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ABSTRACT 10 

An analytical solution is developed for three-dimensional flow towards a partially penetrating 11 

large-diameter well in an unconfined aquifer bounded below by an aquitard of finite or semi-12 

infinite extent. The analytical solution is derived using Laplace and Hankel transforms, then 13 

inverted numerically. Existing solutions for flow in leaky unconfined aquifers neglect the 14 

unsaturated zone following an assumption of instantaneous drainage assumption due to Neuman 15 

[1972].  We extend the theory of leakage in unconfined aquifers by (1) including water flow and 16 

storage in the unsaturated zone above the water table, and (2) allowing the finite-diameter 17 

pumping well to partially penetrate the aquifer. The investigation of model-predicted results 18 

shows that leakage from an underlying aquitard leads to significant departure from the 19 

unconfined solution without leakage. The investigation of dimensionless time-drawdown 20 

relationships shows that the aquitard drawdown also depends on unsaturated zone properties and 21 

the pumping-well wellbore storage effects. 22 

INTRODUCTION 23 

The assumption that the water flow and storage in the unsaturated zone is insignificant for 24 

unconfined aquifer tests was first questioned by Nawankor et al. [1984] and later by Akindunni 25 

and Gillham [1992] based upon analysis of data collected during pumping tests in Borden, 26 

Ontario Canada. Analyzing the collected tensiometer data and soil moisture measurements, the 27 

authors concluded that the proper inclusion of unsaturated zone in analytical models used for 28 

pumping test analysis would lead to improved estimates of aquifer specific yield. Several 29 

analytical solutions were developed for flow to a pumping well in an unconfined aquifer, taking 30 

into account the unsaturated zone [Mathias and Butler 2006, Tartakvosky and Neuman 2007, 31 

Mishra and Neuman 2010]. These models consider the unsaturated zone effects by coupling the 32 



governing flow equations at the water table; the saturated zone governed by the diffusion 33 

equation and the vadose zone governed by the linearized unsaturated zone Richards’ equation, 34 

using the linearization of Kroszynski and Dagan [1975]. These models considered the limiting 35 

case where the pumping well has zero radius. For detailed discussion regarding the fundamental 36 

differences between these three models readers are directed to Mishra and Neuman [2010].  37 

Drawdown due to pumping a large-diameter (e.g., water supply) well in an unconfined 38 

aquifer is affected by wellbore storage (Papadopulous and Cooper, 1967). Narasimhan and 39 

Zhu [1993] used a numerical model to demonstrate that early time drawdown in an unconfined 40 

aquifer tends to be dominated by wellbore storage effects. Mishra and Neuman [2011] developed 41 

an analytical unconfined solution, which considers both pumping-well wellbore storage capacity, 42 

and three-dimensional axi-symmetrical unsaturated zone flow. They represented unsaturated 43 

zone constitutive properties using exponential models, which result in governing equations that 44 

are mathematically tractable, while being sufficiently flexible to be fit to other widely used 45 

constitutive models like Gardner [1958], Russo [1988], Brooks and Corey [1964], van 46 

Genuchten [1980], and Mualem [1976]. However, Mishra and Neuman [2011] considered the 47 

unconfined aquifer to be resting on an impermeable boundary and therefore did not account for 48 

the potential effects of leakage from an underlying formation (e.g., an aquitard or fractured 49 

bedrock).  50 

The classical theory of leakage for confined aquifers was originally developed by 51 

Hantush and Jacob [1955] assuming steady-state vertical flow in overlying and underlying 52 

aquitards and horizontal flow in the pumped aquifer. Hantush [1960] later modified the theory of 53 

confined leaky aquifers to include transient vertical aquitard flow, giving asymptotic expressions 54 

for early and late times. Neuman and Witherspoon [1969a,b] developed a more complete 55 



analytical solution for the more general multiple aquifer flow problem, but did not consider 56 

general three-dimensional aquitard flow.  57 

Yotov [1968] first investigated the effect of leakage from underlying strata on flow in an 58 

unconfined aquifer. He adopted the Boulton [1954]  type model to simulate unconfined aquifer 59 

flow and considered only vertical flow in aquitard. Ehlig and Halepaska [1976] investigated 60 

leaky-unconfined flow through a finite-difference simulation, which coupled the Boulton [1954] 61 

and Hantush and Jacob [1955] models to simulate leakage across the aquifer-aquitard boundary. 62 

Zlotnik and Zhan [2005] developed an analytical solution for the flow towards a fully penetrating 63 

zero-radius well in a coupled unconfined aquifer–aquitard system where both the unsaturated 64 

zone and the horizontal aquitard flow are neglected. Zhan and Bian [2006] extended the work 65 

of Zlotnik and Zhan [2005] and developed analytical and semi-analytical methods for computing 66 

the leakage rate and water volume induced by pumping based on the works of Hantush and 67 

Jacob, [1955] and Butler and Tsou [2003]. Following Zlotnik and Zhan [2005], Zhan and Bian 68 

[2006] also neglect horizontal aquitard flow. The assumption of strictly vertical aquitard flow 69 

was justified for limiting aquifer/aquitard hydraulic conductivity contrasts by Neuman and 70 

Witherspoon [1969b]. Additionally, both Zlotnik and Zhan, [2005] and Zhan and Bian 71 

[2006] restrict their solutions to the case of an aquitard of semi-infinite vertical extent. Malama 72 

et al. [2007] developed a solution for three-dimensional aquitard flow in a finite thickness 73 

aquitard, but considered the zero-radius pumping well to be fully penetrating and ignored the 74 

flow in unsaturated zone. Here, we develop a more general leaky-unconfined aquifer solution by 75 

considering a partially penetrating large-diameter well and including the effects of unsaturated 76 

zone flow following Mishra and Neuman [2011]. The solution is used to investigate the effect of 77 

an aquitard on drawdown in overlying unconfined aquifer.  We conclude by investigating the 78 



effects of wellbore storage capacity and the unsaturated zone on drawdown observed in the 79 

aquitard.  80 

LEAKY-UNCONFINED THEORY 81 

Statement of Problem 82 

 We consider a compressible unconfined aquifer of infinite radial extent resting on a 83 

finitely thick aquitard (Figure 1). The aquifer and aquitard are each spatially uniform, 84 

homogeneous and anisotropic, with constant specific storage sS  and Ss1 , respectively (a 85 

subscript 1 indicates aquitard-related properties). The aquifer has a fixed anisotropy ratio 86 

/D z rK K K=  of vertical zK  to horizontal rK  saturated hydraulic conductivity. The aquitard 87 

vertical and horizontal hydraulic conductivities are Kz1  and Kr1 . The aquifer is fully saturated 88 

beneath an initially horizontal water table at elevation z b=  defined as the ! = 0  isobar where 89 

!  is pressure head. A saturated capillary fringe at non-positive pressure 0aψ ψ≤ ≤  extends 90 

from the water table to the ! =!a  isobar; 0aψ ≤  is the pressure head required for air to enter a 91 

saturated medium. Prior to the onset of pumping the saturated hydraulic system (aquifer and 92 

aquitard) is at uniform initial hydraulic head 0 ah b ψ= + . Starting at time t = 0, water is pumped 93 

at a constant volumetric flowrate Q from a well with finite radius wr  and wellbore storage 94 

coefficient wC  (volume of water released from storage in the pumping well per unit drawdown in 95 

the well casing). The pumping well penetrates the saturated zone between depths l and d below 96 

the initial water table. Under these conditions the drawdown   
s r, z,t( ) = h r, z,0( )! h r, z,t( )  in the 97 

saturated zone is governed by the diffusion equation  98 
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along with the far-field boundary condition 100 

  
s !, z,t( ) = 0 , (2) 101 

the no-flow condition at the portion of the well casing that is not open to the aquifer  102 

0
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and the wellbore storage mass-balance expression 104 
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The corresponding linearized unsaturated water flow equations (Mishra and Neuman, 2010) are 106 
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where ! r, z,t( )  is drawdown in the unsaturated zone, k0 z( )  is relative permeability and C0 z( )  108 

is moisture capacity (slope of the curve representing water saturation as a function of pressure 109 

head) functions with the functional dependence limitations on the respective constitutive models 110 

k0 z( ) = k !0( )               ( ) ( )0 0C z C != , (6) 111 

the initial condition 112 

  
! r, z,0( ) = 0 , (7) 113 

the far-field boundary condition 114 

  
! ", z,t( ) = 0 , (8) 115 

the no-flow condition at the ground surface 116 
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and the no-flow condition at the well casing 118 
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The interface conditions providing continuity across the water table are 120 
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Aquitard drawdown s1 r, z,t( )  is governed by 123 
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Additionally, aquitard flow satisfies no-flow conditions at the bottom and center of the flow 125 

system 126 
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The interface condition across the aquifer-aquitard boundary is 128 

  s ! s1 = 0                                      wr r≥     z = 0                  (15) 129 
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Like Mishra and Neuman [2010], we represent the aquifer moisture retention curve using 131 

an exponential function  132 
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where eS  is effective saturation, rθ  is residual water content and y s rS θ θ= −  is drainable 134 

porosity or specific yield.  We also adopt the Gardner [1958] exponential model for relative 135 

hydraulic conductivity,  136 
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with parameters ka  and kψ  that generally differ from ca  and aψ  in (17). The parameter  ! k  138 

represents a pressure head above which relative hydraulic conductivity is effectively unity, 139 

which is sometimes but not always is the air-entry pressure head aψ . In addition to rendering the 140 

resulting equations mathematically tractable, these exponential constitutive models are 141 

sufficiently flexible to provide acceptable fits to standard constitutive models such as those 142 

mentioned earlier. 143 

Point Drawdown in Saturated and Unsaturated Zones of the Unconfined Aquifer and 144 

Aquitard 145 

Following Mishra and Neuman [2011], it is shown in Appendix A that drawdown in the 146 

saturated zone can be decomposed as 147 

C Us s s= +                  (19) 148 

where Cs  is solution for flow to a partially penetrating well of finite radius in a confined aquifer 149 

and Us  is a solution accounting for the underlying aquitard, water table, and unsaturated zone 150 

effects. The Laplace transformed solution Cs  is given by Mishra and Neuman [2011] as 151 
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Laplace parameter, !n = pD / ts + rD
2KDn

2! 2 , and  K0  and  K1  are second-kind modified Bessel 156 

functions of orders zero and one. 157 

The Laplace transformed unsaturated zone drawdown !  is given by Mishra and Neuman [2011] 158 

and is presented in Appendix D for sake of completeness.  159 

The Laplace transformed  sU  derived in Appendix B is 160 
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The Laplace transformed aquitard drawdown derived in Appendix C is 165 
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166 

where sC( )zD  is the Laplace-Hankel transformed confined aquifer drawdown and is defined in 167 

Appendix D.  168 

The time domain equivalents  sC , Us , s1  and σ  of  sC , Us  and σ  are obtained through numerical 169 

Laplace transform inversion using the algorithm of de Hoog et al. [1982].  170 

Vertically Averaged Observation Well Drawdown 171 

Drawdown in an observation well that penetrates the saturated zone between elevations 172 

1 1 /Dz z b=  and 2 2 /Dz z b=  (Figure 1) is obtained by averaging the point drawdown over this 173 

interval according to  174 

  
szD 2! zD1

(rD ,ts ) =
1

zD2 ! zD1

s" rD , zD ,ts( )
zD1

zD 2

# dzD                  (23) 175 

where  s
!

 can be either aquifer drawdown s, aquitard drawdown s1, or a combination of the two, 176 

depending on the observation well screen interval.  177 

Delayed Piezometer or Observation Well Response 178 

When water level is measured in a piezometer or observation well having storage coefficient C 179 

the water level observed in the borehole is delayed in time. Following Mishra and Neuman 180 

[2011], the measured (delayed) drawdown ms  can be expresses in terms of formation drawdown 181 

s  via 182 



/1 Bt t
ms s e−⎡ ⎤= −⎣ ⎦                                                       (24) 183 

where  tB  is basic (characteristic) monitoring well time lag. The dimensionless equivalent of (24) 184 

is  185 

/1 s Bst t
mD Ds s e−⎡ ⎤= −⎣ ⎦                                                       (25) 186 

where tBs =
!stB
r2 , and r is the radial distance to the monitoring location. 187 

MODEL-PREDICTED DRAWDOWN BEHAVIOR 188 

We illustrate the impacts of an underlying aquitard on unconfined aquifer drawdown for 189 

the case where 1DK = , Ssb / Sy =10
!3

, 10kD cDa a= = ,  ! aD =! kD , 0.0Dd = , CwD =10
3
, lD = 0.6  190 

and / 0.02wr b = , where  akD = akb ,  acD = acb ,   ! aD =! a / b , and   ! kD =! k / b . We also 191 

investigate the effects that wellbore storage capacity of the pumping well, the unconfined 192 

aquifer, and the unsaturated zone have on aquitard drawdown.  193 

Dimensionless unconfined aquifer time-drawdown 194 

We start by considering drawdown at two locations in the unconfined aquifer saturated 195 

zone, one location closer to water table ( zD = 0.75) and the other closer to the aquitard-aquifer 196 

boundary ( zD = 0.25). Figures 2a and 2b compare variations in dimensionless drawdown 197 

( ) ( ) ( ), , 4 / , ,D D D s r D D ss r z t K b Q s r z tπ=  with dimensionless time 
2/s st t rα=  at zD = 0.25  and 198 

zD = 0.75  predicted by our proposed solution and the solutions of Mishra and Neuman [2011], 199 

Neuman [1972], and the modified solution of Malama et al. [2007] (modified to include the 200 

partially penetrating pumping well effects, as done in Malama et al. [2008] for a multi-aquifer 201 

system). The solutions of Neuman [1972] and Malama et al. [2007] do not include wellbore 202 



storage effects, and therefore they overestimate drawdown at early time. Both of these solutions 203 

also ignore the unsaturated zone above the water table, considering the water table a material 204 

boundary. Our proposed solution follows Mishra and Neuman [2011] when leakage effects are 205 

minor, but our solution predicts less drawdown when leakage effects are significant. It is seen in 206 

Figure 2b that solution of Mishra and Neuman [2011] overestimates drawdown near the aquitard 207 

at intermediate time because it does not include aquitard leakage.  Near the water table (Figure 208 

2a) the effects of aquitard leakage are minimal and our proposed solution approaches Mishra and 209 

Neuman [2011] at all times. 210 

Figures 3a and 3b show dimensionless time-drawdown variations at dimensionless radial 211 

distance rD = 0.5  and dimensionless unconfined aquifer saturated zone elevation zD = 0.25  with 212 

different values of RKz = Kz1
/ Kz  when the radial aquitard hydraulic conductivity is large 213 

(  
RKr

= 1) and small ( RKr =1.0!10
"6

). When the radial hydraulic conductivity in aquitard is 214 

negligible ( RKr =1.0!10
"6

), aquitard flow is predominately vertical; larger values of vertical 215 

aquitard hydraulic conductivity cause decreases in intermediate time drawdown (Figure 3a). It is 216 

seen from Figure 3b that when aquitard horizontal hydraulic conductivity is large ( RKr = 0.1 ) the 217 

amount drawdown is reduced from further increases in aquitard vertical hydraulic conductivity 218 

also extend to the later time.  219 

Figure 4 depicts the effect of RKr = Kr1 / Kr  on the dimensionless time-drawdown at 220 

dimensionless radial distance rD = 0.5  and dimensionless unconfined aquifer saturated zone 221 

elevation zD = 0.25  when RKz = 0.1 . Radial flow in the aquitard results in less drawdown at late 222 

time than that predicted by Mishra and Neuman [2011], who do not account for aquitard leakage. 223 



Figure 5 presents the effect of hydraulic conductivity of an isotropic aquitard on 224 

dimensionless time-drawdown at dimensionless radial distance rD = 0.5  and dimensionless 225 

unconfined aquifer saturated zone elevation zD = 0.25 . When aquitard hydraulic conductivity is 226 

less than two orders of magnitude smaller than the unconfined aquifer, the effects of leakage on 227 

the aquifer drawdown are negligible. This is in agreement with findings of Neuman and 228 

Witherspoon [1969b] for confined aquifers.  They found errors <5% attributable to the vertical 229 

aquitard flow assumption, when the hydraulic conductivity contrast between the aquifer and 230 

aquitard was at least two orders of magnitude. Figure 5 also presents a case where the hydraulic 231 

conductivity of the zone underlying unconfined aquifer is larger than the aquifer. Because the 232 

proposed model accounts for general three-dimensional flow in underlying zone, we can 233 

consider the case where the lower layer is more permeable than the aquifer ( RKr = 2 ). 234 

Figure 6 shows how the dimensionless unconfined aquifer time-drawdown is affected by 235 

aquitard thickness. When the aquitard thickness is less than the initial unconfined aquifer 236 

saturated thickness ( Rb !1 ) aquitard leakage only affects the time-drawdown curve at 237 

intermediate time. Figure 6 shows that further increases in aquitard thickness beyond eight times 238 

the initial unconfined aquifer saturated zone thickness have negligible effect on the time-239 

drawdown curve. 240 

Dimensionless aquitard time-drawdown 241 

Figure 7 depicts dimensionless aquitard drawdown sD rD , zD ,ts( ) = 4!Krb /Q( ) s1 rD , zD ,ts( )  242 

variations with dimensionless time 
2/s st t rα=  at dimensionless radial distance 0.2Dr =  and 243 

dimensionless aquitard elevation zD = !0.25  for different values of wDC . As with solution of 244 

Mishra and Neuman [2011] for non-leaky systems, aquitard drawdown is impacted by pumping-245 



well wellbore storage capacity. Larger wellbore storage factors impact the aquitard drawdown 246 

for a longer period. 247 

Figure 8 depicts the effect that changes in akD , the dimensionless relative hydraulic 248 

conductivity exponent, have on dimensionless time-drawdown at dimensionless radial distance 249 

rD = 0.2  and dimensionless aquitard elevation zD = !0.25 . For larger values of akD , the hydraulic 250 

conductivity of the unsaturated zone decreases at a faster rate as pressure drops (becomes more 251 

negative) relative to its threshold (!k ). The rate water drains under a given hydraulic gradient 252 

from the unsaturated zone into the saturated zone diminishes, decreasing dimensionless aquitard 253 

drawdown. For very large akD , unsaturated hydraulic conductivity drops precipitously as 254 

pressure head falls below !k , causing the unsaturated zone to be effectively impermeable.  255 

We conclude this analysis by showing in Figure 9 the effects that changes in acD , the 256 

dimensionless effective saturation exponent, have on dimensionless time-drawdown at 257 

dimensionless radial distance rD = 0.2  and dimensionless aquitard elevation zD = !0.25 . When 258 

both exponents are large, hydraulic conductivity and pressure head in the unsaturated zone drop 259 

(the latter becoming negative) quickly as pressure head approaches the thresholds !k and !c . 260 

The unsaturated zone loses its ability to store water above the water table, causing this surface to 261 

behave as a moving boundary, which leads to the limiting-case behavior of instantaneous 262 

drainage due to Neuman [1972]. Consequently, for large values of exponents (Figure 9, red 263 

curve) our solution reduces to that the solution of Malama et al. [2007], which relies on the 264 

assumption of instantaneous drainage of Neuman [1972]. As acD  decreases, the capacity of the 265 

unsaturated zone to store water at a given negative pressure head increases, causing delayed 266 



water table response to diminish and dimensionless drawdown to increase earlier than predicted 267 

by Malama et al. [2007].  268 

CONCLUSIONS 269 

 Our work leads to the following major conclusions: 270 

1. A new analytical solution was developed for axially symmetric saturated-unsaturated 271 

three dimensional radial flow to a well with wellbore storage that partially penetrates the 272 

saturated zone of a compressible vertically anisotropic leaky-unconfined aquifer. The 273 

solution accounts for both radial and vertical flow in the unsaturated zone and the 274 

underlying aquitard.  275 

2. Because the solution considers three-dimensional radial flow in the aquitard, any 276 

properties may be assigned to the aquitard, allowing the solution to also be used to 277 

simulate leakage from underlying bedrock or other non-aquitard layers (e.g., an 278 

unscreened aquifer region with different hydraulic properties). 279 

3. Aquitard leakage can lead to significant departures from solutions that do not account for 280 

leakage, e.g., Mishra and Neuman [2011]. However, the effect of leakage on unconfined 281 

aquifer drawdown diminishes at points farther away from the aquifer-aquitard boundary. 282 

4. Unsaturated zone effects are often more important than leakage effects when the 283 

observation location is close to the water table.  284 

5. For large diameter pumping wells, at early time water is withdrawn entirely from the 285 

wellbore storage. Solution that do not account for wellbore storage predict a much larger 286 

early rise in drawdown.  287 



6. Aquitard drawdown is also affected by the pumping-well wellbore storage capacity. As in 288 

the unconfined aquifer, larger wellbore storage capacity leads to larger impacts on the 289 

observed aquitard drawdown. 290 

7. The unsaturated zone properties not only affect the unconfined aquifer time-drawdown 291 

behavior but they also impact the observed aquitard response.  292 

293 



APPENDIX A: DECOMPOSITION OF SATURATED ZONE SOLUTION 294 

In a manner analogous to Mishra and Neuman [2010] we decompose s into two parts 295 

C Us s s= +   (A1) 296 

where Cs  is solution for a partially penetrating well in a confined aquifer, satisfying 297 
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and Us  is a solution that takes into account aquitard and saturated-unsaturated unconfined 304 

conditions, but has no pumping source term, satisfying  305 
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subject to interface conditions at the water table, 311 
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APPENDIX B: LAPLACE SPACE SOLUTION FOR SATURATED ZONE 314 

Equations (A1) – (A14) are solved by sequential application of the finite cosine 315 

transform, the Hankel transform, 316 

  
f (a) = r Jo(ar) f (r) dr

0

!

"           (B1) 317 

and Laplace transform 318 
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with Hankel parameter a  and Laplace parameter p ,  J0  being zero-order first-kind Bessel 320 

function.  321 

Mishra and Neuman [2011] showed that the transform of the confined aquifer solution is  322 
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where 
2 2 / /D s Da K p Kη α= + .  324 

The Laplace transform of (A8)–(A14) is 325 
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Taking the Hankel transform of (B4) – (B9) yields 332 
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The general solution of (B10) subject to (B11) is 337 
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Consider that   
!sC / !z( ) = 0  at  0z = and z b=  by virtue of (A5), along with 339 

 
!"
!z

= q sC + sU( )        z b=                        (B15) 340 

together with q, which is derived in (D15) of Mishra and Neuman [2011],  341 



  

!sU

!z
= q1 sC + sU( )        0z =               (B16) 342 

together with q1  , which is derived in (C7), we obtain from (B12)–(B14) 343 
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According to Mishra and Neuman [2011], the Lapalce–Hankel transformed drawdown in 347 

confined aquifer can be written as 348 
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The inverse Hankel transform of (B14) is 350 
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Defining a new variable 
1/2/ D Dy ar K r=  transforms (B20) into the result presented in (21). 352 

It is noted that when q1 = 0  the aquiard is replaced by an impermeable boundary, and 353 

!1 = !2 =
2 sC( )z=b

cosh(!b)!!
q
sinh(!b)

. These simplifications reduce (B20) to equation (3) of Mishra 354 

and Neuman [2011]. 355 
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APPENDIX C: AQUITARD SOLUTION 358 

The Laplace–Hankel transform of the confined aquitard equations is 359 
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By virtue of the no-flow boundary condition at the bottom of the system, 
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The inverse Hankel transform of (C4) is 369 

  
s1 =

sC + sU( )z=0

cosh !b1( )
 cosh !1 z + b1( )"# $%

0

&

' a J0 ar( )da
.    

(C5)
 

370 

Defining a new variable 
1/2/ D Dy ar K r=  and using (B14) transforms (C5) into the solution 371 

presented in (22). 372 

The derivative of (C4) is 373 
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The flux boundary condition at the aquifer-aquitard interface 375 

  

!s1

!z
=

Kz

Kz1

!s
!z                                                 0z =  (C7) 376 

combined with (C6) gives 377 

  
!s
!z

= q1 sC + sU( )                                                 0z =  (C8) 378 

Where q1 =
Kz1
Kz

!1 tanh !1b1( ) . 379 

 380 

APPENDIX D: LAPLACE TRANSFORMED UNSATURATED ZONE DRAWDOWN 381 

The Laplace transformed drawdown !  in the unsaturated zone is given by Mishra and Neuman 382 

[2011] as 383 
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where rD = r / b , zD = z / b , µ
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transforms of the confined solution (B20) is 389 
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where LD = L/b, Jn and Yn are first and second kind Bessel functions of order n.396 
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Nomenclature Table 476 

Ss aquifer specific storage L-1 
Sy aquifer drainable porosity or specific yield  
Se effective saturation  
θr residual volumetric water content  
θs saturated volumetric water content  
Kr aquifer radial hydraulic conductivity LT-1 
Kz aquifer vertical hydraulic conductivity LT-1 
Ss1 aquitard specific storage L-1 
Kr1 aquitard radial hydraulic conductivity LT-1 
Kz1 aquitard vertical hydraulic conductivity LT-1 
r radial distance from the center of pumping well L 
z vertical distance from the bottom of the aquifer (positive up) L 
t time since pumping began T 
b saturated thickness of unconfined aquifer before pumping begins L 
b1 thickness of aquitard L 
l distance from bottom of screened interval to top of aquifer L 
L thickness of vadose zone before pumping begins L 
d distance from top of screened interval to top of aquifer L 
rw diameter of pumping well L 
ψ pressure head (less than zero when unsaturated) L 
h hydraulic head (sum of pressure and elevation heads) L 
s drawdown in aquifer; change in hydraulic head since pumping began L 
s1 drawdown in aquitard; change in hydraulic head since pumping began L 
σ drawdown in unsaturated zone; change in hydraulic head since pumping began L 
ψa air-entry pressure L 
ψk pressure for saturated hydraulic conductivity L 
ac exponent in moisture retention curve or sorptive number L-1 
ak exponent in Gardner relative hydraulic conductivity model L-1 
a Hankel transform parameter L-1 
p Laplace transform parameter T-1 
n finite cosine transform parameter  

 477 

 478 



FIGURE CAPTIONS 479 

Figure 1: Schematic representation of leaky unconfined aquifer-aquitard system geometry with 480 

finite radius pumping well. 481 

Figure 2: Dimensionless leaky-unconfined aquifer drawdown versus dimensionless time at 482 

rD = 0.5  when 1DK = , Ssb / Sy =10
!3

, 10kD cDa a= = , aD kDψ ψ= , 0.0Dd = , lD = 0.6 , 483 

CwD =10
2

, RKr = RKz =10
!2

, RSs =10
2
, Rb !"  and (a) zD = 0.75   (b) zD = 0.25 . Also 484 

shown are solutions of Mishra and Neuman [2011], modified Malama et al. [2007] and 485 

Neuman [1972].  486 

Figure 3: Dimensionless leaky-unconfined aquifer drawdown versus dimensionless time at 487 

rD = 0.5  and zD = 0.75  for 1DK = , Ssb / Sy =10
!3

, 10kD cDa a= = , !aD =!kD , dD = 0.0 , 488 

lD = 0.6 , CwD =10
2
, RSs =10

2
, Rb !"  when RKz  varies and (a) RKr =1.0!10

"6
  (b) 489 

RKr =1.0 . Also shown is solution of Mishra and Neuman [2011]. 490 

Figure 4: Dimensionless leaky-unconfined aquifer drawdown versus dimensionless time at 491 

rD = 0.5  and zD = 0.75  for 1DK = , Ssb / Sy =10
!3

, 10kD cDa a= = , !aD =!kD , dD = 0.0 , 492 

lD = 0.6 , CwD =10
2

,  RSs =10
2
, RKz = 0.1  and  Rb !"  when RKr  varies. Also shown 493 

is solution of Mishra and Neuman [2011]. 494 

Figure 5: Dimensionless leaky-unconfined aquifer drawdown versus dimensionless time at 495 

rD = 0.5  and zD = 0.75  for 1DK = , Ssb / Sy =10
!3

, 10kD cDa a= = , !aD =!kD , dD = 0.0 , 496 

lD = 0.6 , CwD =10
2

,  Rb !"  when RKr = RKz  varies and RSs =1.0 . Also shown is 497 

solution of Mishra and Neuman [2011]. 498 



Figure 6: Dimensionless leaky-unconfined aquifer drawdown versus dimensionless time at 499 

rD = 0.5  and zD = 0.75  for 1DK = , Ssb / Sy =10
!3

, 10kD cDa a= = , !aD =!kD , dD = 0.0 , 500 

lD = 0.6 , CwD =10
2

 , RSs =100 , RKr = RKz =10
!2

 when Rb = b1 / b  varies. Also shown 501 

is solution of Mishra and Neuman [2011]. 502 

Figure 7: Dimensionless aquitard drawdown versus dimensionless time at rD = 0.5  and 503 

zD = !0.25  for 1DK = , Ssb / Sy =10
!3

, 10kD cDa a= = , !aD =!kD , dD = 0.0 , lD = 0.6 , 504 

RSs =100 , RKr = RKz =10
!2

 when CwD  the dimensionless wellbore storage varies.  505 

Figure 8: Dimensionless aquitard drawdown versus dimensionless time at rD = 0.5  and 506 

zD = !0.25  for 1DK = , Ssb / Sy =10
!3

, !aD =!kD , CwD =10
2

, dD = 0.0 , lD = 0.6 , 507 

RSs =100 , RKr = RKz =10
!2

 when acD =1 and akD  varies.  508 

Figure 9: Dimensionless aquitard drawdown versus dimensionless time at rD = 0.5  and 509 

zD = !0.25  for 1DK = , Ssb / Sy =10
!3

, !aD =!kD , CwD =10
2

, dD = 0.0 , lD = 0.6 , 510 

RSs =100 , RKr = RKz =10
!2

 when akD =10
3
 and acD  varies.  511 
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Figure 4 531 
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Mishra and Neuman [2011]
 RKz = RKr = 10-4 
 RKD = RKr = 10-3 
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Figure 5 533 
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Mishra and Neuman [2011]
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Figure 6 535 
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Figure 7 537 
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Figure 8 539 
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 Malama et al. [2007] 
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Figure 9 541 
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