

LA-UR-14-28940

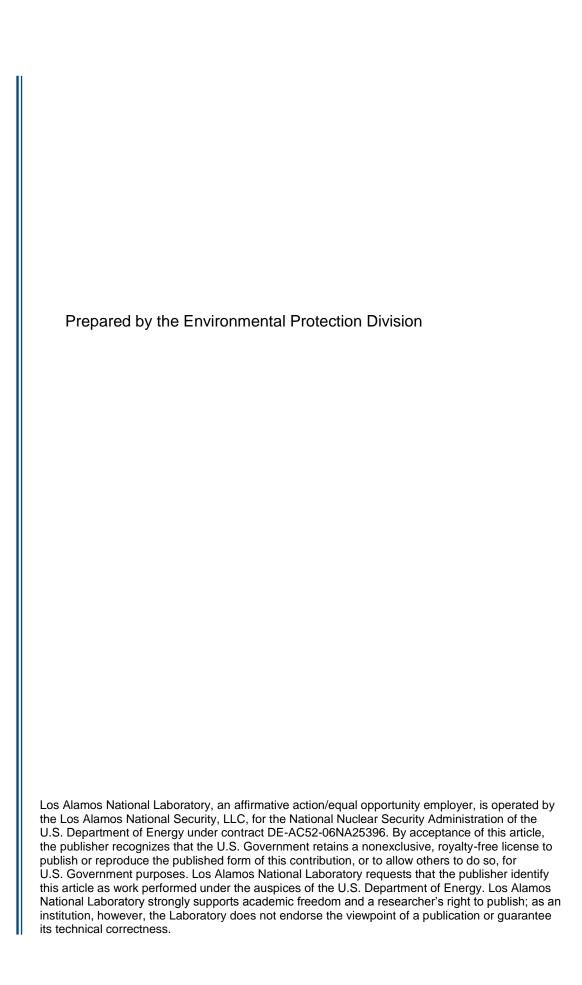
Approved for public release; distribution is unlimited.

Title: Emissions Inventory Report Summary for Los Alamos National Laboratory

for Calendar year 2013

Author(s): Whetham, Walter Wiley

Intended for: Report


Environmental Programs

Issued: 2014-11-19 (rev.1)

Emissions Inventory Report Summary for Los Alamos National Laboratory for Calendar Year 2013

CONTENTS

ABS	TRA	CT	1
1.0	INTI	RODUCTION	1
	1.1	Regulatory Basis	1
	1.2	Contents of Annual Emissions Inventory Submittal	3
	1.3	Contents of the Semi-annual Title V Operating Permit Emissions Reports	
2.0	REP	PORTED EMISSION SOURCES	3
	2.1	Power Plant	4
	2.2	Small Boilers and Heaters	5
	2.3	Asphalt Plant	6
	2.4	Data Disintegrator	6
	2.5	Degreasers	6
	2.6	Permitted Beryllium-Machining Operations	7
	2.7	Generators	7
	2.8	Combustion Turbine	8
	2.9	Emissions from Chemical Use Activities	8
		2.9.1 VOC Emissions	8
		2.9.2 HAP Emissions	9
		2.9.3 HAP Metals	10
	2.10	Emissions Summary by Source	10
3.0	REP	PORTING EXEMPTIONS	12
	3.1	Boilers	12
	3.2	Generators	12
	3.3	VOC Emissions	13
	3.4	HAP Emissions	14
	3.5	Paints	14
4.0	EMI	SSIONS SUMMARY	15
	4.1	2013 Emissions Summary	15
REF	EREN	NCES	19
ATT	ACHI	MENT A: Emission Calculation Worksheets for Individual Emission Units	20
ATT	ACHI	MENT B: 2013 Annual Emissions Inventory Submittal to NMED	51
ATT		MENT C: 2013 Semi-annual Emissions Reports Submitted Under Title V Operating mit Requirements	95

Figures

Figure 2.1-1. T	A-3 power plant.	5
Figure 2.9-1. E	xample of a laboratory fume hood at LANL.	8
Figure 4.1-1. E	missions of criteria pollutants by source in 2013	16
Figure 4.1-2. C	Comparison of facility-wide annual reported emissions from 2004 to 2013	17
Figure 4.1-3. V	OC and HAP emissions from chemical use from 2003 to 2013	18
Tables		
Table 2.0-1.	Sources Included in LANL's 2013 Annual Emissions Inventory and Semi-annual Emissions Reports	4
Table 2.10-1.	Summary of LANL 2013 Reported Emissions for Annual Emissions Inventory	11
Table 2.12-2.	Summary of LANL 2013 Semi-annual Emissions as Reported Under Title V Operating Permit Requirements	11
Table 3.3-1.	Exemptions Applied for Chemical Use Activities	14
Table 4.1-1.	LANL Facility-Wide Criteria Pollutant Emissions for 2013	15
Table 4.1-2.	LANL HAP Emissions from Top Five Chemicals Used in 2013	15

iv LA-UR-14-28940

Acronyms

AIRS Aerometric Information Retrieval System

AQB Air Quality Bureau

CAS Chemical Abstracts Service
CFR Code of Federal Regulations

CMRR Chemistry and Metallurgy Research Replacement (Facility)

CO carbon monoxide

EPA (United States) Environmental Protection Agency

FGR flue gas recirculation

gal. gallon

HAP hazardous air pollutant

hr hour

LANL Los Alamos National Laboratory

lb pound

mmHg millimeter of mercury

MSDS material safety data sheet

NMAC New Mexico Administrative Code

NMED New Mexico Environment Department

NO_x nitrogen oxides

oz. ounce

PM particulate matter

 $PM_{2.5}$ particulate matter with diameter less than 2.5 micrometers PM_{10} particulate matter with diameter less than 10 micrometers

PSD Prevention of Significant Deterioration

R&D research and development

RLUOB Radiological Laboratory/Utility/Office Building

 SO_x sulfur oxides SO_2 sulfur dioxide TA Technical Area

TSP total suspended particulates

μm micrometer

VOC volatile organic compound

yr year

vi LA-UR-14-28940

EMISSIONS INVENTORY REPORT SUMMARY FOR LOS ALAMOS NATIONAL LABORATORY FOR CALENDAR YEAR 2013

by Environmental Stewardship Group

ABSTRACT

Los Alamos National Laboratory (LANL) is subject to annual emissions reporting requirements for regulated air pollutants under Title 20 of the New Mexico Administrative Code, Chapter 2, Part 73 (20.2.73 NMAC), Notice of Intent and Emissions Inventory Requirements. The applicability of the requirements is based on LANL's potential to emit 100 tons per year of suspended particulate matter, nitrogen oxides, carbon monoxide, sulfur oxides, or volatile organic compounds. Additionally, on April 30, 2004, LANL was issued a Title V Operating Permit from the New Mexico Environment Department/Air Quality Bureau, under 20.2.70 NMAC and the permit was modified on June 15, 2013. This Title V Operating Permit (Permit No. P100-R1-M1) includes emission limits and operating limits for all regulated sources of air pollution at LANL. The Title V Operating Permit also requires semi-annual emissions reporting for all sources included in the permit. This report summarizes both the annual emissions inventory reporting and the semi-annual emissions reporting for LANL for calendar year 2013. LANL's 2013 emissions are well below the emission limits in the Title V Operating Permit.

1.0 INTRODUCTION

1.1 Regulatory Basis

Los Alamos National Laboratory (LANL or the Laboratory) has reported on air pollutants generated from its operations since the 1970s when Air Quality Control Regulation 703, Registration of Air Contaminant Sources, was promulgated. According to the regulation, the Laboratory was required to register air pollutant sources that emitted more than 2,000 lbs per year of any air contaminant. This regulatory requirement later evolved into Title 20 of the New Mexico Administrative Code, Chapter 2, Part 73 (20.2.73 NMAC), Notice of Intent and Emissions Inventory Requirements. The objective of the reporting requirement is to provide emissions data to the New Mexico Environment Department (NMED)/Air Quality Bureau (AQB) so its staff can determine whether LANL meets state and federal air pollutant standards.

Annual emissions inventory reporting requirements under 20.2.73 NMAC apply to any stationary source that

- has been issued a construction permit under 20.2.72 NMAC;
- has been required to file a Notice of Intent under 20.2.73.200 NMAC; or

- emits in excess of
 - 1 ton per year of lead or
 - 10 tons per year of
 - total suspended particulates (TSP);
 - particulate matter (PM) with diameter less than 10 micrometers (PM₁₀);
 - PM with diameter less than 2.5 micrometers (PM_{2.5});
 - sulfur dioxide (SO₂);
 - nitrogen oxides (NO_x);
 - carbon monoxide (CO); or
 - volatile organic compounds (VOCs).

The annual emissions inventory must be submitted to NMED/AQB by April 1 of each year. The NMED/AQB enters the data into the Aerometric Information Retrieval System (AIRS) (EPA 2013). This nationwide system, administered by the United States Environmental Protection Agency (EPA), is used to help ensure ambient air quality standards are maintained and to track the state's air pollutant emissions. AIRS is a large air pollution database that contains information, requirements, and data on air pollution and air quality in the United States and various World Health Organization member countries. The program is operated by the EPA and state/local air pollution control agencies. The AIRS database tracks each state's progress towards achieving and maintaining National Ambient Air Quality Standards for criteria pollutants. The database is also used as a tool to help improve each state's air quality programs by enabling program members to access and compare past data and view data from other states.

Additionally, on April 30, 2004, LANL was issued a Title V Operating Permit from the NMED/AQB, under 20.2.70 NMAC. The NMED/AQB issued a modified permit (P100-R1-M1) on June 15, 2013 (NMED 2013). A condition of the Title V Operating Permit is that LANL must submit semi-annual emissions reports to NMED documenting that emissions from all permitted sources are below permitted emission levels. Section A109.B of the permit states:

"A Semi-Annual Report of actual emissions from all permitted sources unless otherwise specified in this permit is due within 90 days following the end of every 6-month reporting period as defined at Condition A109.A. Emission estimates of criteria pollutants NO_x, CO, SO₂, VOC, TSP, PM₁₀, and PM_{2.5} shall not include fugitive emissions. Emissions estimates of HAPs shall include fugitive emissions. Emission estimates shall not include Insignificant or Trivial Activities, except that facility-wide emissions from all natural gas combustion sources shall be estimated. The reports shall include a comparison of actual emissions that occurred during the reporting period with the facility-wide allowable emission limits at Table106.B."

In 2004, the Laboratory began submitting the semi-annual emissions reports as well as the annual emissions inventory. There are a few differences in which sources are included in the two emissions reports. These differences are explained in the following sections.

1.2 Contents of Annual Emissions Inventory Submittal

NMED requested that LANL submit annual emissions inventory data for 2013 via electronic format for entry into AIRS. The information required for submittal includes the following:

- facility name, organization name, and agency ID;
- facility contact information;
- signed certification statement by a responsible facility official; and
- specific information for each emission unit such as fuel type, materials processed, materials
 consumed, fuel heating value, percent sulfur of fuel, percent ash of fuel, percent carbon content,
 and details of operating schedule.

This annual emissions inventory submittal includes air pollutant data for PM, PM₁₀, PM_{2.5}, CO, NO_x, sulfur oxides (SO_x), VOCs, beryllium, and hazardous air pollutants (HAPs).

1.3 Contents of the Semi-annual Title V Operating Permit Emissions Reports

The semi-annual Title V Operating Permit emissions reports include actual estimated emissions for the reporting period for each emission source or source category included in the Title V Operating Permit. For each source category, the actual emissions are compared with emission limits listed in the permit. The emissions are calculated using operating data from logbooks and records maintained on site. All emission calculations are consistent with calculation methods used for the annual emissions inventory.

The semi-annual emissions reports include a few source categories not included in the annual emissions inventory. The Laboratory requested emission limits in their Title V Operating Permit for two source categories that are considered insignificant sources for the annual emissions inventory. These source categories are 1) small boilers and heaters and 2) stationary standby generators. LANL requested emission limits for these source categories to obtain federally-enforceable limits that would keep the Laboratory under the major source threshold for Prevention of Significant Deterioration (PSD) applicability (20.2.74 NMAC). LANL's actual emissions from these insignificant sources have historically been very low; however, without federally-enforceable limits on their operation, the potential to emit from these sources was quite high. To demonstrate that LANL is below the PSD applicability and is in compliance with the emission limits placed on these emission sources, LANL now must include these emissions in the semi-annual Title V Operating Permit emissions reports.

2.0 REPORTED EMISSION SOURCES

Table 2.0-1 shows the emission sources included in the Laboratory's 2013 annual emissions inventory report (LANL 2013a) and the 2013 semi-annual emissions reports (LANL 2013b and 2014c). The source categories and the methodology used to calculate emissions are described in the following sections.

The following subsections describe emission sources included in the 2013 emissions inventory and semi-annual emissions reports and emission calculation methodology for each source type. A summary table of actual reported emissions by source is included in Section 2.12. Attachment A includes worksheets showing detailed emission calculations for individual emissions sources. A copy of the 2013 emissions inventory as submitted to NMED is presented in Attachment B. The 2013 semi-annual emissions reports are included as Attachment C.

Table 2.0-1. Sources Included in LANL's 2013 Annual Emissions Inventory and Semi-annual Emissions Reports

Included in Annual Emissions Inventory	Included in Semi-annual Emissions Reports	Comment
Power Plant (TA-3)	Power Plant (TA-3)	n/a ^a
Boilers greater than 5 MMBTU/hr ^b (14 units)	All small and large boilers and heaters (approximately 175 units)	Small boilers less than 5 MMBTU/hr are exempt from annual emissions inventory requirements (see Section 3.1).
Asphalt Plant	Asphalt Plant	n/a
Degreasers	Degreasers	n/a
Data Disintegrator	Data Disintegrator	n/a
Permitted Beryllium Sources	Permitted Beryllium Sources	n/a
Facility-wide Chemical Use	Facility-wide Chemical Use	The semi-annual emissions reports also include separate emission data for the CMRR-RLUOB building.
Process Generators	Process Generators and Stationary Standby Generators (approximately 45 units)	Stationary standby generators are exempt from annual emissions inventory requirements (see Section 3.2).
TA-3 Turbine	TA-3 Turbine	n/a

a: n/a = Not Applicable.

b: one million British thermals units per hour.

2.1 Power Plant

The Laboratory operates a power plant at Technical Area (TA) 3. The power plant produces steam for heating and electricity for much of the Laboratory when sufficient power from outside sources is not available. The heat produced from the power plant is used for comfort heat and hot water and to support facility processes. The power plant has three boilers that are fueled primarily with natural gas with No. 2 fuel oil as a backup. The Laboratory operated a second power plant at TA-21 that was shut down in 2007.

For the 2013 emissions inventory, NMED requested that emissions from natural gas and No. 2 fuel oil be reported separately for the boilers located at each of the power plants. The TA-3 power plant was originally included in LANL's emissions inventory as a single unit. When a modification to the plant was made in 2001, the TA-3 power plant was separated into three separate units for emissions reporting purposes. Because each of the three boilers has the capability of burning either natural gas or No. 2 fuel oil, the TA-3 power plant is now reported as six units (ID 24, ID 25, and ID 26 for the natural gas and ID 137, ID 138, and ID 141 for the No. 2 fuel oil).

The 2013 emissions inventory reporting year used the updated emission factors for fuel oil for PM, PM_{10} , and $PM_{2.5}$ as described for the TA-3 power plant boilers.

Actual estimated emissions are calculated on the basis of metered fuel consumption and emission factors. The primary source of emission factors is AP-42, the EPA's Compilation of Air Pollutant Emission Factors (EPA 1998). However, emission factors from stack tests conducted at the TA-3 power plant when burning natural gas were also used, as appropriate.

The TA-3 power plant has historically been the largest source of NO_x emissions at the Laboratory. In 2002, a voluntary project to install pollution control equipment on the three boilers at the TA-3 power plant was completed. The three boilers were fitted with flue gas recirculation (FGR) equipment to reduce NO_x emissions. Stack testing for NO_x and CO was conducted before FGR equipment was installed and again after it was operational. Based on these stack test results, FGR reduced NO_x emissions by approximately 64%. Figure 2.1-1 shows a picture of the TA-3 power plant building and stacks.

Figure 2.1-1. TA-3 power plant.

2.2 Small Boilers and Heaters

The Laboratory operates approximately 175 small boilers and heaters, used primarily for seasonal comfort heat. Most of the boilers are exempt from permitting requirements because of their small size and use as comfort boilers and are not included in the annual emissions inventory. The exemption analysis applied to boilers is discussed in Section 3.1 of this report.

The boilers that are not exempt and reported in the 2013 annual emissions inventory include the following:

- two boilers at TA-53 (ID 11 and ID 12);
- two boilers at TA-55 (ID 29 and ID 30);
- five boilers at the Chemistry and Metallurgy Research Replacement (CMRR) Facility (ID 90, ID 104, ID 105, ID 106, and ID 107); and
- two boilers at TA-16 (ID 53 and ID 134).

All of the reported boilers burn natural gas. Operating logs of actual fuel used for the TA-55 and the CMRR boilers were used to quantify emissions from these units. Fuel use for all other boilers was estimated based on the total amount of natural gas used by the Laboratory minus the amount supplied to metered sources. The amount of natural gas left after subtracting out metered sources was apportioned to the various boilers based on their size. Since virtually all of the small boilers are seasonal boilers used for building heating, it was assumed they would all operate approximately the same amount of time over the course of the year. Some emission factors were available from stack tests (TA-55), some were provided by the boiler manufacturer (Sellers Engineering Company), and the rest were taken from AP-42

(EPA 1998). Copies of spreadsheets showing fuel use and emission factors for each boiler are included in Attachment A.

For the semi-annual emissions reports, emissions from small boilers are included as a source category. These boilers include TA-16-1484-BS-1, TA-16-1484-BS-2, TA-53-365-BHW-1, TA-53-365-BHW-2, TA-55-6-BHW-1, TA-55-6-BHW-2, CMRR-BWH-1, CMRR-BWH-2, CMRR-BWH-3, and CMRR-BWH-4. Additionally, emissions from each of the CMRR boilers are included as separate source categories. To estimate emissions, all unmetered fuel use was multiplied by AP-42 emission factors for small boilers burning natural gas (EPA 1998). Total emissions of each pollutant from all boilers and heaters in this source category were then summed and reported on the semi-annual emissions reports.

2.3 Asphalt Plant

The TA-60 asphalt plant (ID 116) began operations in July 2005. This unit replaced the TA-3 asphalt plant, which was dismantled and removed in September 2003. Information on the amount of asphalt produced and the duration of daily operation at the TA-60 asphalt plant was provided as part of a monthly site support contractor data deliverable. The total asphalt produced in 2013 was 335 tons.

The emissions from the asphalt plant include criteria pollutants, NO_x and CO. None of the emissions were significant in regard to the overall Laboratory emissions. The largest pollutant emitted from the asphalt plant was CO at 0.53 tons per year.

2.4 Data Disintegrator

The data disintegrator is included in the 2013 emissions inventory as ID 89. Operation of this source started in August 2004. Emissions are calculated using the methodology described in the original permit application dated June 23, 2003. Emissions of PM, PM₁₀, and PM_{2.5} are calculated based on the number of boxes shredded, the amount of dust estimated to enter the exhaust (provided by the manufacturer), and the control efficiency of the cyclone and baghouse (also provided by the manufacturer). The permit application included PM_{2.5} emission estimates. Therefore, an emission methodology had to be developed for the emission inventory reporting. No specific PM size distribution data were available. However, the manufacturer reported that dust into the exhaust would be in the size range of 5 to 20 μ m. Based on visual observation and engineering judgment, a particle size distribution in the exhaust was estimated as follows:

- PM_{2.5} 15%
- PM₁₀ 90%
- TSP 100%

The number of boxes of material shredded is provided in a monthly data deliverable from the site support contractor. The total number of boxes shredded at the data disintegrator in 2013 was 1,752.

2.5 Degreasers

The halogenated solvent cleaning machine at TA-55 has a capacity of 18 liters and is registered with NMED/AQB as required under the National Emissions Standards for Hazardous Air Pollutants, 40 Code of Federal Regulations (CFR) 63 Subpart T, Halogenated Solvent Cleaning. The solvent used in the machine, trichloroethylene (Chemical Abstracts Service [CAS] No. 79-01-6), is a VOC and a HAP. This

emission unit is included in the annual emissions inventory as ID 21. LANL uses a mass balance approach to estimate emissions. Logbooks are kept on the amount of solvent added and removed from the machine. Additionally, solvent levels in the machine are logged monthly. LANL has two additional halogenated solvent cleaning machines registered with NMED (ID 29 and ID 30). These units were not operational in 2013. The emissions from the TA-55 degreaser for this reporting period are 15.8 lbs or 0.008 tons per year. This source category is reported in both the annual emissions inventory and the semi-annual emissions reports.

2.6 Permitted Beryllium-Machining Operations

The Laboratory operates four permitted beryllium-machining operations that are subject to 40 CFR 61, Subpart C, and National Emission Standards for Beryllium. Emissions reported for the Beryllium Test Facility (ID 3) are from actual stack emissions measurements. Emissions for the Target Fabrication Facility (ID 2) are from initial compliance stack testing and are reported as permitted emission levels. In addition, emissions from the Plutonium Facility (ID 6) are reported at permitted emission levels. Foundry operations within the Plutonium Facility did not occur during this reporting period. Total emissions from all permitted beryllium operations are included in the semi-annual emissions reports.

2.7 Generators

LANL has four permitted generators (ID 56, ID 119, ID 120, and ID 135) with internal combustion engines located at TA-33 to support research activities. NMED issued a construction permit (Permit No. 2195-F) in October 2002 for installing the initial generator, and this unit is included in LANL's Title V Operating Permit. The unit first operated in May 2006. The unit (ID 56) operated for 19.8 hours in 2013. This generator was replaced in December 2013 by a Cummins Portable Diesel Generator (ID 146). The new generator did not operate in 2013. Three more units were permitted in August 2007 at TA-33 (Permit No. 2195-P); they operated for a total of 63.2 hours in 2013.

LANL also has three permitted generators with internal combustion engines located at the CMRR Radiological Laboratory/Utility/Office Building (RLUOB), TA-55-400, which began operating in 2013. The generators were added to the newest Title V Operating Permit and are included in the semi-annual emissions report as three separate units. However, they are listed in the emissions inventory report as one unit. The three generators operated for a total of 92.8 hours in 2013.

The Laboratory maintains approximately 37 stationary standby generators that are considered exempt sources under the Construction Permit regulations (20.2.72.202.b NMAC) and the annual emissions inventory requirements. These sources are included in LANL's Title V Operating Permit with operating limits and emission limits. Therefore, these sources must be included in the semi-annual emissions reports. All stationary standby generators at LANL are tested on a routine schedule to ensure they are operational and will function properly if needed. All units are equipped with hour meters to document how many hours they are used. The Laboratory maintains records on a semi-annual basis to document hour meter readings. The number of hours each generator is used in a reporting period is multiplied by AP-42 emission factors for diesel-fired internal combustion engines or natural-gas-fired internal combustion engines (EPA 1996). Emissions are then summed for each pollutant and reported on the semi-annual emissions reports for this source category.

2.8 Combustion Turbine

LANL has one combustion turbine located at the TA-3 power plant (ID 112). A revised construction permit was issued by NMED July 2004 to add the TA-3 combustion turbine as a new permitted source. This unit started operations in September 2007. Emission calculations are based on the initial stack compliance tests performed in 2007, AP-42 Tables 3.1-2a and 3.1-3, and information provided by the manufacturer. In 2013, this combustion turbine operated for 465.8 hours.

2.9 Emissions from Chemical Use Activities

A significant amount of the Laboratory's work is devoted to research and development (R&D) activities. Varying operating parameters, as well as amounts and types of chemicals, are used in these activities. R&D activities occur at virtually all technical areas within the Laboratory, typically in small quantities in laboratory settings. Figure 2.9-1 shows a typical laboratory at LANL where chemicals are used.

For the purposes of annual emissions inventory reporting, one equipment number has been assigned for all R&D chemical use (ID 7). Facility-wide chemical use emissions are reported on both the annual emissions inventory and the semi-annual emissions reports. The methods used to quantify emissions of VOC and HAPs from R&D activities are discussed below.

Figure 2.9-1. Example of a laboratory fume hood at LANL.

2.9.1 VOC Emissions

The Laboratory tracks chemical purchases through a facility-wide chemical tracking system called ChemLog. A download from the ChemLog inventory system was created that included all chemical containers added to LANL's inventory between January 1, 2013, and December 31, 2013. This dataset included 41,365 separate line items of chemicals purchased.

The dataset was reviewed electronically to identify all VOCs purchased and received at LANL in 2013. With the exception of specific listed chemicals, VOCs are any compounds of carbon that participate in

atmospheric photochemical reactions. VOCs include commonly used chemicals such as ethanol, methanol, trichloroethylene, and isopropanol. The general assumption used in estimating VOC emissions from chemical use is

Purchasing = Use = Emissions

From the dataset of chemicals purchased in 2013, certain categories of chemicals were separated and eliminated from the analysis. The classifications assigned and corresponding reasons (noted in parentheses) for exclusion of chemicals from inventory records are noted below.

- Solid materials (not a significant source of air emissions based on their low vapor pressure)
- Non-VOC materials as defined by 40 CFR 51.100 (specific chemicals in 40 CFR 51.100 are listed as having negligible photochemical reactivity and are exempt from the definition of VOC)
- Paints (paints were evaluated separately—see Section 3.5)
- Inorganic chemicals (inorganics are not compounds of carbon)
- Oils (not a significant source of air emissions based on low vapor pressure and primarily used for maintenance)
- Fuels used for combustion purposes (emissions from fuel combustion are reported for each combustion unit)

The following categories of chemicals were eliminated based on guidance from NMED (NMED 2001).

- Container sizes of 1 lb or less
- Chemicals with vapor pressures less than 10 mmHg
- Chemicals used to calibrate equipment
- Maintenance chemicals
- Use of office equipment and products
- Chemicals used for boiler water treatment operations
- Chemicals used for oxygen scavenging (deaeration) of water
- Chemicals used in bench-scale chemical analysis¹

After the elimination of chemicals and categories of chemicals listed above, the remaining chemical inventory records were matched with a list of known VOCs by CAS number. For mixtures (chemicals without CAS numbers), material safety data sheets (MSDSs) were reviewed to determine if any VOCs were present and, if so, to determine the associated percent volatile. As a conservative estimate, VOCs identified in ChemLog records were assumed to be 100% emitted to air. Estimated emissions of VOCs from chemical use in 2013 totaled 9.59 tons.

2.9.2 HAP Emissions

Section 112(b) of the 1990 Clean Air Act Amendments listed 188 unique HAPs identified for potential regulation by EPA. In 1995, caprolactam was delisted as a HAP, and methyl ethyl ketone was delisted in

LA-UR-14-28940 9

¹ This exemption was applied only to biological research solutions. Otherwise, this exemption was not applied (see Table 3.3-1).

2005. Of the remaining 187 listed HAPs, 17 are classes of compounds (e.g., nickel compounds). Use of the 187 listed chemicals in activities at the Laboratory was evaluated and quantified for the annual emissions inventory submittal to NMED.

The ChemLog inventory system 2013 dataset was analyzed to identify HAPs. The identification process was similar to that used for VOCs. Pure chemicals (i.e., chemicals with CAS numbers), classes of compounds, and mixtures were evaluated to determine if the chemicals themselves were HAPs or if they contained HAP constituents. For mixtures, MSDSs were reviewed to determine if any HAPs were present and, if so, to determine the associated HAP percentages. Listed below are certain chemical types or categories that were identified and removed from this analysis (refer to Section 2.9.1 and Table 3.3-1 for explanations on removal of these chemicals):

- Paints:
- Oils;
- Maintenance chemicals;
- Chemicals used to calibrate equipment;
- Container sizes of 1 lb or less;
- Chemicals used in bench-scale chemical analysis;
- Use of office equipment and products;
- Chemicals used for boiler water treatment operations; and
- Chemicals used for oxygen scavenging (deaeration) of water.

Total HAP emissions were estimated by summing 1) pure HAP chemicals, 2) classes of compounds that are HAPs, and 3) the HAP constituents from mixtures. The resulting total amount of HAPs from chemical use reported for 2013 was 3.49 tons.

The HAP emissions reported generally reflect quantities procured in the calendar year. In a few cases, procurement values and operational processes were further evaluated so that actual air emissions could be reported instead of procurement quantities. Additional analyses for certain metals and acids were performed and are described below.

2.9.3 HAP Metals

Purchases of beryllium, chromium, lead, manganese, mercury, and nickel compounds were evaluated to determine usage and potential air emissions. Several of the purchases were identified as laboratory calibration standards containing only parts per million quantities of the metals. These were exempt from emissions inventory requirements because of their use as standards for calibrating laboratory equipment. Other purchasers of relatively large quantities of metal compounds that were contacted confirmed that the material was still in use or in storage and had not resulted in air emissions.

2.10 Emissions Summary by Source

Table 2.10-1 provides a summary of LANL's 2013 actual emissions, as submitted for the annual emissions inventory. The table presents emissions by pollutant and by source, with a facility total at the

bottom of the table. Attachment A provides detailed information on how emissions were calculated for each emission unit.

Table 2.10-1. Summary of LANL 2013 Reported Emissions for Annual Emissions Inventory

	NO _x (tons/yr)	SO _x (tons/yr)	PM ₁₀ (tons/yr)	PM _{2.5} (tons/yr)	CO (tons/yr)	VOC (tons/yr)	HAPs (tons/yr)
TA-3 Power Plant Boilers	12.40	0.15	1.63	1.62	8.55	1.18	0.40
Non-Exempt Boilers	2.98	0.02	0.32	0.32	1.74	0.18	0.056
CMRR Boilers	0.066	0.003	0.010	n/a*	0.082	0.056	0.004
Asphalt Plant	0.015	0.001	0.009	n/a	0.533	0.001	0.001
Data Disintegrator	n/a	n/a	0.07	n/a	n/a	n/a	n/a
Degreaser	n/a	n/a	n/a	n/a	n/a	0.008	0.008
R&D Chemical Use	n/a	n/a	n/a	n/a	n/a	9.59	3.49
TA-33 Generators	0.50	0.07	0.02	n/a	0.36	0.01	0.0005
TA-3 Turbine	2.40	0.16	0.32	0.32	0.50	0.10	0.07
TOTAL	18.36	0.40	2.38	2.26	11.77	11.13	4.03

^{*} n/a = Not Applicable.

Table 2.12-2 provides a summary of 2013 emissions as reported on the semi-annual emissions reports required by the Title V Operating Permit. Attachment A provides detailed information on how emissions were calculated for each emission source category.

Table 2.12-2. Summary of LANL 2013 Semi-annual Emissions as Reported Under Title V Operating Permit Requirements

	NO _x (tons/yr)	SO _x (tons/yr)	PM ₁₀ (tons/yr)	PM _{2.5} (tons/yr)	CO (tons/yr)	VOC (tons/yr)	HAPs (tons/yr)
TA-3 Power Plant Boilers	12.40	0.15	1.63	1.62	8.55	1.18	0.40
Small Boilers	23.97	0.15	1.92	n/a*	19.40	1.39	0.46
CMRR Boilers	0.066	0.003	0.010	n/a	0.082	0.056	0.004
Asphalt Plant	0.015	0.001	0.009	n/a	0.533	0.001	0.001
Data Disintegrator	n/a	n/a	0.07	n/a	n/a	n/a	n/a
Degreaser	n/a	n/a	n/a	n/a	n/a	0.008	0.008
R&D Chemical Use	n/a	n/a	n/a	n/a	n/a	9.59	3.49
CMRR Generators	2.23	0.038	0.07	n/a	0.49	0.07	0.0004
Stationary Standby Generators	2.71	0.12	0.14	n/a	0.61	0.14	0.001
TA-33 Generators	0.50	0.07	0.02	n/a	0.36	0.01	0.0005
TA-3 Turbine	2.40	0.16	0.32	0.32	0.50	0.10	0.07
TOTAL	44.29	0.69	4.19	1.94	30.53	12.55	4.43

^{*} n/a = Not Applicable.

3.0 REPORTING EXEMPTIONS

Specific activities that are determined to be insignificant under NMED's Operating Permit program (20.2.70 NMAC) are exempt from reporting under the emissions inventory requirements (20.2.73.300 NMAC). NMED has designated exempt sources, activities, or thresholds in the following lists:

- List of Insignificant Activities, March 25, 2005 (NMED 2005) and
- List of Trivial Activities, January 10, 1996 (NMED 1996).

Laboratory sources and activities that qualify as insignificant or trivial as specified in these lists are not included in the annual emissions inventory. The following subsections of this report provide information and examples of the Laboratory's exempt activities as well as analyses performed to determine exempt status.

3.1 Boilers

The Laboratory's boiler inventory was evaluated against the List of Insignificant Activities (NMED 2005). Specifically, boilers were exempted from emissions inventory reporting requirements if they met one of the following requirements:

- Fuel-burning equipment that uses gaseous fuel has a design rate less than or equal to 5 MMBTU/hr, and is used solely for heating buildings for personal comfort or for producing hot water for personal use, or
- Any emissions unit . . . that has the potential to emit no more than **1 ton/yr** of any regulated pollutant

Any boiler that was not used exclusively for comfort heating or hot water was evaluated for the one ton per year exemption. For purposes of determining exemptions, boiler design ratings were used to estimate potential to emit. Any boiler not qualifying for one of these two exemptions is included in the annual emissions inventory with its own unique equipment number.

For the semi-annual emissions reports, emissions from all boilers and heaters were summed and reported for the entire source category.

3.2 Generators

The Laboratory maintains an inventory of approximately 73 portable generators. Portable generators are used at the Laboratory for temporary operations requiring remote power or to provide emergency backup power during power outages at various sites. The portable generators are fueled by gasoline and/or diesel fuel.

In addition to portable generators, the Laboratory maintains and operates approximately 45 stationary standby generators. Stationary generators are used on standby (emergency) status to provide power to critical systems at the Laboratory during power outages. The stationary generators are fueled by natural gas, propane, gasoline, or diesel.

The insignificant activity exemptions applicable to the Laboratory's generators are the following:

- Portable engines and portable turbines that have a design capacity . . . less than or equal to
 - 200-horsepower engine if fueled by diesel or natural gas and
 - 500-horsepower engine if fueled by gasoline.
- Emergency generators which on a temporary basis replace equipment used in normal operation, and which either have an allowable emission rate or potential to emit for each pollutant that is equal to or less than the equipment replaced, or which do not operate for a period exceeding 500 hours per calendar year.

On the basis of size, portable generators used for temporary power at remote locations are exempt from emissions inventory reporting requirements. Further, LANL's small portable generators are considered trivial activities and are not included in the Title V Operating Permit or semi-annual emissions reports. All stationary generators are designated as standby equipment under the Operating Permit Program and are used solely to provide emergency backup power for less than 500 hours per year. Therefore, they are considered insignificant sources and are also exempt from annual emissions inventory reporting requirements. However, the stationary standby generators were voluntarily included as a source category in the Title V Operating Permit and are included in the semi-annual emissions reports.

3.3 VOC Emissions

A number of insignificant and trivial activities were applicable for exempting materials from the VOC chemical use total in the emissions inventory. The basis of the exemptions and corresponding insignificant or trivial activities are explained in Table 3.3-1.

Fuels such as propane, kerosene, and acetylene were analyzed separately and are not listed in Table 3.3-1. When fuels are burned in an open flame, almost all of the fuels are consumed and VOC emissions are minimal. Emissions from fuel combustion are accounted for using emission factors for each fuel-burning unit.

Table 3.3-1. Exemptions Applied for Chemical Use Activities

Basis of Exemption	Activity Type	Activity
Container sizes of 1 lb or less	Trivial	Paint or nonpaint materials dispensed from prepackaged aerosol cans of 16-oz. capacity or less.
Chemicals with vapor pressures less than 10 mmHg	Insignificant	Any emissions unit, operation, or activity that handles or stores a liquid with vapor pressure less than 10 mmHg or in quantities less than 500 gal.
Calibration chemicals	Trivial	Routine calibration and maintenance of laboratory equipment or other analytical instruments, including gases used as part of those processes.
Maintenance chemicals and oils	Trivial	Activities that occur strictly for maintenance of grounds or buildings, including lawn care; pest control; grinding; cutting; welding; painting; woodworking; sweeping; general repairs; janitorial activities; plumbing; re-tarring roofs; installing insulation; steam-cleaning and water-washing activities; and paving of roads, parking lots, and other areas.
		Activities for maintenance and repair of equipment, pollution-control equipment, or motor vehicles either inside or outside of a building.
Use of office equipment and products	Trivial	Use of office equipment and products, not including printers or businesses primarily involved in photographic reproduction.
Chemicals used for boiler water treatment	Trivial	Boiler water treatment operations, not including cooling towers.
Chemicals used for oxygen scavenging	Trivial	Oxygen scavenging (deaeration of water).
Chemicals used in bench- scale chemical analysis	Trivial	Bench-scale laboratory equipment used for physical or chemical analysis but not lab fume hoods or vents. Note: This exemption was applied only to biological research solutions. Otherwise, this exemption was not applied.

3.4 HAP Emissions

The HAP chemical use exemption analysis, similar to the VOC chemical use exemption analysis, resulted in application of several of the same exemptions from NMED/AQB List of Insignificant Activities (NMED 2005) and List of Trivial Activities (NMED 1996) (refer to Table 3.3-1).

3.5 Paints

An analysis of VOC and HAP emissions resulting from painting activities at the Laboratory was performed to determine if certain exemptions apply. Paint information for 2013 was gathered from the ChemLog chemical inventory system. These records were evaluated for applicability of exemptions for trivial and insignificant activities.

The following exemptions from NMED/AQB Operating Permit Program List of Trivial Activities (NMED 1996) were used in the paint analysis:

• Activities that occur strictly for maintenance of grounds or buildings, including the following: lawn care; pest control; grinding; cutting; welding; painting; woodworking; sweeping; general repairs; janitorial activities; plumbing; re-tarring roofs; installing insulation; steam-cleaning and waterwashing activities; and paving of roads, parking lots, and other areas.

- Activities for maintenance and repair of equipment, pollution control equipment, or motor vehicles either inside or outside of a building.
- Paint or nonpaint materials dispensed from prepackaged aerosol cans of 16 oz. or less capacity. The amount of paint that did not qualify for a Trivial Activity totaled to 3,960 lbs (1.98 tons) which is less than the two-ton emission limit for insignificant activities.
- Surface coating of equipment, including spray painting and roll coating, for sources with facility-wide total cleanup solvent and coating actual emissions of less than two tons per year.

4.0 EMISSIONS SUMMARY

4.1 2013 Emissions Summary

Table 4.1-1 presents facility-wide estimated actual emissions of criteria pollutants for 2013 as reported in the annual emissions inventory and the semi-annual emissions reports. In addition, the Title V Operating Permit emissions limits are included. Table 4.1-2 presents estimated actual emissions for HAPs from chemical use. Emission unit information and detailed emissions calculations are included in Attachment A. The 2013 emissions inventory report as submitted to NMED is presented in Attachment B. Attachment C includes semi-annual emissions reports for 2013.

Table 4.1-1. LANL Facility-Wide Criteria Pollutant Emissions for 2013

Pollutant	Estimated actual Emissions for Annual Emissions Reporting (tons/yr)	Estimated actual Emissions for Semi- annual Title V Operating Permit Reporting (tons/yr)	Title V Operating Permit Facility-Wide Emission Limits (tons/yr)
NO _x	18.36	44.3	245
SO _x	0.40	0.69	150
СО	11.77	30.53	225
PM	2.38	4.19	120
PM ₁₀	2.38	4.19	120
PM _{2.5}	2.26	1.94	120
VOC	11.13	12.55	200

Table 4.1-2. LANL HAP Emissions from Top Five Chemicals Used in 2013

Pollutant	Chemical Use HAP Emissions (tons/yr)
Hydrochloric Acid	0.83
Methanol	0.42
Glycol Ethers	0.38
Methylene Chloride	0.34
Ethylene Glycol	0.32
All other HAPs from Chemical Use	1.20
Total HAPs	3.49

HAP emissions from combustion sources are included in the emissions reports; however, they are negligible and do not contribute significantly to facility-wide HAP emissions.

Figure 4.1-1 shows criteria air pollutant emissions by source for 2013, excluding the very small emissions sources such as the data disintegrator, asphalt plant, degreasers, and carpenter shop. As the figure shows, the TA-3 power plant and the sum of emissions from small boilers and were the largest sources of CO and NO_x emissions in 2013. R&D chemical use was the largest source of VOC emissions.

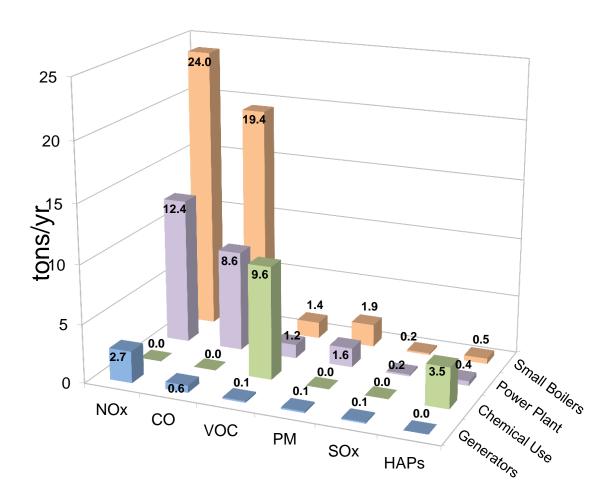


Figure 4.1-1. Emissions of criteria pollutants by source in 2013.

Emission Trends and Title V Permit Limits

A comparison of historical emissions to the facility-wide emission limits in the Title V Operating Permit is provided in this section. It should be noted that the facility-wide emission limits in the Operating Permit include emissions from some sources that are not included in the annual emissions inventory, most notably small (insignificant) boilers and emergency standby generators. However, historical data are only available for emission sources that were included in the annual emissions inventory submittals.

Figure 4.1-2 provides a comparison of the past 10 years' facility-wide emissions for criteria air pollutants as reported to NMED in the annual emissions inventory submittal. The facility-wide emission limits included in LANL's Title V Operating Permit are also shown on the graph.

10 Year Comparison of LANL Facility-Wide Emissions as Reported in 20.2.73 NMAC Emissions Inventory

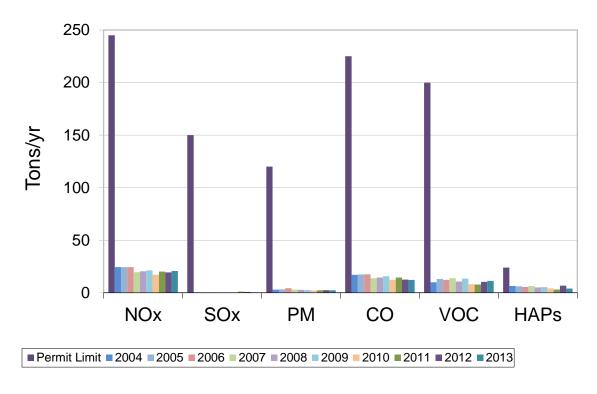


Figure 4.1-2. Comparison of facility-wide annual reported emissions from 2004 to 2013.

Figure 4.1-3 presents VOC and HAP emissions from chemical use activities for the last 11 years. The continued fluctuation in both VOC and HAP emissions is due to both variations in actual chemical purchases and improvements the Laboratory has made to the chemical tracking system.

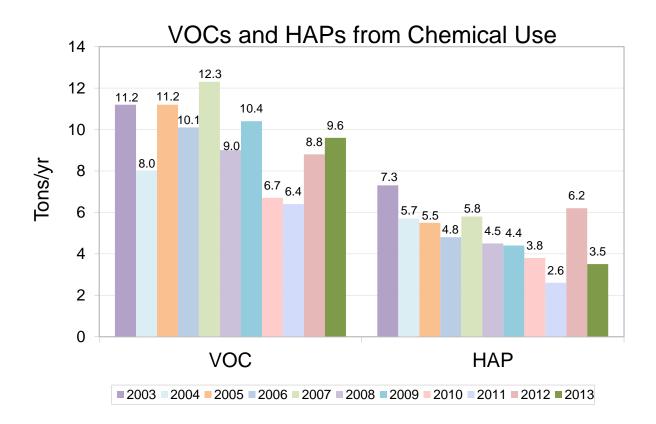


Figure 4.1-3. VOC and HAP emissions from chemical use from 2003 to 2013.

REFERENCES

- EPA (U.S. Environmental Protection Agency), 2013. "Aerometric Information Retrieval System (AIRS)," http://www.epa.gov/enviro/html/airs/ (accessed January 2013).
- EPA (U.S. Environmental Protection Agency), 1998. "Compilation of Air Pollutant Emission Factors," AP-42, Fifth Edition, Section 1.4–Natural Gas Combustion, July 1998, and Section 1.3–Fuel Oil Combustion, http://www.epa.gov/ttn/chief/ap42/ (September 1998).
- EPA (U.S. Environmental Protection Agency), 1996. "Compilation of Air Pollutant Emission Factors," AP-42, Fifth Edition, Section 3.3–Gasoline and Diesel Industrial Engines, and Section 3.4–Large Stationary Diesel and All Stationary Dual-Fuel Engines, http://www.epa.gov/ttn/chief/ap42/ (October 1996).
- LANL (Los Alamos National Laboratory), 2014. "Semi-Annual Emissions Report, July–December 2013," submitted to the New Mexico Environment Department, Los Alamos National Laboratory document LA-UR-14-21663 (March 2014).
- LANL (Los Alamos National Laboratory), 2013a. "2013 Emissions Inventory Report Submittal to the New Mexico Environment Department," Los Alamos National Laboratory document LA-UR-13-22031 (March 2013).
- LANL (Los Alamos National Laboratory), 2013b. "Semi-Annual Emissions Report, January–June 2013," submitted to the New Mexico Environment Department, Los Alamos National Laboratory document LA-UR-13-26818 (September 2013).
- NMED (New Mexico Environment Department, Air Quality Bureau), 2013. "Clean Air Act, Title V Operating Permit No. P100-R1-M1," (June 2013).
- NMED (New Mexico Environment Department, Air Quality Bureau, Operating Permit Program), 2005. "List of Insignificant Activities under Title V Operating Permits," http://www.nmenv.state.nm.us/aqb/forms/InsignificantListTitleV.pdf (March 2005).
- NMED (New Mexico Environment Department, Air Quality Bureau), 2001. Letter from Mary Uhl, NMED/AQB to LANL, dated January 30, 2001.
- NMED (New Mexico Environment Department, Air Quality Bureau, Operating Permit Program), 1996. "List of Trivial Activities under Title V Operating Permits," http://www.nmenv.state.nm.us/aqb/forms/TrivialListTitleV.pdf (January 1996).

ATTACHMENT A:

Emission Calculation Worksheets for Individual Emission Units

	J
Č	-
-	
Ç	U
Ď	0
_	
•	
Ç	0
2	
7	5
2	_
U	ņ
Š	٢
_	٠
5	=
2	=
	<u> </u>
$\overline{\sim}$	1
Ц	4
	_
77	?
3	כ
3	
A_61	֚֚֚֚֚֡֝֜֝֜֝֜֝֜֜֝֜֜֜֜֜֝֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜
TA_G	֡֝֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֓֓֓֓֜֜֜֜֜֜֜֜
TA-60	ביר ביר
2012 TA-61	

	Data Entry			Data Entry	
	Asphalt	12-Month		Asphalt	12-Month
Month	Produced (Tons)	Rolling Total	Month	Produced (Tons)	Rolling Total
January	4	786	July	44	292
February	24	757	August	0	269
March	0	630	September	0	269
April	127	641	October	23	342
Мау	44	439	November	0	342
June	19	307	December	0	335
6 mo. Total	218		6 mo. Total:	117	
		_			

Data Reviewed By / Date:

Mar	0.0	Sep	0
Apr	16.5	Oct	11.6
May	9.2	Nov	0.0
Jun	3.3	Dec	0.0
Total:	38.9	Total:	15.7

Hours

Month

Hours 0.8

Month

Jan Feb

Annual Hours

4

Jul Aug Annual Total (to date): 54.58 Hours

Hours are Limited to 4380 per Year

12-Month Rolling Permit Limit is 13,000 Tons

332

2013 Asphalt Produced (Tons):

Emission Calculations

	Emission Factor	Annual	Emissions	Emissions	
Pollutant	(lbs/hr)	Emissions (tons)	(tons) Jan-June	July-Dec (tons)	Reference
NOX	0.56	0.015	0.011	0.004	(q)
00	19.53	0.533	0.380	0.153	(q)
PM	0.33	0.009	0.006	00.00	(q)
	Emission Factor	Annual	Emissions	Emissions	Reference
Pollutant	(lb/ton)	(tons)	Jan-June	July-Dec	
PM-10	900'0	0.001	0.001	000'0	(o)
PM-2.5	900.0	0.001	0.001	000'0	(၁)
XOS	0.0046	0.001	0.001	000'0	(a)
NOC	0.0082	0.001	0.001	000'0	(a)
HAPs					
Acetaldehyde	0.00032	0.000	0.000	000'0	(p)
Benzene	0.00028	0.000	0.000	000'0	(p)
EthylBenzene	0.0022	0.000	0.000	000'0	(p)
Formaldehyde	0.00074	0.000	0.000	000'0	(p)
Napthalene	0.000036	0.0000	0.000	000'0	(p)
POM	0.00011	0.0000	0.000	000'0	(p)
Quinone	0.00027	0.000	0.000	000'0	(p)
Toluene	0.001	0.000	0.000	0.000	(p)
Xylene	0.0027	0.000	0.000	0.000	(p)
TOTAL HAPS		0.001	0.001	000'0	
EPCRA 313		tons	lbs./year		

Reference

(a) AP-42, Sec. 11.1, Hot Mix Asphalt Plants , Table 11.1-5 & 11.1-6, Updated 4/2004

(b) Calculated using stack test results performed on May 18, 2009 by TRC Air Mesurements. Pound per hour values were determined at a throughput rate of 45 tons/hour (the highest achievable rate during the test).

(c) PM-10 emission factor is calculated as 64% of the PM emission factor (from stack test), using the same ratio of PM to PM-10 as provided in AP-42 Table 11.1 No data provided for PM-2.5, assume same as PM-10. Convert to lb/ton by dividing by 45 tons/hr (test rate).

(d) AP-42, Table 11.1-9, Hot Mix Asphalt Plants, Updated 4/2004

Optaaed 4/2004 (e) AP-42, Table 11.1-11, Hot Mix Asphalt Plants, Updated 4/2004 (f) Assume all SOx is converted to sulfuric acid (g) EPCRA PAC Guidance Document, EPA-260-B-01 June 2001, Table 2-3

(h) Emission Factor is from 40 CFR Part 98, Subpart C, Table C-1, "Default CO2 Emission Factors and High Heat Values for Various Types of Fuel." (Federal Register/Vol. 74, No. 209. 10/30/2009).

Lead	8.90E-07	1.49E-07	0.0003	(e)
Sulfuric Acid	0.0046	7.71E-04	1.54	(f)
Mercury	4.10E-07	6.87E-08	0.0001	(e)
PACs	2.70E-08	4.52E-09	9.05E-06	(p)
Benzo(g,h,i) perylene	5.00E-10	8.38E-11	1.68E-07	(b)

(K)	73.69	99.92		TOTAL CO ₂ EQUIVALENT ^(k) :
(<u>f</u>)	0.0007	0.0007	90000	Nitrous Oxide (N ₂ O)
(!)	0.0036	0.0037	0.003	Methane (CH₄)
(H)	73.39	76.35	61.46	Carbon Dioxide (CO ₂)
(I)	(metric tons)	(metric tons)	(kg / mmbtu) (h) (i)	Greenhouse Gases Emissions
W	Fiscal Year	Calendar Year	Emission Factors Calendar Year	

(i) Emission Factor is from 40 CFR Part 98, Subpart	C, Table C-2, "Default CH4 and N2O Emission	Factors for Various Types of Fuel." (Federal	Register/Vol. 74. No. 209. 10/30/2009).
---	---	--	---

(j) Heat content was taken from National Propane Gas Association web page (http://npga.org/i4a/pages/index.cfm?pageid=633). The EPA value of 0.091 mmBtu/gallon, listed in 40 CFR Part 98, Subpart C, Table C-1, "Default CO2 Emission Factors and High Heat Values for Various Types of Fuel" is consistant with this value. The NPGA value is used as it includes more accuracy.

(k) CO₂ equivalent values were calculated using 40 CFR Part 98, Subpart A, Table A-1, "Global Warming Potentials." (Federal Register/Vol. 74, No. 209, 10/30/2009).

(I) Fiscal year begins on October 1st and ends on September 30th of the following year.

0
00
ᄂ
#
S
_
_
ᅙ
╼
ज़
=
S)
~
<u></u>
=
Œ
뀰
Œ
N
ú
Ľ
ℐ
\vdash
6
₩
Ò
$\mathbf{-}$

Reviewed By / Date:

											Ī
Data Entry	(9)	Boxes	Shredded	119	228	153	118	170	145	633	
			Month	July	August	September	October	November	December	6 mo. Total:	
Data Entry	(3)	Boxes ^(c)	Shredded	88	117	117	125	201	171	819	
			Month	January	February	March	April	May	June	6 mo. Total:	

Annual Boxes:

Emission Calculations

	Percent		Control ^(d)	Control ^(d)			
	Material in		Efficiency	Efficiency			
	Exhaust ^(b)	% in Exhaust ^(e)	(Cyclone)	(Baghouse)			
PM 2.5	15%	15%	%0	%0'56		Average Bo	Average Box Weight ^(a)
PM 10	15%	%06	75%	%0.36		45	Pounds
TSP	15%	100%	75%	%0'26			
	Amount	PM-2.5	PM-2.5	PM-10	PM-10	TSP	TSP
	Processed	Emissions	Emissions	Emissions	Emissions	Emissions	Emissions
	(spunod)	(spunod)	(tons)	(spunod)	(tons)	(spunod)	(tons)
Annual	78,840	88.7	0.04	133.0	0.07	147.8	0.07
January - June	36,855	41.5	0.02	62.2	0.03	69.1	0.03
July - December	41,985	47.2	0.02	70.8	0.04	78.7	0.04
July - Dec 2012			0.02		0.04		0.04
						_	
Semi- Annual Rolling	y Total ^(f)		0.04		0.07		0.07

Reference					
(a). Estimated	(b). Emission Factor (percentage of material	(c).	(d). Information on control equipment	(e). Manufacturer provided (f). Emissions	(f). Emissions
maximum box weight	maximum box weight shredded that will enter into the exhaust) obtained	Information	efficiencies was provided by the	info that the dust into the calculated by	calculated by
is 45 pounds.	from the manufacturer of the air handling system,	provided by	provided by manufacturer (SEM) of the Data	exhaust would be in the	summing the
Information provided	nformation provided AGET Manufacturing Co. 15% is also listed in the	the shredding	the shredding Disintegrator. Those values not given	size range of 5-20 um.	emissions from
by shredding	construction permit application.	operations	were extrapolated using manufacturer	Conservative assumption	January-June of
operations. Full box		personnel.	data. Efficiencies of 75% for the	that 15% is PM2.5, and	current year plus
weight of tightly			Cyclone and 95% for the bag house are 90% is PM10.	90% is PM10.	July-December of
packed paper.			listed in the construction permit		previous year.
			application. (see cyclone efficiency tab		
			for more info.)		

Maximum Annual emission rate is:

9.9 tpy or 2.3 lb/hr of Total Suspended Particulate (TSP) per year. 9.9 tpy or 2.3 lb/hr of Particulate Matter <10µm (PM-10) per year.

	* Total	Run	Hours	19.8	11.0	24.5	27.7	23.8	24.9	44.1																										
IIf		Hours	Run	19.8	0.0	24.5	27.5	13.9	19.3	17.1			HAPs	(lbs)	1.8E-01	0.0E+00	6.6E-03	7.4E-03	1.2E-01	1.7E-01	1.5E-01	HAPs	(tons)	9.22E-05	0.00E+00	3.31E-06	3.72E-06	6.07E-05	8.42E-05	7.46E-05	HAPs	1.0E-04	1.1E-04	1.9E-04	0.000	
Second Half			Reading	355.0	3434.0	427.6	213.6	143.6	103.3	108.5	τ.	sions	NOC	(Ips)	15.8	0.0	1.5	1.7	20.9	29.0	25.7	NOC	(tons)	0.008	0.000	0.001	0.001	0.010	0.014	0.013	NOC	0.018	0.019	0.033	0.070	
Se	12 Month	Reading	Date	Dec. 13	Dec. 13	Dec. 13	Dec. 13	Dec. 13	Dec. 13	Dec. 13	The 1600 kW unit is limited to 900 hours per year.	Second 6 Month Emissions	ЫM	(Ibs)	28.5	0.0	1.5	1.7	20.9	29.0	25.7	ЫM	(tons)	0.014	0.000	0.001	0.001	0.010	0.014	0.013	PM	0.018	0.019	0.033	0.070	
		Hours	Run	0.0	11.0	0.0	0.2	6.6	9.6	27.0	to 900 ho	ond 6 Mc	xos	(lbs)	126.7	0.0	1.5	1.7	11.3	15.6	13.9	xos	(tons)	0.063	0.000	0.001	0.001	900.0	800'0	200.0	xos	0.010	0.010	0.018	0.038	
First Half			Reading	335.2	3434.0	403.1	186.1	129.7	84.0	91.4	is limited	Sec	00	(lbs)	0.769	0.0	4.4	5.0	146.0	202.7	179.6	00	(tons)	0.348	0.000	0.002	0.002	0.073	0.101	0.090	00	0.125	0.131	0.232	0.487	
	6 Month	Reading	Date	May-13	May-13	May-13	May-13	May-13	May-13	May-13	0 kW unit		NOx	(lps)	855.4	0.0	20.6	23.1	667.2	926.4	820.8	NOx	(tons)	0.428	0.000	0.010	0.012	0.334	0.463	0.410	NOx	0.571	0.598	1.058	2.227	y / Date:
		Reading	2nd half of previous year	335.2	3423.0	403.1	185.9	119.8	78.4	64.4			HAPs	(lbs)	0.0E+00	3.3E-02	0.0E+00	5.4E-05	8.6E-02	4.9E-02	2.4E-01	HAPs	(tons)	0.00E+00	1.67E-05	0.00E+00	2.70E-08	4.32E-05	2.44E-05	1.18E-04	Permit ID	CMRR-GEN-1	CMRR-GEN-2	CMRR-GEN-3	Total 3 CMRR Gen	Reviewed by / Date
		œ	2nd half c	Dec. 12	Dec. 12	Dec. 12	Dec. 12	Dec-12	Dec-12	Dec-12	of 500 hours of operation per year.	ssions	NOC	(lbs)	0.0	7.4	0.0	0.0	14.9	8.4	40.5	70V	(tons)	0.000	0.004	0.000	0.000	0.007	0.004	0.020	HAPs	9.2E-05	1.7E-05	3.3E-06	3.7E-06	5.21E-04
rs.		Fuel	Туре	Diesel	Diesel	Diesel	Diesel	Diesel	Diesel	Diesel) hours o	6 Month Emissions	Мd	(lbs)	0.0	7.4	0.0	0.0	14.9	8.4	40.5	Иd	(tons)	0.000	0.004	0.000	0.000	0.007	0.004	0.020	Noc	0.008	0.004	0.001	0.001	0.01
nerators			KW	1600	225	20	20	1500	1500	1500			sox	(lbs)	0.0	7.4	0.0	0.0	8.0	4.5	21.9	xos	(tons)	0.000	0.004	0.000	0.000	0.004	0.002	0.011	Μd	0.014	0.004	0.001	0.001	0.02
Permitted Gene			MODEL	1600ROZD	XQ225	20EORZ	20EORZ	DFLE-5754172	DFLE-5754172	DFLE-5754172	ors have a lir	First		(sql)	0.0	22.3	0.0	0.0	104.0	58.8	283.5	00	(tons)	0.000	0.011	0.000	0.000	0.052	0.029	0.142	SOx	0.063	0.004	0.001	0.001	0.07
Peri			Serial #	375801	6PK01065	2025460	2025461	106970810	106970811	106970812	kW generat		NOx	(lps)	0.0	104.0	0.0	0.2	475.2	268.8	1296.0	NOx	(tons)	0.000	0.052	0.000	0.000	0.238	0.134	0.648	00	0.348	0.011	0.002	0.002	0.36
			Make	Kohler	Caterpillar	Kohler	Kohler	Cummins	Cummins	Cummins	the two 20		Unit		33-290	33-151	33-209	33-280	55-440	55-440	55-440	l Init	Ome	33-290	33-151	33-209	33-280	55-440	55-440	55-440	NOX	0.428	0.052	0.010	0.012	0.50
			# <i>Q</i> /	G-0012	G-0007	G-0008		G-0058		G-0060	25 kW and			# QI	G-0012	G-0007	G-0008	G-0010					# Q	G-0012	G-0007	G-0008	G-0010				Permit ID	TA-33-G-1	TA-33-G-4	TA-33-G-2	TA-33-G-3	ТРҮ
			TA Bldg	33 290	33 151	33 209	33 280	55 440	55 440	55 440	* The TA-33 225 kW and the two 20 kW generators have a limit			Permit ID	TA-33-G-1	TA-33-G-4	TA-33-G-2	TA-33-G-3	CMRR-GEN-1	CMRR-GEN-2	CMRR-GEN-		Permit ID	TA-33-G-1	TA-33-G-4	TA-33-G-2	TA-33-G-3	CMRR-GEN-1	CMRR-GEN-2	CMRR-GEN-3				(40ps)	(suoi)	

2013 Permitted Generators

	×ON	00	xOS	PM	PM ₁₀	NOC
EMISSION FACTORS	lb/kw-hr	lb/kw-hr	lb/kw-hr	lb/kw-hr	lb/kw-hr	lb/kw-hr
TA-33 1600kW (a)	0.027	0.022	0.004	6000.0	6000'0	0.0005
Small Diesel fired ^(b)	0.042	600'0	0.003	0.003	0.003	0.003
TA-55 (RLUOB) ^(c)	0.032	200'0	5.4E-04	0.001	0.001	0.001

References:

447 kw is the size limit for determining large vs. small diesel fired generator. This information was taken from the operating permit application.

PM10 from AP-42, Table 3.3-1 & Table 3.4-1. The AP-42 (fifth edition) emissions factor uses units of lb/hp-hr. There are 1.341 hp-hrs in a kwh. Therefore, take pounds/hp-hr x 1.341 hp-hr/kwh to obtain the emission factor in lb/kwh. (a) TA-33-290 1600kw generator uses manufacturer supplied emission factors for NOx, CO, and VOCs. Emission factors for SOx, PM, and

(b) Emission factors for small diesel fired boilers were taken from AP-42 (fifth edition) Tables 3.3-1 and 3.3-2.

(c) TA-55 (RLUOB) generator emission factors were taken from AP-42 (fifth edition) Tables 3.4-1, 3.4-2, 3.4-3, and 3.4-4.

TA-33-G-1 - 2013 (1600 kW Generator, 1500 kW Derated for Altitude) 12-Month Rolling kilowatt-hours

			e				
Month	Hour Meter	Hours	Rolling Total kw-hr	Month	Hour Meter	Hours	Rolling Total kw-hr
	Reading	Operated			Reading	Operated	
January	335.2	0.0	9,750	July	335.2	0.0	9,750
February	335.2	0.0	9,750	August	335.2	0.0	9,750
March	335.2	0.0	9,750	September	335.2	0.0	7,800
April	335.2	0.0	9,750	October	335.2	0.0	0
Мау	335.2	0.0	9,750	November	355.0	19.8	29,700
June	335.2	0.0	9,750	December	355.0	0.0	29,700

Generator is limited to 1,350,000 kWh/year

2013 Permitted Generators

					HAPS (lbs)	(sq				
Emission Factors (lb/kwh)	Benzene	ene	Tolu	Toluene	Xyle	Xylenes	1,3-Bul	1,3-Butadiene	Formal	Formaldehyde
Diesel (small)	3.19E-06	90-	1.40	1.40E-06	9.73	9.73E-07	1.34	1.34E-07	4.03	4.03E-06
Diesel (large)	2.65E-06	-06	9.60	9.60E-07	6:28	6.59E-07			2.69E-07	E-07
Location	1st Half	2nd Half	1st Half	2nd Half	1st Half	2nd Half	1st Half	2nd Half	1st Half	2nd Half
33-290	0.00E+00	8.40E-02	0.00E+00	3.04E-02	0.00E+00	2.09E-02	0.00E+00	0.00E+00	0.00E+00	8.54E-03
33-151	7.89E-03	0.00E+00	3.46E-03	0.00E+00	2.41E-03	0.00E+00	3.31E-04	0.00E+00	9.97E-03	0.00E+00
33-209	0.00E+00	1.56E-03	0.00E+00	6.84E-04	0.00E+00	4.77E-04	0.00E+00	6.54E-05	0.00E+00	1.97E-03
33-280	1.27E-05	1.75E-03	90-365.5	7.68E-04	3.89E-06	5.35E-04	5.34E-07	7.34E-05	1.61E-05	2.22E-03
55-440	3.94E-02	5.53E-02	1.43E-02	2.00E-02	9.79E-03	1.37E-02	0.00E+00	0.00E+00	4.00E-03	5.62E-03
55-440	2.23E-02	7.67E-02	8.06E-03	2.78E-02	5.54E-03	1.91E-02	0.00E+00	0.00E+00	2.26E-03	7.80E-03
r	70 120 7	L	L	20 107 0	00 110 0	100 F	00.100.0	Local	00 100 1	L
55-440	1.07E-01	6.80E-02	3.89E-02	2.46E-02	2.6/E-02	1.69E-02	0.00E+00	0.00E+00	1.09E-02	6.91E-03
(sql)	1.77E-01	2.87E-01	6.46E-02	1.04E-01	4.44E-02	7.16E-02	3.31E-04	1.39E-04	2.72E-02	3.31E-02
Tons/Half/HAP	8.84E-05	1.44E-04	3.23E-05	5.21E-05	2.22E-05	3.58E-05	1.66E-07	6.94E-08	1.36E-05	1.65E-05
Tons/year/HAP	2.32E-04	:-04	8.45	8.45E-05	2.80	5.80E-05	2.35	2.35E-07	3.01E-05	5-05
Tons/Year Total	5.21E-04									

Emission Factors from AP-42, Volume 1, Fifth Edition (Small Diesel Engines Table 3.3-2, Large Diesel Engines Table 3.4-3)

Greenhouse Gas Emission Calculations

		9	eninouse	Gas Ellis	Greeniiouse Gas Ellission Calculations	ulations			
Unit	it	Fuel	Fuel Use		Calendar Year		1	Fiscal Year ^(e)	
Permit ID	Unit Location	Fuel Use Rate ^(d) (GPH)	Annual Fuel Use (Gal.)	CO2 (metric tons)	CH4 (metric tons)	N2O (metric tons)	CO2 (metric tons)	CH4 (metric tons)	N2O (metric tons)
TA-33-G-1	TA-33-290	148	2930.4	29.91	1.21E-03	2.43E-04	19.86	19.86 8.06E-04	1.61E-04
TA-33-G-4	TA-33-151	15.8	173.8	1.77	7.20E-05	1.44E-05	1.77	7.20E-05	1.44E-05
TA-33-G-2	TA-33-209	1.7	41.65	0.43	1.72E-05	3.45E-06	0.22	8.73E-06	1.75E-06
TA-33-G-3	TA-33-114	1.7	47.09	0.48	1.95E-05	3.90E-06	0.24	9.89E-06	1.98E-06
CMRR-Gen-1	TA-55-440	103.6	2465.68	25.17	1.02E-03	2.04E-04	0.24	9.89E-06	1.98E-06
CMRR-Gen-2	TA-55-440	103.6	2579.64	26.33	1.07E-03	2.14E-04	0.24	9.89E-06	1.98E-06
CMRR-Gen-3	TA-55-440	103.6	4568.76	46.63	1.89E-03	3.78E-04	0.24	9.89E-06	1.98E-06
			Totals:	130.71	5.30E-03	1.06E-03	22.83	0.001	0.000
		Total CO ₂	Total CO ₂ Equivalent:		131.16			22.91	

Annual Fuel Use: 12807.02

2013 Permitted Generators

Individual Generator HAP			f 2nd Half	30 1.84E-01	0.00E+00	00 6.62E-03	5 7.44E-03	1.21E-01	1.68E-01	1.49E-01	11 6.38E-01			
Individua	Emissions (lbs)			1st Half	0.00E+00	3.35E-02	0.00E+00	5.41E-05	8.64E-02	4.89E-02	2.36E-01	4.05E-01		
	РАН	5.74E-07	7.24E-07	2nd Half	2.29E-02	0.00E+00	2.81E-04	3.16E-04	1.51E-02	2.10E-02	1.86E-02	7.82E-02	3.91E-05	6.29E-05
HAPS (lbs)	'd	5.74	7.24	1st Half	0.00E+00	1.42E-03	0.00E+00	2.30E-06	1.08E-02	6.08E-03	2.93E-02	4.76E-02	2.38E-05	6.29
	Naphthalene	2.90E-07	4.44E-07	2nd Half	1.41E-02	0.00E+00	1.42E-04	1.59E-04	9.26E-03	1.29E-02	1.14E-02	4.79E-02	2.39E-05	3.84E-05
	Napht	2.90	4.44	1st Half	00+300 ⁰	7.17E-04	0.00E+00	1.16E-06	6.59E-03	3.73E-03	1.80E-02	2.90E-02	1.45E-05	3.84
	Acrolein	3.16E-07	2.69E-08	2nd Half	8.53E-04	0.00E+00	1.55E-04	1.74E-04	5.61E-04	7.79E-04	6.90E-04	3.21E-03	1.61E-06	2.86E-06
	Acro	3.16	2.69	1st Half	0.00E+00	7.82E-04	0.00E+00	1.26E-06	4.00E-04	2.26E-04	1.09E-03	2.50E-03	1.25E-06	2.86
	Acetaldehyde	2.62E-06	8.61E-08	2nd Half	2.73E-03	0.00E+00	1.28E-03	1.44E-03	1.79E-03	2.49E-03	2.21E-03	1.19E-02	5.97E-06	1.20E-05
	Acetalo	2.62	8.61	1st Half	0.00E+00	6.48E-03	0.00E+00	1.05E-05	1.28E-03	7.23E-04	3.49E-03	1.20E-02	90-366.5	1.20

References:

(a) Emission Factor/High Heat Value is from 40 CFR Part 98, Subpart C, Table C-1, "Default CO2 Emission Factors and High Heat Values for Various Types of Fuel." (Federal Register/Vol. 74, No. 209, 10/30/2009) (b) Emission Factor is from 40 CFR Part 98, Subpart C, Table C-2, "Default CH4 and N2O Emission Factors for Various Types of Fuel." (Federal Register/Vol. 74, No. 209, 10/30/2009).

(c) Hour readings for each of the generators listed are collected twice a year by ENV-ES.

(d) Fuel use rates were taken from manufacturer literature. Data for some units may not be available due to age, but data for a similar unit was used when unit specific data was not available.

(e) Fiscal year begins on October 1st of the following year and ends on September 30th of the current year.

	EMISSION	Emission Factors	
Fuel Oil Heat Value ^(a)	CO2 ^(a)	CH4 ^(b)	N2O ^(p)
(mmBtu/Gal)	(kg/mmBtu)	(kg/mmBtu)	(kg/mmBtu)
0.138	73.96	0.003	9000'0

	4 nnus/	Tota/	Hours	10.0	12.1	52.2	9.0	3.3	12.0	9.7	4.6	65.0	0.0	46.2	15.0	57.0	80.8	23.0	0.0	8.2	31.0	0.0	12.0	0.0	1.3	0.0	0.0	6.3	31.3	1.1	0.3	3.3	22.5	0.0	43.0	10.3	
adings	_	Hours	Run	2.0	5.1	50.0	4.0	1.2	7.0	6.7	1.6	27.2	0.0	23.4	5.4	24.0	37.0	2.0	0.0	2.3	0.0	0.0	6.4	0.0	1.3	0.0	0.0	0.0	16.6	1.1	0.3	2.0	22.5	0.0	34.0	3.3	* 000
Second 6 Month Readings			Reading	0.09	215.1	288.0	200.0	595.2	411.0	424.0	432.6	1479.0	115.5	423.4	478.0	0.796	1411.0	238.0	502.8	367.9	523.0	149.0	1859.0	196.5	409.9	Out of service	182.4	0.968	278.0	145.2	619.3	186.3	22.5	673.0	283.0	185.3	- Y-C-L
) puoses	12 Month	Reading	Date	Dec-13	Dec-13	Dec-13	Dec-13	Dec-13	Dec-13	Dec-13	Dec-13	Dec-13	Dec-13	Jan-14	Dec-13	Dec-13	Dec-13	Dec-13	Dec-13	Dec-13	Dec-13	Dec-13	Dec-13	Dec-13	Dec-13	Dec-13	Dec-13	Dec-13	Dec-13	Dec-13	Dec-13	Dec-13	Dec-13	Dec-13	Dec-13	Dec-13	
adings		Hours	Run	2.0	7.0	2.2	2.0	2.1	2.0	3.0	3.0	37.8	0.0	22.8	9.6	33.0	43.8	16.0	0.0	6'9	31.0	0.0	9.5	0.0	0.0	0.0	0.0	6.3	14.7	0.0	0.0	5.6	0.0	0.0	0.6	0.7	A 777
First 6 Month Readings			Reading	55.0	210.0	238.0	196.0	594.0	404.0	417.3	431.0	1451.8	115.5	400.0	472.6	943.0	1374.0	231.0	502.8	365.6	523.0	149.0	1852.6	196.5	408.6	349.1	182.4	896.0	261.4	144.1	619.0	185.6	0.0	673.0	249.0	182.0	-VECT
First 6	G Month	Reading	Date	Jun-13	Jul-13	Jun-13	Jun-13	Jun-13	Jul-13	Jul-13	Jul-13	Jul-13	Jun-13	Jun-13	Jul-13	Jul-13	Jul-13	Jun-13	Jul-13	Jun-13	Jun-13	Jun-13	Jul-13	Jun-13	Jun-13	Jun-13	Jul-13	Jul-13	Jul-13	Jul-13	Jul-13	Jul-13	Jul-13	Jun-13	Jul-13	Jul-13	
		Previous	Reading	50.0	203.0	235.8	191.0	591.9	399.0	414.3	428.0	1414.0	115.5	377.2	463.0	910.0	1330.2	215.0	502.8	359.7	492.0	149.0	1847.0	196.5	408.6	349.1	182.4	889.7	246.7	144.1	619.0	183.0		673.0	240.0	175.0	
	Previous	Reading	Date	Dec-12	Dec-12	Dec-12	Dec-12	Dec-12	Dec-12	Dec-12	Dec-12	Dec-12	Dec-12	Dec-12	Dec-12	Dec-12	Dec-12	Dec-12	Dec-12	Dec-12	Dec-12	Dec-12	Dec-12	Dec-12	Dec-12	Dec-12	Dec-12	Dec-12	Dec-12	Dec-12	Dec-12	Dec-12		Dec-12	Dec-12	Dec-12	
			Fuel Type	Diesel	Diesel	Diesel	Diesel	Diesel	Diesel	Diesel	Diesel	Nat. Gas	Diesel	Diesel	Diesel	Diesel	Diesel	Diesel	Diese	Diese	Diese	Diese	Nat. Gas	Diesel	Propane	Diesel	Propane	Diesel	Diesel	Diesel	Diesel	Diesel	Diesel	Diesel	Diesel	Diesel	
			KW	150	200	32	400	1250	009	80	1100	09	100	09	20	150	300	300	200	100	120	1250	09	20	15	200	100	009	1250	40	200	400	006	1000	250	1250	
			MODEL	1500DVE15R31374B	DFGA-5005210	DGBB-5601289	DFEH-5699616	DFLC-5554001	SR-4	DGDA-5005757	KTA50-G2	60ENA	100DGDB	DGCB-5674244	4BT3.9-GC	DVE	300DEFCB	DFCB-5740130	680FDR5059FF	DGDB4487482	DGFA-568741	L940563879	60ENA	Kamag-14	15.0JC-18R	95M-07874-F	100RZ71	E7014DD	1250DFLC-4987	40DL6T	1465	DFEB-4963414		DFHD-4964979	250DVG	DFLC-5568730	
			Manufacturer	Onan Sons	Cummins	Cummins	Cummins	Cummins	Caterpillar	Onan Sons	Cummins	Onan Sons	Onan Sons	Cummins	Cummins	Onan Sons	Onan Sons	Onan Sons	Cummins	Onan	Onan Sons	Onan Sons	Onan Sons	Kato Eng.	Onan	Olympian	Kohler	Delco/Detroit	Onan Sons	Onan Sons	Onan Sons	Cummins	Caterpillar	Cummins	Onan Sons	G-0055 Cummins	2
			# Q/	G-0013	G-0020	G-0022	G-0024	G-0023	G-0017	G-0021	G-0033	G-0032	G-0034	G-0037	G-0031	G-0030	G-0036	G-0043	G-0039	G-0040	G-0044	G-0038	G-0004	G-0005	G-0011	G-0045	G-0049	G-0050	G-0051	G-0047	G-0048	G-0046		6-0053	G-0041	G-0055	On Opposite Co.
			Bldg	40	440	1076	1400	1404	1498	2322	086	1374	7	402	-	-	332	45	28	69	184	188	1	2	3N	412	2	8	364	28	47	142	371	yard	1	33	33
			TA.	3	3	3	3	3	3	3	16	16	32	32	43	43	46	48	20	20	20	20	53	53	53	54	22	22	22	22	22	22	22	09	64	69	

First half average hours per unit 8.4 Second half average hours per un

N/R = Not Read

Reviewed By / Date:

EMISSION FACTORS	×ON	00	SOx ^(e)	MA	PM10	NOC
	lb/kw-hr	lb/kw-hr	lb/kw-hr	lb/kw-hr	lb/kw-hr	lb/kw-hr
Large Diesel fired (a)(b)	0.032	200'0	5.4E-04	0.001	0.001	100.0
Small Diesel fired (a)(c)	0.042	600'0	0.003	0.003	0.003	0.003
Natural Gas Fired ^{a)}	800'0	0.013	2.0E-06	3.4E-05	3.2E-05	1.0E-04

References:

447	447 km (600 hp) is the size limit for determining large vs. small diesel firled generator. This information was taken from the operating permit application and is also found in AP-42.
a) The AP-42 (fifth editi Therefore, take pounds/	 a) The AP-42 (fifth edition), table 3.4-1,emissions factor uses units of lohp-hr. There are 1.341 hp-hrs in a kwh. Therefore, take pounds/hp-hr x 1.341 hp-hr/kwh to obtain the emission factor in lokwh.
b) Emission factors for 3.4-4.	b) Emission factors for large diesel fired engines were taken from AP-42 (lifth edition) Tables 3.4-1, 3.4-2, 3.4-3, and 1.4-4.
c) Emission factors for	c) Emission factors for small diesel fired engines were taken from AP-42 (fifth edition) Tables 3.3-1 and 3.3-2.

(d) The AP-Z (fifth edition) emission factors fornatural gas burning4-stock inch-burn engines (Table 32-3) provides units of IbAMBTU. There are 3413 Bus in a klowarthn (kwh) or 2.928 x 10-4 kwh per BTU. There forei, take IbMMBTU x 3413 / 1 x 10 or IbMMBTU x 3413 / 1 x 10 or IbMMBTU X 3828 x 10 or IbMMBTU x 3413 / 1 x

(e) The Sulfur Oxide (SOx) emission factor for large diesel engines was calculated using AP-42 Table 3.4-fliffth edition. The calculation requires the sulfur percent found in the fuel. It was verified in March of 2007, that future fuel supplied it the calculation requires the sulfur percent found in the fuel. It was verified in March of 2007, that future fuel supplied it the associated low fuel use) of most generators, the previous LANL rested fuel sulfur concentration of 0.65% will continue the used for the rest of 2007 to allow for refueling of generators and use of the new ULSD. Calculation is 0.008099 0.008

	XON	03	SOx	Md	NOC	HAPs	XON	03	SOx	Md	200	SAVH
Location	(q _I)	(Ib)	(IB)	(q _I)	(q _I)							
3-40	31.5	6.8	2.3	2.3	2.3	1.1E-02	31.5	6.8	2.3	2.3	2.3	1.0E-02
3-440	112.0	24.5	1.9	3.5	3.5	2.4E-02	81.6	17.9	1.4	2.6	2.6	1.5E-02
3-1076	3.2	0.7	0.2	0.2	0.2	1.1E-03	73.5	15.8	5.3	5.3	5.3	2.4E-02
3-1400	84.0	18.0	0.9	0.9	0.9	2.8E-02	67.2	14.4	4.8	4.8	4.8	2.2E-02
3-1404	84.0	18.4	1.4	2.6	2.6	1.8E-02	48.0	10.5	0.8	1.5	1.5	8.7E-03
3-1498	0.96	21.0	1.6	3.0	3.0	2.0E-02	134.4	29.4	2.3	4.2	4.2	2.4E-02
3-2322	10.1	2.2	0.7	0.7	0.7	3.4E-03	22.5	4.8	1.6	1.6	1.6	7.2E-03
16-980	105.6	23.1	1.8	3.3	3.3	2.2E-02	56.3	12.3	1.0	1.8	1.8	1.0E-02
16-1374	18.1	29.5	0.0	0.1	0.2	2.6E-01	13.1	21.2	0.0	0.1	0.2	1.8E-01
35-2	0.0	0.0	0.0	0.0	0.0	0.0E+00	0.0	0.0	0.0	0.0	0.0	0.0E+00
35-402	57.5	12.3	4.1	4.1	4.1	1.9E-02	29.0	12.6	4.2	4.2	4.2	1.9E-02
43-1	20.2	4.3	1.4	1.4	1.4	6.7E-03	11.3	2.4	0.8	0.8	8.0	3.7E-03
43-1	207.9	44.6	14.9	14.9	14.9	6.9E-02	151.2	32.4	10.8	10.8	10.8	4.9E-02
46-335	551.9	118.3	39.4	39.4	39.4	1.8E-01	466.2	6.66	33.3	33.3	33.3	1.5E-01
48-45	201.6	43.2	14.4	14.4	14.4	6.7E-02	88.2	18.9	6.3	6.3	6.3	2.8E-02
50-37	0.0	0.0	0.0	0.0	0.0	0.0E+00	0.0	0.0	0.0	0.0	0.0	0.0E+00
69-09	24.8	5.3	1.8	1.8	1.8	8.3E-03	9.7	2.1	0.7	0.7	0.7	3.1E-03
50-184	195.3	41.9	14.0	14.0	14.0	6.5E-02	0.0	0.0	0.0	0.0	0.0	00+30'0
50-188	0.0	0.0	0.0	0.0	0.0	0.0E+00	0.0	0.0	0.0	0.0	0.0	00+30'0
53-1	2.7	4.4	0.0	0.0	0.0	3.8E-02	3.1	2.0	0.0	0.0	0.0	4.3E-02
53-2	0.0	0.0	0.0	0.0	0.0	0.0E+00	0.0	0.0	0.0	0.0	0.0	00+30'0
53-3N	0.0	0.0	0.0	0.0	0.0	0.0E+00	0.2	0.3	0.0	0.0	0.0	1.9E-03
54-412	0:0	0:0	0.0	0.0	0.0	0.0E+00	0:0	0.0	0.0	0:0	0:0	0.0E+00
55-5	0.0	0.0	0.0	0.0	0.0	0.0E+00	0.0	0.0	0.0	0.0	0.0	0.0E+00
55-8	121.0	26.5	2.0	3.8	3.8	2.6E-02	0.0	0.0	0.0	0.0	0.0	0.0E+00
55-364	588.0	128.6	6.6	18.4	18.4	1.2E-01	664.0	145.3	11.2	20.8	20.8	1.2E-01
55-28	0.0	0.0	0.0	0.0	0.0	0.0E+00	1.8	0.4	0.1	0.1	0.1	5.9E-04
55-47	0.0	0.0	0.0	0.0	0.0	0.0E+00	2.5	9.0	0.2	0.2	0.2	8.1E-04
55-142	43.7	9.4	3.1	3.1	3.1	1.5E-02	11.8	2.5	8.0	8.0	8.0	3.8E-03
55-371												
60-yard	0.0	0.0	0.0	0.0	0.0	0.0E+00	0.0	0.0	0.0	0.0	0.0	00+30'0
64-1	94.5	20.3	6.8	6.8	6.8	3.2E-02	357.0	76.5	25.5	25.5	25.5	1.1E-01
69-33	280.0	61.3	4.7	8.8	8.8	5.9E-02	132.0	28.9	2.2	4.1	4.1	2.4E-02
lbs/6 months	2933.5	664.2	132.4	152.4	152.6	1.1	2486.0	2009	115.5	131.6	131.8	6.0

EARLY TOTAL	XON	co	SOx	PM	200	HAPs
ons/Year	1.7.7	0.61	0.12	0.14	0.14	0.001

Unit	Unit Data		Ca	Calendar Year		Œ	Fiscal Year (6)		
	Fuel Use	Annual	8	CH 4	N20	CO2	CH4	N20	Doforozo
Location ID#	Rate ^{(d)(e)} (GPH)(SCFH)	(Gal. or (MMSCF)	(metric tons)	(metric tons)	(metric tons)	(metric tons)	(metric tons)	(metric tons)	Valence
3-40 G-0013	12.3	122.5	1.3	5.1E-05	1.0E-05	1.3	5.3E-05	1.1E-05	(a) Emission Factor/High Heat Value is from 40
3-440 G-0020	21.8	263.9	2.7	1.1E-04	2.2E-05	3.0	1.2E-04	2.4E-05	CFR Part 98, Subpart C, Table C-1, "Default
		151.4	1.5	6.3E-05	1.3E-05	0.8	3.3E-05	90-35-9	COZ EMISSION FACTORS and High Heat Values for Various Types of Firel *
3-1400 G-0024		245.7	2.5	1.0E-04	2.0E-05	2.8	1.1E-04	2.3E-05	of various types of det.
		288.1	2.9	1.2E-04	2.4E-05	12.5	5.1E-04	1.0E-04	
3-1498 G-0017	_	512.4	5.2	2.1E-04	4.2E-05	6.1	2.5E-04	4.9E-05	(b) Emission Factor is from 40 CFR Part 98,
3-2322 G-0021	6.3	61.1	9.0	2.5E-05	5.1E-06	9.0	2.3E-05	4.6E-06	Subpart C, Table C-2, "Default CH4 and N2O
16-980 G-0033	79.4	365.2	3.7	1.5E-04	3.0E-05	7.8	3.2E-04	6.3E-05	Emission Factors for Various Types of Fuel."
6-1374 G-0032	~	0.0553	3.0	5.6E-05	5.6E-06	3.4	6.5E-05	6.5E-06	(Federal Register/Vol. 74, No. 209,
35-2 G-0034	5'2 1	0.0	0.0	0.0E+00	0.0E+00	0.0	0.0E+00	0.0E+00	10/30/2009).
35-402 G-0037	7.4.7	217.1	2.2	90-30.6	1.8E-05	2.2	9.1E-05	1.8E-05	(c) Hour readings were taken from the criteria
43-1 G-0031	4.2	63.0	9.0	2.6E-05	5.2E-06	0.7	2.7E-05	5.3E-06	pollutant emission calculation spreadsheet for
43-1 G-0030		698.3	7.1	2.9E-04	5.8E-05	9.1	3.7E-04	7.4E-05	standby generators, nours are corrected twice a
46-335 G-0036	L	1818.0	18.6	7.5E-04	1.5E-04	18.1	7.3E-04	1.5E-04	
48-45 G-0043		517.5	5.3	2.1E-04	4.3E-05	6.5	2.7E-04	5.3E-05	(d) Fuel use rates were taken from
		0.0	0.0	0.0E+00	0.0E+00	0.0	0.0E+00	0.0E+00	manufacturer literature. Data for some units
		61.5	9.0	2.5E-05	5.1E-06	0.8	3.1E-05	6.1E-06	may not be available due to age, but data for a
		344.1	3.5	1.4E-04	2.8E-05	5.6	2.3E-04	4.5E-05	similar unit was used when unit specific data
	4	0.0	0.0	0.0E+00	0.0E+00	0.0	0.0E+00	0.0E+00	was not available.
53-1 G-0004	8	0.0102	9.0	1.0E-05	1.0E-06	0.5	9.8E-06	1.5E-05	(e) High Heat Value (HHV) for natural gas is
.2 G-0005	_	0.0	0.0	0.0E+00	0.0E+00	0.0	0.0E+00	0.0E+00	taken from the monthly "Plant Quantities
		0.0002	0.0	1.1E-06	2.3E-07	0.1	3.3E-06	6.5E-07	Report*. Natural gas HHV is determined using
2	4	0.0	0.0	0.0E+00	0.0E+00	0.0	0.0E+00	0.0E+00	a gas chromatagraph located at the TA-3 Power
55-5 G-0049		0.0000	0.0	0.0E+00	0.0E+00	0.1	6.6E-06	1.3E-06	(f) The Btu value for propane vapor was taken
		269.0	2.7	1.1E-04	2.2E-05	2.7	1.1E-04	2.2E-05	from the National Propane Gas Association web
		2732.5	27.9	1.1E-03	2.3E-04	27.8	1.1E-03	2.3E-04	page
	_	4.9	0.1	2.0E-06	4.1E-07	0.1	4.8E-06	9.7E-07	(http://npga.org/i4a/pages/index.crm?pageid=63
	_	4.9	0.1	2.0E-06	4.1E-07	0.0	1.0E-06	2.0E-07	6
1	4	90.1	0.0	3.7E-05	7.5E-06	2.1	8.4E-05	1.7E-05	(e) Fiscal year begins on October 1st of the
33-37 G-0652	0.07	0.00	10.1	+0-3C-0	1.35-04	- 6	5.7 E-04	1 1 5 0 5	the current year
Ī	1	3839 9	39.2	1 6F-03	3.2E-04	28.7	1.2E-03	2.3E-04	
69-33 G-0055	90.3	930.1	9.5	3.9E-04	7.7E-05	13.5	5.5E-04	1.1E-04	
		Totals:	1	6.4E-03	1.3E-03	167.49	6.7E-03	1.3E-03	
	Total CO ₂	Total CO ₂ Equivalent:		159.00			168.06		
	Emissions	Emissions From Diesel	154.90	6.28E-03	1.26E-03				
Ш	Emissions From Natural Gas	Natural Gas	3.5429	0.0001	0.0000				Emission Factors (kg/mmBtu)
							Fuel Type	HHV ^{(a)(e)(f)}	CO ₂ (8) CH ₄ (9)
	Emissions From Propane:	om Propane	0.0234	0.0000	0.0000				(kg/mmBtu) (kg/mmBtu) (kg/mmBtu)
To	Total Fuel Oil Use: 15176.3 Gallons	: 15176.3	Gallons				Diesel	0.138	73.96 0.003 0.0006
							Nat. Gas	1021	0001
									- 00:0

HHV is in units of mmbtu/gal for liquids and mmbtu/mmsd for gases.

				HAPS (lbs)	(sql)										HAP	HAPS (Ibs)			
Emission Factors																			
(lb/kwh)	Benzene	Tol	Toluene	Xylenes	nes	1,3-Butadiene	diene	Formaldehyde	ehyde	Acetaldehyde	ehyde	Acre	Acrolein	Naphthalene		1,1,2,2-Tetra	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	oroethane
Natural Gas	5.40E-06	1.91	1.91E-06	6.66E-07	E-07	2.26E-06	90-	7.00E-05	-05	9.53E-06	90-	8.98E-06	E-06	3.32E-07	E-07	8.64	8.64E-08	5.23E-08	-08
Diesel (small)	3.19E-06	1.406	1.40E-06	9.73E-07	-07	1.34E-07	-07	4.03E-06	90-	2.62E-06	90-	3.16E-07	E-07	2.90E-07	E-07				
Location	1st Half 2nd Half	151	2nd Half	1st Half	2nd Half	1st Half	2nd Half	1st Half	2nd Half	1st Half	2nd Half	1st Half	2nd Half	1st Half	2nd Half	1st Half	2nd Half	1st Half	2nd Half
3-40	١.,	,	1.05E-03	t	7.30E-04	١.	. 4	+	3.02E-03	-	1.96E-03		2.37E-04	١.	2.17E-04		2	5	
3-440	-	9	2.45E-03	2.31E-03		+	_	+	+	+	2.19E-04	9.42E-05	6.86E-05	1.55E-03	1.13E-03				
3-1076	2.45E-04 5.58E-03	1.47E-04	2.44E-03	7.49E-05	1.70E-03	_	2.34E-04	3.10E-04	7.05E-03	2.02E-04	4.58E-03	2.43E-05	5.53E-04	2.23E-05	5.07E-04				
3-1400	6.37E-03 5.10E-03	3.81E-03	2.23E-03	1.95E-03	1.56E-03	2.67E-04	2.14E-04	8.06E-03	6.45E-03	5.24E-03	4.19E-03	6.32E-04	5.05E-04	5.79E-04	4.63E-04				
3-1404	6.96E-03 3.98E-03	3 5.00E-03	1.44E-03	1.73E-03	9.89E-04	0.00E+00	0.00E+00	7.07E-04	4.04E-04	_	1.29E-04	7.06E-05	4.04E-05	1.17E-03	6.66E-04				
3-1498	7.95E-03 1.11E-02	02 5.72E-03	4.03E-03	1.98E-03	2.77E-03	0.00E+00			1.13E-03	2.58E-04	3.61 E-04	8.07E-05	1.13E-04	1.33E-03	1.86E-03				
3-2322	7.65E-04 1.71E-03	3 4.57E-04	7.49E-04	2.34E-04	5.22E-04	3.20E-05	7.16E-05	9.67E-04	2.16E-03	_	1.40E-03	7.58E-05	1.69E-04	6.95E-05	1.55E-04				
16-980	8.75E-03 4.66E-03	_	1.69E-03	2.18E-03	1.16E-03	0.00E+00	0.00E+00	8.89E-04	4.74E-04	2.84E-04	1.51E-04	8.88E-05	4.74E-05	1.47E-03	7.81E-04				
16-1374	1.22E-02 8.81E-03	3 4.32E-03	3.11E-03	1.51E-03	1.09E-03	5.14E-03	3.70E-03	1.59E-01	1.14E-01	2.16E-02	1.56E-02	2.04E-02	1.47E-02	7.52E-04	5.41E-04	1.96E-04	1.41E-04	1.19E-04	8.53E-05
35-2	0.00E+00 0.00E+00	00+300.0 00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	_	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00				
35-402	4.36E-03 4.47E-03	3 2.61E-03	1.96E-03	1.33E-03	1.37E-03	1.83E-04	1.87E-04	5.51E-03	5.66E-03	3.58E-03	3.68E-03	4.32E-04	4.44E-04	3.96E-04	4.07E-04				
43-1	1.53E-03 8.60E-04	9.15E-04	3.77E-04	4.67E-04	2.63E-04	6.41E-05	3.61E-05	1.93E-03	1.09E-03	1.26E-03	7.07E-04	1.52E-04	8.53E-05	1.39E-04	7.82E-05				
43-1	1.58E-02 1.15E-02	0.43E-03	5.03E-03	4.82E-03	3.50E-03	6.61E-04	_	1.99E-02	1.45E-02	1.30E-02	9.43E-03	1.56E-03	1.14E-03	1.43E-03	1.04E-03				
46-335	-		1.55E-02	1.28E-02	_	_	_	-	_	_	2.91E-02	4.15E-03	3.51E-03	3.81E-03	3.21 E-03				
48-45	1.53E-02 6.69E-03	1	_	4.67E-03	2.04E-03	6.41E-04		_			5.50E-03	1.52E-03	6.63E-04	1.39E-03	6.08E-04				
50-37	1)	Н	_		_	_	_	_	_	_	0.00E+00	_	_	0.00E+00				
20-69	1.88E-03 7.33E-04	1.12E-03	3.21E-04	5.74E-04			3.07E-05		9.27E-04	1.55E-03	6.02E-04	1.86E-04	7.27E-05	1.71E-04	6.66E-05				
50-184	1.48E-02 0.00E+00	00 8.86E-03	0.00E+00	4.53E-03	0.00E+00	6.21E-04	0.00E+00	1.87E-02 (0.00E+00	1.22E-02	0.00E+00	1.47E-03	0.00E+00	1.35E-03	0.00E+00				
50-188	0.00E+00 0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00 0.00E+00 0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00				
53-1	1.81E-03 2.07E-03	3 6.40E-04	7.32E-04	2.24E-04		7.61E-04		2.35E-02		3.20E-03	3.66E-03	3.02E-03	3.45E-03	1.11E-04	1.27E-04	2.90E-05	3.32E-05	1.76E-05	2.01E-05
53-2	0.00E+00 0.00E+00	00+300.00 OC	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00 (0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00				
23-3N		Н	3.72E-05	0.00E+00	_	_	_	_				0.00E+00	_	0.00E+00	6.47E-06				
54-412		_	0.00E+00	_	_	_	_	-	_		_	0.00E+00	_	_	0.00E+00				
22-2		_	0.00E+00				_		_	_		0.00E+00		_	0.00E+00				
55-8	1.00E-02 0.00E+00	00 7.20E-03	0.00E+00	2.49E-03	0.00E+00	0.00E+00	0.00E+00	1.02E-03 (0.00E+00	3.25E-04	0.00E+00	1.02E-04	0.00E+00	1.68E-03	0.00E+00				
55-364	4 87E-02 5 50E-02	3 50F-02	1 99F-02	1 21E-02	137E-02	0.00F±00	0 00F+00	4 95F-03	5 59E-03	1 58E-03	1 79F-03	4 95F-04	5.58F-04	8 16F-03	9.21 E-03				
55-28	_	-	+	0.00E+00			5.88E-06 0.00E+00		-			0.00E+00		0.00E+00	1.27E-05				
55-47	0.00E+00 1.91E-04	0.00E+00	8.38E-05	0.00E+00	5.84E-05	0.00E+00	8.01E-06	0.00E+00	2.42E-04	0.00E+00	1.57E-04	0.00E+00	1.90E-05	0.00E+00	1.74E-05				
55-142	3.31E-03 8.92E-04	1.98E-03	3.91E-04	1.01E-03	2.73E-04	1.39E-04	3.74E-05	4.19E-03	1.13E-03	2.72E-03	7.33E-04	3.29E-04	8.85E-05	3.01E-04	8.11E-05				
60-yard	0.00E+00 0.00E+00	0.00E+00	0.00E+00	0.00E+00 0.00E+00		0.00E+00 0.00E+00 0.00E+00 0.00E+00	0.00E+00	0.00E+00 (0.00E+00 0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00				
64-1	7.17E-03 2.71E-02	02 4.29E-03	1.19E-02	2.19E-03	8.27E-03	3.00E-04	1.14E-03	9.07E-03	3.43E-02	5.89E-03	2.23E-02	7.11E-04	2.69E-03	6.52E-04	2.46E-03				
69-33	2.32E-02 1.09E-02	1.67E-02	3.96E-03	5.77E-03	2.72E-03	0.00E+00	0.00E+00	2.36E-03	1.11E-03	7.53E-04	3.55E-04	2.35E-04	1.11E-04	3.88E-03	1.83E-03				
sql	2.45E-01 2.06E-01	1.57E-01	8.24E-02	6.57E-02	5.57E-02	1.07E-02	8.91E-03	3.40E-01	2.82E-01	1.24E-01	1.07E-01	3.60E-02	2.94E-02	3.06E-02	2.55E-02	2.25E-04	1.74E-04	1.36E-04	1.05E-04
Tons/Half/HAP	1.22E-04 1.03E-04	14 7.84E-05	4.12E-05	3.28E-05	2.79E-05	5.37E-06	4.46E-06	1.70E-04	1.41E-04	6.19E-05	5.34E-05	1.80E-05	1.47E-05	1.53E-05	1.27E-05	1.13E-07	8.71E-08	6.80E-08	5.27E-08
Tons/year/HAP	2.25E-04	1.20)E-04	6.07E-05	-05	9.83E-06	90-	3.11E-04	-04	1.15E-04	-04	3.27	3.27E-05	2.81E-05	5-05	2.00E-07	E-07	1.21E-07	-07
Tons/Year Total	9.82E-04																		Ì

Tons/Year Total 9.82E-04 Emission Factors from AP-42, Yolume 1, Fifth Edition (Small Diesel Engines Table 3.3-2, Large Diesel Engines Table 3.4-4, Natural Gas 4-Stroke Engines Table 3.2-3)

	Generator	s)		2nd Half	1.01E-02	1.48E-02	2.37E-02	2.16E-02	8.73E-03	2.44E-02	7.25E-03	1.02E-02	1.84E-01	0.00E+00	1.90E-02	3.65E-03	4.87E-02	1.50E-01	2.84E-02	0.00E+00	3.11E-03	0.00E+00	0.00E+00	4.32E-02	0.00E+00	1.94E-03	0.00E+00	0.00E+00	0.00E+00	L	1.21E-01	5.95E-04	8.11E-04	3.79E-03	0.00E+00	1.15E-01	2.40E-02	8.68E-01		
	Individual Generator HAP Emissions	(Ips)		1st Half	1.05E-02	2.37E-02	1.08E-03	2.81E-02	1.78E-02	2.03E-02	3.37E-03	2.23E-02	2.55E-01	0.00E+00	1.92E-02	6.73E-03	6.94E-02	1.84E-01	6.73E-02	0.00E+00	8.28E-03	6.52E-02	0.00E+00 0.00E+00	3.78E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.56E-02	10 110	1.24E-01	0.00E+00	0.00E+00	1.46E-02	0.00E+00	3.16E-02	5.92E-02			
	nloride	-08		2nd Half									4.00E-05											9.42E-06														4.94E-05	2.47E-08	80-
	Vinyl Chloride	2.45E-08		1st Half									5.56E-05											8.24E-06														6.39E-05	3.19E-08	5.66E-08
	ne	90-		2nd Half									3.11E-03											7.32E-04															1.92E-06	90
(sq)	Toluene	1.91 E-06		1st Half	_							-	4.32E-03											6.40E-04															2.48E-06	4.40E-06
HAPS (lbs)	ЭС	80		2nd Half								_	6.63E-05											1.56E-05														_	4.10E-08	80
	Styrene	4.06E-08		1st Half	-							_	9.22E-05 6											1.37E-05															5.29E-08 4	9.39E-08
		2(70	Half	Ļ	1.85E-03	1.00E-03	9.18E-04	1.09E-03	3.04E-03	3.08E-04	-	_	0.00E+00	8.06E-04	1.55E-04	2.07E-03	6.37E-03	1.20E-03	0.00E+00	1.32E-04	0.00E+00	.00E+00	È	0.00E+00	9.39E-06	0.00E+00	0.00E+00	0.00E+00	00	1.50E-UZ	2.52E-05	3.44E-05	1.61E-04	00+300	4.88E-03	2.99E-03	_	2.24E-05 5	92
	PAH	4.82E-07	5.74E-07	1st Half 2	4.30E-04 4	2.53E-03 1	4.42E-05 1	1.15E-03 9		2.17E-03 3	Н	-			-	_		_	2.75E-03 1	_	3.39E-04	2.67E-03 0.	0.00E+00 0.00E+00	_	0.00E+00 0.	_	0.00E+00 0.	_	2.74E-03 0.	_	_		0.00E+00 3	5.97E-04	0.00E+00 0.00E+00	1.29E-03 4	6.34E-03 2		2.67E-05 2	4.91E-05
	hloride			2nd Half	H	2	4	1	1	2	1	_	2.30E-04 1	0.	7	2	2	2	2	0.	3	2	0	5.40E-05 1	0.	0	0	0.	2	,		0.	0.	5	0.	1	9	2.84E-04 5.	1.42E-07 2.	7
	Methylene Chloride	1.41E-07		1st Half 2	┢							-	3.19E-04 2.											4.73E-05 5.														3.66E-04 2.	1.83E-07 1.	3.25E-07
		2		2nd Half	┢							_	1.71E-02 3.											4.01E-03 4.														2.11E-02 3.	1.05E-05 1.	
	Methanol	1.05E-05		1st Half 2r	۰							-	2.37E-02 1.7											3.51E-03 4.0															1.36E-05 1.0	2.41E-05
	omide	8		2nd Half 1s	┡							_	1.19E-04 2.3											2.79E-05 3.5														_		
	Ethylene Dibromide	7.27E-08		1st Half 2n	-								1.65E-04 1.1											2.44E-05 2.7														1.89E-04 1.4	9.47E-08 7.33E-08	1.68E-07
		80		2nd Half	_								1.38E-04 1.											3.25E-05 2.															6	20
HAPS (lbs)	Ethylbenzene	8.47E-08		1st Half	_								1.92E-04 1											2.85E-05 3														2.21E-04 1	1.10E-07	1.10E-07
	orm	-08		2nd Half	_								7.64E-05											1.80E-05														9.43E-05	4.72E-08	-07
	Chloroform	4.68E-08		1st Half									1.06E-04											1.57E-05														1.22E-04 9.43E-05 2.21E-04 1.71E-04	6.09E-08 4.72E-08 1.10E-07	1.08E-07
	ene	3		2nd Half									7.19E-05											1.69E-05														8.88E-05	4.44E-08	
	Chlorobenzene	4.41E-08		1st Half	H							_	9.99E-05 7											1.48E-05 1														T	5.74E-08 4	1.02E-07
	ride			H	H							Н																										┝	Н	_
	Carbon Tetrachloride	6.05E-08		If 2nd Half	Ł								9.87E-05											35 2.32E-05															90-360.9 80	1.40E-07
				alf 1st Half	L							щ	1.37E-04											35 2.03E-05													L	1.57E-04	38 7.87E-08	
	1,3-Dichloropropene	4.34E-08		f 2nd Half	H								15 7.08E-05											1.67E-05														1.13E-04 8.74E-05	5.65E-08 4.37E-08	1.00E-07
	1,3-Dict	4		1st Half									9.84E-05											1.46E-05														1.13E-0	5.65E-0	1,

2013 Small Boilers Data Entry / Gas Use

			Metered Boilers	lers			Moroto Modern	12-Month
!		TA-55 Boiler Gâ (Mscf) ^(c)	Boiler Gas Use (Mscf) ^(c)	CMRR-RLUOB Gas Use (Mscf)	Total Ga	Total Gas Use ^(a)	Gas Use	Rolling Total for all Small
		BHW-1B (B-602)		All 3 Boilers NMED IDs 90, 104,		3		(MMscf) ^(e)
	Month	ID (B-0016)	ID (B-0017)	and 105	(Msct)	(MMsct)	(MMsct)	
	January	2639	548	569	83,623	83.62	79.87	520.61
	February	1952	33	546	67,185	67.19	64.65	522.88
	March	1359	592	449	54,795	54.80	52.40	522.23
	April	1738	2.0	412	43,060	43.06	40.91	524.94
ίιλ	May	1507	8.0	277	25,295	25.30	23.51	527.63
u=	June	290	0	237	11,491	11.49	10.46	527.07
1 E	July	1158	2	158	11,317	11.32	10.00	525.25
ec	August	497	794	144	11,389	11.39	9.95	521.96
1	September	252	1274	187	10,374	10.37	8.66	513.68
	October	1878	7	320	38,938	38.94	36.73	11.713
	November	1267	728	445	56,805	56.81	54.37	508.61
	December	9.0	2187	536	72,975	72.98	70.25	487.25
	TOTAL	15038	6168	4280	487,247	487.25	461.76	
-					101	Month Permit I	imit (MMscf) =	870

2013 Non Metered Boiler Pool Capacity:	287.8	MMBTU/hr ^(f)	
Estimated Gas-Use per MMBtu rating Jan-June:		0.94	MMscf/MMBtu/hr
Estimated Gas-Use per MMBtu rating July-Dec:		99.0	MMscf/MMBtu/hr
Estimated Gas-Use per MMBtu - Annual		1.60	MMscf/MMBtu/hr
Estimated Gas-Use per MMBtu - Fiscal Year		1.70	1.70 MMscf/MMBtu/hr

Gas U	Gas Use Non-Metered ⁽⁹⁾ (MMSCF)	tered ^(g) (MI	MSCF)	
				Insignificant
NMED ID:	11	12	53 &134	Units ^(h)
Location:	ocation: TA-53-365	TA-53-365	TA-16-1484	Lab Wide
Equipment ID:	BHW-1	BHW-2	Plant 5	Various
Database ID:	B-0042	B-0043	B-0093/0092	
Design Rate ⁽ⁱ⁾ (MMBTU/hr)	7.115	7.115	12.700	261
Calculated Gas Use-Jan-June	6.719	6.719	11.994	246.367
Calculated Gas Use-July-Dec	4.696	4.696	8.383	172.189
Calculated Gas Use-Annual	11.415	11.415	20.377	418.555
Reviewed By / Date:				

Definitions:

MMSCF= Million Standard Cubic Feet MSCF = Thousand Standard Cubic Feet

	Emission Fa	Emission Factors (Ib/MMscf)	scf)	
Criteria Pollutant	Small Uncontrolled Boilers ¹	TA-16 Low NOx Boilers ⁴	TA-55-6 Boilers³	RLUOB Boilers
XON	100	37.08	138	29.9
×os	9.0	9.0	9.0	9.0
PM ²	9.7	9.7	14.2	4.9
_z 01-Wd	9.7	9.7	14.2	4.9
PM-2.5 ²	9.7	9.7	14.2	4.9
00	84	37.08	38.2	38.1
200	5.5	5.5	5.98	25.8
_с sdүн				

Arsenic	0.0002		
Benzene	0.0021	(1)	(1) AP-42, 7/98
BE	0.000012		
Cadmium	0.0011	(2)	(2) Emission fa
Chromium	0.0014	to t	to those of PM,
Cobalt	0.000084		
Dichlorobenzene	0.0012	(3)	(3) AP-42, 7/98
Formaldehyde	0.075	Sta	Stack test on 3
Hexane	1.8	ùЩ	Engineering Co
Lead	0.0005		
Mangenese	0.00038	(4)	(4) AP-42, 7/98
Mercury	0.00026	Em	Emission factor
Napthalene	0.00061	lod	boilers).
Nickel	0.0021		
POM	0.000088	(2)	(5) All HAP em
Selenium	0.000024	Ö	Combustion, Ta
Toluene	0.0034		

References for Emission Factors
(1) AP-42, 7/98, Section 1.4, Natural Gas Combustion, Small Boilers.
(2) Emission factors for natural gas of PM-10 and PM-2.5 are roughly equal to those of PM, Natural Gas Combustion, Table 1.4-2.
(3) AP-42, 7/98, Section 1.4, Natural Gas Combustion, Small Boilers for SOx. Stack test on 3/00 for NOx. Otherwise, Emission factors from Sellers Engineering Co.
(4) AP-42, 7/98, Section 1.4, Natural Gas Combustion, Small Boilers; Emission factors for NOx and CO from Sellers Engineering Co (low-NOx boilers).
(5) All HAP emission factors from AP-42 7/98, Section 1.4, Natural Gas Combustion, Tables 1.4-3, 1.4-4.

CMRR Boiler Fuel Oil Use (2013):

	Reading provided by Randy Johnson	Reading provided by Randy Johnson	Reading provided by Randy Johnson	as of July 1, 2013, per Randy Johnson		
, BHW-3 (gal.)	29.4	48.7	9.7	ary 10, 2013		
BHW-2 (gal.)	19.5	2.7	46	ts since Janua		
BHW-1 (gal.)	15.6	23.4	4.1	d in these uni		
Date \ Boiler BHW-1 (gal.) BHW-2 (gal.)	1/8/2013	1/9/2013	1/10/2013	No additional fuel oil burned in these units since January 10, 2013		

July-Dec* Jan-June CMRR-RLUOB CMRR-R		2013	Small Boilers Emission Summary	Emission Sur	nmary	
Courtier Annual* July-Dec* Jan-June July-Dec* July-Dec* July-July-July-July-July-July-July-July-			Total Emiss	sions (tons)		
1,316 0.086 0.061 0.001 0.001 0.001 0.001 0.006 0.001 0.006 0.00	Pollutant	Annual* Emissions (Includes Insignificant Sources)	Jan-June* (Includes Insignificant Sources)	July-Dec* (Includes Insignificant Sources)	Jan-June CMRR-RLUOB Boilers	July-Dec CMRR-RLUOB Boilers
1.316 0.066 0.061 0.001 1.316 1.118 0.738 0.006 1.316 1.118 0.738 0.006 1.316 1.118 0.738 0.006 1.318 0.813 0.575 0.032 1.388 0.813 0.575 0.032 1.388 0.813 0.575 0.032 1.388 0.813 0.575 0.032 1.388 0.813 0.575 0.032 1.388 0.813 0.575 0.032 1.388 0.813 0.575 0.032 1.388 0.813 0.575 0.032 1.388 0.813 0.575 0.032 1.388 0.813 0.575 0.032 1.388 0.813 0.575 0.032 1.388 0.813 0.614 1.378 0.66 1.388 0.814 0.81 0.814 0.002 1.388 0.814 0.814 0.002 1.388 0.814 0.814 0.002 1.388 0.814 0.814 0.002 1.388 0.814 0.814 0.002 1.388 0.814 0.814 0.002 1.388 0.814 0.814 0.002 1.388 0.814 0.814 0.002 1.388 0.814 0.814 0.002 1.388 0.814 0.814 0.814 0.002 1.388 0.814 0.814 0.814 0.002 1.388 0.814 0.814 0.814 0.002 1.388 0.814 0.814 0.814 0.002 1.388 0.814 0.814 0.814 0.002 1.388 0.814 0.814 0.814 0.002 1.388 0.814 0.814 0.814 0.002 1.388 0.814 0.814 0.814 0.002 1.388 0.814 0.814 0.814 0.002 1.388 0.814 0.814 0.814 0.002 1.388 0.814 0.814 0.814 0.814 0.002 1.388 0.814 0.814 0.814 0.814 0.002 1.388 0.814 0.814 0.814 0.002 1.388 0.814 0.814 0.814 0.814 0.002 1.388 0.814 0.814 0.814 0.002 1.388 0.814 0.814 0.814 0.002 1.388 0.814 0.814 0.814 0.002 1.388 0.814 0.814 0.814 0.002 1.388 0.814 0.814 0.814 0.002 1.388 0.814 0.814 0.814 0.002 1.388 0.814 0.814 0.814 0.002 1.388 0.814 0.814 0.814 0.002 1.388 0.814 0.814 0.814 0.002 1.388 0.814 0.814 0.814 0.002 1.388 0.814 0.814 0.002 0.002 1.388 0.814 0.002 0.002 0.002 1.388 0.814 0.002 0.002 0.002 1.388 0.814 0.002		23.974	14.020	9.954	0.037	0.027
1.916 1.118 0.798 0.006 1.916 1.118 0.778 0.006 1.916 1.118 0.778 0.006 1.9403 11.395 8.008 0.047 1.9403 11.395 8.008 0.047 1.9403 11.395 8.008 0.047 1.9403 1.386 0.813 0.575 0.032 1.980 0.813 0.575 0.032 1.980 0.813 0.575 0.032 1.980 0.813 0.575 0.032 1.980 0.813 0.814 0.055 0.047 1.940 1.71E-04 2.02E-05 2.49E-07 1.92E-04 3.00E-04 1.71E-04 1.49E-06 1.96enzene 2.92E-04 1.71E-04 1.49E-06 1.07E-02 1.22E-04 1.71E-04 1.49E-06 1.25E-07 1.22E-04 1.71E-04 1.49E-06 1.49E-06 1.49E-04 1.71E-05 1.26E-05 1.26E-05 1.49E-06 1.26E-05 1.26E-06 1.49E-06 1.49E-04 1.49E-06 1.49E-06 1.49E-06 1.49E-06 1.49E-04 1.49E-04 1.49E-06 1.49E-06	SOx	0.146	0.086	0.061	0.001	0.001
1.916	PM	1.916	1.118	0.798	0.006	
1.916 1.118 0.798 0.006 19.403 11.395 8.008 0.047 19.403 11.395 8.008 0.047 19.403 11.395 8.008 0.047 1	PM-10	1.916	1.118	0.798	0.006	0.004
HAPS 8.008 8.0047 HAPS 1.388 0.813 8.008 0.047 HAPS 1.388 0.813 6.575 0.032 thate 4.87E-05 2.85E-05 2.02E-05 2.49E-07 ne 5.12E-04 3.00E-04 2.12E-04 2.61E-06 um 2.82E-04 1.57E-04 1.21E-04 1.49E-08 cobenzene 2.26E-05 1.20E-04 1.21E-04 1.49E-08 ridehyde 1.83E-02 1.20E-05 1.20E-07 1.20E-07 e 4.39E-01 2.57E-01 1.2E-04 1.49E-06 e 4.39E-01 2.57E-01 1.2E-03 9.34E-05 y 6.33E-05 3.71E-05 3.83E-05 4.73E-07 y 6.32E-05 3.83E-05 3.24E-07 stene 3.0E-04 2.12E-04 2.12E-05 stene 3.3E-05 3.3E-05 3.2E-05 stene 3.4E-05 3.43E-05 3.2E-05 stene 3.43E-05	PM-2.5	1.916	1.118	0.798	900'0	0.004
HAPS 0.813 0.575 0.032 thaps 0.813 0.575 0.032 c 4.87E-05 2.85E-05 2.02E-05 2.49E-07 ne 5.12E-04 3.00E-04 2.12E-04 2.61E-06 um 2.92E-06 1.71E-06 1.21E-04 1.49E-08 ium 3.41E-04 1.57E-04 1.1E-04 1.37E-06 robenzene 2.92E-04 1.71E-04 1.49E-06 robenzene 2.92E-04 1.71E-04 1.26E-05 robenzene 2.92E-05 2.72E-05 3.38E-05 3.24E-07 robenzene 3.71E-05 3.83E-05 3.24E-07 3.24E-07 robenzene 3.43E-05 3.43E-05 3.43E-05 3.43E-05 robenzene 3.43E-04 </th <th>00</th> <th>19.403</th> <th>11.395</th> <th>8.008</th> <th>0.047</th> <th>0.034</th>	00	19.403	11.395	8.008	0.047	0.034
HAPS 4.87E-05 2.85E-05 2.02E-05 2.49E-07 ne 5.12E-04 3.00E-04 2.12E-04 2.61E-06 um 2.68E-04 1.71E-06 1.21E-04 2.61E-06 um 2.68E-04 1.71E-06 1.21E-04 2.61E-06 ium 2.68E-04 1.71E-04 1.11E-04 1.37E-06 robenzene 2.92E-05 1.20E-05 8.48E-06 1.74E-06 robenzene 2.92E-04 1.71E-04 1.41E-04 1.74E-06 robenzene 2.92E-04 1.71E-04 1.21E-04 1.65E-07 e 4.39E-01 2.57E-01 1.22E-04 1.75E-05 e 4.39E-01 2.57E-01 1.82E-01 2.24E-05 y 6.33E-05 3.71E-05 6.15E-05 7.59E-07 y 6.33E-05 3.71E-05 6.15E-05 7.59E-07 y 6.32E-06 3.45E-06 2.42E-06 2.99E-08 see 3.45E-06 3.43E-06 2.99E-05 see 3.45E-	NOC	1.388	0.813	0.575	0.032	0.023
c 4.87E-05 2.85E-05 2.02E-05 2.49E-07 ne 5.12E-04 3.00E-04 2.12E-04 2.61E-06 um 2.92E-06 1.71E-06 1.21E-04 2.61E-06 ium 2.68E-04 1.57E-04 1.11E-04 1.37E-06 ium 2.68E-04 1.57E-04 1.11E-04 1.37E-06 cobenzene 2.92E-05 1.20E-05 8.48E-06 1.74E-06 idehyde 1.83E-02 1.71E-04 1.49E-05 1.6E-07 e 4.39E-01 2.57E-01 1.82E-01 2.24E-05 e 4.39E-01 2.57E-01 1.82E-01 2.24E-05 y 6.33E-05 3.71E-05 3.83E-05 3.24E-07 y 6.33E-05 3.71E-05 6.15E-05 7.59E-07 um 5.85E-06 3.43E-06 2.42E-06 2.99E-08 e 8.28E-04 3.43E-04 4.23E-06	HAPs					
ne 5.12E-04 3.00E-04 2.12E-04 2.01E-06 2.01E-06 2.01E-06 2.01E-06 2.01E-06 2.01E-06 2.01E-06 2.01E-06 1.71E-06 1.71E-07 1.71E-07 1.71E-07 1.71E-07 1.71E-07 1.71E-04 1.71E-06 1.71E-06 1.71E-06 1.71E-06 1.71E-07 1.71E-07 1.71E-07 1.71E-07 1.71E-07 1.71E-07 1.71E-03 3.71E-05 3.71E-06 3.72E-05 3.72E-05 3.72E-05 3.72E-05 3.72E-05 3.72E-05 3.72E-05 3.72E-05 3.72E-05 3	Arsenic	4.87E-05	2.85E-05	2.02E-05	2.49E-07	1.79E-07
um 2.92E-06 1.71E-06 1.21E-06 1.49E-08 um 2.68E-04 1.57E-04 1.11E-04 1.37E-06 ium 3.41E-04 1.57E-04 1.11E-04 1.37E-06 robenzene 2.05E-05 1.20E-05 8.48E-06 1.74E-06 robenzene 2.05E-05 1.20E-05 8.48E-06 1.74E-06 e 4.39E-01 1.21E-04 1.49E-06 e 4.39E-01 2.57E-01 1.82E-01 2.24E-03 e 4.39E-01 2.57E-01 1.82E-01 2.24E-03 v 6.33E-05 3.71E-05 5.04E-05 3.24E-07 y 6.33E-05 3.71E-05 3.83E-05 4.73E-07 y 6.33E-05 3.71E-05 8.88E-05 7.59E-07 um 5.85E-06 3.43E-05 3.43E-06 2.99E-08 e 8.28E-06 3.43E-05 2.42E-05 2.99E-08 e 8.28E-06 3.43E-05 3.43E-05 3.43E-05	Benzene	5.12E-04	3.00E-04	2.12E-04	2.61E-06	1.88E-06
um 2.68E-04 ium 1.57E-04 ium 1.11E-04 ium 1.37E-06 ium ium 3.41E-04 ium 2.00E-04 ium 1.11E-04 ium 1.37E-06 ium robenzene 2.05E-05 ium 1.20E-05 ium 1.20E-04 ium 1.21E-04 ium 1.74E-06 ium robenzene 2.92E-04 ium 1.71E-04 ium 1.21E-04 ium 1.21E-04 ium 1.21E-04 ium 1.21E-04 ium 1.22E-01 ium 2.24E-03 ium 2.24E-03 ium 2.24E-03 ium 2.24E-05 ium 2.24E-05 ium 2.24E-05 ium 2.24E-05 ium 2.21E-04 ium 2.12E-04 ium 2.12E-06 ium 2.12E-06 ium 2.9E-06 ium 2.9E-0	BE	2.92E-06	1.71E-06	1.21E-06	1.49E-08	1.07E-08
ium 3.41E-04 2.00E-05 1.41E-04 1.74E-06 robenzene 2.05E-05 1.20E-05 8.48E-06 1.05E-07 robenzene 2.92E-04 1.71E-04 1.21E-04 1.49E-06 e 4.39E-01 2.57E-01 1.82E-01 2.24E-03 e 4.39E-01 2.57E-01 1.82E-01 2.24E-03 nese 9.26E-05 7.14E-05 3.83E-05 3.24E-07 y 6.33E-05 3.71E-05 3.83E-05 3.24E-07 y 6.33E-05 3.71E-05 2.62E-05 3.24E-07 y 6.33E-05 3.71E-05 2.12E-04 7.59E-07 um 5.85E-06 3.43E-06 2.42E-06 2.42E-06 e 8.28E-04 4.85E-04 4.23E-06	Cadminm	2.68E-04	1.57E-04	1.11E-04	1.37E-06	20-358 ⁶
robenzene 2.05E-05 1.20E-05 8.48E-06 1.05E-07 robenzene 2.92E-04 1.71E-04 1.21E-04 1.49E-06 e 4.39E-01 1.71E-04 1.21E-04 1.49E-05 e 4.39E-01 2.57E-01 1.82E-01 2.24E-03 nese 9.26E-05 5.42E-05 3.83E-05 4.73E-07 y 6.33E-05 3.71E-05 2.62E-05 3.24E-07 y 6.33E-05 3.71E-05 6.15E-05 7.59E-07 y 6.34E-04 8.71E-05 2.12E-04 2.61E-06 silene 1.49E-04 3.00E-04 2.12E-05 3.24E-07 um 5.85E-06 3.43E-06 2.42E-06 2.99E-08 e 8.28E-04 4.85E-04 3.43E-06 2.32E-06 ALHAPS 0.002 0.191 0.191 0.002	Chromium	3.41E-04	2.00E-04	1.41E-04	1.74E-06	1.25E-06
robenzene 2.92E-04 1.71E-04 1.21E-04 1.49E-06 ldehyde 1.83E-02 1.07E-02 7.57E-03 9.34E-05 e 4.39E-01 2.57E-01 1.82E-01 2.24E-03 nese 9.26E-05 7.14E-05 5.04E-05 6.23E-07 ry 6.33E-05 3.71E-05 2.62E-05 3.24E-07 slene 1.49E-04 8.71E-05 6.15E-05 7.59E-07 um 5.12E-04 3.00E-04 2.12E-04 2.61E-06 e 8.28E-06 3.43E-05 2.24E-06 e 8.28E-06 3.43E-06 2.12E-04 be 8.28E-06 4.23E-06 c 3.43E-06 3.43E-06 c 3.43E-06 4.23E-06	Cobalt	2.05E-05	1.20E-05	8.48E-06	1.05E-07	7.52E-08
Idehyde 1.83E-02 1.07E-02 7.57E-03 9.34E-05 e 4.39E-01 2.57E-01 1.82E-01 2.24E-03 nese 9.26E-05 7.14E-05 5.04E-05 6.23E-07 y 6.33E-05 3.71E-05 2.62E-05 3.24E-07 y 6.33E-05 3.71E-05 2.62E-05 3.24E-07 y 6.33E-04 8.71E-05 6.15E-05 7.59E-07 y 6.32E-04 3.00E-04 2.12E-04 2.61E-05 lim 5.85E-06 3.43E-06 2.42E-06 2.99E-08 e 8.28E-04 4.85E-04 3.43E-06 2.99E-08 AL LAPS 0.0460 0.070 0.191 0.002	Dichlorobenzene	2.92E-04	1.71E-04	1.21E-04	1.49E-06	1.07E-06
e 4.39E-01 2.57E-01 1.82E-01 2.24E-03 nese 1.22E-04 7.14E-05 5.04E-05 6.23E-07 y 6.33E-05 3.71E-05 3.83E-05 4.73E-07 y 6.33E-05 3.71E-05 2.62E-05 3.24E-07 y 6.33E-05 3.71E-05 6.15E-05 3.24E-07 slene 1.49E-04 8.71E-05 6.15E-05 7.59E-07 nm 5.85E-06 3.43E-05 8.88E-06 1.10E-07 e 8.28E-04 4.85E-04 3.43E-06 2.42E-06 ALHAPS 0.460 0.270 0.191 0.002	Formaldehyde	1.83E-02	1.07E-02	7.57E-03	9.34E-05	6.71E-05
nese 1.22E-04 7.14E-05 5.04E-05 6.23E-07 6.23E-07 y 6.33E-05 3.71E-05 2.62E-05 4.73E-07 y 6.33E-05 3.71E-05 2.62E-05 3.24E-07 slene 1.49E-04 8.71E-05 6.15E-05 7.59E-07 um 5.12E-04 3.00E-04 2.12E-04 2.61E-06 classes 3.43E-05 8.88E-06 1.10E-07 e 8.28E-04 4.85E-05 3.43E-06 2.99E-08 PAL HAPS 0.460 0.270 0.191 0.002	Hexane	4.39E-01	2.57E-01	1.82E-01	2.24E-03	1.61E-03
nese 9.26E-05 5.42E-05 3.83E-05 4.73E-07 y 6.33E-05 3.71E-05 2.62E-05 3.24E-07 y 6.33E-05 3.71E-05 2.62E-05 3.24E-07 slene 1.49E-04 8.71E-05 6.15E-05 7.59E-07 slene 2.14E-05 3.00E-04 2.12E-04 2.61E-06 slene 8.88E-06 1.26E-05 8.88E-06 1.10E-07 slene 8.28E-04 4.85E-04 3.43E-06 2.42E-06 ALHAPS 0.460 0.270 0.191 0.002	Lead	1.22E-04	7.14E-05	5.04E-05	6.23E-07	4.48E-07
y 6.33E-05 3.71E-05 2.62E-05 3.24E-07 alene 1.49E-04 8.71E-05 6.15E-05 7.59E-07 um 5.12E-04 3.00E-04 2.12E-04 2.61E-06 um 5.85E-06 3.43E-06 2.42E-06 2.99E-08 AL HAPS 0.460 0.270 0.191 0.002	Mangenese	9.26E-05	5.42E-05	3.83E-05	4.73E-07	3.40E-07
Ilene 1.49E-04 8.71E-05 6.15E-05 7.59E-07 Lam 5.12E-04 3.00E-04 2.12E-04 2.61E-06 Lam 5.85E-06 3.43E-06 2.42E-06 2.99E-08 PALHAPS 0.460 0.270 0.191 0.002	Mercury	6.33E-05	3.71E-05	2.62E-05	3.24E-07	2.33E-07
Land 5.12E-04 3.00E-04 2.12E-04 2.61E-06 Land 2.14E-05 1.26E-05 8.88E-06 1.10E-07 In 5.85E-06 3.43E-06 2.42E-06 2.99E-08 FAL HAPS 0.460 0.270 0.191 0.002	Napthalene	1.49E-04	8.71E-05	6.15E-05	7.59E-07	5.46E-07
Lam 5.85E-06 3.43E-04 3.43E-04 3.43E-06 2.3E-06 PAL HAPS 0.460 0.270 0.191 0.002	Nicke	5 12E-04	3 00E-04	2 12E-04	2 61E-06	1 88E-06
hium 5.85E-06 3.43E-06 2.42E-06 2.99E-08 sne 8.28E-04 4.85E-04 3.43E-04 4.23E-06 TAL HAPS 0.460 0.270 0.191 0.002	POM	2.14E-05	1.26E-05	8.88E-06	1.10E-07	80-388'Z
8.28E-04 4.85E-04 3.43E-04 4.23E-06 7.0002	Selenium	5.85E-06	3.43E-06	2.42E-06	2.99E-08	2.15E-08
HAPS 0.460 0.270 0.191	Toluene	8.28E-04	4.85E-04	3.43E-04	4.23E-06	3.04E-06
	_	0.460	0.270	0.191	0.002	0.002

^{*} The totals include exempt, non-exempt, metered, and non-metered boilers (all boilers except Power Plant boilers).

REFERENCES

- a) Information on non-metered boilers is provided in the facility wide gas use report by Utilities and Infrastructure and contains all gas use at LANL minus those non-.ANL sources which feed from the LANL main line and LANL sources that are individiually metered. Total Gas use does not include the TA-3 Power Plant. All other sources are included in this total.
- (b) TA-16 Boilers include 2 boilers in plant 5. Gas use was difficult to obtain, so, the boilers were included in the "boiler pool" to determine gas use. Plant 6 has been taken off line and is not expected to be reused or boilers relocated. The removal of these boilers will be requested in the next operating permit revision.
- c) TA-55 has two boilers with separate AIRs numbers. Each boiler has a gas meter. The gas use information is provided monthly by the Utility and Infrastruction personnel and is included in the facility wide gas report.
- The boilers were removed from these emission calculations for FY 2012. Replacement boilers for TA-48 and TA-59 are small comfort heat boilers and are exempt (d) The TA-50-RLWTF, TA-48-1 BS-1, and TA-59-1 BHW-2 boilers were removed from service in 2011. These units will be removed from the operating permit. sonrces
- (e) The 12-month rolling average includes all gas use from all boilers listed in this spreadsheet. Boilers not included in this report due to their large size or design are powerplant boilers at TA-3. A gas use limit of 870 MMscf/yr, 12-month rolling average is a permit limit in Section 2.4 of the LANL operating permit.
- MMBTU. This number is used to estimate the gas use rate (total non-metered gas use divided by the non-metered boiler pool capacity number). This value is taken f) The non-metered boiler pool capacity is the sum of all active non-metered boilers design ratings (derated value, called design rating in boiler data base) in rom the boilers database (Access) on the database drive on the cleanair server within ENV-ES.
- (g) The non-metered boilers gas use section provides estimates of gas use for each boiler. This is calculated using the non-metered gas rate, as discussed in eference (f). The individual boiler design rating is mutiplied by the gas use rate to provide the estimated gas used per reporting period (in MMSCF). Boilers previously included at TA-48 and TA-59 were replaced with smaller exempt boilers an removed from these calcs on 10-15-12.
- MMBTU/hr, and is used for heating buildings for personal comfort or for producing hot water for personal use. This value contains natural gas fired HVAC units as (h) NMED List of Insignificant Activities (9/95), Item (3.) exempts fuel burning equipment which uses gaseous fuel, has a design rate less than or equal to 5 well as some NG heating units.
- i) The design rate for boilers includes a correction for elevation. LANL is at approximately 7,500 feet above sea level. Corrections are made for atmospheric boilers using 4% reduction (derated) for each 1,000 feet above sea level (4% x 7.5 = 30%). For forced draft and power burner boilers, the reduction is half that of atmospheric at 15%. The correction is made using the boiler plate input rating minus the appropriate percentage.

S
5
Ĕ
<u></u>
Š
₹
ō
ð
٣
=
Ш
a
Ξ
7
₹
Ä
ك
S
2
<u>~</u>
<u>iii</u>
Ξ
ш
<u>_</u>
<u>=</u>
ō
$\mathbf{\Omega}$
p
Ξ
ē
Ж
ጟ
ō
Ž
က
2013
7

	AIRS 018	AIRS 018 AIRS 019	AIRS 024	AIRS 024	AIRS 037	AIRS 038	AIRS New	AIRS New	AIRS New	Total
	TA-53-	TA-53- 365	TA-16	TA-16	TA-55-6	TA-55-6	TA-55-440	TA-55-440	TA-55-440	
Pollutant	BHW-1	BHW-2	BS-1	BS-2	BHW-1B	BHW-2B	B-1	B-2	B-3	
9	1	1		0		0				
NOX	0.571	0.571	0.189	0.189	1.038	0.426	0.021	0.021	0.021	3.046
SOx	0.003	0.003	0.003	0.003	0.005	0.002	0.0004	0.0004	0.0004	0.021
PM	0.043	0.043	0.039	0.039	0.107	0.044	0.004	0.004	0.004	0.325
PM-10	0.043	0.043	0.039	0.039	0.107	0.044	0.004	0.004	0.004	0.325
PM-2.5	0.043	0.043	0.039	0.039	0.107	0.044	0.004	0.004	0.004	0.325
00	0.479	0.479	0.189	0.189	0.287	0.118	0.027	0.027	0.027	1.823
NOC	0.031	0.031	0.028	0.028	0.045	0.018	0.018	0.018	0.018	0.237
HAPs										
Arsenic	1.14E-06	1.14E-06	1.02E-06	1.02E-06	1.50E-06	6.17E-07	1.43E-07	1.43E-07	1.43E-07	6.87E-06
Benzene	1.20E-05	1.20E-05	1.07E-05	1.07E-05	1.58E-05	6.48E-06	1.50E-06	1.50E-06	1.50E-06	7.21E-05
BE	6.85E-08	6.85E-08	6.11E-08	6.11E-08	9.02E-08	3.70E-08	8.56E-09	8.56E-09	8.56E-09	4.12E-07
Cadmium	6.28E-06	6.28E-06	5.60E-06	90-309'S	8.27E-06	3.39E-06	7.85E-07	7.85E-07	7.85E-07	3.78E-05
Chromium	7.99E-06	7.99E-06	7.13E-06	7.13E-06	1.05E-05	4.32E-06	9.99E-07	9.99E-07	6:99E-07	4.81E-05
Cobalt	4.79E-07	4.79E-07	4.28E-07	4.28E-07	6.32E-07	2.59E-07	5.99E-08	5.99E-08	5.99E-08	2.89E-06
Dichlorobenzene	6.85E-06	90-358.9	6.11E-06	6.11E-06	9.02E-06	3.70E-06	8.56E-07	8.56E-07	8.56E-07	4.12E-05
Formaldehyde	4.28E-04	4.28E-04	3.82E-04	3.82E-04	5.64E-04	2.31E-04	5.35E-05	5.35E-05	5.35E-05	2.58E-03
Hexane	1.03E-02	1.03E-02	9.17E-03	9.17E-03	1.35E-02	5.55E-03	1.28E-03	1.28E-03	1.28E-03	6.18E-02
Lead	2.85E-06	2.85E-06	2.55E-06	2.55E-06	3.76E-06	1.54E-06	3.57E-07	3.57E-07	3.57E-07	1.72E-05
Mangenese	2.17E-06	2.17E-06	1.94E-06	1.94E-06	2.86E-06	1.17E-06	2.71E-07	2.71E-07	2.71E-07	1.31E-05
Mercury	1.48E-06	1.48E-06	1.32E-06	1.32E-06	1.95E-06	8.02E-07	1.85E-07	1.85E-07	1.85E-07	8.93E-06
Napthalene	3.48E-06	3.48E-06	3.11E-06	3.11E-06	4.59E-06	1.88E-06	4.35E-07	4.35E-07	4.35E-07	2.10E-05
Nickel	1.20E-05	1.20E-05	1.07E-05	1.07E-05	1.58E-05	6.48E-06	1.50E-06	1.50E-06	1.50E-06	7.21E-05
POM	5.02E-07	5.02E-07	4.48E-07	4.48E-07	6.62E-07	2.71E-07	6.28E-08	6.28E-08	6.28E-08	3.02E-06
Selenium	1 37E-07	1 37E-07	1 22E-07	1 22E-07	1 ROE-07	7 40E-08	1 71E-08	1 71E-08	4 71E.08	8 24E-07
	1.37 E 07	1.315.07	1 725 05	1 72E OF	2 565 05	1 OFF OF	7.7.1E 06	2 42E 06	2 12 10	4 47E 04
I oluene	1.94E-05	1.94E-UD	1.73E-UD	1.73E-UD	Z.30E-U3	I.U3E-U3	Z.43E-U0	2.43E-00	2.43E-00	1.17E-04
TOTAL HAPS	1.08E-02	1.08E-02	9.62E-03	9.62E-03	1.42E-02	5.82E-03	1.35E-03	1.35E-03	1.35E-03	90.0

	Emissions from all Sm	Small Boilers ^b	References
EPCRA 313 Chemical	Emission Factor (lbs/MMscf)	Emission (lbs)	(a) Amount of EPCRA chemical in fuel is considered "otherwise used" for EPCRA 313
Lead ^c	5.0E-04	2.56E-01	נוופצווסום מפנפוווווומוסוו
Sulfuric Acid ^d	9:0	307.64	(b) Combustion compounds emitted are considered "manufactured" for EPCRA 313
Mercury	2.6E-04	1.33E-01	miestioud determinations. Lead and mercury are microded with lead compounds and mercury compounds respectively.
PACs ^e	8.69E-07	4.46E-04	(c) Emission Factors from AP-42, Section 1.4, Natural Gas Combustion, Tables 1.4-2, 1.4-
Benzo(g,h,i) perylene ^c	1.20E-06	6.15E-04	3 and 1.4-4, July 1998
			(d) Assume all SOx emissions are converted to sulfuric acid in the stack.
			(e) EPCRA PAC Guidance Document, Table 2-3

				Gr	eenhouse	Greenhouse Gas Emissions				
Emissic	Emission Factors					Refe	References			
$CO_2^{(a)}$	53.02	kg/mmBtu	(a) From 40 CFR Part	⁻R Part 98, S∟	ıbpart C, Table	98, Subpart C, Table C-1, "Default CO2 Emission Factors and High Heat Values for Various Types of Fuel	ר Factors and Hi	igh Heat Values	for Various Tyl	oes of Fuel."
CH ⁴ (p)	0.001	kg/mmBtu	(b) From 40 CFR Part	-R Part 98, Sι	ubpart C, Table	98, Subpart C, Table C-2, "Default CH4 and N2O Emission Factors for Various Types of Fuel."	Emission Facto	ors for Various	Types of Fuel."	
$N_2O^{(b)}$	0.0001	kg/mmBtu		e high heat va	lue (HHV) is st	(c) The average high heat value (HHV) is shown. Initial HHV is provided in Btu/SCF. HHV is taken from the monthly "Totalizer Report"	in Btu/SCF. F	IHV is taken fro	m the monthly "	Totalizer Report".
LANL Natural Gas High Heat Value ⁽⁶⁾ :	gh Heat Valu	: _(c) :	(d) Boiler Pool	Capacity and	Design Ratings	(d) Boiler Pool Capacity and Design Ratings were determined using the EAQ boilers data base.	EAQ boilers dat	a base.		
1020.8	mmBtu/mmSCF	SCF	(e) Fiscal year begins	begins on Oct	tober 1st of the	on October 1st of the following year and ends on September 30th of the current year.	September 30th	of the current y	ear.	
Equation: Fuel Use MMscf/year * Nat. Gas MMBTU/MMscf * Emission Factor kg/MMBTU * metric ton/1000 kg	cf/year * Nat. C	sas MMBTU/Mi	Mscf * Emission I	Factor kg/MME	3TU * metric ton,	′1000 kg				
Metere	Metered Boilers			Ö	Calender Year	ľ		Ä	Fiscal Year ^(e)	
doiteoo	old tight	מו משואוא	C02	CH4	NZO	Total CO2 Equivalents	C02	CH4	NZO	Total CO2 Equivalents
Location			_	(metric tons) (metric tons)	(metric tons)	(metric tons)	(metric tons)	(metric tons)	(metric tons)	(metric tons)
TA-55-6	BHW-1	29	813.91	0.015	0.002	814.8	868.38	0.016	0.002	869.3
TA-55-6	BHW-2	30	333.83	900.0	0.001	334.2	190.24	0.004	0.000	190.4
TA-55-440	B-1thru3		231.66	0.004	0.0004	231.9	239.29	0.005	0.000	239.5
	Met	Metered Total	1379.39	0.026	0.003	1148.9	1297.9	0.024	0.002	1059.7

Non-Met	Non-Metered Boilers	'S		Ö	Calender Year	į,		F	Fiscal Year ^(e)	
Location	No.	OI CIMED ID	CO2	CH4	NZO	Total CO2 Equivalents	CO2	CH4	N20	Total CO2 Equivalents
Focation		UNIVIED ID	(metric tons)	metric tons) (metric tons)	(metric tons)	(metric tons)	(metric tons)	(metric tons)	(metric tons)	(metric tons)
TA-53-365	BHW-1	11	617.83	0.012	0.001	618.5	655.21	0.012	0.001	622.9
TA-53-365	BHW-2	12	617.83	0.012	0.001	618.5	655.21	0.012	0.001	622.9
TA-16-1484	Plant 5	53	1102.88	0.021	0.002	1104.0	1169.62	0.022	0.002	1170.8
Lab Wide	Various	None	22654.32	0.427	0.043	22677.7	24025.10	0.453	0.045	24049.9
	Non-Met	tered Total	Non-Metered Total 24992.86	0.471	0.047	25018.7	26505.1	0.500	0.050	26532.5
		-	Total CO2 Equivalents (metric tons)	uivalents (n	netric tons)	26167.6	Total CO2 F	Total CO2 Equivalents (metric tons)	metric tons)	27592.3

Part					CY20	CY2013 Daily	ly Tu	Turbine (Gas l	Use (Mscf)	-	12 Mon	Month Rolling	guille	Total	Gas	Use, 8	& Hours	ð	Operation	tion			
Case Fig.	Day			Fel	2	Mai	_	Apr		May		Jun	_	July		Aug		Sept		Oct		Nov		oec Jec
1 1 1 1 1 1 1 1 1 1			Hrs	Gas Use	Hrs	Gas Use		Gas Use	Hrs	Gas Use	Hrs			-									Ga Us	Hrs
2 20 10 10 10 10 10 10	~	0	0.0	0	0.0	0	0.0	0	0.0	0					2		1.2					0.0	0	0.0
3 1980 13.2 10 10 10 10 10 10 10 1	2	0	0.0	0	0.0	0	0.0	0	0.0	606	4.8		H		6.2		0.0		0.0			0.0	0	0.0
4 281 11 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	က	2902	13.2	0	0.0	0	0.0	0	0.0	0	0.0				6.2		0.0				2	0.0	0	0.0
Signature Sig	4		11.2	0	0.0	2	0.0	902	5.6	0			0.0		0.0		Н		3.2			0.0		0.0
Column	2	0	0.0	0	0.0	0	0.0	0	0.0	0		Н	0.C		0.0		Н		3.1			0.0		0.0
7 1 1 1 1 1 1 1 1 1	9	0	0.0	1527	7.4	0	0.0	0	0.0	0			1.7		0.0				3.1	Н			0	0.0
8 5.5598 110, 0 0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7		10.8	0	0.0	0	0.0	0	0.0	23					0.0		0.0		0.0				0	0.0
10 10 10 10 10 10 10 10	8	2398	10.0	0	0.0	45	0.0	0	0.0	0	0.0		₩	H			4.		0.0			0.0	0	0.0
1	6	2551	10.7	0	0.0	0	0.0	0	0.0	1008	5.3						2.		0.0			0.0		0.0
1 1 1 1 1 1 1 1 1 1	10		0.0	0	0.0	0	0.0	0	0.0	0	0.0			Н	4.2	П	0.0		0.0			0.0		0.0
1. 1. 1. 1. 1.	7	18	0.0	0	0.0	0	0.0	0	0.0	0			4		3.2		0.0					0.0	183	0.5
14	12		0.0	0	0.0	0	0.0	0	0.0	0	0.0											0.0	742	4.3
14 0 0 0 772 4 2 0 0 0 0 0 0 0 0 0	13		0.0	0	0.0	0	0.0	0	0.0	0	0.0		3									0.0	0	0.0
15 1610 102 102 103 103 103 103 103 103 103 163 163 103	14		0.0	772	4.2	0	0.0	14	0.0	0	<u> </u>		<u> </u>	İ	0.0		<u> </u>	t	<u> </u>	l			0	0.0
1	15		7.0	16	0.8	0	0.0	0	0.0	0												0.0	0	0.0
17 887 4.3 0 0.0 0 0 0 0 0 0 0	16		0.0	0	0.0	0	0.0	0	0.0	882					6.2							0.0		0.0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	17		4.3	0	0.0	0	0.0	0	0.0	0				\vdash	0.0							0.0		0.0
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	18		0.0	0	0.0	0	0.0	1024	4.8	0				\vdash								0.0		0.0
1	19		0.0	0	0.0	0	0.0	0	0.0	0			5.1									0.0		0.0
121 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20		0.0	0	0.0	0	0.0	0	0.0	0	0.0		0.0				1.1							0.0
22 0 0.0 0 0 0.0 0 0 0 0	21	0	0.0	1034	5.4	866	2.2	0	0.0	0	0.0		0.C				3.1		0.0				0	0.0
23 0	22		0.0	0	0.0	0	0.0	0	0.0	0	0.0		0.0				4.5		0.0			0.0	0	0.0
24 14 0.3 0.0 0	23		0.0	0	0.0	0	0.0	0	0.0	876	4.6		0.C				3.2		0.0			0.0		0.0
25 0 0.0 0 <td>24</td> <td>14</td> <td>0.3</td> <td>0</td> <td>0.0</td> <td>0</td> <td>0.0</td> <td>0</td> <td>0.0</td> <td>0</td> <td>0.0</td> <td></td> <td>0.C</td> <td></td> <td>0.0</td> <td></td> <td>0.0</td> <td>Ħ</td> <td>0.0</td> <td></td> <td></td> <td>0.0</td> <td></td> <td>0.0</td>	24	14	0.3	0	0.0	0	0.0	0	0.0	0	0.0		0.C		0.0		0.0	Ħ	0.0			0.0		0.0
26 0	25		0.0	0	0.0	0	0.0	1047	5.3	0	0.0		_		3.0				0.0			0.0	0	0.0
27 0	26		0.0	0	0.0	0	0.0	0	0.0	0			0.C		0.0				1.2			0.0	0	0.0
13 13 13 13 13 13 13 13	27		0.0	0	0.0	0	0.0	0	0.0	0			4.5		0.0		0.0		0.0			0.0		0.0
10 10 10 10 10 10 10 10	58		0.0	696	5.2	984	4.8	0	0.0	0	_	-	0.0		4	+	0.0		0.0	Ť		0.0		0.0
31 13 0.3	20		0.0	>	0	0	0.0		0.0	033	+	-	2. 0	t	4	+	7:4	t	0.0			0.0		0.0
SUM 15285 67.8 4318 23 20.0 10.5 2987 15.7 4630 24.3 7365 39 160 12103 59.2 6994 34 3040 14.6 2635 12.4 976 SUM 15285 67.8 105,428 107,047 114,354 125,342 131,792 121,987 33,798 96,311 94,76 \$\frac{\frac{\pi}{2}}{2}\$ 808 604 548 495 519 558 611 639 587 463 473 466 Permit Limit (12 mo rolling): 646 MMScf Second Half Gas Use: 58,147 Mscf Annual Gas Use: 94,761 Mscf Annual Gas Use: 94,761 Mscf Permit Limit (12 mo rolling): 646 MMscf o 646,000 Mscf High Heat Value (HHV) for natural gas ^k = 1021 MMBtu/Mscf A73 466 Total Annual Hours: 465.8 Hour:	3 %	ľ	0.0				0.0	0	2.	205	t.0		2.		0.0		2.0		4	+		0.0		9 0
\$\frac{1}{2}\$ \$169,824 \$125,626 \$113,697 \$102,428 \$107,047 \$114,354 \$125,342 \$131,792 \$121,987 \$93,798 \$96,311<	SUM	15285	67.8	4318	23		10.5		15.7	+					_	_				+				5.7
½ 808 604 548 495 519 558 611 639 587 463 473 483 First Half Gas Use: 36,614 Mscf Mscf Second Half Gas Use: 58,147 Mscf Annual Gas Use: 94,761 Mscf Mscl Permit Limit (12 mo rolling): 646 Mmscf or 646,000 Mscf High Heat Value (HHV) for natural gas ^k = 1021 MMBtu/Mmscf Total Annual Hours: 465.8 Hour:		169,8	24	125,6	326	113,6	260	102,4	28	107,0		114,35		125,34,		131,79;	CI.	121,98	7	93,798		16,311	94,	,761
,614 Mscf Second Half Gas Use: 58,147 Mscf Annual Gas Use: 94,761 646 MMscf or 646,000 Mscf High Heat Value (HHV) for natural gas = 1021 MMBtu/MMscf 465.8 Hour:		808	~	709	4	548		495		519		258		611		629		587		463		473	4	99
646 MMscf or 646,000 Mscf High Heat Value (HHV) for natural gas ^k = 465.8 Hour :		First H	alf Ga	s Use:	36,0		Mscf				Sec	ond Hal	If Gas	Use:	58,14		scf	Ĥ	√nnua	I Gas U≀		4,761	Mscf	
		Permit Li	mit (1,	2 mo ro	lling):	646	MMsc	Į	or	646,0		scf	Hig	yh Heat	Value	(HHV)	for nat	ıral ga	~	1021 MF	/IBtu/MM	Iscf		
		_	otal A	nnual F	lours:	465.8	Hour																	

Reviewed by/date:

		2013 C	ombustio	2013 Combustion Turbine Emissions (Actual)	Emission	s (Actual)
		Unit	Unit Emissions (Tons)	ons)	Reference	References:
Pollutant	Emission	TA-3-24	TA-3-2422 Combustion Turbine	Turbine		(a) Values are from the initial compliance test (TRC - October 22, 2007).
Criteria	(Ib/MMscf)	Annual (tons)	Jan-June (tons)	July-Dec (fons)		Test shows average NOX as 11.29 lbs/fill and CO as 2.30 lbs/fill. These were divided by the gas flow rate of 0.223620 MMsc/fhr to get 50.48
NOX	50.5	2.393	0.925	1.468	а	b/MMscf (rounded to 50.5) for NOx and 10.5 lb/MMscf for CO.The SCFH value (fuel flow rate) from the compliance test report (223620
SOx	3.5	0.166	0.064	0.102	q	SCFH or 223.6 MSCFH)
PM	6.8	0.322	0.124	0.198	၁	
PM ₁₀	8.9	0.322	0.124	0.198	၁	
PM _{2.5}	6.8	0.322	0.124	0.198	၁	(b) The SOx emission factor was taken from AP-42 Table 3.1-2a. The
00	10.5	0.497	0.192	0.305	В	default value is used when percent sulfur is unknown (0.0034 lb/mmbtu).
VOC	2.2	0.104	0.040	0.064	р	This is equivilant to converting the 2 grains per 100 scr to percent. The OOG4 lb/mmhtri was converted to lb/mmscf by multiplying by 1030
HAPs / TRI						btu/scf (the heat value of natural gas), to provide 3.5 lb/mmscf.
Acetaldehyde	4.12E-02	1.95E-03	7.54E-04	1.20E-03	e, f, g	
Acrolein	6.59E-03	3.12E-04	1.21E-04	1.92E-04	e, f, g	(c) PM was calculated by taking the AP-42, Table 3.1-2a, EF of 6.6E-3 lb/MM8th and multiplying it by 1030 RT leef to get 6.8 lb/MMed. PM10
Benzene	1.24E-02	5.86E-04	2.26E-04	3.59E-04	e, f,g	was calculated the same as PM, as most PM from natural gas
Benzo (a) anthracene	3.09E-03	1.46E-04	5.66E-05	8.98E-05	f, h	combustion is less than 1 micrometer.
1,3-Butadiene	4.43E-04	2.10E-05	8.11E-06	1.29E-05	e, f, g	
Cadmium	7.11E-03	3.37E-04	1.30E-04	2.07E-04	f, h	(d) The VOC emission factor was taken from AP-42 Table 3.1-2a. The
Chromium	1.34E-02	6.34E-04	2.45E-04	3.89E-04	f, h	factor, 2.1 E-03 lb/mmbtu, was converted to lb/mmscf by multiplying by
Copper	7.11E-02	3.37E-03	1.30E-03	2.07E-03	f, h	iooo giving 2.2 ioshiiiisdi.
Ethylbenzene	3.30E-02	1.56E-03	6.03E-04	9.58E-04	e, f, g	(e) These chemicals are HAPs
Fluoranthene	1.24E-03	5.86E-05	2.26E-05	3.59E-05	f, h	(f) These chemicals are EPCRA 313 listed chemicals.
Formaldehyde	7.31E-01	3.46E-02	1.34E-02	2.13E-02	e, f, g	(g) Emission factor from AP-42, table 3.1-3 (lb/mmbtu). This was
Manganese	8.24E-02	3.90E-03	1.51E-03	2.40E-03	f, h	multiplied by 1030 Btu/scf to provide the lb./mmscf factor.
Mercury	6.80E-03	3.22E-04	1.24E-04	1.98E-04	f, h	(h) Emission factors from EPA FIRE database (SCC: 20300202 &
Napthalene	1.34E-03	6.34E-05	2.45E-05	3.89E-05	e, f, g	20200201). These values were also converted from lb/mmbtu to b/mmsd. Retrieved 4-14-08.
Nickel	1.18E-01	5.61E-03	2.17E-03	3.44E-03	f, h	
РАН	2.27E-03	1.07E-04	4.15E-05	6.59E-05	e, f, g	(i) Emission Factor is from 40 CFR Part 98, Subpart C, Table C-1,
Phenol	1.34E-02	6.34E-04	2.45E-04	3.89E-04	e, f, h	"Default CO2 Emission Factors and High Heat Values for Various Types
Propylene Oxide	2.99E-02	1.42E-03	5.47E-04	8.68E-04	e, f, g	or ruel. Omis are rommindu.
Toluene	1.34E-01	6.34E-03	2.45E-03	3.89E-03	e, f, g	(J) Emission Factor is from 40 CFR Part 98, Subpart C, Table C-2,
Xylenes (isomers)	6.59E-02	3.12E-03	1.21E-03	1.92E-03	e, f, g	"Default CH4 and N2O Emission Factors for Various Types of Fuel."
TOTAL HAPS		6.52E-02	2.52E-02	4.00E-02		
Greenhouse Gases	Emissio (ka/n	Emission Factors (kg/mmBtu)	Calender Yr (metric tons)	Fiscal Yr (metric tons)	Reference	(k) Average high heat values for natural gas used at LANL were calculated each month. The average was taken from the monthly "TA-3
co,	53	53.02	5128.9	6602.5	1.1	Power Plant Totalizer Report."
CH₄	0.	0.001	0.097	0.1	1.1	(I) Fiscal year begins on October 1st and ends on September 30th of the
N,O	0.0	0.0001	0.010	0.0	j, l	following year.
CO ₂ Equivalent Emissions (metric tons):	nt Emissions	(metric tons):	5134.2	6609.4		

Monthly Emission Calculation - 2013 Unit TA-3-22-CT-1 TA-3 - Combustion Turbine (Required by Condition A1307.A of Title V Permit P100-R1-M1)

Monthly Average Hourly Emissions Rate (pph)

	Jan.	Feb.	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Allowable
×ON	11.38	9.48	9.76	9.61	9.62	9.54	10.25	10.32	10.39	10.52	10.73	8.65	23.8
SOx	0.79	99.0	0.68	0.67	0.67	99.0	0.71	0.72	0.72	0.73	0.74	09'0	1.7
PM	1.53	1.28	1.31	1.29	1.30	1.28	1.38	1.39	1.40	1.42	1.45	1.16	1.9
PM-10	1.53	1.28	1.31	1.29	1.30	1.28	1.38	1.39	1.40	1.42	1.45	1.16	1.9
PM-2.5	1.53	1.28	1.31	1.29	1.30	1.28	1.38	1.39	1.40	1.42	1.45	1.16	1.9
00	2.37	1.97	2.03	2.00	2.00	1.98	2.13	2.15	2.16	2.19	2.23	1.80	29
NOC	0.50	0.41	0.43	0.42	0.42	0.42	0.45	0.45	0.45	0.46	0.47	0.38	9.0

12-Month Rolling Emission Rate* (TPY)

									•				
	Jan.	Feb.	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Allowable
NOx	4.288	3.172	2.871	2.586	2.703	2.887	3.165	3.328	3.080	2.368	2.432	2.393	59.4
SOx	0.297	0.220	0.199	0.179	0.187	0.200	0.219	0.231	0.213	0.164	0.169	0.166	4.2
PM	0.577	0.427	0.387	0.348	0.364	0.389	0.426	0.448	0.415	0.319	0.327	0.322	4.8
PM-10	0.577	0.427	0.387	0.348	0.364	0.389	0.426	0.448	0.415	0.319	0.327	0.322	4.8
PM-2.5	0.577	0.427	0.387	0.348	0.364	0.389	0.426	0.448	0.415	0.319	0.327	0.322	4.8
00	0.892	099'0	0.597	0.538	0.562	0.600	859'0	0.692	0.640	0.492	905.0	0.497	72.3
NOC	0.187	0.138	0.125	0.113	0.118	0.126	0.138	0.145	0.134	0.103	0.106	0.104	1.5

^{*} Using rolling fuel use

TA-3 Power Plant Fuel Use Totals 2013 (Data Entry)

٥			DAIA ENIKY	INIRI				
	TA-3-22 Power Plant	wer Plant ^e	TA-3-22 Power Plant ^a	wer Plant ^e	TA-3-22 Power Plant	wer Plant ^o		
	oiler # 1 (Edgemoor Ird Works, 210 mmBtu/hr)	Boiler # 1 (Edgemoor Iron Works, 210 mmBtu/hr)	Boiler # 2 (Edgemoor Iron Works, 210 mmBtu/hr)	gemoor Iron mmBtu/hr)	Boiler # 3 (Union Iron Works, 210 mmBtu/hr)	on Iron Works, Btu/hr)	Monthly Totals	Totals
Month	Natural Gas (mscf) ^a	Fuel Oil (gallons) ^a	Natural Gas (mscf) ^a	Fuel Oil (gallons) ^a	Natural Gas (mscf) ^a	Fuel Oil (gallons) ^a	Natural Gas (mmscf) ^a	Fuel Oil (gallons) ^a
January	58,093	1,517	28	0	2,062	2,485	60.183	4002
February	6,010	0	41,409	0	2,279	0	49.697	0
March	9	0	34,046	0	9,252	0	43.304	0
April	0	0	474	0	36,679	0	37.154	0
May	6,679	0	0	0	20,692	0	27.371	0
June	16,782	0	0	0	0	0	16.782	0
July	16,569	0	2	0	388	0	16.959	0
August	25	0	4	0	13,364	0	13.425	0
September	9,684	0	0	0	8,495	0	18.179	0
October	31,261	0	0	0	4,325	0	35.586	0
November	47,377	0	0	0	1,248	0	48.625	0
December	59,173	0	0	0	401	0	59.574	0
Annual Totals:	251,691	1,517	75,962	0	99,186	2,485	426.838	4005
Jan June	87,570	1,517	926'52	0	70,964	2,485	234.490	4005
July - Dec.	164,121	0	9	0	28,221	0	192.348	0

	12-Mo. Rolling Total	12-Mo. Rolling Total	Hours of	Hours of	Hours of	Hours of Operation	Hours of Operation	Hours of Operation	*12-Month Rolling Total
	Natural Gas	Fuel Oil	Operation Nat	Operation Nat	Operation Nat Operation Nat Operation Nat	Fuel Oil	Fuel Oil	Fuel Oil	Hours
Month	(mmscf)	(gallons)	Gas Boiler 1	Gas Boiler 2	Gas Boiler 3	Boiler 1	Boiler 2	Boiler 3	(All Boilers)
January	424.9	4,002	723.7	0.0	41.5	2.9	0.0	2.9	8717.6
February	418.9	4,002	85.9	572.5	34.5	0.0	0.0	0.0	8685.4
March	415.6	4,002	0.0	576.0	177.2	0.0	0.0	0.0	6.8898
April	417.0	4,002	0.0	11.4	7.17.7	0.0	0.0	0.0	8702.3
May	416.9	4,002	227.9	0.0	518.8	0.0	0.0	0.0	0.2078
June	415.5	4,002	719.7	0.0	0.0	0.0	0.0	0.0	8705.2
July	414.6	4,002	728.9	0.0	14.7	0.0	0.0	0.0	8705.5
August	413.1	4,002	0.5	0.0	92.6	0.0	0.0	0.0	8704.9
September	411.4	4,002	354.8	0.0	364.6	0.0	0.0	0.0	6'2698
October	416.0	4,002	661.1	0.0	83.4	0.0	0.0	0.0	8.7698
November	423.3	4,002	703.4	0.0	19.2	0.0	0.0	0.0	8.7698
December	426.8	4,002	737.7	0.0	6.7	0.0	0.0	0.0	0.6898
Permit Limits:	1000 MMscf	500,000 gal							

* The requirement to calculate a 12 month rolling total of hours became effective on June 15, 2012.

;	٠	
ń	Ó	•
ш	_	
τ	3	
9	υ	١
3	₹	
Ć	υ	١
٠,	5	
ć	b	,
٥	2	
-	_	
;	2	
¢	V	
^	٦	

12 Month Rolling Fuel Totals For Each Individual Boiler - 2013

Month (n ary uary	36 J. Je					
tu	282	Fuel Oil	Natural Gas	Fuel Oil	Natural Gas	Fuel Oil
	scf)	(gal.)	(mmscf)	(gal.)	(mmscf)	(gal.)
	6,	1,517	111	0	34	2,485
÷	31	1,517	153	0	32	2,485
	4	1,517	161	0	14	2,485
April 214	4	1,517	126	0	22	2,485
May 221	7.	1,517	86	0	86	2,485
June 237	28	1,517	80	0	86	2,485
July 254	54	1,517	9/	0	84	2,485
August 243	51	1,517	92	0	94	2,485
September 233	33	1,517	92	0	102	2,485
October 233	33	1,517	9/	0	101	2,485
November 248	8.	1,517	9/	0	66	2,485
December 252	52	1,517	9/	0	66	2,485

Emissions by Boiler 2013

	Emission Factor	η Factor		Unit Em	Unit Emissions			Unit Emissions	issions			Unit En	Unit Emissions	
				Boiler #1, Stack 03	Stack 032			Boiler #2, Stack 033	Stack 033			Boiler #3,	Boiler #3, Stack 034	
Pollutant	Natural ^(a) Gas	Fuel Oil ^(f) Ibs/	` Z	Annual Fuel Oil	Jan-June (gas&oil)	July-Dec (gas&oil)	Annual Natl Gas	Annual Fuel Oil	Jan-June (gas&oil)	July-Dec (gas&oil)	Annual Natl Gas	Annual Fuel Oil	Jan-June (gas&oil)	July-Dec (gas&oil)
Criteria NOx ^(c)	(lb/mmscf)	1000 gal	(SIIO)	0.007	2.546	4.759	2.203	0.000	2.203	0.000	2,876	0.011	2.069	0.818
SOx ^(g)	9.0	7.4	0.076	0.006	0.032	0.049	0.023	0.000	0.023	0.000	0.030	0.009	0.030	0.008
$PM^{(d)}$	7.6	3.3	0.956	0.003	0.335	0.624	0.289	0.000	0.289	0.000	0.377	0.004	0.274	0.107
PM-10 ^(d)	9.7	2.3	0.956	0.002	0.335	0.624	0.289	0.000	0.289	0.000	0.377	0.003	0.273	0.107
PM-2.5 ^(d)	7.6	1.55	0.956	0.001	0.334	0.624	0.289	0.000	0.289	0.000	0.377	0.002	0.272	0.107
(e)	40	2.0	5.034	0.004	1.755	3.282	1.519	0.000	1.519	0.000	1.984	900.0	1.425	0.564
NOC	5.5	0.2	0.692	0.0002	0.241	0.451	0.209	0.0000	0.209	0.000	0.273	0.000	0.195	0.078
HAPs ^(h)														
Arsenic	0.0002	0.00055	2.52E-05	4.16E-07	9.17E-06	1.64E-05	7.60E-06	0.00E+00	7.60E-06	5.90E-10	9.92E-06	6.81E-07	7.78E-06	2.82E-06
Benzene	0.0021	•	2.64E-04	0.0	9.19E-05	1.72E-04	7.98E-05	0.0	7.98E-05	6.20E-09	1.04E-04	0.0	7.45E-05	2.96E-05
Beryllium	0.000012	0.00041	1.51E-06	3.12E-07	8.37E-07	9.85E-07	4.56E-07	0.00E+00	4.56E-07	3.54E-11	5.95E-07	5.11E-07	9.36E-07	1.69E-07
Cadminm	0.0011	0.00041	1.38E-04	3.12E-07	4.85E-05	9.03E-05	4.18E-05	0.00E+00	4.18E-05	3.25E-09	5.46E-05	5.11E-07	3.95E-05	1.55E-05
Chromium	0.0014	0.00041	1.76E-04	3.12E-07	6.16E-05	1.15E-04	5.32E-05	0.00E+00	5.32E-05	4.13E-09	6.94E-05	5.11E-07	5.02E-05	1.98E-05
Cobalt	0.000084	•	1.06E-05	0.0	3.68E-06	90-368 [.] 9	3.19E-06	0.0	3.19E-06	2.48E-10	4.17E-06	0.0	2.98E-06	1.19E-06
Dichlorober	0.0012		1.51E-04	0.0	5.25E-05	9.85E-05	4.56E-05	0.0	4.56E-05	3.54E-09	5.95E-05	0.0	4.26E-05	1.69E-05
Formaldehy	0.075	0.048	9.44E-03	3.64E-05	3.32E-03	6.15E-03	2.85E-03	0.00E+00	2.85E-03	2.21E-07	3.72E-03	5.96E-05	2.72E-03	1.06E-03
Hexane	1.8	•	2.27E-01	0.0	7.88E-02	1.48E-01	6.84E-02	0.0	6.84E-02	5.31E-06	8.93E-02	0.0	6.39E-02	2.54E-02
Lead	0.0005	0.00123	6.29E-05	9.35E-07	2.28E-05	4.10E-05	1.90E-05	0.00E+00	1.90E-05	1.48E-09	2.48E-05	1.53E-06	1.93E-05	7.06E-06
Mangenese	0.00038	0.00082	4.78E-05	6.24E-07	1.73E-05	3.12E-05	1.44E-05	0.00E+00	1.44E-05	1.12E-09	1.88E-05	1.02E-06	1.45E-05	5.36E-06
Mercury ⁽ⁱ⁾	0.00026	0.00041	3.27E-05	3.12E-07	1.17E-05	2.13E-05	9.88E-06	0.00E+00	9.87E-06	7.67E-10	1.29E-05	5.11E-07	9.74E-06	3.67E-06
Napthalene		•	7.68E-05	0.0	2.67E-05	5.01E-05	2.32E-05	0.0	2.32E-05	1.80E-09	3.03E-05	0.0	2.16E-05	8.61E-06
Nickel		0.00041	2.64E-04	3.12E-07	9.23E-05	1.72E-04	7.98E-05	0.00E+00	7.98E-05	6.20E-09	1.04E-04	5.11E-07	7.50E-05	2.96E-05
POM	0.000088	0.0033	1.11E-05	2.50E-06	6.36E-06	7.22E-06	3.34E-06	0.00E+00	3.34E-06	2.60E-10	4.36E-06	4.10E-06	7.22E-06	1.24E-06
Selenium	0.000024	0.00206	3.02E-06	1.56E-06	2.61E-06	1.97E-06	9.12E-07	0.00E+00	9.11E-07	7.08E-11	1.19E-06	2.55E-06	3.40E-06	3.39E-07
Toluene	0.0034	•	4.28E-04	0.0	1.49E-04	2.79E-04	1.29E-04	0.0	1.29E-04	1.00E-08	1.69E-04	0.0	1.21E-04	4.80E-05
	TOTAL HAPS	S	2.38E-01	4.40E-05	8.27E-02	1.55E-01	7.17E-02	0.00E+00	7.17E-02	5.57E-06	9.37E-02	7.21E-05	6.71E-02	2.66E-02

For References, see Emission Summary.

					2013	3reenh c	use Ga	2013 Greenhouse Gas Emissions	ions					
				CALENDER YEAR	3 YEAR									
	Natura	Natural Gas Emissions	sions	Fue	Fuel Oil Emissions	ons	TC	Total Emissions	SL	LANL Natural Gas High Heat Value ^(c) :	Gas High Hea	at Value ^(c) :	1020.8	mmBtu/mmscf
Emission	600	010	Ociv	ريب درل	710	Ociv	رابات درارا	7	OCIA	Fuel Oil Default High Heat Value ^(a) .	ıt High Heat ∖	/alue ^(a) .	0.138	mmBtu/gallon
Cnit	CO2	CD4 metric		COZ metric	7 CT4	NZO motrio tono			NZO		GHG	GHG Emission Factors	actors	
Number	metric tons	ciloi	memo tons	SIIO	metric toris	menic tons	SHOT	memo tons	memic tons	Pollutant	Natura	Natural Gas	Fu	Fuel Oil
TA-3-22-1	13622.8	0.257	0.026	15.49	0.001	0.000	13638.2	0.258	0.026	$CO_2^{(a)}$	53.02	kg/mmBtu	73.96	kg/mmBtu
TA-3-22-2	4111.4	0.078	0.008	0.00	0.000	0.000	4111.4	0.078	800'0	CH ⁴ (p)	0.001	kg/mmBtu	0.003	kg/mmBtu
TA-3-22-3	5368.4	0.101	0.010	25.36	0.001	0.000	5393.8	0.102	0.010	$N_2O^{(b)}$	0.0001	kg/mmBtu	9000.0	kg/mmBtu
Totals:	23102.6	0.436	0.044	40.85	0.002	0.000						References	8	
				Plant	Plant Totals (me	metric tons):	23143.5	0.437	0.044	(a) Emission	Factor/High	(a) Emission Eactor/High Heat Value is from 40 CER Part 98	s from 40 C	FR Part 98
		CO	Equivalent	CO ₂ Equivalent Total Emissions	_	(metric tons):		23167.5		Subpart C, T	able C-1, "L	Default CO ₂ E	mission Fac	Subpart C, Table C-1, "Default CO ₂ Emission Factors and High
				FISCAL YEAR (e)	EAR (e)					Heat Values	for Various	Heat Values for Various Types of Fuel."	<u>-</u>	
	Natura	Natural Gas Emissions	sions	Fue	Fuel Oil Emissions	ons)T	Total Emissions	SU	(b) Emission	Factor is fro	(b) Emission Factor is from 40 CFR Part 98, Subpart C, Table	art 98, Subp	art C, Table
Emission Unit	CO2	CH4 metric	N2O	CO2 metric	CH4	N2O	CO2 metric	CH4	N2O Patric tons	C-2, "Default C Types of Fuel."	It CH4 and N	C-2, "Default CH_4 and N_2O Emission Factors for Various Types of Fuel."	Factors for	Various
Number										(c) Natural ga	as was anal	(c) Natural gas was analyzed and averaged for each month.	raged for ea	tch month.
TA-3-22-1	12591.9	0.237	0.024	15.49	0.001	0.000	12607.4	0.238	0.024	Average high	heat value ו	Average high heat value for the year was taken from the	vas taken fr	om the
TA-3-22-2	4128.8	0.078	0.008	00.00	0.000	0.000	4128.8	0.078	0.008	monthly "TA-	-3 Power Pla	monthly "TA-3 Power Plant Totalizer Report" provided by	Report" prov	ided by
TA-3-22-3	5545.5	0.105	0.010	25.36	0.001	0.000	5570.8	0.106	0.011	Utilities and	Infrastructur	Utilities and Infrastructure. Path: Envision:\AQC\Reports\Fuel	sion:\AQC\F	Reports\Fuel
Totals:	22266.2	0.420	0.042	40.85	0.002	0.000				Use\Avg Nat Gas BTU Values	Gas BTU V	alues		
				Plant	Plant Totals (me	metric tons):	22307.1	0.422	0.042	(d) Fuel use	values for na	(d) Fuel use values for natural gas and fuel oil are taken from	d fuel oil are	taken from
		CO 2	Equivalent	CO ₂ Equivalent Total Emissions	$\overline{}$	metric tons):		22330.2		the monthly	"TA-3 Powei	the monthly "TA-3 Power Plant Totalizer Report".	er Report".	
										(e) Fiscal year begins on (30th of the following year.	ar begins on Ilowing year	(e) Fiscal year begins on October 1st and ends on September 30th of the following year.	and ends or	ո September

12 Month Rolling Emissions 2013 (Tons) All Three Boilers Combined

Pollutant	TSP	PM10	NOX	8	VOC	SO ₂
Permit Limit (tons/yr)	8.4	8.2	60.2	41.3	5.6	7.9
12-Month Rolling Total						
January	1.621	1.619	12.338	8.507	1.169	0.142
February	1.598	1.596	12.165	8.388	1.152	0.140
March	1.586	1.584	12.070	8.322	1.143	0.139
April	1.591	1.589	12.110	8.350	1.147	0.140
May	1.591	1.589	12.107	8.348	1.147	0.140
June	1.585	1.583	12.066	8.319	1.143	0.139
July	1.582	1.580	12.041	8.302	1.141	0.139
August	1.577	1.575	11.998	8.273	1.137	0.139
September	1.570	1.568	11.947	8.238	1.132	0.138
October	1.587	1.585	12.080	8.329	1.144	0.140
November	1.615	1.613	12.293	8.476	1.164	0.142
December	1.629	1.627	12.396	8.547	1.174	0.143
Moote permit condition A1207 A Meniteria Condition 2	1207 A M) poitoring	Condition	0		

Meets permit condition A1307.A, Monitoring Condition 2.

Monthly Emission Totals (Tons)

Pollutant	TSP	PM10	XON	္ပ	NOC	SO,
January	0.235	0.233	1.763	1.214	0.166	0.033
February	0.189	0.189	1.441	0.994	0.137	0.015
March	0.165	0.165	1.256	0.866	0.119	0.013
April	0.141	0.141	1.077	0.743	0.102	0.011
May	0.104	0.104	0.794	0.547	0.075	0.008
June	0.064	0.064	0.487	0.336	0.046	0.005
July	0.064	0.064	0.492	0.339	0.047	0.005
August	0.051	0.051	0.389	0.269	0.037	0.004
September	0.069	0.069	0.527	0.364	0.050	0.005
October	0.135	0.135	1.032	0.712	0.098	0.011
November	0.185	0.185	1.410	0.973	0.134	0.015
December	0.226	0.226	1.728	1.191	0.164	0.018
Annual Totals	1.629	1.627	12.396	8.547	1.174	0.143

Data Reviewed By:

Monthly Emission Calculation (Natural Gas) 2013

Average Hourly Emissions Rates (pph) for each Emission Unit (Meets condition A1307.A, monitoring condition 1, of Title V Permit P100-R1-M3)

NOx 4.66 4.06 0.0 SOx 0.05 0.04 0.0 PM 0.61 0.53 0.0											
4.66 4.06 0.05 0.04 0.61 0.53	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Emissions ^(a)
0.05 0.04 0.53	00.0	00.0	1.70	1.35	1.32	6.58	1.58	2.74	3.91	4.65	10.2
0.61 0.53	00.0	0.00	0.02	0.01	0.01	0.07	0.02	0.03	0.04	0.05	1.1
	00.0	0.00	0.22	0.18	0.17	0.86	0.21	0.36	0.51	0.61	1.3
0.61 0.53	0.00	0.00	0.22	0.18	0.17	0.86	0.21	0.36	0.51	0.61	1.3
PM-2.5 0.61 0.53 0.	0.00	0.00	0.22	0.18	0.17	0.86	0.21	0.36	0.51	0.61	1.3
co 3.21 2.80 0.	00.0	0.00	1.17	0.93	0.91	4.54	1.09	1.89	2.69	3.21	7.0
VOC 0.44 0.38 0.	0.00	0.00	0.16	0.13	0.13	0.62	0.15	0.26	0.37	0.44	1.0

				Ō	Jnit TA-3-22-2 (Boiler 2) pph	3-22-2	(Boiler	2) pph					Allowable
	Jan.	Feb.	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Emissions ^(a)
NOX	00.0	4.20	3.43	2.41	0.00	00.0	0.00	0.00	0.00	0.00	0.00	00'0	10.2
SOx	0.00	0.04	0.04	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.1
PM	0.00	0.55	0.45	0.32	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.3
PM-10	00.0	0.55	0.45	0.32	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.3
PM-2.5	00.0	0.55	0.45	0.32	0.00	0.00	0.00	00.0	0.00	0.00	0.00	00.0	1.3
00	00'0	2.89	2.36	1.66	00.0	0.00	00.0	00.0	00.0	0.00	00.0	0.00	0.7
NOC	00.00	0.40	0.33	0.23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.0

				\supset	nit TA-	Jnit TA-3-22-3 (Boiler	(Boiler	r 3) pph					Allowable
	Jan.	Feb.	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Emissions ^(a)
NOx	2.88	3.83	3.03	2.96	2.31	0.00	1.53	1.30	1.35	3.01	3.77	3.47	10.2
SOx	0.03	0.04	0.03	0.03	0.05	0.00	0.05	0.01	0.01	0.03	0.04	0.04	1.1
PM	0.38	0.50	0.40	0.39	0.30	0.00	0.20	0.17	0.18	0.39	0.49	0.45	1.3
PM-10	0.38	0.50	0.40	0.39	0.30	0.00	0.20	0.17	0.18	0.39	0.49	0.45	1.3
PM-2.5	0.38	0.50	0.40	0.39	0.30	0.00	0.20	0.17	0.18	0.39	0.49	0.45	1.3
00	1.99	2.64	2.09	2.04	1.60	0.00	1.06	0.89	0.93	2.07	2.60	2.39	7.0
VOC	0.27	0.36	0.29	0.28	0.22	0.00	0.15	0.12	0.13	0.29	0.36	0.33	1.0

(a) Allowable Emissions are from table A1302A of permit P100-R1-M3

NOTE: Condition A1307.A, Monitoring Condition 3 is calculated using an emission factor for NOx of 58 lbs/MMscf, and an average Heat Value of 1,020 MMBtu/ MMscf (Reference 40 CFR Part 98, Subpart C, Table C-1). Therefore the NOx emission rate when burning natural gas is a constant of 0.057 lbs/MMBtu.

Monthly Emission Calculation (Fuel Oil) 2013

Average Hourly Emissions Rates (pph) for each Emission Unit (Meets condition A1307.A, monitoring condition 1, of Title V Permit P100-R1-M3)

Allowable

					Unit T	Unit TA-3-22-1 (Boiler 1)	1 (Boile	er 1)				Щ	Fmissions ^(a)
	Jan.	Feb.	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Oil
NOX	4.52	00.0	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	11.3
SOx	3.86	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	9.6
PM	1.73	00.0	00.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	4.3
PM-10	1.20	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	3.0
PM-2.5	0.81	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.0
03	2.62	00.0	00.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	6.5
VOC	0.10	00.00	0.00	0.00	0.00	0.00	00.00	0.00	00.00	0.00	0.00	0.00	0.3
													Allowable
					Unit T	Jnit TA-3-22-2 (Boiler 2)	2 (Boile	er 2)				Ш	Emissions ^(a)
	Jan.	Feb.	Mar	Apr	May	Jun	, In	Aug	Sep	Oct	Nov	Dec	ijo
NOX	00.00	00.0	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	11.3
SOx	00.00	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	9.6
PM	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.3
PM-10	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.0
PM-2.5	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.0
00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.5
VOC	0.00	0.00	0.00	00'0	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.3
													Allowable
					Unit T	Unit TA-3-22-3 (Boiler 3)	ઝ (Boile	er 3)				Ш	Emissions ^(a)
	Jan.	Feb.	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Oil
NOx	3.20	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	11.3
SOx	2.74	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	9.6
PM	1.22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4.3
PM-10	0.85	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.0
PM-2.5	0.57	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	2.0
CO	1.85	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.5
VOC	0.07	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.3

Lb/Hr Emission Calculation = (Emission Factor (lb/1000 gal)) x (Amt Fuel Burned (gal)) / (1000) / (Hours Unit Operated) = lbs/hr (a) Allowable Emissions are from table A1302A of permit P100-R1-M3 NOTE: Condition A1307.A, Monitoring Condition 3 is calculated using an emission factor for NOx of 8.64 lb/1000 gallons, and an average Heat Value of 138,000 MMBtu/gal (Reference 40 CFR Part 98, Subpart C, Table C-1). Therefore the NOx emission rate when burning oil is a constant of 0.063 lbs/MMBtu.

Emission Summary TA-3 Power Plant 2013

		1						. 1
	Emission Factor	ר Factor		,		Reterence	ence	Kererence
			Annual Emissions (Natural Gas	Jan-June Emissions (Natural	July-Dec Emissions (Natural			(a) AP-42, 7/98, Section. 1.4, Natural Gas Combustion, Tables 1.4-1, 1.4-2
Pollutant	Natural Gas	Fuel Oil ^f (Ib/1000	+ Fuel Oil) (tons)	Gas + Fuel Oil) (tons)	Gas + Fuel Oil) (tons)			(b) Fuel usage obtained from Jerry Gonzales (FWO-UI). Values are provided in a monthly data deliverable from KSL.
Criteria	(lb/MMscf)	gal.)			·	Gas	ijo	
NOX	28		12.396	6.818	5.578	(c)	(၁)	(c) Average of source tests conducted on all 3 boilers
SOx	9.0	7.4	0.143	0.085	0.058	(a)(j)	(j)(b)	September 2002 burning natural gas after FGR installed. Assumed FGR resulted in similar Nov
PM	7.6	3.3	1.629	0.898	0.731	(p)	(p)	reduction for oil.
PM-10	9.7	2.3	1.627	0.896	0.731	(p)	(p)	
PM-2.5	9.7	1.55	1.625	0.894	0.731	(p)	(p)	(d) All PM from natural gas is assumed <1µ, so PM-10,
00	40	2.0	8.547	4.700	3.847	(q)	(b)	PM-2.5 and total PM have equal EFs, AP-42, Natural Gas Combustion Table 1.4-2. The PM emission factor
VOC	5.5	0.2	1.174	0.645	0.529	(q)	(i)	for fuel oil is the sum of filterable and condensable PM.
HAPs ⁿ								
Arsenic	0.0002	0.00055	4.38E-05	2.45E-05	1.92E-05	(a)	(k)	(e) AP-42, 1/95, Section. 1.4, Natural Gas Combustion,
Benzene	0.0021		4.48E-04	2.46E-04	2.02E-04	(c)		Table 1.4-2. Consistent with previous stack tests.
Beryllium	0.000012	0.00041	3.38E-06		1.15E-06	(c)	(k)	
Cadminm	0.0011	0.00041	2.36E-04		1.06E-04	(c)	(k)	(f) AP-42, 9/98, Section. 1.3, Fuel Oil Combustion,
Chromium	0.0014	0.00041	3.00E-04	1.65E-04	1.35E-04	(c)	(농	Table 1.3-1 with Errata, Table 1.3-3, and Table 1.3-6
Cobalt	0.000084	1	1.79E-05	9.85E-06	8.08E-06	(c)		
Dichlorobenzene	0.0012	1	2.56E-04	1.41E-04	1.15E-04	(c)		(g) Boilers>100 MMBtu/hr: SOx Emission Factor (SO ₂
Formaldehyde	0.075	0.048	1.61E-02	8.89E-03	7.21E-03	(c)	(K	{142S} + SO ₃ {5.7S}) = 147.7 ° S (from AP-42, Table 1.3-1 w/Errata) (S = weight % suffur in oil)/Suffur content
Hexane	1.8	-	3.84E-01	2.11E-01	1.73E-01	(c)		per analysis on oil in tanks in August 01', no new oil
Lead	0.0005	0.001233	1.09E-04	6.11E-05	4.81E-05	(c)	(k)	delivered in 02/03')
Manganese	0.00038	0.000822	8.27E-05	4.62E-05	3.65E-05	(c)	(k)	
Mercury	0.00026	0.000411	5.63E-05	3.13E-05	2.50E-05	(i)(c)	(i)(k)	8(%)=
Napthalene	0.00061		1.30E-04	7.15E-05	5.87E-05	(c)		(h) HAP emission factors for natural gas from AP-42,
Nickel	0.0021	0.000411	4.49E-04		2.02E-04	(c)	(k)	lables 1.4-3 an 1.4-4, tor tuel oil from AP-42 ables 1.3-
POM	0.000088		2.54E-05		8.46E-06	(c)	(k)	סמום ויטיוס.
Selenium	0.000024	0.002055	9.23E-06	6.93E-06	2.31E-06	(c)	(국)	
Toluene	0.0034	1	7.26E-04	3.99E-04	3.27E-04	(c)		(i) AP-42, Table 1.4-2, 1.4-3, and 1.4-4, July 1998
TOTAL HAPS			4.03E-01	2.22E-01	1.82E-01			
EPCRA 313				lbs./year				(j) Assume all SO_3 is converted to sulfuric acid.
Lead	0.0005	0.00123	1.09E-04	0.218		(c)	(i)(k)	
Sulfuric Acid	09:0		1	257.24		(e)(j)	(e)(h)	(k) AP-42, tables 1.3-9 and 1.3-10, September 1998.
Mercury	0.00026	0.00041	5.63E-05	0.113		(c)	(i)(k)	
PACs	8.69E-07		2.18E-07	4.37E-04		(f)(l)	(f)(l)	(I) EPCRA PAC Guidance Document, Table 2-3.
Benzo(g,h,i) perylene	1.20E-06	"	2.61E-07	5.21E-04		(i)(k)(c)	(£)	Reviewed By/Date:
Zinc		0.0005	1.10E-00				(K)	

ATTACHMENT B:

2013 Annual Emissions Inventory Submittal to NMED

LA-UR-14-28940 51

memorandum

Environmental Protection Division

To/MS: 2013 Emissions Inventory File

Thru/MS: Alison M. Dorries, ENV-DO, K491

From/MS: Steven L. Story, ENV-CP, J978

Phone/Fax: 5-2169 LAUR: 14-21662

Symbol: ENV-DO-14-0068

Date: MAR 2 6 2014

Subject: 2013 Emissions Inventory Electronic Submittal

Los Alamos National Laboratory (LANL) submitted their 2013 Emissions Inventory Report to New Mexico Environmental Department (NMED) via online reporting tool, AEIR. This report is required by Title 20, Chapter 2, Part 73 of the New Mexico Administrative Code (20.2.73 NMAC), Notice of Intent and Emissions Inventory Requirements. The report was submitted on March 26, 2014, and meets New Mexico Environmental Department's deadline of April 1st.

Should you have any questions or comments regarding the information provided in this report, please contact Steve Story at (505) 665-2169 or story@lanl.gov.

AMD:SLS:WW/lm

Cy: Carl A. Beard, PADOPS, (E-File)
Hai Shen, NA-00-LA, (E-File)
Michael T. Brandt, ADESH, (E-File)
Anthony R. Grieggs, ENV-CP, (E-File)
Steven L. Story, ENV-CP, J978, (E-File)
Walter Whetham, ENV-CP, J978
IRM-RMMSO, locatesteam@lanl.gov, (E-File)
ENV-CP Title V Emissions Report File
ENV-CP Correspondence File, K490
env-correspondence@lanl.gov (E-FILE)

ENCLOSURE 1

2013 Emissions Inventory Report

ENV-DO-14-0068

LAUR-13-22031

Electronic Submittal

Subject Item List

Home Admin Tools About AEIR

Logout

Facility Annual Emissions - Subject Item List

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2013 Submittal (In Process)

Subject Item/Equipment

Туре	ID	Designation	Description	Complete
Federal Agency	856	2195FR4	Los Alamos National Laboratory	
Asphalt Drum/Burne	er 116	TA-60-BDM	Asphalt Plant Dryer - Propane	
C Beryllium Work	2	TA-35-213	Be Target Fabrication Facility - Machining TA-35-213	
C Beryllium Work	3	TA-3-141	Be Test Facility - Machining TA-3-141	
C Beryllium Work	6	TA-55-PF4 (a)	Plutonium Facility Beryllium machining, weld cutting / dressing and metallography	
C Beryllium Work	41	TA-3-66	Sigma Facility-electroplating/metallography	
C Boiler	11	TA-53-365-BHW-	1 Boiler TA-53-365-BHW-1	
C Boiler	12	TA-53-365-BHW-	2 Boiler TA-53-365-BHW-2	
C Boiler	24	TA-3-22-1	Power Plant Boiler (pph, Natural Gas)	
C Boiler	25	TA-3-22-2	Power Plant Boiler (pph, Natural Gas)	
○ Boiler	26	TA-3-22-3	Power Plant Boiler (pph, Natural Gas)	
Boiler	29	TA-55-6-BHW-1	Sellers Boiler TA-55-6-BHW-1	
G Boiler	30	TA-55-6-BHW-2	Sellers Boiler TA-55-6-BHW-2	
C Boiler	53	TA-16-1484-BS-2	Low NOx Boiler TA-16-1484-BS-2	
Boiler	90	B-1	Boiler-CMRR	
Boiler	104	B-2	Boiler-CMRR	
C Boiler	105	B-3	Boiler-CMRR	
Boiler	106	B-4	Boiler-CMRR	
○ Boiler	107	B-5	Boiler-CMRR	
○ Boiler	134	TA-16-1484-BS-1	Low NOx Boiler TA-16-1484-BS-1	
○ Boiler	137	TA-3-22-2	Power Plant Boiler (pph, No. 2 fuel oil)	
C Boiler	138	TA-3-22-3	Power Plant Boiler (pph, No. 2 fuel oil)	
⊂ Boiler	141	TA-3-22-1	Power Plant Boiler (pph, No. 2 fuel oil)	
C Boiler	144	All Boilers	Natural Gas and No. 2 Fuel Boilers (cap)	
Internal combustion engine	56	TA-33-G-1	Kohler Diesel Generator TA-33-G-1	
Internal combustion engine	119	TA-33-G-2	Kohler Diesel Generator TA-33-G-2 (temp located to TA-39)	
Internal combustion engine	120	TA-33-G-3	Kohler Diesel Generator TA-33-G-3 (temp located to TA-39)	
Internal combustion engine	128	3 Generators	3 Cummins Diesel Powered Generators, CMRR-GEN-1, CMRR-GEN-2, and CMRR-GEN-3	
Internal combustion engine	135	TA-33-G-4	Caterpillar Diesel Generator TA-33-G-4	\mathbf{Z}
Internal combustion engine	146	TA-33-G-1P	Cummins Portable Diesel Generator	V
Parts Washer	21	TA-55-DG-1	Degreaser - Ultrasonic Cold Batch TA-55-4	
Research/Testing	7	LANL-FW-CHEM	R & D Activities - Labwide (031)	

← Shredder	89	TA-52-1	1	Data D	isintegrator/indust	trial Shredder		2
C Turbine	112	TA-3-22-	-CT-1	Combu	stion Turbine			2
Add an unpermitted sou	rce for EP	A GHG calcu	lations					
	Detail	Emissions	Print	Export	Total Emissions	Review for Submittal		
Submittal Comments						-		
				2000 chara	acter maximum			
	1							
				Save (Comments		2	
File Attachments								
			3	Attach File	to Submittal			

© 2008 New Mexico Environment Department. All Rights Reserved.

Wednesday, March 19, 2014

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2013 Submittal (In Process)

Facility ID: 116

Designation: TA-60-BDM

Description: Asphalt Plant Dryer - Propane

Type: Asphalt Drum/Burner

SCC: Industrial Processes, Mineral Products, Asphalt Concrete, Drum Mix Plant: Rotary Drum Dryer / Mixer, Natural Gas -

Fired

GHG Reporting: Reports GHG to EPA

Supplemental Parameters

Amount	Unit of Measure
Propane	
Asphalt (INPUT)	
13569.0	gal/y
91547.0	BTU/gal
0.0	percent
0.0	percent
	Propane Asphalt (INPUT) 13569.0 91547.0 0.0

Operating Detail

	Value
Operating Time in Hours per Day:	8
Operating Time in Days per Week:	5
Operating Time in Weeks per Year:	26
Operating Time in Hours per Year:	1040
Percent of Operation During Winter:	10
Percent of Operation During Spring:	30
Percent of Operation During Summer:	30
Percent of Operation During Fall:	30

Actual Pollutants

Pollutant	Amount	Unit of Measure	Calculation Method
Carbon Monoxide:	0.533	tons/y	EPA emission factors (e.g., AP-42)
Lead:	0.0	tons/y	EPA emission factors (e.g., AP-42)
Nitrogen Dioxide:	0.015	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (10 microns or less):	0.001	tons/y	Manufacturer Specification
Particulate Matter (2.5 microns or less):	0.001	tons/y	Manufacturer Specification
Particulate Matter (total suspended):	0.009	tons/y	Manufacturer Specification
Sulfur Dioxide:	0.001	tons/y	EPA emission factors (e.g., AP-42)
Volatile Organic Compounds (VOC):	0.001	tons/y	EPA emission factors (e.g., AP-42)

Subject Item Comments

Wednesday, March 19, 2014

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2013 Submittal (In Process)

Facility ID: 2

Designation: TA-35-213

Description: Be Target Fabrication Facility - Machining TA-35-213

Type: Beryllium Work

SCC: Industrial Processes, Fabricated

Metal Products, Machining Operations, Specify Material**

GHG Reporting: Reports GHG to EPA

Supplemental Parameters

Input Materials Processed:

Metal (INPUT)

Operating Detail

	Value	
Operating Time in Hours per Day:	5	
Operating Time in Days per Week:	7	
Operating Time in Weeks per Year:	52	
Operating Time in Hours per Year:	1820	
Percent of Operation During Winter:	25	
Percent of Operation During Spring:	25	
Percent of Operation During Summer:	25	
Percent of Operation During Fall:	25	

Actual Pollutants

Pollutant	Amount	Unit of Measure	Calculation Method
Beryllium:	0.0	tons/y	Estimate
Particulate Matter (total suspended):	0.0	tons/y	Estimate
Subject Item Comments			

Close

Wednesday, March 19, 2014

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2013 Submittal (In Process)

Facility ID: 3

Designation: TA-3-141

Description: Be Test Facility - Machining TA-3-141

Type: Beryllium Work

SCC: Industrial Processes, Fabricated

Metal Products, Machining Operations, Specify Material**

GHG Reporting: Reports GHG to EPA

Supplemental Parameters

Input Materials Processed:

Metal (INPUT)

Operating Detail

	Value
Operating Time in Hours per Day:	24
Operating Time in Days per Week:	7
Operating Time in Weeks per Year:	52
Operating Time in Hours per Year:	8760
Percent of Operation During Winter:	25
Percent of Operation During Spring:	25
Percent of Operation During Summer:	25
Percent of Operation During Fall:	25

Actual Pollutants

Pollutant	Amount	Unit of Measure	Calculation Method
Beryllium:	0.0	tons/y	Sample testing
Particulate Matter (total suspended):	0.0	tons/y	Sample testing
Subject Item Comments			

Print

Close

Wednesday, March 19, 2014

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2013 Submittal (In Process)

Facility ID: 6

Designation: TA-55-PF4 (a)

Plutonium Facility Beryllium

Description: machining, weld cutting /

dressing and metallography

Type: Beryllium Work

SCC: Industrial Processes, Fabricated

Metal Products, Machining

Operations, Specify Material**

GHG Reporting: Reports GHG to EPA

Supplemental Parameters

Input Materials Processed:

Metal (INPUT)

Operating Detail

	Value
Operating Time in Hours per Day:	5
Operating Time in Days per Week:	7
Operating Time in Weeks per Year:	52
Operating Time in Hours per Year:	1820
Percent of Operation During Winter:	25
Percent of Operation During Spring:	25
Percent of Operation During Summer:	25
Percent of Operation During Fall:	25

Actual Pollutants

Pollutant	Amount	Unit of Measure	Calculation Method
Beryllium:	0.0	tons/y	EPA emission factors (e.g., AP-42)
Subject Item Comment	ts		

Print

Close

Wednesday, March 19, 2014

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2013 Submittal (In Process)

Facility ID: 41

Designation: TA-3-66

Description: Sigma Facility-electroplating/metallography

Type: Beryllium Work

SCC: Industrial Processes, Fabricated

Metal Products, Abrasive

Cleaning of Metal Parts, Polishing

GHG Reporting: Reports GHG to EPA

Supplemental Parameters

Input Materials Processed:

Metal (INPUT)

Operating Detail

	Value
Operating Time in Hours per Day:	8
Operating Time in Days per Week:	7
Operating Time in Weeks per Year:	52
Operating Time in Hours per Year:	8760
Percent of Operation During Winter:	25
Percent of Operation During Spring:	25
Percent of Operation During Summer:	25
Percent of Operation During Fall:	25

Actual Pollutants

Pollutant	Amount	Unit of Measure	Calculation Method
Beryllium:	0.0	tons/y	Design calculation

Subject Item Comments

Close Print

Wednesday, March 19, 2014

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2013 Submittal (In Process)

Facility ID: 11

Designation: TA-53-365-BHW-1 **Description:** Boiler TA-53-365-BHW-1

Type: Boiler

SCC: External Combustion Boilers, Electric Generation, Natural Gas, Boilers < 100 Million Btu/hr

except Tangential

GHG Reporting: Reports GHG to EPA

Supplemental Parameters

	Amount	Unit of Measure
Fuel Type:	Natural Gas	
Input Materials Processed:	Natural Gas (INPUT)	
Materials Consumed:	11.42	MM SCF/y
Fuel Heating Value:	1021.0	MM BTU/MM SCF
Percent Sulfur of Fuel:	0.001	percent
Percent Ash of Fuel:	0.0	percent
Percent Carbon Content:	65.0	percent

Operating Detail

	Value
Operating Time in Hours per Day:	15
Operating Time in Days per Week:	7
Operating Time in Weeks per Year:	33
Operating Time in Hours per Year:	3465
Percent of Operation During Winter:	40
Percent of Operation During Spring:	20
Percent of Operation During Summer:	0
Percent of Operation During Fall:	40

Actual Pollutants

Pollutant	Amount	Unit of Measure	Calculation Method
Carbon Monoxide:	0.479	tons/y	EPA emission factors (e.g., AP-42)
Formaldehyde:	0.0	tons/y	EPA emission factors (e.g., AP-42)
Hexane:	0.01	tons/y	EPA emission factors (e.g., AP-42)
Nitrogen Dioxide:	0.571	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (10 microns or less):	0.043	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (2.5 microns or less):	0.043	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (total suspended):	0.043	tons/y	EPA emission factors (e.g., AP-42)
Sulfur Dioxide:	0.003	tons/y	EPA emission factors (e.g., AP-42)
Volatile Organic Compounds (VOC):	0.031	tons/y	EPA emission factors (e.g., AP-42)

Wednesday, March 19, 2014

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2013 Submittal (In Process)

Facility ID: 12

Designation: TA-53-365-BHW-2 **Description:** Boiler TA-53-365-BHW-2

Type: Boiler

SCC: External Combustion Boilers,

Electric Generation, Natural Gas,

\/~ l...

Boilers < 100 Million Btu/hr

except Tangential

GHG Reporting: Reports GHG to EPA

Supplemental Parameters

	Amount	Unit of Measure
Fuel Type:	Natural Gas	
Input Materials Processed:	Natural Gas (INPUT)	
Materials Consumed:	11.42	MM SCF/y
Fuel Heating Value:	1021.0	MM BTU/MM SCF
Percent Sulfur of Fuel:	0.001	percent
Percent Ash of Fuel:	0.0	percent
Percent Carbon Content:	65.0	percent

Operating Detail

	value
Operating Time in Hours per Day:	15
Operating Time in Days per Week:	7
Operating Time in Weeks per Year:	33
Operating Time in Hours per Year:	3465
Percent of Operation During Winter:	40
Percent of Operation During Spring:	20
Percent of Operation During Summer:	0
Percent of Operation During Fall:	40

Actual Pollutants

Pollutant	Amount	of Measure	Calculation Method
Carbon Monoxide:	0.479	tons/y	EPA emission factors (e.g., AP-42)
Formaldehyde:	0.0	tons/y	EPA emission factors (e.g., AP-42)
Hexane:	0.01	tons/y	EPA emission factors (e.g., AP-42)
Nitrogen Dioxide:	0.571	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (10 microns or less):	0.043	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (2.5 microns or less):	0.043	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (total suspended):	0.043	tons/y	EPA emission factors (e.g., AP-42)
Sulfur Dioxide:	0.003	tons/y	EPA emission factors (e.g., AP-42)
Volatile Organic Compounds (VOC):	0.031	tons/y	EPA emission factors (e.g., AP-42)

Wednesday, March 19, 2014

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2013 Submittal (In Process)

Facility ID: 24

Designation: TA-3-22-1

Description: Power Plant Boiler (pph, Natural

Gas)

Type: Boiler

SCC: External Combustion Boilers, Electric Generation, Natural Gas,

Boilers > 100 Million Btu/hr

except Tangential

GHG Reporting: Reports GHG to EPA

Supplemental Parameters

	Amount		Unit of Measure
Fuel Type:	Natural Gas		
Input Materials Processed:	Natural Gas (INPUT)		
Materials Consumed:	251.7		MM SCF/y
Fuel Heating Value:	1021.0		MM BTU/MM SCF
Percent Sulfur of Fuel:	0.001		percent
Percent Ash of Fuel:	0.0	20	percent
Percent Carbon Content:	65.0		percent

Operating Detail

	Value
Operating Time in Hours per Day:	24
Operating Time in Days per Week:	7
Operating Time in Weeks per Year:	52
Operating Time in Hours per Year:	8760
Percent of Operation During Winter:	30
Percent of Operation During Spring:	20
Percent of Operation During Summer:	20
Percent of Operation During Fall:	30

Actual Pollutants

Pollutant	Amount	Unit of Measure	Calculation Method
Carbon Monoxide:	5.03	tons/y	EPA emission factors (e.g., AP-42)
Formaldehyde:	0.01	tons/y	EPA emission factors (e.g., AP-42)
Hexane:	0.02	tons/y	EPA emission factors (e.g., AP-42)
Nitrogen Dioxide:	7.3	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (10 microns or less):	0.96	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (2.5 microns or less):	0.96	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (total suspended):	0.96	tons/y	EPA emission factors (e.g., AP-42)
Sulfur Dioxide:	0.08	tons/y	EPA emission factors (e.g., AP-42)

Toluene; (Methyl benzene): 0.0 tons/y EPA emission factors (e.g., AP-42) **Volatile Organic Compounds (VOC):** 0.69 tons/y EPA emission factors (e.g., AP-42)

Subject Item Comments

Print Close

Wednesday, March 19, 2014

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2013 Submittal (In Process)

Facility ID: 25

Designation: TA-3-22-2

Description: Power Plant Boiler (pph, Natural

Gas)

Type: Boiler

SCC: External Combustion Boilers,

Electric Generation, Natural Gas,

Boilers > 100 Million Btu/hr

except Tangential

GHG Reporting: Reports GHG to EPA

Supplemental Parameters

	Amount	Unit of Measure
Fuel Type:	Natural Gas	
Input Materials Processed:	Natural Gas (INPUT)	
Materials Consumed:	76.0	MM SCF/y
Fuel Heating Value:	1021.0	MM BTU/MM SCF
Percent Sulfur of Fuel:	0.001	percent
Percent Ash of Fuel:	0.0	percent
Percent Carbon Content:	65.0	percent

Operating Detail

	Value
Operating Time in Hours per Day:	24
Operating Time in Days per Week:	7
Operating Time in Weeks per Year:	52
Operating Time in Hours per Year:	8760
Percent of Operation During Winter:	30
Percent of Operation During Spring:	20
Percent of Operation During Summer:	20
Percent of Operation During Fall:	30

Pollutant	Amount	Unit of Measure	Calculation Method
Carbon Monoxide:	1.52	tons/y	EPA emission factors (e.g., AP-42)
Formaldehyde:	0.003	tons/y	EPA emission factors (e.g., AP-42)
Hexane:	0.07	tons/y	EPA emission factors (e.g., AP-42)
Nitrogen Dioxide:	2.2	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (10 microns or less):	0.29	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (2.5 microns or less):	0.29	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (total suspended):	0.29	tons/y	EPA emission factors (e.g., AP-42)
Sulfur Dioxide:	0.02	tons/y	EPA emission factors (e.g., AP-42)

Volatile Organic Compounds (VOC): 0.21 tons/y EPA emission factors (e.g., AP-42) **Subject Item Comments**

Wednesday, March 19, 2014

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2013 Submittal (In Process)

Facility ID: 26

Designation: TA-3-22-3

Description: Power Plant Boiler (pph, Natural

Gas)

Type: Boiler

SCC: External Combustion Boilers,

Electric Generation, Natural Gas, Boilers > 100 Million Btu/hr

except Tangential

GHG Reporting: Reports GHG to EPA

Supplemental Parameters

	Amount	Unit of Measure
Fuel Type:	Natural Gas	
Input Materials Processed:	Natural Gas (INPUT)	
Materials Consumed:	99.2	MM SCF/y
Fuel Heating Value:	1021.0	MM BTU/MM SCF
Percent Sulfur of Fuel:	0.001	percent
Percent Ash of Fuel:	0.0	percent
Percent Carbon Content:	65.0	percent

Operating Detail

	Value
Operating Time in Hours per Day:	24
Operating Time in Days per Week:	7
Operating Time in Weeks per Year:	52
Operating Time in Hours per Year:	8760
Percent of Operation During Winter:	30
Percent of Operation During Spring:	20
Percent of Operation During Summer:	20
Percent of Operation During Fall:	30

Pollutant	Amount	Unit of Measure	Calculation Method
Carbon Monoxide:	1.98	tons/y	EPA emission factors (e.g., AP-42)
Formaldehyde:	0.004	tons/y	EPA emission factors (e.g., AP-42)
Hexane:	0.09	tons/y	EPA emission factors (e.g., AP-42)
Nitrogen Dioxide:	2.88	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (10 microns or less):	0.38	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (2.5 microns or less):	0.38	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (total suspended):	0.38	tons/y	EPA emission factors (e.g., AP-42)
Sulfur Dioxide:	0.03	tons/y	EPA emission factors (e.g., AP-42)

Volatile Organic Compounds (VOC): 0.27 tons/y EPA emission factors (e.g., AP-42)

Subject Item Comments

Wednesday, March 19, 2014

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2013 Submittal (In Process)

Facility ID: 29

Designation: TA-55-6-BHW-1

Description: Sellers Boiler TA-55-6-BHW-1

Type: Boiler

SCC: External Combustion Boilers,

Electric Generation, Natural Gas, Boilers < 100 Million Btu/hr

except Tangential

GHG Reporting: Reports GHG to EPA

Supplemental Parameters

9	Amount	Unit of Measure
Fuel Type:	Natural Gas	
Input Materials Processed:	Natural Gas (INPUT)	
Materials Consumed:	15.038	MM SCF/y
Fuel Heating Value:	1021.0	MM BTU/MM SCF
Percent Sulfur of Fuel:	0.001	percent

Operating Detail

	Value
Operating Time in Hours per Day:	15
Operating Time in Days per Week:	7
Operating Time in Weeks per Year:	33
Operating Time in Hours per Year:	3465
Percent of Operation During Winter:	35
Percent of Operation During Spring:	20
Percent of Operation During Summer:	10
Percent of Operation During Fall:	35

Pollutant	Amount	Unit of Measure	Calculation Method
Carbon Monoxide:	0.287	tons/y	EPA emission factors (e.g., AP-42)
Hexane:	0.014	tons/y	EPA emission factors (e.g., AP-42)
Nitrogen Dioxide:	1.04	tons/y	Actual stack test
Particulate Matter (10 microns or less):	0.107	tons/y	Manufacturer Specification
Particulate Matter (2.5 microns or less):	0.107	tons/y	Manufacturer Specification
Particulate Matter (total suspended):	0.107	tons/y	Manufacturer Specification
Sulfur Dioxide:	0.005	tons/y	EPA emission factors (e.g., AP-42)
Volatile Organic Compounds (VOC):	0.045	tons/y	Manufacturer Specification
Subject Item Comments			

Wednesday, March 19, 2014

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2013 Submittal (In Process)

Facility ID: 30

Designation: TA-55-6-BHW-2

Description: Sellers Boiler TA-55-6-BHW-2

Type: Boiler

SCC: External Combustion Boilers, Electric Generation, Natural Gas,

Boilers < 100 Million Btu/hr

except Tangential

GHG Reporting: Reports GHG to EPA ...

Supplemental Parameters

	Amount	Unit of Measure
Fuel Type:	Natural Gas	
Input Materials Processed:	Natural Gas (INPUT)	
Materials Consumed:	6.168	MM SCF/y
Fuel Heating Value:	1021.0	MM BTU/MM SCF
Percent Sulfur of Fuel:	0.001	percent
Percent Carbon Content:	65.0	percent

Operating Detail

	Value
Operating Time in Hours per Day:	15
Operating Time in Days per Week:	7
Operating Time in Weeks per Year:	33
Operating Time in Hours per Year:	3465
Percent of Operation During Winter:	40
Percent of Operation During Spring:	10
Percent of Operation During Summer:	10
Percent of Operation During Fall:	40

Pollutant	Amount	Unit of Measure	Calculation Method
Carbon Monoxide:	0.118	tons/y	Manufacturer Specification
Formaldehyde:	0.0	tons/y	EPA emission factors (e.g., AP-42)
Hexane:	0.006	tons/y	EPA emission factors (e.g., AP-42)
Lead:	0.0	tons/y	Manufacturer Specification
Nitrogen Dioxide:	0.426	tons/y	Actual stack test
Particulate Matter (10 microns or less):	0.044	tons/y	Manufacturer Specification
Particulate Matter (2.5 microns or less):	0.044	tons/y	Manufacturer Specification
Particulate Matter (total suspended):	0.044	tons/y	Manufacturer Specification
Sulfur Dioxide:	0.002	tons/y	EPA emission factors (e.g., AP-42)
Volatile Organic Compounds (VOC):	0.018	tons/y	Manufacturer Specification

Wednesday, March 19, 2014

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2013 Submittal (In Process)

Facility ID: 53

Designation: TA-16-1484-BS-2

Description: Low NOx Boiler TA-16-1484-BS-2

Type: Boiler

SCC: External Combustion Boilers, Commercial/Institutional, Natural Gas, < 10 Million Btu/hr

GHG Reporting: Reports GHG to EPA

Supplemental Parameters

	Amount	Unit of Measure
Fuel Type:	Natural Gas	
Input Materials Processed:	Natural Gas (INPUT)	
Materials Consumed:	10.19	MM SCF/y
Fuel Heating Value:	1021.0	MM BTU/MM SCF
Percent Ash of Fuel:	0.0	percent

Operating Detail

	Value
Operating Time in Hours per Day:	24
Operating Time in Days per Week:	7
Operating Time in Weeks per Year:	52
Operating Time in Hours per Year:	8760
Percent of Operation During Winter:	25
Percent of Operation During Spring:	25
Percent of Operation During Summer:	25
Percent of Operation During Fall:	25

Actual Pollutants

Pollutant	Amount	Unit of Measure	Calculation Method
Carbon Monoxide:	0.189	tons/y	Design calculation
Lead:	0.0	tons/y	Design calculation
Nitrogen Dioxide:	0.189	tons/y	Design calculation
Particulate Matter (10 microns or less):	0.039	tons/y	Design calculation
Particulate Matter (2.5 microns or less):	0.039	tons/y	Design calculation
Particulate Matter (total suspended):	0.039	tons/y	Design calculation
Sulfur Dioxide:	0.003	tons/y	Design calculation
Volatile Organic Compounds (VOC):	0.028	tons/y	Design calculation
Subject Item Comments			

Wednesday, March 19, 2014

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2013 Submittal (In Process)

Facility ID: 90 Designation: B-1

Description: Boiler-CMRR

Type: Boiler

SCC: External Combustion Boilers, Commercial/Institutional, Natural Gas, < 10 Million Btu/hr

GHG Reporting: Reports GHG to EPA

Supplemental Parameters

	Amount	Unit of Measure
Fuel Type:	Natural Gas	
Input Materials Processed:	Natural Gas (INPUT)	
Materials Consumed:	1.43	MM SCF/y
Fuel Heating Value:	1021.0	MM BTU/MM SCF
Percent Sulfur of Fuel:	0.001	percent
Percent Ash of Fuel:	0.0	percent
Percent Carbon Content:	65.0	percent

Operating Detail

	Value
Operating Time in Hours per Day:	24
Operating Time in Days per Week:	7
Operating Time in Weeks per Year:	52
Operating Time in Hours per Year:	8760
Percent of Operation During Winter:	25
Percent of Operation During Spring:	25
Percent of Operation During Summer:	25
Percent of Operation During Fall:	25

Actual Pollutants

Pollutant	Amount	of Measure	Calculation Method
Carbon Monoxide:	0.027	tons/y	EPA emission factors (e.g., AP-42)
Nitrogen Dioxide:	0.021	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (10 microns or less):	0.004	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (total suspended):	0.004	tons/y	EPA emission factors (e.g., AP-42)
Sulfur Dioxide:	0.0	tons/y	EPA emission factors (e.g., AP-42)
Volatile Organic Compounds (VOC):	0.018	tons/y	EPA emission factors (e.g., AP-42)
Subject Item Comments			

Wednesday, March 19, 2014

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2013 Submittal (In Process)

Facility ID: 104

Designation: B-2

Description: Boiler-CMRR

Type: Boiler

SCC: External Combustion Boilers, Commercial/Institutional, Natural Gas, < 10 Million Btu/hr

GHG Reporting: Reports GHG to EPA

Supplemental Parameters

	Amount	Unit of Measure
Fuel Type:	Natural Gas	
Input Materials Processed:	Natural Gas (INPUT)	
Materials Consumed:	1.43	MM SCF/y
Fuel Heating Value:	1021.0	MM BTU/MM SCF
Percent Sulfur of Fuel:	0.001	percent
Percent Ash of Fuel:	0.0	percent
Percent Carbon Content:	65.0	percent

Operating Detail

	Value
Operating Time in Hours per Day:	24
Operating Time in Days per Week:	7
Operating Time in Weeks per Year:	52
Operating Time in Hours per Year:	8760
Percent of Operation During Winter:	25
Percent of Operation During Spring:	25
Percent of Operation During Summer:	25
Percent of Operation During Fall:	25

Actual Pollutants

Pollutant	Amount	Unit of Measure	Calculation Method
Carbon Monoxide:	0.027	tons/y	EPA emission factors (e.g., AP-42)
Nitrogen Dioxide:	0.021	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (10 microns or less):	0.004	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (total suspended):	0.004	tons/y	EPA emission factors (e.g., AP-42)
Sulfur Dioxide:	0.0	tons/y	EPA emission factors (e.g., AP-42)
Volatile Organic Compounds (VOC):	0.018	tons/y	EPA emission factors (e.g., AP-42)
Subject Item Comments			

Wednesday, March 19, 2014

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2013 Submittal (In Process)

Facility ID: 105 Designation: B-3

Description: Boiler-CMRR

Type: Boiler

SCC: External Combustion Boilers, Commercial/Institutional, Natural Gas, < 10 Million Btu/hr

GHG Reporting: Reports GHG to EPA

Supplemental Parameters

	Amount	Unit of Measure
Fuel Type:	Natural Gas	
Input Materials Processed:	Natural Gas (INPUT)	
Materials Consumed:	1.43	MM SCF/y
Fuel Heating Value:	1021.0	MM BTU/MM SCF
Percent Sulfur of Fuel:	0.001	percent
Percent Ash of Fuel:	0.0	percent
Percent Carbon Content:	65.0	percent

Operating Detail

	Value
Operating Time in Hours per Day:	24
Operating Time in Days per Week:	7
Operating Time in Weeks per Year:	52
Operating Time in Hours per Year:	8760
Percent of Operation During Winter:	25
Percent of Operation During Spring:	25
Percent of Operation During Summer:	25
Percent of Operation During Fall:	25

Actual Pollutants

Pollutant	Amount	Onit of Measure	Calculation Method
Carbon Monoxide:	0.027	tons/y	EPA emission factors (e.g., AP-42)
Nitrogen Dioxide:	0.021	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (10 microns or less):	0.004	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (total suspended):	0.004	tons/y	EPA emission factors (e.g., AP-42)
Sulfur Dioxide:	0.0	tons/y	EPA emission factors (e.g., AP-42)
Volatile Organic Compounds (VOC):	0.018	tons/y	EPA emission factors (e.g., AP-42)
Subject Item Comments			

Print Clo

Wednesday, March 19, 2014

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2013 Submittal (In Process)

Facility ID: 106 Designation: B-4

Description: Boiler-CMRR

Type: Boiler

SCC: External Combustion Boilers, Commercial/Institutional, Natural Gas, < 10 Million Btu/hr

GHG Reporting: Reports GHG to EPA

Supplemental Parameters

	Amount	Unit of Measure
Fuel Type:	Natural Gas	
Input Materials Processed:	Natural Gas (INPUT)	
Materials Consumed:	0.0	MM SCF/y
Fuel Heating Value:	0.0	MM BTU/MM SCF
Percent Sulfur of Fuel:	0.0	percent
Percent Ash of Fuel:	0.0	percent
Percent Carbon Content:	0.0	percent

Operating Detail

	Value
Operating Time in Hours per Day:	0
Operating Time in Days per Week:	0
Operating Time in Weeks per Year:	0
Operating Time in Hours per Year:	0
Percent of Operation During Winter:	0
Percent of Operation During Spring:	0
Percent of Operation During Summer:	0
Percent of Operation During Fall:	0

Actual Pollutants

Pollutant	Amount	of Measure	Calculation Method
Carbon Monoxide:	0.0	tons/y	EPA emission factors (e.g., AP-42)
Nitrogen Dioxide:	0.0	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (10 microns or less):	0.0	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (total suspended):	0.0	tons/y	EPA emission factors (e.g., AP-42)
Sulfur Dioxide:	0.0	tons/y	EPA emission factors (e.g., AP-42)
Volatile Organic Compounds (VOC):	0.0	tons/y	EPA emission factors (e.g., AP-42)

Subject Item Comments

This unit has not been built.

Wednesday, March 19, 2014

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2013 Submittal (In Process)

Facility ID: 107 Designation: B-5

Description: Boiler-CMRR

Type: Boiler

SCC: External Combustion Boilers, Commercial/Institutional, Natural Gas, < 10 Million Btu/hr

GHG Reporting: Reports GHG to EPA

Supplemental Parameters

	Amount	Unit of Measure
Fuel Type:	Natural Gas	
Input Materials Processed:	Natural Gas (INPUT)	
Materials Consumed:	0.0	MM SCF/y
Fuel Heating Value:	0.0	MM BTU/MM SCF
Percent Sulfur of Fuel:	0.0	percent
Percent Ash of Fuel:	0.0	percent
Percent Carbon Content:	0.0	percent
Fuel Heating Value: Percent Sulfur of Fuel: Percent Ash of Fuel:	0.0 0.0 0.0	MM BTU/MM SCF percent percent

Operating Detail

	Value	
Operating Time in Hours per Day:	0	
Operating Time in Days per Week:	0	
Operating Time in Weeks per Year:	0	
Operating Time in Hours per Year:	0	
Percent of Operation During Winter:	0	
Percent of Operation During Spring:	0	
Percent of Operation During Summer:	0	
Percent of Operation During Fall:	0	

Actual Pollutants

Pollutant	Amount	Unit of Measure	Calculation Method
Carbon Monoxide:	0.0	tons/y	EPA emission factors (e.g., AP-42)
Nitrogen Dioxide:	0.0	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (10 microns or less):	0.0	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (total suspended):	0.0	tons/y	EPA emission factors (e.g., AP-42)
Sulfur Dioxide:	0.0	tons/y	EPA emission factors (e.g., AP-42)
Volatile Organic Compounds (VOC):	0.0	tons/y	EPA emission factors (e.g., AP-42)

Subject Item Comments

This unit has not been built.

Wednesday, March 19, 2014

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2013 Submittal (In Process)

Facility ID: 134

Designation: TA-16-1484-BS-1

Description: Low NOx Boiler TA-16-1484-BS-1

Type: Boiler

SCC: External Combustion Boilers, Commercial/Institutional, Natural Gas, < 10 Million Btu/hr

GHG Reporting: Reports GHG to EPA

Supplemental Parameters

	Amount	Unit of Measure
Fuel Type:	Natural Gas	
Input Materials Processed:	Natural Gas (INPUT)	
Materials Consumed:	10.19	MM SCF/y
Fuel Heating Value:	1021.0	MM BTU/MM SCF
Percent Sulfur of Fuel:	0.001	percent
Percent Ash of Fuel:	0.0	percent
Percent Carbon Content:	65.0	percent

Operating Detail

	Value
Operating Time in Hours per Day:	24
Operating Time in Days per Week:	7
Operating Time in Weeks per Year:	52
Operating Time in Hours per Year:	8760
Percent of Operation During Winter:	25
Percent of Operation During Spring:	25
Percent of Operation During Summer:	25
Percent of Operation During Fall:	25

Pollutant	Amount	Unit of Measure	Calculation Method
Carbon Monoxide:	0.189	tons/y	Design calculation
Lead:	0.0	tons/y	Design calculation
Nitrogen Dioxide:	0.189	tons/y	Design calculation
Particulate Matter (10 microns or less):	0.039	tons/y	Design calculation
Particulate Matter (2.5 microns or less):	0.039	tons/y	Design calculation
Particulate Matter (total suspended):	0.039	tons/y	Design calculation
Sulfur Dioxide:	0.003	tons/y	Design calculation
Volatile Organic Compounds (VOC):	0.028	tons/y	Design calculation
Subject Item Comments			

Wednesday, March 19, 2014

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2013 Submittal (In Process)

Facility ID: 137 **Designation:** TA-3-22-2

Description: Power Plant Boiler (pph, No. 2

fuel oil)

Type: Boiler

SCC: External Combustion Boilers,

Electric Generation, Distillate Oil,

Grades 1 and 2 Oil

GHG Reporting: Reports GHG to EPA

Supplemental Parameters

Amount	Unit of Measure
Diesel	
Diesel (INPUT)	
0.0	g/yr
138.0	MM BTU/M gai
0.05	percent
0.01	percent
83.0	percent
	Diesel Diesel (INPUT) 0.0 138.0 0.05 0.01

Operating Detail

	Value
Operating Time in Hours per Day:	24
Operating Time in Days per Week:	7
Operating Time in Weeks per Year:	52
Operating Time in Hours per Year:	8760
Percent of Operation During Winter:	30
Percent of Operation During Spring:	20
Percent of Operation During Summer:	20
Percent of Operation During Fall:	30

Pollutant	Amount	Onit of Measure	Calculation Method
Carbon Monoxide:	0.0	tons/y	EPA emission factors (e.g., AP-42)
Formaldehyde:	0.0	tons/y	EPA emission factors (e.g., AP-42)
Hexane:	0.0	tons/y	EPA emission factors (e.g., AP-42)
Nitrogen Dioxide:	0.0	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (10 microns or less):	0.0	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (2.5 microns or less):	0.0	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (total suspended):	0.0	tons/y	EPA emission factors (e.g., AP-42)
Sulfur Dioxide:	0.0	tons/y	EPA emission factors (e.g., AP-42)
Volatile Organic Compounds (VOC):	0.0	tons/y	EPA emission factors (e.g., AP-42)

Wednesday, March 19, 2014

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2013 Submittal (In Process)

Facility ID: 138 **Designation:** TA-3-22-3

Description: Power Plant Boiler (pph, No. 2

fuel oil)

Type: Boiler

SCC: External Combustion Boilers,

Electric Generation, Distillate Oil,

Grades 1 and 2 Oil

GHG Reporting: Reports GHG to EPA

Supplemental Parameters

	Amount	Unit of Measure
Fuel Type:	Diesel	8
Input Materials Processed:	Diesel (INPUT)	
Materials Consumed:	2485.0	gal/y
Fuel Heating Value:	138.0	MM BTU/M gal
Percent Sulfur of Fuel:	0.05	percent
Percent Ash of Fuel:	0.01	percent
Percent Carbon Content:	83.0	percent

Operating Detail

	Value
Operating Time in Hours per Day:	24
Operating Time in Days per Week:	7
Operating Time in Weeks per Year:	52
Operating Time in Hours per Year:	8760
Percent of Operation During Winter:	30
Percent of Operation During Spring:	20
Percent of Operation During Summer:	20
Percent of Operation During Fall:	30

Pollutant	Amount	Onit of Measure	Calculation Method
Carbon Monoxide:	0.006	tons/y	EPA emission factors (e.g., AP-42)
Formaldehyde:	0.0	tons/y	EPA emission factors (e.g., AP-42)
Hexane:	0.0	tons/y	EPA emission factors (e.g., AP-42)
Nitrogen Dioxide:	0.011	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (10 microns or less):	0.003	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (2.5 microns or less):	0.002	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (total suspended):	0.004	tons/y	EPA emission factors (e.g., AP-42)
Sulfur Dioxide:	0.009	tons/y	EPA emission factors (e.g., AP-42)
Volatile Organic Compounds (VOC):	0.0	tons/y	EPA emission factors (e.g., AP-42)

Wednesday, March 19, 2014

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2013 Submittal (In Process)

Facility ID: 141 **Designation:** TA-3-22-1

Description: Power Plant Boiler (pph, No. 2

fuel oil)

Type: Boiler

SCC: External Combustion Boilers, Electric Generation, Natural Gas,

Boilers > 100 Million Btu/hr

except Tangential

GHG Reporting: Reports GHG to EPA

Supplemental Parameters

	Amount	Unit of Measure
Fuel Type:	Diesel	
Input Materials Processed:	Diesel (INPUT)	
Materials Consumed:	1517.0	gal/y
Fuel Heating Value:	138.0	MM BTU/M gal
Percent Sulfur of Fuel:	0.05	percent
Percent Ash of Fuel:	0.01	percent
Percent Carbon Content:	83.0	percent

Operating Detail

	Value
Operating Time in Hours per Day:	24
Operating Time in Days per Week:	7
Operating Time in Weeks per Year:	52
Operating Time in Hours per Year:	8760
Percent of Operation During Winter:	30
Percent of Operation During Spring:	20
Percent of Operation During Summer:	20
Percent of Operation During Fall:	30

Actual Pollutants

Carbon Monoxide:0.004tons/yEPA emission factors (e.g., AP-42)Nitrogen Dioxide:0.007tons/yEPA emission factors (e.g., AP-42)Particulate Matter (10 microns or less):0.002tons/yEPA emission factors (e.g., AP-42)Particulate Matter (2.5 microns or less):0.001tons/yEPA emission factors (e.g., AP-42)Particulate Matter (total suspended):0.003tons/yEPA emission factors (e.g., AP-42)Sulfur Dioxide:0.006tons/yEPA emission factors (e.g., AP-42)Volatile Organic Compounds (VOC):0.0tons/yEPA emission factors (e.g., AP-42)	Pollutant	Amount	Unit of Measure	Calculation Method
Particulate Matter (10 microns or less):0.002tons/yEPA emission factors (e.g., AP-42)Particulate Matter (2.5 microns or less):0.001tons/yEPA emission factors (e.g., AP-42)Particulate Matter (total suspended):0.003tons/yEPA emission factors (e.g., AP-42)Sulfur Dioxide:0.006tons/yEPA emission factors (e.g., AP-42)	Carbon Monoxide:	0.004	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (2.5 microns or less):0.001tons/yEPA emission factors (e.g., AP-42)Particulate Matter (total suspended):0.003tons/yEPA emission factors (e.g., AP-42)Sulfur Dioxide:0.006tons/yEPA emission factors (e.g., AP-42)	Nitrogen Dioxide:	0.007	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (total suspended):0.003tons/yEPA emission factors (e.g., AP-42)Sulfur Dioxide:0.006tons/yEPA emission factors (e.g., AP-42)	Particulate Matter (10 microns or less):	0.002	tons/y	EPA emission factors (e.g., AP-42)
Sulfur Dioxide: 0.006 tons/y EPA emission factors (e.g., AP-42)	Particulate Matter (2.5 microns or less):	0.001	tons/y	EPA emission factors (e.g., AP-42)
	Particulate Matter (total suspended):	0.003	tons/y	EPA emission factors (e.g., AP-42)
Volatile Organic Compounds (VOC): 0.0 tons/y EPA emission factors (e.g., AP-42)	Sulfur Dioxide:	0.006	tons/y	EPA emission factors (e.g., AP-42)
	Volatile Organic Compounds (VOC):	0.0	tons/y	EPA emission factors (e.g., AP-42)

1 of 2

Subject Item Comments

Wednesday, March 19, 2014

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2013 Submittal (In Process)

Facility ID: 144

Designation: All Boilers

Description: Natural Gas and No. 2 Fuel

Boilers (cap)

Type: Boiler

SCC: External Combustion Boilers,

Electric Generation, Natural Gas, Boilers > 100 Million Btu/hr

except Tangential

GHG Reporting: Reports GHG to EPA

Supplemental Parameters

	Amount	Unit of Measure
Fuel Type:	Natural Gas	
Input Materials Processed:	Natural Gas (INPUT)	
Materials Consumed:	0.0	MM SCF/y
Fuel Heating Value:	0.0	MM BTU/MM SCF
Percent Sulfur of Fuel:	0.0	percent
Percent Ash of Fuel:	0.0	percent
Percent Carbon Content:	0.0	percent

Operating Detail

	Value
Operating Time in Hours per Day:	0
Operating Time in Days per Week:	0
Operating Time in Weeks per Year:	0
Operating Time in Hours per Year:	0
Percent of Operation During Winter:	0
Percent of Operation During Spring:	0
Percent of Operation During Summer:	0
Percent of Operation During Fall:	0

Actual Pollutants

Amount	Unit of Measure	Calculation Method
0.0	tons/y	EPA emission factors (e.g., AP-42)
0.0	tons/y	EPA emission factors (e.g., AP-42)
0.0	tons/y	EPA emission factors (e.g., AP-42)
0.0	tons/y	EPA emission factors (e.g., AP-42)
0.0	tons/y	EPA emission factors (e.g., AP-42)
0.0	tons/y	EPA emission factors (e.g., AP-42)
0.0	tons/y	EPA emission factors (e.g., AP-42)
	0.0 0.0 0.0 0.0 0.0 0.0	Amount of Measure 0.0 tons/y 0.0 tons/y 0.0 tons/y 0.0 tons/y 0.0 tons/y 0.0 tons/y tons/y tons/y tons/y tons/y tons/y tons/y

Subject Item Comments

This Facility ID represents the total from the power plant boilers for both natural gas and fuel oil. However, these emissions are already captured with Facility IDs 24, 25, and 26 for natural gas and Facility IDs 137, 138, and 141 for fuel oil. In order to avoid counting the emissions twice, NMED has asked us to enter zeros for this Facility ID.

Wednesday, March 19, 2014

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2013 Submittal (In Process)

Facility ID: 56

Designation: TA-33-G-1

Description: Kohler Diesel Generator TA-33-G-1

Type: Internal combustion engine SCC: Internal Combustion Engines, Electric Generation, Distillate Oil

(Diesel), Reciprocating

GHG Reporting: Reports GHG to EPA

Supplemental Parameters

	Amount	Unit of Measure
Fuel Type:	Diesel	
Input Materials Processed:	Diesel (INPUT)	
Materials Consumed:	2930.4	gal/y
Fuel Heating Value:	138.0	MM BTU/M gal
Percent Sulfur of Fuel:	0.001	percent
Percent Ash of Fuel:	0.01	percent
Percent Carbon Content:	83.0	percent

Operating Detail

	Value
Operating Time in Hours per Day:	5
Operating Time in Days per Week:	4
Operating Time in Weeks per Year:	16
Operating Time in Hours per Year:	350
Percent of Operation During Winter:	25
Percent of Operation During Spring:	25
Percent of Operation During Summer:	25
Percent of Operation During Fall:	25

Pollutant	Amount	Unit of Measure	Calculation Method
Carbon Monoxide:	0.348	tons/y	Design calculation
Lead:	0.0	tons/y	EPA emission factors (e.g., AP-42)
Nitrogen Dioxide:	0.428	tons/y	Design calculation
Particulate Matter (10 microns or less):	0.014	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (2.5 microns or less):	0.014	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (total suspended):	0.014	tons/y	EPA emission factors (e.g., AP-42)
Sulfur Dioxide:	0.063	tons/y	EPA emission factors (e.g., AP-42)
Volatile Organic Compounds (VOC):	0.008	tons/y	EPA emission factors (e.g., AP-42)

Wednesday, March 19, 2014

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2013 Submittal (In Process)

Facility ID: 119
Designation: TA-33-G-2

Kohler Diesel Generator

Description: TA-33-G-2 (temp located to

TA-39)

Type: Internal combustion engine **SCC:** Internal Combustion Engines, Electric Generation, Distillate Oil

(Diesel), Reciprocating

GHG Reporting: Reports GHG to EPA

Supplemental Parameters

	Amount	Unit of Measure
Fuel Type:	Diesel	
Input Materials Processed:	Diesel (INPUT)	
Materials Consumed:	41.7	gal/y
Fuel Heating Value:	138.0	MM BTU/M gal
Percent Sulfur of Fuel:	0.001	percent
Percent Ash of Fuel:	0.01	percent
Percent Carbon Content:	83.0	percent

Operating Detail

	Value
Operating Time in Hours per Day:	2
Operating Time in Days per Week:	2
Operating Time in Weeks per Year:	10
Operating Time in Hours per Year:	25
Percent of Operation During Winter:	50
Percent of Operation During Spring:	0
Percent of Operation During Summer:	0
Percent of Operation During Fall:	50

Actual Pollutants

Pollutant	Amount	Unit of Measure	Calculation Method
Carbon Monoxide:	0.002	tons/y	Design calculation
Nitrogen Dioxide:	0.01	tons/y	Design calculation
Particulate Matter (10 microns or less):	0.001	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (total suspended):	0.001	tons/y	EPA emission factors (e.g., AP-42)
Sulfur Dioxide:	0.001	tons/y	EPA emission factors (e.g., AP-42)
Volatile Organic Compounds (VOC):	0.001	tons/y	EPA emission factors (e.g., AP-42)

Subject Item Comments

Wednesday, March 19, 2014

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2013 Submittal (In Process)

Facility ID: 120 Designation: TA-33-G-3

Kohler Diesel Generator

Description: TA-33-G-3 (temp located to

TA-39)

Type: Internal combustion engine **SCC:** Internal Combustion Engines, Electric Generation, Distillate Oil

(Diesel), Reciprocating

GHG Reporting: Reports GHG to EPA

Supplemental Parameters

	Amount	Unit of Measure
Fuel Type:	Diesel	
Input Materials Processed:	Diesel (INPUT)	
Materials Consumed:	47.1	gal/y
Fuel Heating Value:	138.0	MM BTU/M gal
Percent Sulfur of Fuel:	0.001	percent
Percent Ash of Fuel:	0.01	percent
Percent Carbon Content:	83.0	percent

Operating Detail

	Value
Operating Time in Hours per Day:	2
Operating Time in Days per Week:	2
Operating Time in Weeks per Year:	10
Operating Time in Hours per Year:	30
Percent of Operation During Winter:	50
Percent of Operation During Spring:	0
Percent of Operation During Summer:	0
Percent of Operation During Fall:	50

Actual Pollutants

Pollutant	Amount	Unit of Measure	Calculation Method
Carbon Monoxide:	0.002	tons/y	Design calculation
Nitrogen Dioxide:	0.012	tons/y	Design calculation
Particulate Matter (10 microns or less):	0.001	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (total suspended):	0.001	tons/y	EPA emission factors (e.g., AP-42)
Sulfur Dioxide:	0.001	tons/y	EPA emission factors (e.g., AP-42)
Volatile Organic Compounds (VOC):	0.001	tons/y	EPA emission factors (e.g., AP-42)

Subject Item Comments

Thursday, March 20, 2014

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2013 Submittal (In Process)

Facility ID: 128

Designation: 3 Generators

3 Cummins Diesel Powered

Description: Generators, CMRR-GEN-1,

CMRR-GEN-2, and CMRR-GEN-3

Type: Internal combustion engine

SCC: Internal Combustion Engines,

Industrial, Distillate Oil (Diesel), Reciprocating: Cogeneration

GHG Reporting: Reports GHG to EPA

Supplemental Parameters

	Amount	Unit of Measure
Fuel Type:	Diesel	
Materials Consumed:	9614.1	gal
rating Datail		

Operating Detail

	Value
Operating Time in Hours per Day:	24
Operating Time in Days per Week:	7
Operating Time in Weeks per Year:	52
Operating Time in Hours per Year:	8760
Percent of Operation During Winter:	25
Percent of Operation During Spring:	25
Percent of Operation During Summer:	25
Percent of Operation During Fall:	25

Actual Pollutants

Pollutant	Amount	Unit of Measure	Calculation Method
Carbon Monoxide:	0.487	tons/y	EPA emission factors (e.g., AP-42)
Nitrogen Dioxide:	2.227	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (10 microns or less):	0.07	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (2.5 microns or less):	0.07	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (total suspended):	0.07	tons/y	EPA emission factors (e.g., AP-42)
Sulfur Dioxide:	0.038	tons/y	EPA emission factors (e.g., AP-42)
Volatile Organic Compounds (VOC):	0.07	tons/y	EPA emission factors (e.g., AP-42)
Subject Item Comments			

Wednesday, March 19, 2014

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2013 Submittal (In Process)

Facility ID: 135 **Designation:** TA-33-G-4

Description: Caterpillar Diesel Generator TA-33-G-4

Type: Internal combustion engine SCC: Internal Combustion Engines, Electric Generation, Distillate Oil

(Diesel), Reciprocating

GHG Reporting: Reports GHG to EPA

Supplemental Parameters

41	Amount	Unit of Measure
Fuel Type:	Diesel	
Input Materials Processed:	Diesel (INPUT)	
Materials Consumed:	173.8	gal/y
Fuel Heating Value:	138.0	MM BTU/M gal
Percent Sulfur of Fuel:	0.001	percent
Percent Ash of Fuel:	0.01	percent
Percent Carbon Content:	83.0	percent

Operating Detail

	Value
Operating Time in Hours per Day:	2
Operating Time in Days per Week:	2
Operating Time in Weeks per Year:	10
Operating Time in Hours per Year:	15
Percent of Operation During Winter:	50
Percent of Operation During Spring:	50
Percent of Operation During Summer:	0
Percent of Operation During Fall:	0

Pollutant	Amount	Unit of Measure	Calculation Method
Carbon Monoxide:	0.011	tons/y	Design calculation
Nitrogen Dioxide:	0.052	tons/y	Design calculation
Particulate Matter (10 microns or less):	0.004	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (total suspended):	0.004	tons/y	EPA emission factors (e.g., AP-42)
Sulfur Dioxide:	0.004	tons/y	EPA emission factors (e.g., AP-42)
Volatile Organic Compounds (VOC):	0.004	tons/y	EPA emission factors (e.g., AP-42)
Subject Item Comments			

Wednesday, March 19, 2014

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2013 Submittal (In Process)

Facility ID: 146

Designation: TA-33-G-1P

Description: Cummins Portable Diesel

Generator

Type: Internal combustion engine SCC: Internal Combustion Engines,

Electric Generation, Distillate Oil

(Diesel), Reciprocating

GHG Reporting: Reports GHG to EPA

Supplemental Parameters

	Amount		Unit of Measure
Fuel Type:	Diesel		
Materials Consumed:	0.0	3	gal/y
Fuel Heating Value:	138.0		MM BTU/M gal
Percent Sulfur of Fuel:	0.001		percent

Operating Detail

	Value
Operating Time in Hours per Day:	0
Operating Time in Days per Week:	0
Operating Time in Weeks per Year:	0
Operating Time in Hours per Year:	0
Percent of Operation During Winter:	0
Percent of Operation During Spring:	0
Percent of Operation During Summer:	0
Percent of Operation During Fall:	0

Actual Pollutants

Amount	Unit of Measure	Calculation Method
0.0	tons/y	EPA emission factors (e.g., AP-42)
0.0	tons/y	EPA emission factors (e.g., AP-42)
0.0	tons/y	EPA emission factors (e.g., AP-42)
0.0	tons/y	EPA emission factors (e.g., AP-42)
0.0	tons/y	EPA emission factors (e.g., AP-42)
0.0	tons/y	EPA emission factors (e.g., AP-42)
0.0	tons/y	EPA emission factors (e.g., AP-42)
	0.0 0.0 0.0 0.0 0.0	Amount of Measure 0.0 tons/y

Subject Item Comments

This generator was permitted to operate at this location in December 2013 and it did not operate in 2013.

Wednesday, March 19, 2014

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2013 Submittal (In Process)

Facility ID: 21

Designation: TA-55-DG-1

Degreaser - Ultrasonic Cold Batch TA-55-4 **Description:**

Type: Parts Washer

SCC: Petroleum and Solvent Evaporation, Organic Solvent Evaporation, Degreasing, Trichloroethylene: General

Degreasing Units

GHG Reporting: Reports GHG to EPA

Supplemental Parameters

Input Materials Processed:

Solvent (INPUT)

Operating Detail

	Value
Operating Time in Hours per Day:	4
Operating Time in Days per Week:	1
Operating Time in Weeks per Year:	52
Operating Time in Hours per Year:	208
Percent of Operation During Winter:	25
Percent of Operation During Spring:	25
Percent of Operation During Summer:	25
Percent of Operation During Fall:	25

Actual Pollutants

Pollutant	Amount	Unit of Measure	Calculation Method
TCE; (Trichloroethylene); (Trichloroethene):	0.008	tons/y	Material balance
Subject Item Comments			

Print

Close

Wednesday, March 19, 2014

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2013 Submittal (In Process)

Facility ID: 7

Designation: LANL-FW-CHEM

Description: R & D Activities - Labwide (031)

Type: Research/Testing **SCC:** Industrial Processes,

Photographic Equipment/Health Care/Laboratories, Laboratories, Bench Scale Reagents: Research

GHG Reporting: Reports GHG to EPA

Supplemental Parameters Operating Detail

	Value
Operating Time in Hours per Day:	24
Operating Time in Days per Week:	7
Operating Time in Weeks per Year:	52
Operating Time in Hours per Year:	8760
Percent of Operation During Winter:	25
Percent of Operation During Spring:	25
Percent of Operation During Summer:	25
Percent of Operation During Fall:	25

Pollutant	Amount	Unit of Measure	Calculation Method
Acetaldehyde; (Ethyl aldehyde):	0.0	tons/y	Material balance
Acetonitrile; (Methyl cyanide):	0.0	tons/y	Material balance
Acetophenone:	0.0	tons/y	Material balance
Acrylamide:	0.0	tons/y	Material balance
Acrylic acid:	0.0	tons/y	Material balance
Acrylonitrile:	0.0	tons/y	Material balance
Ammonia:	0.0	tons/y	Material balance
Aniline:	0.0	tons/y	Material balance
Antimony:	0.0	tons/y	Material balance
Antimony compounds:	0.0	tons/y	Material balance
Arsenic Compounds:	0.0	tons/y	Material balance
Benzene:	0.0	tons/y	Material balance
Benzyl Chloride:	0.0	tons/y	Material balance
Biphenyl:	0.0	tons/y	Material balance
Bromoform; (Tribromomethane):	0.0	tons/y	Material balance
Butadiene(1,3-):	0.0	tons/y	Material balance
Cadmium:	0.0	tons/y	Material balance
Cadmium compounds:	0.0	tons/y	Material balance
Carbon Disulfide:	0.0	tons/y	Material balance
${\bf Carbon\ tetrachloride;\ (Tetrachoromethane):}$	0.0	tons/y	Material balance
Carbonyl sulfide:	0.0	tons/y	Material balance

Catechol (Pyrocatechol):	0.0	tons/y	Material balance
Chlorine:	0.0	tons/y	Material balance
Chloroacetic Acid:	0.0	tons/y	Material balance
Chlorobenzene(Phenyl Chloride):	0.0	tons/y	Material balance
Chloroform; (Trichloromethane):	0.0	tons/y	Material balance
Chromium:	0.0	tons/y	Material balance
Cobalt Compounds:	0.0	tons/y	Material balance
Cresol(m-); (Methylphenol, 3-):	0.0	tons/y	Material balance
Cumene:	0.0	tons/y	Material balance
Cyanide compounds:	0.0	tons/y	Material balance
Dibutylphthalate; (Di-n-butyl phthalate):	0.0	tons/y	Material balance
Diethanolamine:	0.0	tons/y	Material balance
Dimethyl Sulfate:	0.0	tons/y	Material balance
Dimethyl formamide:	0.0	tons/y	Material balance
Dimethylhydrazine(1,1-):	0.0	tons/y	Material balance
Dioxane(1,4-) (1,4-Diethyleneoxide):	0.0	tons/y	Material balance
Epichlorohydrin; (1-Chloro-2,3-epoxypropane):	0.0	tons/y	Material balance
Epoxybutane(1,2-) (1,2-Butylene oxide):	0.0	tons/y	Material balance
Ethyl Acrylate:	0.0	tons/y	Material balance
Ethyl chloride; (Chloroethane):	0.0	tons/y	Material balance
Ethylene Glycol:	0.0	tons/y	Material balance
Ethylene dibromide; (EDB); (1.2-Dibromoethane):	0.0	tons/y	Material balance
Formaldehyde:	0.0	tons/y	Material balance
Glycol Ethers:	0.0	tons/y	Material balance
Hexachlorocyclopentadiene:	0.0	tons/y	Material balance
Hexamethylphosphoramide:	0.0	tons/y	Material balance
Hexane:	0.0	tons/y	Material balance
Hydrazine:	0.0	tons/y	Material balance
Hydrochloric acid (HCI):	0.83	tons/y	Material balance
Hydrofluoric Acid; (Hydrogen fluoride):	0.0	tons/y	Material balance
Hydroquinone:	0.0	tons/y	Material balance
Iodomethane (Methyl iodide):	0.0	tons/y	Material balance
Lead Compounds:	0.0	tons/y	Material balance
Manganese:	0.0	tons/y	Material balance
Manganese compounds:	0.0	tons/y	Material balance
Mercury compounds:	0.0	tons/y	Material balance
Methanol; (Methyl alcohol):	0.0	tons/y	Material balance
Methyl Ethyl Ketone; (MEK); (2-Butanone):	0.0	tons/y	Material balance
Methyl Methacrylate:	0.0	tons/y	Material balance
Methyl bromide; (Bromomethane):	0.0	tons/y	Material balance
Methyl chloride; (Chloromethane):	0.0	tons/y	Material balance
Methyl isobutyl ketone; (Hexone); (4-Methyl-2-pentanone):	0.0	tons/y	Material balance
Methyl tert butyl ether:	0.0	tons/y	Material balance
Methylene chloride; (Dichloromethane):	0.0	tons/y	Material balance
Methylenebiphenyl isocyanate; (MDI); (Diphenylmethane diisocyanate):	0.0	tons/y	Material balance
Naphthalene:	0.0	tons/y	Material balance
Nickel:	0.0	tons/y	Material balance
Nickel compounds:	0.0	tons/y	Material balance
Nitrobenzene; (nitro-Benzene):	0.0	tons/y	Material balance
Nitrophenol(4-); (p-Nitrophenol):	0.0	tons/y	Material balance
PCE; (Perchloroethylene); (Tetrachloroethylene); (Tetrachloroethene):	0.0	tons/y	Material balance

Phenol:	0.0	tons/y	Material balance
Phenylenediamine(p-); (Phenylenediamine):	0.0	tons/y	Material balance
Phosphine:	0.0	tons/y	Material balance
Phosphorus:	0.0	tons/y	Material balance
Phthalic anhydride:	0.0	tons/y	Material balance
Polycylic Organic Matter:	0.0	tons/y	Material balance
Propylene oxide:	0.0	tons/y	Material balance
Selenium:	0.0	tons/y	Material balance
Selenium compounds:	0.0	tons/y	Material balance
Styrene:	0.0	tons/y	Material balance
TCE; (Trichloroethylene); (Trichloroethene):	0.0	tons/y	Material balance
Tetrachloroethane(1,1,2,2-):	0.0	tons/y	Material balance
Titanium tetrachloride:	0.0	tons/y	Material balance
Toluene diisocyanate(2,4-):	0.0	tons/y	Material balance
Toluene; (Methyl benzene):	0.0	tons/y	Material balance
Total HAP:	3.49	tons/y	Material balance
Trichloroethane(1,1,1-) (Methyl Chloroform):	0.0	tons/y	Material balance
Trichloroethane(1,1,2-):	0.0	tons/y	Material balance
Triethylamine:	0.0	tons/y	Material balance
Trimethylpentane(2,2,4-):	0.0	tons/y	Material balance
Urethane; (Ethyl carbamate):	0.0	tons/y	Material balance
Vinyl acetate; (Vinyl acetate monomer):	0.0	tons/y	Material balance
Volatile Organic Compounds (VOC):	9.59	tons/y	Material balance
Xylene(o-); (1,2-Dimethylbenzene); (ortho-Xylene):	0.0	tons/y	Material balance
Xylenes (total); (Xylol):	0.0	tons/y	Material balance
bis(2-ethylhexyl) phthalate; (Di-2-ethylhexyl phthalate); (DEHP):	0.0	tons/y	Material balance
Subject Item Comments			

Wednesday, March 19, 2014

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2013 Submittal (In Process)

Facility ID: 89

Designation: TA-52-11

Description: Data Disintegrator/industrial Shredder

Type: Shredder

SCC: Industrial Processes, Pulp and

Paper and Wood Products, Miscellaneous Paper Products,

Other Not Classified

GHG Reporting: Reports GHG to EPA

Supplemental Parameters

Input Materials Processed:

Paper (INPUT)

Operating Detail

	Value
Operating Time in Hours per Day:	7
Operating Time in Days per Week:	5
Operating Time in Weeks per Year:	52
Operating Time in Hours per Year:	1820
Percent of Operation During Winter:	25
Percent of Operation During Spring:	25
Percent of Operation During Summer:	25
Percent of Operation During Fall:	25

Heit

Actual Pollutants

Pollutant	Amount	of Measure	Calculation Method
Particulate Matter (10 microns or less):	0.07	tons/y	Manufacturer Specification
Particulate Matter (2.5 microns or less):	0.04	tons/y	Manufacturer Specification
Particulate Matter (total suspended):	0.07	tons/y	Manufacturer Specification
Subject Item Comments			

Wednesday, March 19, 2014

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2013 Submittal (In Process)

Facility ID: 112

Designation: TA-3-22-CT-1

Description: Combustion Turbine

Type: Turbine

SCC: Internal Combustion Engines,

Electric Generation, Natural Gas,

Turbine

GHG Reporting: Reports GHG to EPA

Supplemental Parameters

	Amount	Unit of Measure
Fuel Type:	Natural Gas	
Input Materials Processed:	Natural Gas (INPUT)	
Materials Consumed:	94.8	MM SCF/y
Fuel Heating Value:	1021.0	MM BTU/MM SCF
Percent Sulfur of Fuel:	0.001	percent
Percent Ash of Fuel:	0.0	percent
Percent Carbon Content:	65.0	percent

Operating Detail

	Value
Operating Time in Hours per Day:	7
Operating Time in Days per Week:	4
Operating Time in Weeks per Year:	12
Operating Time in Hours per Year:	500
Percent of Operation During Winter:	25
Percent of Operation During Spring:	25
Percent of Operation During Summer:	25
Percent of Operation During Fall:	25

Pollutant	Amount	Unit of Measure	Calculation Method
Carbon Monoxide:	0.5	tons/y	EPA emission factors (e.g., AP-42)
Lead:	0.0	tons/y	EPA emission factors (e.g., AP-42)
Nitrogen Dioxide:	2.39	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (10 microns or less):	0.32	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (2.5 microns or less):	0.32	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (total suspended):	0.32	tons/y	EPA emission factors (e.g., AP-42)
Sulfur Dioxide:	0.17	tons/y	EPA emission factors (e.g., AP-42)
Volatile Organic Compounds (VOC):	0.1	tons/y	EPA emission factors (e.g., AP-42)
Subject Item Comments			

ATTACHMENT C:

2013 Semi-annual Emissions Reports
Submitted Under Title V Operating Permit Requirements

LA-UR-14-28940 95

Environment Safety & Health PO Box 1663, MS K491 Los Alamos, New Mexico 87545 (505)667-4218/Fax (505) 665-3811

Date: SEP 1 7 2013

Symbol: ADESH-13-046

LAUR: 13-26818

Compliance Reporting Manager
Compliance & Enforcement Section
New Mexico Environment Department
Air Quality Bureau
1301 Siler Road, Building B
Santa Fe, New Mexico 87507-3113

Dear Compliance Reporting Manager:

SUBJECT: TITLE V SEMI-ANNUAL EMISSIONS REPORT FOR PERMIT P100-R1-M3

JANUARY 1, 2013 – JUNE 30, 2013 AI NO. 856 – LOS ALAMOS NATIONAL

LABORATORY (LANL)

Enclosed is Los Alamos National Laboratory's (LANL) Semi-Annual Emissions report for the period January 1, 2013 through June 30, 2013. This report is required by permit condition A109 B and is submitted within 90 days from the end of the reporting period as required by that condition.

The semi-annual emissions report includes actual emissions from permitted sources included in LANL's Operating Permit. Emissions are also reported from insignificant boiler and generator sources. These sources are included to demonstrate that LANL has not exceeded Prevention of Significant Deterioration (PSD) applicability thresholds. In this report, actual emissions are listed along with the emission limits for ease in comparing and verifying compliance. No annual emission limits were exceeded during this reporting period.

Should you have any questions or comments regarding the information provided in this report, please contact Steve Story at (505) 665-2169 or story@lanl.gov.

Sincerely,

Michael T. Brandt, DrPH, CIH

Associate Director

Environment, Safety & Health

Title V Semi-Annual Emission Report for Permit P100-R1-M3

January 1, 2013 – June 30, 2013

Identifying Information		
Source Name: Los Alamos National Laboratory	County: Los Alamos	
Source Address: City: Los Alamos	State: <u>NM</u>	Zip Code: <u>87545</u>
Responsible Official: Michael T. Brandt Technical Contact: Steven L. Story Ph No Principal Company Product or Business: National Security an		<u>5-8858</u>
Permit No. P100-R1-M3 {IDEA/Tempo ID No. 856}		
Certification of Truth, Accuracy, and Con-	npleteness	
I, Michael T. Brandt certify that, based on information and information in the attached semi-annual emission report are true.		the statements and
Signature Markets	Date:	117/13
Title: Associate Director Environmental, Safety, and Health		

ENCLOSURE 1

Title V Semi-Annual Emissions Report for Permit P100-R1-M3
January 1, 2013 – June 30, 2013

ADESH-13-046

LAUR-13-26818

Date:	SEP 1 7 2013

Title V Semi-Annual Emissions Report for Permit P100-R1-M3 January 1, 2013 - June 30, 2013

Emission Reporting Requirements

A109 Facility: Reporting Schedules

- A. A Semi-Annual Report of monitoring activities is due within 45 days following the end of every 6-month reporting period. The six month reporting periods start on January 1st and July 1st of each year.
- B. A Semi-Annual Report of actual emissions from all permitted sources unless otherwise specified in this permit is due within 90 days following the end of every 6-month reporting period as defined at Condition A109.A. Emission estimates of criteria pollutants NOx, CO, SO2, VOC, TSP, PM10, and PM2.5 shall not include fugitive emissions. Emission estimates of HAPs shall include fugitive emissions. Emission estimates shall not include Insignificant or Trivial Activities, except that facilitywide emissions from all natural gas combustion sources shall be estimated. The reports shall include a comparison of actual emissions that occured during the reporting period with the facility-wide allowable emission limits at Table 106.B.

A700 Beryllium Activities

A702 Emission Limits - Beryllium Activities

Source	Beryllium Particulate Matter	Aluminum Particulate Matter
Sigma Facility TA-3-66	10 gm²/24 hr	N/A
Beryllium Technology Facility TA-3-141	0.35 gm/24 hr 3.5 gm/yт	N/A
Target Fabrication Facility TA-35-213	1.8 x 10 ⁻⁰⁴ gm/hr 0.36 gm/yr	NA
Plutonium Facility TA-55-PF-4 Machining Operation	0.12 gm/24 hr 2.99 gm/yr	0.12 gm/24 hr 2.99 gm/y
Plutonium Facility TA-55-PF-4 Foundry Operation	3.49 x 10 ⁻⁰⁵ gm/24 hr 8.73 x 10 ⁻⁰⁴ gm/yr	3.49 x 10 ^{os} gm/24 hr 8.73 x 10 ^{os} gm/y

Reporting Requirement

A707 D The permittee shall submit reports described in Section A109 and in accordance with B110.

A109 B

A Semi-Annual Report of actual emissions from all permitted sources unless otherwise specified in this permit is due within 90 days following the end of every 6-month reporting period as defined at Condition A109.A. Emission estimates of criteria pollutants NOx, CO, SO2, VOC, TSP, PM10, and PM2.5 shall not include fugitive emissions. Emission estimates of HAPs shall include fugitive emissions. Emission estimates shall not include Insignificant or Trivial Activities, except that facility-wide emissions from all natural gas combustion sources shall be estimated. The reports shall include a comparison of actual emissions that occured during the reporting period with the facility-wide allowable emission limits at Table 106.B.

Has this reporting requirement been met during this reporting period with a separate reporting submittal? Answer Yes or No below.

Yes Date report submitted: Tracking Number:

No Provide comments and identify any supporting documentation as an attachment.

Comments: Continued on the next page

A800 External Combustion A802 Emission Limits - External Combustion VOC tpy TSP tpy PM₁₈ tpy Unit No. NO, tpy SO₂ tpy CO tpy Combined annual emissions for all 80.0 80.0 50.0 50.0 50.0 50.0 units listed in Table 800.A NO. NO. CO co VOC VOC SO₂ TSP SO TSP PM. PM. PM PM. Unit No. pph pph pph pph tpy tpy pph tpy tpy tpy pph pph tpy (PY CMRR BHW-I 0.7 2.9 1.1 4.8 0.1 0.3 0.1 0.4 0.4 0.4 (GAS) CMRR. BHW-0.5 5.8 0.3 0 2 0.2 (OIL) CMRR-BHW 2 0.7 2.9 L 0.1 0.3 0.1 G F 0.4 CMRR. BHW-2 1.6 5.8 0.3 0.2 0.2 (OIL) CMRR-BHW-2,9 1.1 0.3 0.1 0.4 0.1 0.4 (GAS) CMRR-BHW 3 1.6 0.5 5.8 0.3 0.2 0.2 (OIL) CMRR BHW-4 0.7 2.9 11 4.8 0.1 0.3 0.1 0.4 0.4 0.1 0.4 0.1 (GAS) CMRR BHW.4 0.3 16 0.5 5.8 0.2 0.2 (OIL) All boilers N/A 2.9 6,9 NA 10.4 WA 0.5 0.3 4.3 NA NA Oif Conti 14.5 20.1 11.6 2.1 Reporting Requirement A807 B The permittee shall submit reports described in Section A109 and in accordance with B110. A109 B A Semi-Annual Report of actual emissions from all permitted sources unless otherwise specified in this permit is due within 90 days following the end of every 6-month reporting period as defined at Condition A109.A. Emission estimates of criteria pollutants NOx, CO, SO2, VOC, TSP, PM10, and PM2.5 shall not include fugitive emissions. Emission estimates of HAPs shall include fugitive emissions. Emission estimates shall not include Insignificant or Trivial Activities, except that facilitywide emissions from all natural gas combustion sources shall be estimated. The reports shall include a comparison of actual emissions that occured during the reporting period with the facility-wide allowable emission limits at Table 106.B. Has this reporting requirement been met during this reporting period with a separate reporting submittal? Answer Yes or No below. Tracking Number: Yes Date report submitted: \mathbf{x} Provide comments and identify any supporting documentation as an attachment. Comments: Continued on the next page

A800 External Combustion - continued

CMRR-BHW-4 (Gas)	January - June Emissions (tons)	July - December Emissions (tons)	Annual Emissions (tons)	Permit Limits (Condition A802 B) (tons per year)
NOx	0.000			2.9
SO ₂	0.000			9.3
TSP	0.000			0.4
PM-10	0.000			0.4
PM-2.5	0.000			0.4
CO	0.000			4.8
VOCs	0.000			No Source Limit
HAPs	0.000			No Source Limit

Note: The CMRR-BHW-4 boiler has not been installed.

CMRR Boilers Totals (Oil)	January - June Emissions (tons)	July - December Emissions (tons)	Annual Emissions (tons)	Permit Limits (Condition A802 B) (tons per year)
NOx	0,002			2.9
SO ₂	0.001			10.4
TSP	0.000			0.5
PM-10	0.000			0.3
PM-2.5	0.000			0.3
СО	0.001			0.9
VOCs	0.001			No Source Limit
HAPs	0.000			No Source Limit

Note: The CMRR boilers operated on fuel oil for a total of 14 hours during the first 6 months of 2013.

CMRR Boilers Totals (Gas and Oil)	January - June Emissions (tons)	July - December Emissions (tons)	Annual Emissions (tons)	Permit Limits (Condition A802 B) (tons per year)
NOx	0.039			14.5
SO ₂	0.002			11.6
TSP	0.006			10 THE 21 SAVE
PM-10	0.006			1.9
PM-2.5	0.006			19
CO	0.048			20.1
VOCs	0.033			No Source Limit
HAPs	0.002			No Source Limit

A					A1000 Degreasers					
A1002 Emission Limits - Degreasers						2)				
		Unit No.			VOC/HAPs tpy					
	TA-55-DG-I				:-					
ä	The VOC emissions from Table 106.B 200 tpy VC defined as a VOC shall b	C, 8,0 tpy per indi	vidual HAP, and 2	n the facility-wide 4.0 tpy of combin	e allowable emissions ltmi ed toral HAPs. Any VHA	t established in. Ps that are also				
	Reporting Require 1007 A The permi		reports described	in Section A109	9 and in accordance with	ı B110.				
	this permit Condition PM2.5 shape emissions wide emis comparise allowable	It is due within 90 A109.A. Emissicall not include fug. Emission estimations from all nation of actual emission limits a	days following ton estimates of creative emissions. It is shall not included the shall not	he end of every iteria pollutants Emission estima ude Insignificant tion sources shall during the repo	d sources unless otherwing below Nox, CO, SO2, VOC, The soft HAPs shall include to Trivial Activities, exil be estimated. The reporting period with the factorial source.	d as defined at "SP, PM10, and e fugitive cept that facility- rts shall include a ility-wide				
	as this reporting require No below.	ment been met du	ring this reporting	g period with a	separate reporting submi	ttal? Answer Yes				
	Yes	Date report sub	omitted:		Tracking Number:					
Ī	X No Pro	ovide comments	and identify any	supporting do	cumentation as an atta	chment.				
C	omments:									
	Degreaser TA-55-DG-1	January - June Emissions (tons)	July - December Emissions (tons)	Annual Emissions (tons)	Permit Limits (Condition A1002 A) (tons per year)					
	VOCs	0.002								
			**		Source limits refer	0				
	HAPs	0.002	**:		Source limits refer to facility-wide limits					
-	HAPs	0.002	40		to facility-wide	**				
-	HAPs	0.002	V		to facility-wide	**				
-	HAPs	0.002	V.		to facility-wide					
	HAPs	0.002			to facility-wide					
-	HAPs	0.002			to facility-wide					
	HAPs	0.002			to facility-wide					
	HAPs	0.002			to facility-wide					
	HAPs	0.002			to facility-wide					
	HAPs	0.002			to facility-wide					
	HAPs	0.002			to facility-wide					
	HAPs	0.002			to facility-wide					
	HAPs	0.002			to facility-wide					
	HAPs	0.002			to facility-wide					
	HAPs	0.002			to facility-wide					

A1100 Internal Combustion- continued

Generator TA-33-G-3	January - June Emissions (tons)	July - December Emissions (tons)	Annual Emissions (tons)	Permit Limits (Condition A1102 A) (tons per year)
NOx	0.000			0.21
SO ₂	0.000			Not Required
TSP	0,000			Not Required
PM ₁₀	0.000			Not Required
CO	0.000			0.1
VOC	0.000			Not Required
HAPs	0.00E+00			No Source Limit

Note: The TA-33-G-3 generator only operated for a 0.2 hours during the first 6 months of 2013.

Generator TA-33-G-4	January - June Emissions (tons)	July - December Emissions (tons)	Annual Emissions (tons)	Permit Limits (Condition A1102 A) (tons per year)
NOx	0.052			2.33
SO ₂	0.004			0.16
TSP	0.004			Not Required
PM ₁₀	0.004			Not Required
СО	0.011			1.4
VOC	0.004			0.2
HAPs	1.67E-05			No Source Limit

Note: The TA-33-G-4 generator only operated for 11 hours during the first 6 months of 2013.

Stationary Standby Generators	January - June Emissions (tons)	July - December Emissions (tons)	Annual Emissions (tons)	Permit Limits
NOx	1.51			BISSON INC.
SO ₂	0.07			CONTRACTOR OF THE PARTY OF THE
TSP	0.08			No Source Specific
PM ₁₀	0.08			Emission Limits for
CO	0.34			Standby Generators
VOC	0.08			
HAPs	0.001			

Note: Standby Generators are insignificant sources.

Generator CMRR-GEN-1	January - June Emissions (tons)	July - December Emissions (tons)	Annual Emissions (tons)	Permit Limits
NOx	0.238			Novigia Gast
SO ₂	0.004			No Source Specific
TSP	0.007			
PM ₁₀	0.007			Emission Limits for the CMRR
CO	0.052			Generators
VOC	0.007			CONTRACTOR
HAPs	4.32E-05	4-		

Continued on the next page.

A1200 Data Disintegrator

A1202

Emission Limits - Data Disintegrator

Unit No.	TSP pph	TSP tpy	PM10 pph	PM10 tpy
TA-52-11	2.3	9.9	2.3	9.9

Reporting Requirement

A1207 A

The permittee shall submit reports described in Section A109 and in accordance with B110.

A109 B

A Semi-Annual Report of actual emissions from all permitted sources unless otherwise specified in this permit is due within 90 days following the end of every 6-month reporting period as defined at Condition A109.A. Emission estimates of criteria pollutants NOx, CO, SO2, VOC, TSP, PM10, and PM2.5 shall not include fugitive emissions. Emission estimates of HAPs shall include fugitive emissions. Emission estimates shall not include Insignificant or Trivial Activities, except that facility-wide emissions from all natural gas combustion sources shall be estimated. The reports shall include a comparison of actual emissions that occured during the reporting period with the facility-wide allowable emission limits at Table 106.B.

Has this reporting requirement been met during this reporting period with a separate reporting submittal? Answer Yes or No below.

	7

Yes

Date report submitted:

Tracking Number:

X

No Provide comments and identify any supporting documentation as an attachment.

Data Disintegrator TA-52-11	January - June Emissions (tons)	July - December Emissions (tons)	Annual Emissions (tons)	Permit Limits (Condition A1202 A) (tons per year)
TSP	0.03			9.9
PM10	0.03			9.9

A1300	TA-3	Power	Plant

Combustion Turbine TA-3-22 CT-1	January - June Emissions (tons)	July - December Emissions (tons)	Annual Emissions (tons)	Permit Limit (Condition A1302 A) (tons per year)
NOx	0.93			59.4
SOx	0.06			4.2
TSP	0.12			4.8
PM ₁₀	0.12			4.8
PM _{2,5}	0.12			4.8
CO	0.19			72.3
VOC	0.04			him with 1.5 he com
HAPs	0.03			No Source Limit

A102 Facility Wide Emission Limits

Table 102.A: Total Potential Criteria Pollutant Em	dissions from Entire Facility
--	-------------------------------

Pollutant	Emissions (tons per year)	
Nitrogen Oxides (NOx)	245.0	
Carbon Monoxide (CO)	225.0	
Volatile Organic Compounds (VOC)	200.0	
Sulfur Dioxide (SO ₂)	150.0	
Total Particulate Matter (TSP)	120.0	
Particulate Matter less than 10 microns (PM ₁₀)	120.0	
Particulate Matter less than 2.5 microns (PM _{2.5})	120.0	

Table 102.B: Total Potential HAPs that exceed 1.0 tons per year

Pollutant	Emissions (tons per year)
Individual HAP	8.0
Total HAPs	24.0

Reporting Requirement

A109 B

A Semi-Annual Report of actual emissions from all permitted sources unless otherwise specified in this permit is due within 90 days following the end of every 6-month reporting period as defined at Condition A109.A. Emission estimates of criteria pollutants NOx, CO, SO2, VOC, TSP, PM10, and PM2.5 shall not include fugitive emissions. Emission estimates of HAPs shall include fugitive emissions. Emission estimates of HAPs shall include fugitive emissions. Emission estimates of HAPs shall include fugitive emissions from all natural gas combustion sources shall be estimated. The reports shall include a comparison of actual emissions that occurred during the reporting period with the facility-wide allowable emission limits at Table 106.B.

Has this reporting requirement been met during this reporting period with a separate reporting submittal? Answer Yes or No below.

Yes	Date report submitted:	Tracking Number:

No Provide comments and identify any supporting documentation as an attachment.

Pollutant	January - June Emissions (tons)	July - December Emissions (tons)	2012 Annual Emissions (tons)	Facility Wide Permit Limits (Condition A102) (tons per year)
Nitrogen Oxides	24.4			245
Carbon Monoxide	17.2		21	225
Volatile Organic Carbons	6.9			200
Sulfur Dioxide	0.3			150
Total Particulate Matter	2.3			120
Particulate Matter less than 10 microns	2.3			120
Particulate Matter less than 2.5 microns	1.0			120
Hazardous Air Pollutants	2.3			11111-24

Environment Safety & Health PO Box 1663, MS K491 Los Alamos, New Mexico 87545 (505)667-4218/Fax (505) 665-3811

Date: MAR 2 6 2014

Symbol: ADESH-14-017

LAUR: 14-21663

Compliance Reporting Manager Compliance & Enforcement Section New Mexico Environment Department Air Quality Bureau 1301 Siler Road, Building B Santa Fe, New Mexico 87507-3113

Dear Compliance Reporting Manager:

Subject: Title V Semi-Annual Emissions Report for Permit P100-R1-M3, July 1, 2013 – December 31, 2013 AI No. 856 – Los Alamos National (LANL)

Enclosed is Los Alamos National Laboratory's (LANL) Semi-Annual Emissions report for the period July 1, 2013 through December 31, 2013. This report is required by permit condition A109 B and is submitted within 90 days from the end of the reporting period as required by that condition.

The semi-annual emissions report includes actual emissions from permitted sources included in LANL's Operating Permit. Emissions are also reported from insignificant boiler and generator sources. These sources are included to demonstrate that LANL has not exceeded Prevention of Significant Deterioration (PSD) applicability thresholds. In this report, actual emissions are listed along with the emission limits for ease in comparing and verifying compliance. No annual emission limits were exceeded during this reporting period.

Should you have any questions or comments regarding the information provided in this report, please contact Steve Story at (505) 665-2169 or story@lanl.gov.

Sincerely,

Michael T. Brandt, DrPH, CIH

Associate Director

Environment, Safety & Health

MTB:SLS:WW/lm

Enclosure:

1. Title V Semi-Annual Emissions Report for Permit P100-R1-M3 July 1, 2013 – December 31, 2013

Cy: Hai Shen, NA-00-LA, (E-File)
Carl A. Beard, PADOPS, (E-File)
Michael T. Brandt, ADESH, (E-File)
Alison M. Dorries, ENV-DO, (E-File)
Steve L. Story, ENV-CP, (E-File)
Walter Whetham, ENV-CP, (E-File)
Cynthia Blackwell, LC-LESH, (E-File)
LASOmailbox@nnsa.doe.gov, (E-File)
locatesteam@lanl.gov, (E-File)
ENV-CP Title V Emissions Report File
ENV-CP Correspondence File, K490

Title V Semi-Annual Emission Report for Permit P100-R1-M3

July 1, 2013 – December 31, 2013

Identifying Information
Source Name: Los Alamos National Laboratory County: Los Alamos .
Source Address: City: Los Alamos State: NM Zip Code: 87545
Responsible Official: Michael T. Brandt Ph No. (505) 667-4218 Fax No. (505) 665-3811 Technical Contact: Steven L. Story Ph No. (505) 665-2169 Fax No. (505) 665-8858 Principal Company Product or Business: National Security and Nuclear Weapons Research Primary SIC Code: 8733
Permit No. P100-R1-M3 {IDEA/Tempo ID No. 856} Permit Issued Date: April 26, 2013
Certification of Truth, Accuracy, and Completeness
I, <u>Michael T. Brandt</u> certify that, based on information and belief formed after reasonable inquiry, the statements and information in the attached semi-annual emission report are true, accurate, and complete. Signature Date: 3/24/19 Title: Associate Director Environmental, Safety, and Health

ENCLOSURE 1

Title V Semi-Annual Emissions Report for Permit P100-R1-M3
July 1, 2013 – December 31, 2013

ADESH-14-017

LAUR-14-21663

Title V Semi-Annual Emissions Report for Permit P100-R1-M3 July 1, 2013 - December 31, 2013

Emission Reporting Requirements

A109 Facility: Reporting Schedules

- A. A Semi-Annual Report of monitoring activities is due within 45 days following the end of every 6-month reporting period. The six month reporting periods start on January 1st and July 1st of each year.
- B. A Semi-Annual Report of actual emissions from all permitted sources unless otherwise specified in this permit is due within 90 days following the end of every 6-month reporting period as defined at Condition A109.A. Emission estimates of criteria pollutants NOx, CO, SO2, VOC, TSP, PM10, and PM2.5 shall not include fugitive emissions. Emission estimates of HAPs shall include fugitive emissions. Emission estimates shall not include Insignificant or Trivial Activities, except that facility-wide emissions from all natural gas combustion sources shall be estimated. The reports shall include a comparison of actual emissions that occurred during the reporting period with the facility-wide allowable emission limits at Table 106.B.

A700 Beryllium Activities

A702 Emission Limits - Beryllium Activities

Source	Beryllium Particulate Matter	Aluminum Particulate Matter	
Sigma Facility 10 gm ¹ /24 hr		N/A	
Beryllium Technology Facility TA 3-141	0.35 gm/24 hr 3.5 gm/yr	N/A	
Target Fabrication Facility TA-35-213	1.8 x 10 ⁻⁰⁴ gm/hr 0.36 gm/yr	N/A	
Plutonium Facility TA 55 PF-4 Machining Operation O.12 gm/24 hr 2.99 gm/yr		0.12 gm/24 hr 2.99 gm/y	
Plutonium Facility TA-55-PF-4 Foundry Operation	3 49 x 10 ⁻⁶⁵ gm/24 hr 8.73 x 10 ⁻⁵⁴ gm/yr	3.49 x 10 ¹⁰ gm/24 hr 8.73 x 10 ⁷⁹ gm/y	

Reporting Requirement

A707 D The permittee shall submit reports described in Section A109 and in accordance with B110.

A109 B

A Semi-Annual Report of actual emissions from all permitted sources unless otherwise specified in this permit is due within 90 days following the end of every 6-month reporting period as defined at Condition A109.A. Emission estimates of criteria pollutants NOx, CO, SO2, VOC, TSP, PM10, and PM2.5 shall not include fugitive emissions. Emission estimates of HAPs shall include fugitive emissions. Emission estimates shall not include Insignificant or Trivial Activities, except that facility-wide emissions from all natural gas combustion sources shall be estimated. The reports shall include a comparison of actual emissions that occured during the reporting period with the facility-wide allowable emission limits at Table 106.B.

Has this report or No below	-	quirement been met during this reporting	period with a separate reporting submittal? Answer Yes	
	Yes	Date report submitted:	Tracking Number:	
x	No	Provide comments and identify any s	upporting documentation as an attachment.	
Comments	: Continu	ied on the next page		
14				

A800 External Combustion A802 Emission Limits - External Combustion Unit No. NO, tpy CO tpy VOC tpy SO, tpy TSP tpy PM₁₀ tpy Combined annual emissions for all 0.08 80.0 50.0 50.0 50.0 50.0 units listed in Table 800 A NO. $\mathbb{C}\Omega$ CO VOC VOC SO₂ SO₁ TSP TSP PM , PM_M PM PML Unit No. pph tpy tpy ipy (py tpy pph CMRR HHW-I 0.7 2.9 1.1 4.8 0.1 0.3 0.1 0.4 01 04 0.1 0.4 (GAS) BHW. Efr 0.5 5.6 0.3 0.2 0.2 (OIL) CMRR BHW-3 0.7 2.9 1,14,8 0.10.3 () F 0.4 0 F 94 0.10.4 (CAS) CMRR BHW-2 0.5 0.3 0.2 0.2 (OIL) CMRR-DETW- 9 0.7 0.1 0_3 0.3 0.4 n ı () a 0. i 0,4 (GAS) CMRR BHW 3 0.5 0.3 0.2 0.2 OiLi CMRR BHW-4 0.1 0.3 Ü 0 9 0.4 (GAS) CMRR 0.5 58 6.2 CHO All boders 2.9 0.9 NA 10.4 0.5 114 03 NIA 0.3 Oil 14.5 20.1 11.4 2.1 1.9 Reporting Requirement The permittee shall submit reports described in Section A109 and in accordance with B110. A807 B A109 B A Semi-Annual Report of actual emissions from all permitted sources unless otherwise specified in this permit is due within 90 days following the end of every 6-month reporting period as defined at Condition A109.A. Emission estimates of criteria pollutants NOx, CO, SO2, VOC, TSP, PM10, and PM2.5 shall not include fugitive emissions. Emission estimates of HAPs shall include fugitive emissions. Emission estimates shall not include Insignificant or Trivial Activities, except that facilitywide emissions from all natural gas combustion sources shall be estimated. The reports shall include a comparison of actual emissions that occured during the reporting period with the facility-wide allowable emission limits at Table 106.B. Has this reporting requirement been met during this reporting period with a separate reporting submittal? Answer Yes or No below. Yes Date report submitted: Tracking Number: \square Provide comments and identify any supporting documentation as an attachment. Comments: Continued on the next page

A800 External Combustion - continued

CMRR-BHW-4 (Gas)	January - June Emissions (tons)	July - December Emissions (tons)	Annual Emissions (tons)	Permit Limits (Condition A802 B) (tons per year)
NOx	0.000	0.000	0.000	2.9
SO ₂	0.000	0.000	0.000	0.3
TSP A	0.000	0.000	0.000	0.4
PM-10	0.000	0.000	0.000	0.4
PM-2.5	0.000	0.000	0.000	0.4
CO	0.000	0.000	0.000	4.8
VOCs	0.000	0.000	0.000	No Source Limit
HAPs	0.000	0.000	0.000	No Source Limit

Note: The CMRR-BHW-4 boiler has not been installed.

CMRR Boilers Totals (Oil)	January - June Emissions (tons)	July - December Emissions (tons)	Annual Emissions (tons)	Permit Limits (Condition A802 B) (tons per year)
NOx	0.002	0.000	0.002	2.9
SO ₂	0.001	0.000	0,001	10.4
TSP	0.000	0.000	0.000	0.5
PM-10	0.000	0.000	0.000	0.3
PM-2.5	0.000	0.000	0.000	0.3
co	0.001	0.000	0.001	0.9
VOCs	0.001	0.000	0.001	No Source Limit
HAPs	0.000	0.000	0.000	No Source Limit

Note: The CMRR boilers operated on fuel oil for a total of 14 hours during the first 6 months of 2013 and did not operate on fuel oil during the second 6 months of 2013.

CMRR Boilers Totals (Gas and Oil)	January - June Emissions (tons)	July - December Emissions (tons)	Annual Emissions (tons)	Permit Limits (Condition A802 B) (tons per year)
NOx	0.039	0.027	0.066	14.5
SO ₂	0.002	0.001	0.003	11.6
TSP	0.006	0.004	0.010	2.1
PM-10	0.006	0.004	0.010	1.9
PM-2.5	0.006	0.004	0.010	1.9
СО	0.048	0.034	0.082	20.1
VOCs	0.033	0.023	0.056	No Source Limit
HAPs	0.002	0.002	0.004	No Source Limit

		14. 4. NI				1
TA-55-DO		l'nit No.			VOC/HAPs tpy	-
The VOC Table 196	emissions from B 200 tpy VC	in this source category, 8.0 tpy per indi- e included in the V	vidual HAP, and 2	n the facility wid 4.0 tpy of combin	e allowable emissions lim ned toral HAPs Any VH	nit established in APs that are also
Reportin	g Require	ment				
1007 A	The perm	ittee shall submit	reports described	l in Section A10	9 and in accordance wit	th B110
	Condition PM2.5 sh	A109.A. Emissicall not include fug	on estimates of cr gitive emissions.	iteria pollutants Emission estima	6-month reporting perion NOx, CO, SO2, VOC, ates of HAPs shall inclust or Trivial Activities, e	TSP, PM10, and de fugitive
Ing this row	wide emis compariso allowable	sions from all nat on of actual emiss emission limits a	tural gas combust ions that occured t Table 106.B.	tion sources shall during the repo	ll be estimated. The reporting period with the fac	orts shall include a cility-wide
_	wide emis compariso allowable orting require	sions from all nat on of actual emiss emission limits a	tural gas combust ions that occured t Table 106.B.	tion sources shall during the repo	ll be estimated. The repo	orts shall include a cility-wide
Has this repor No below	wide emis compariso allowable orting require	sions from all nat on of actual emiss emission limits a	tural gas combust ions that occured t Table 106.B. uring this reporting	tion sources shall during the repo	ll be estimated. The reporting period with the fac	orts shall include a cility-wide
r No below	wide emis compariso allowable orting require	sions from all nat on of actual emiss emission limits at ment been met du	tural gas combustions that occured table 106.B. uring this reporting this report	tion sources shall during the repo	Il be estimated. The reporting period with the factoring period with the factoring submitted and the separate reporting submitted. Tracking Number:	orts shall include a cility-wide nittal? Answer Yes
r No below	wide emis compariso allowable orting require . Yes	sions from all nat on of actual emiss emission limits at ment been met du	tural gas combustions that occurred table 106.B. Tring this reporting this repor	tion sources shall during the repo	Il be estimated. The reporting period with the factoring submitted and the separate reporting submitted in the separate reporting submitted submitted submitted in the separate reporting submitted submitte	orts shall include a cility-wide nittal? Answer Yes
x Degr	wide emis compariso allowable orting require . Yes	sions from all nat on of actual emiss emission limits at ment been met du	tural gas combustions that occurred table 106.B. Tring this reporting this repor	tion sources shall during the repo	Il be estimated. The reporting period with the factoring period with the factoring submitted and the separate reporting submitted. Tracking Number:	orts shall include a cility-wide nittal? Answer Yes
X Comments:	wide emis comparisc allowable orting require . Yes No Pro	sions from all nation of actual emission limits at ment been met du Date report sub Date comments: January - June Emissions	tural gas combustions that occured that occured the trade 106.B. Tring this reporting this reporting this reporting that the trade trade that the trade	during the reporting do Supporting do Annual Emissions	Il be estimated. The reporting period with the factoring period with the factoring submarked and the separate reporting submarked and submarke	orts shall include a cility-wide nittal? Answer Yes

A1100 Internal Combustion- continued

Generator TA-33-G-3	January - June Emissions (tons)	July - December Emissions (tons)	Annual Emissions (tons)	Permit Limits (Condition A1102 A) (tons per year)
NOx	0.000	0.012	0.012	0.21
SO ₂	0.000	0.001	0.001	Not Required
TSP	0.000	0.001	0.001	Not Required
PM ₁₀	0.000	0.001	0.001	Not Required
СО	0.000	0.002	0.002	0.1
voc	0.000	0.001	0.001	Not Required
HAPs	0.00E+00	3.72E-06	3.72E-06	No Source Limit

Note: The TA-33-G-3 generator did not operate during the first 6 months of 2013.

Generator TA-33-G-4	January - June Emissions (tons)	July - December Emissions (tons)	Annual Emissions (tons)	Permit Limits (Condition A1102 A) (tons per year)
NOx	0.052	0.000	0.052	2.33
\$O ₂	0.004	0.000	0.004	0.16
TSP	0.004	0.000	0.004	Not Required
PM ₁₀	0.004	0.000	0.004	Not Required
СО	0.011	0.000	0.011	1.4
VOC	0.004	0.000	0.004	0.2
HAPs	1.67E-05	0.00E+00	1.75E-05	No Source Limit

Note: The TA-33-G-4 generator only operated for 0.2 hours during the second six months of 2013.

Stationary Standby Generators	January - June Emissions (tons)	July - December Emissions (tons)	Annual Emissions (tons)	Permit Limits
NOx	1.47	1.24	2.71	
\$O ₂	0.07	0.06	0.12	No Source Specific Emission Limits for Standby Generators
TSP	0.08	0.07	0.14	
PM ₁₀	0.08	0.07	0.14	
CO	0.33	0.28	0.61	
VOC	0.08	0.07	0.14	
HAPs	0.001	0.000	0.001	

Note: Standby Generators are insignificant sources.

Generator CMRR-GEN-1	January - June Emissions (tons)	July - December Emissions (tons)	Annual Emissions (tons)	Permit Limits
NOx	0.238	0.334	0.572	
SO ₂	0.004	0.006	0.010	No Source Specific Emission Limits for the CMRR Generators
TSP	0.007	0.010	0.017	
PM ₁₀	0.007	0.010	0.017	
CO	0.052	0.073	0.125	
voc	0.007	0.010	0.017	Introduct States
HAPs	4.32E-05	6.07E-05	1.04E-04	

Continued on the next page.

A1200 Data Disintegrator

A1202

Emission Limits - Data Disintegrator

Unit No.	TSP pph	TSP tpy	PM10 pph	PM10 tpy
TA-52-11	2.3	9.9	2.3	9.9

Reporting Requirement

A1207 A The permittee shall submit reports described in Section A109 and in accordance with B110.

A109 B

A Semi-Annual Report of actual emissions from all permitted sources unless otherwise specified in this permit is due within 90 days following the end of every 6-month reporting period as defined at Condition A109.A. Emission estimates of criteria pollutants NOx, CO, SO2, VOC, TSP, PM10, and PM2.5 shall not include fugitive emissions. Emission estimates of HAPs shall include fugitive emissions. Emission estimates shall not include Insignificant or Trivial Activities, except that facility-wide emissions from all natural gas combustion sources shall be estimated. The reports shall include a comparison of actual emissions that occured during the reporting period with the facility-wide allowable emission limits at Table 106.B.

Has this reporting requirement been met during this reporting period with a separate reporting submittal? Answer Yes or No below.

Yes	Date report submitted:	Tracking Number:	

Provide comments and identify any supporting documentation as an attachment.

Comments:

 \mathbf{x}

Data Disintegrator TA-52-11	January - June Emissions (tons)	July - December Emissions (tons)	Annual Emissions (tons)	Permit Limits (Condition A1202 A) (tons per year)
TSP	0.03	0.04	0.07	9.9
PM10	0.03	0.04	0.07	9.9

A1300 TA-3 Power Plant

Combustion Turbine TA-3-22 CT-1	January - June Emissions (tons)	July - December Emissions (tons)	Annual Emissions (tons)	Permit Limit (Condition A1302 A) (tons per year)
NOx	0.93	1.47	2.40	59.4
SOx	0.06	0.10	0.16	4.2
TSP	0.12	0.20	0.32	4.8
PM ₁₀	0.12	0.20	0.32	4.8
PM _{2.5}	0.12	0.20	0.32	4.8
CO	0.19	0.31	0.50	72.3
VOC	0.04	0.06	0.10	1.5
HAPs	0.03	0.04	0.07	No Source Limit

A102 **Facility Wide Emission Limits**

Table 102.A: Total Potential Criteria Pollutant Emissions from Entire Facility

Pollutant	Emissions (tons per year)
Nitrogen Oxides (NOx)	245.0
Carbon Monoxide (CO)	225.0
Volatile Organic Compounds (VOC)	200.0
Sulfur Dioxide (SO ₂)	150,0
Total Particulate Matter (TSP)	120.0
Particulate Matter less than 10 microns (PM ₁₀)	120.0
Particulate Matter less than 2.5 microns (PM _{2.5})	120,0

Table 102.B: Total Potential HAPs that exceed 1.0 tons per year

Pollutant	Emissions (tons per year)
Individual HAP	8.0
Total HAPs	24.0

Reporting Requirement

A109 B

A Semi-Annual Report of actual emissions from all permitted sources unless otherwise specified in this permit is due within 90 days following the end of every 6-month reporting period as defined at Condition A109.A. Emission estimates of criteria pollutants NOx, CO, SO2, VOC, TSP, PM10, and PM2.5 shall not include fugitive emissions. Emission estimates of HAPs shall include fugitive emissions. Emission estimates shall not include Insignificant or Trivial Activities, except that facilitywide emissions from all natural gas combustion sources shall be estimated. The reports shall include a comparison of actual emissions that occured during the reporting period with the facility-wide allowable emission limits at Table 106.B.

Has this reporting requirement been met during this reporting period with a separate reporting submittal? Answer Yes or No below.

	Yes	Date report submitted:

Tracking Number:

No Provide comments and identify any supporting documentation as an attachment.

Comments:

x

Pollutant	January - June Emissions (tons)	July - December Emissions (tons)	2013 Annual Emissions (tons)	Facility Wide Permit Limits (Condition A102) (tons per year)
Nitrogen Oxides	24.3	19.9	44.2	245
Carbon Monoxide	17.2	13.2	30.4	225
Volatile Organic Carbons	6.9	5.6	12.5	200
Sulfur Dioxide	0.3	0.4	0.7	150
Total Particulate Matter	2.3	1.9	4.2	120
Particulate Matter less than 10 microns	2.3	1.9	4.2	120
Particulate Matter less than 2.5 microns	1.0	0.9	2.0	120
Hazardous Air Pollutants	2.3	2.1	4.4	24