influence the superstructure rating (for example, rigid frame, slab, deckgirder or T-beam, voided slab, box girder, etc.). Similarly, the superstructure of an integral deck-type bridge will not influence the deck rating.
Item 59 - Superstructure
1 digit
This item describes the physical condition of all structural members. Rate and code the condition in accordance with the previously described general condition ratings. Code N for all culverts.
The structural members should be inspected for signs of distress which may include cracking, deterioration, section loss, and malfunction and misalignment of bearings.
The condition of bearings, joints, paint system, etc. shall not be included in this rating, except in extreme situations, but should be noted on the inspection form.
On bridges where the deck is integral with the superstructure, the superstructure condition rating may be affected by the deck condition. The resultant superstructure condition rating may be lower than the deck condition rating where the girders have deteriorated or been damaged.

Fracture critical components should receive careful attention because failure could lead to collapse of a span or the bridge.

```
Item 60 - Substructure
    1 digit
```

This item describes the physical condition of piers, abutments, piles, fenders, footings, or other components. Rate and code the condition in accordance with the previously described general condition ratings. Code N for all culverts.

All substructure elements should be inspected for visible signs of distress including evidence of cracking, section loss, settlement, misalignment, scour, collision damage, and corrosion. The rating given by Item 113 - Scour Critical Bridges, may have a significant effect on Item 60 if scour has substantially affected the overall condition of the substructure.
The substructure condition rating shall be made independent of the deck and superstructure.

Items 67, 68, 69, 71, and 72 - Indicate the Appraisal Ratings
The ftems in the Appraisal section are used to evaluate a bridge in relation to the level of service which it provides on the highway system of which it is a part. The structure will be compared to a new one which is built to current standards for that particular type of road as further defined in this section except for Item 72 - Approach Roadway Alignment. See Item 72 for special criteria for rating that item.

Items 67, 68, 69, 71, and 72 will be coded with a l-digit code that indicates the appraisal rating for the item. The ratings and codes are as follows:

Code Description
$N \quad$ Not applicable
9 Superior to present desirable criteria
8 Equai to present desirable criteria
7 Better than present minimum criteria
$6 \quad$ Equal to present minimum criteria
5 Somewhat better than minimum adequacy to tolerate being left in place as is
Meets minimum tolerable limits to be left in place as is Basically intolerable requiring high priority of corrective action
2 : Basically intolerable requiring high priority of replacement
1 © This value of rating code not used
0 Bridge closed
Tables are provided to evaluate items 67, 68, 69 and 71, and shall be used by all evaluators to code these ftems. They have been developed to closely match the descriptions for the appraisal evaluation codes of 0 to 9 . The tables shall be used in all instances to evaluate the ftem based on the designated data in the inventory, even if a table does not appear to match the descriptive codes. For unusual cases where the site data does not exactly agree with the table criteria, use the most appropriate table to evaluate the item.

Level of service goals is a concept that several States have introduced into their bridge management to determine the need for bridge improvements.

Level of service goals are target values for selected bridge characteristics that are used to assess bridge adequacy. The goals may vary depending on the highway functional classification, traffic volume, and other factors. The goals are set with the recognition that widely varying traffic needs exist throughout highway systems and that many bridges on local roads can adequately serve traffic needs with lower load and capacity geometric standards than would be necessary for bridges on heavily traveled main highways. The degree to which a bridge is deficient can be measured by comparing bridge characteristics with level of service goals. Shortfalls from the goals determine the type and extent of improvement needs. The shortfalls are useful for comparing bridge needs and setting improvement priorities. Needs determined by level of service goals that are graduated to traffic levels and the characteristics of the vehicles served can differ greatiy from those determined by a single standard that applies to all bridges, for example the AASHTO A Policy on Geometric Design of Highways and Streets 1984.
19. VC45-N rusted turnbuckle.
20. SC46-N,S rusted turnbuckles.
21. VC46-N missing cable clamp.
22. VC48-S rusted turnbuckle.
23. SC48-N,S rusted turnbuckle.
24. SC49-N, S rusted turnbuckle, nut missing at both ends of cable.
25. VC50-N, S rusted turnbuckle, missing cable clamps.
26. SC50-N, S rusted turnbuckle, loose cable on south side.
27. Support tower, east end - water entering into X-bracing at 4 th from bottom, S.E. end. Pipe bracing is rusting uniformly. The rest of the tower exhibits pit corrosion. Tower should be sand blasted and painted. Defects are shown in Eigure 9. The joints of the X-bracing should be sealed to prevent water out of pipes. Drains at lower ends of bracing would drain any water trapped at the present time. See the attached sketch.
28. Southeast main cable anchorage block is leaching at N.E. corner as shown in Figure 10.

Appendix C

Listed below are specific items that require maintenance or repair. Each item is located according to joint number attached to the cables (metal tags at cable clamps). VC will refer to the vertical cable (suspension cable) between the main cable (MC) and bridge floorbeams (attachment to the bridge superstructure). SC will refer to the sway cables. N will reference cables on north side and S will reference cables on south side of the bridge. 1. Section of walkway grating missing at west end of bridge.
2. VC1-S (vertical cable, number 1, south side) is missing cable clamps as shown in Figure 7.
3. VC1-N has frayed cable.
4. SC4-S (sway cable, number 4, south side) cable is loose.
5. VC5-S has oversized turnbuckle that is rusting and has odd spacing of cable clamps.
6. SC8-S has a rusted turnbuckle.
7. SC9-N, S both sway turnbuckles are rusting.
8. SC19-N nut missing on sway cable clamp.
9. VC23-S nut missing on cable clamp.
10. VC25-N two nuts missing on cable clamps.
11. VC25-S frayed cable ends and corroded turnbuckle. Nut also missing from sway cable clamp.
12. SC27-S turnbuckle missing as shown in Eigure 8.
13. SC35-S loose cable.
14. SC37-S loose cable.
15. SC38-S loose cable.
16. SC39-S loose cable.
17. SC40-S loose cable.
18. SC45-S loose cable, rusted turnbuckle.

APPENDIX D

Little Peggy Sue Bridge Photographs and Drawings

Little Peggy Sue Bridge, dir. ~NNW

Little Peggy Sue Bridge, view from south end, dir. ~NNE

Little Peggy Sue Bridge, dir. ~N

Little Peggy Sue Bridge, south tower, dir. ~W

