LA-UR-11-10219

Approved for public release; distribution is unlimited.

Title:	Redox Chemistry of Multivalent Metals and Actinides in the WIPP
Author(s):	Reed, Donald T.
Intended for:	DOE ReCosy, 2011-03-21/2011-03-24 (Balaruc-les-Baines, , France) Waste management Reading Room RCRA

Disclaimer: Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance of this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Departmentof Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Redox Chemistry of Multivalent Metals and Actinides in the WIPP

Donald T. Reed

M. Borkowski, J. F. Lucchini, M. K. Richmann, H. Khaing, J. S. Swanson, and D. A Ams

Earth and Environmental Sciences Division Los Alamos National Laboratory, Carlsbad Operations

3rd Annual ReCosy Balaruc-les-Baines , France, March 21-24, 2010

LA-UR 10-08243

UNCLASSIFIED

Overview

- General Comments
 - Update on US Repository Programs
 - Redox in Groundwater
 - Actinide Speciation in the Subsurface
- Redox Approach in the WIPP
 - Actinides of Importance
 - Oxidation-state Distribution Assumptions
- Redox Bio-geochemistry of Multivalent Actinides
 - Fe-Pu Interaction Studies
 - Bio-effects on Redox
- Summary of Observations
- Acknowledgements

UNCLASSIFIED

Slide 1

Current DOE Approach

TRU Repository (WIPP)

Reliance on active controls (MgO and Fe)
Prevalence of anoxic/reducing environment
Self-sealing geologic isolation

DOE Site Subsurface Contamination
Containment <u>not</u> remediation
Reliance on natural attenuation processes
Generally, little/no TRU mobility observed

HLW and Spent Fuel ?

UNCLASSIFIED

Slide 2

Repository Science: Actinide Chemistry

Key Concepts for the Geologic Disposal of Nuclear Waste •Geologic isolation •Favorable thermodynamics •Reducing conditions •Reactive redox control •Cost is an issue

> Microbial activity can influence both the nearfield and far-field in repository performance

UNCLASSIFIED

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

HLW?

Status of US Nuclear Repository Programs

- WIPP TRU repository work continues to move forward
 - 2nd recertification received in November 2010
 - Re-configuration of conceptual model is in progress (for 2014)
- Blue Ribbon Panel to establish a path forward on Highlevel nuclear waste is in progress
 - Yucca Mountain Project (YMP) will probably not go forward
 - All repository approaches under consideration
 - Report/recommendations expected in June 2011
- State of New Mexico (where WIPP is located) has sent a letter of encouragement to the Blue Ribbon Panel to consider Southeastern NM for additional and expanded nuclear repository missions in Salt

UNCLASSIFIED

Slide 4

Possible Oxidation States for Actinides

Most likely actinide oxidation states as a function of microbial activity and the corresponding biogeochemical zone

Biogeochemical	Actinide							
	89	90	91	92	93	94	95	96
	Ac	Th	Pa	U	Np	Pu	Am	Cm
	3	(3)	(3)	3	3	3	3	3
Oxidation States		4	4	4	4	4	4	4
Observed under			5	5	5	5	5	5?
all Conditions				6	6	6	6	6?
					7	(7)	7?	
			↓					
Oxic Conditions in	3	4	5	6	5	4	3	3
Groundwater						5	(5)	
	\downarrow							
Microbially Active	3	4	4	4	4	3	3	3
Suboxic Zone				6	5	4		
\downarrow								
Microbially Active	3	4	4	4	(3)	3	3	3
Anaerobic Zone					4	4		
() = unstable, ? = claimed but unsubstantiated, bold = most stable								

UNCLASSIFIED

Effect of Groundwater Interaction on Actinide Oxidation States

Prevalent Oxidation States in Groundwater								
Redox condition	U Np Pu Am							
Oxic	6	5	5, 6? 4	3, 5?				
Suboxic	6 4	4	4 3	3				
Anoxic	4	4	4 3	3				

UNCLASSIFIED

Slide 6

Redox distribution of plutonium is critical and focused on lower oxidation states

- Reduced/Reactive Fe/metals
- Bioreduction
- Organic
 Interactions (when present)

Prevalent Oxidation States in Groundwater							
Redox condition	U	Np	Pu	Am			
Oxic	6	5	5, 6? 4	3, 5?			
Suboxic	6 4	4	4 3	3			
Anoxic	4	4	4 3	3			

UNCLASSIFIED

Slide 7

Actinide Oxidation-State Distribution in the WIPP

Table 2. Actinide Oxidation State Distribution Assumed in the WIPP Performance								
Assessment Model								
Ovidation State								
Actinide		Uxidat	ion State		Speciation Data used in Model			
	III	IV	V	VI	Predictions			
Thorium		100%			Thorium			
Uranium		50%		50%	Thorium for U(IV), 1 mM fixed value for U(VI)			
Neptunium		50%	50%		Thorium for Np(IV), neptunium for Np(V)			
Plutonium	50%	50%			Americium/neodymium for Pu(III) and thorium for Pu(IV)			
Americium	100%				Americium/neodymium			
Curium	100%				Americium/neodymium			

UNCLASSIFIED

Slide 8

Oxidation-specific Actinide Concentrations

Table	3.	Oxidation-state-specific solubility of actinides in
		Salado (high magnesium) and Castile (high sodium
		chloride) brines

	Brine	PAVT 1999	PABC 2004	PABC 2009
An(III)	Salado	1.2×10^{-7}	3.9×10^{-7}	$1.7 \mathrm{x} 10^{-6}$
An(III)	Castile	1.3x10 ⁻⁸	2.9×10^{-7}	1.5×10^{-6}
An(IV)	Salado	1.3x10 ⁻⁸	5.6x10 ⁻⁸	5.6x10 ⁻⁸
An(IV)	Castile	4.1x10 ⁻⁹	6.8x10 ⁻⁸	6.8x10 ⁻⁸

UNCLASSIFIED

Slide 9

What are the key interactions that define the oxidation state of actinides in the subsurface? **Reduced/Reactive Fe/metals** - Bioreduction - Organic Interactions Can the DOE make the case for natural attenuation as a

containment strategy for actinides in the subsurface?

Can the DOE select or impose reducing conditions that will immobilize actinides in a geologic repository?

UNCLASSIFIED

Subsurface Redox Distribution of Plutonium

Apparent disconnect between modeling and experiment

UNCLASSIFIED

Slide 11

Pu Oxidation-State Distribution Experiments in Brine

General Conditions

- Variable pH (5-10), brine composition and activity
- Presence and absence of carbonate
- Anoxic with H₂ overpressure or N₂ atmosphere
- Long-term 2-5 year experiments (some ongoing
- Fe, Fe²⁺, Fe(II) oxides
- Measurable corrosion

Differences: ANL: Pu-239, once through N₂. Fe, Fe²⁺ LANL: Pu-242, recirculating 0.1 ppm O₂, Fe, powder, oxides, Fe²⁺

UNCLASSIFIED

Slide 12

Eh-pH Diagram

Runde et. al., Low ionic strength groundwater case

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Slide 13

Plutonium Oxidation State in Brine: ACRSP Experiments (Current/ongoing)

Pu(V/VI) reduction was always observed when reduced Fe, Fe(0/II), was present

UNCLASSIFIED

Slide 14

E_h, Fe (II/III) and Pu (III/IV) in Pu-Fe Studies

Table 1. Qualitative Redox Indicators for Iron Interactions withPlutonium under Anoxic Conditions							
Experiment	Description	Oxidation State of Solid	%Fe ²⁺ in dissolved iron	E _h Measured			
PuFe23OX	ERDA-6 brine at pH ~9 with excess magnetite	~87% Pu(III), rest Pu(IV)	25	-122 mV			
PuFeCE8	ERDA-6 brine at pH ~8 with Fe coupon	~100 % Pu(III)	ND	ND			
PuFeCE10	ERDA-6 brine at pH ~ 10 with Fe coupon	~100% Pu(III)	100	ND			
PuFeP	ERDA-6 brine at pH~9 with excess Fe powder	~100% Pu(III)	100	-175 mV			
PuFeC	ERDA-6 brine at pH ~ 9 with Fe coupon	~90% Pu(III)	58	-110 mV			
PuFeG7	GWB brine at pH ~7 with Fe coupon	~ 100% Pu(III)	97	-210 mV			
Pu(III) content established by XANES analysis of solids							
Fe(II) content established by analysis using Ferrozine [xx]							
Eh measurement made using an orion xxx electrode							

UNCLASSIFIED

Slide 15

In-beam Oxidation of Pu(III) at the APS

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Slide 16

Pu(V/VI) Reduction by Lower-Valent Fe in Brine

Microbial Interactions lead to Multiple Effects on Actinide Speciation that Affect Mobility

UNCLASSIFIED

Slide 18

Linkage between Microbial Processes and Actinide Reduction

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Slide 19

Bioreduction of Higher-Valent Plutonium

- Toxicity is low
- Metal reducing bacteria, under anaerobic conditions, generate Pu(III) when a solubilization mechanism exists
- Essentially no work in this area with halotolerant bacteria and *Archaea*

UNCLASSIFIED

Fate of Solubilized Pu(V/VI) in Microbially-Active Anaerobic Systems

- Pu (III) formation is observed
 - confirmed in solution by spectroscopy
 - confirmed in bio-associated material by XANES
- Shewanella can grow on Pu(IV) in the absence of Fe?
- Pu(III) is oxidized by most chelating agents
- Long-term stability of Pu(III) is unknown but it is not expected

UNCLASSIFIED

Slide 21

Indigenous Microbes in Salt/Brine Repository

Selection of Metal-Reducing Halo-tolerant Microbes

- Sampling of salt, groundwater and surface highionic strength ponds
- Long-term incubations (~6 months) to up-select microorganisms with specific functional characteristics
 - Facultative growth properties
 - Metal reduction Fe(III) reduction
 - Biodegradation of organics
 - Sulfate reduction
 - Methanogenesis
- Identify/isolate microorganisms
- Perform biodegradation or bioreduction experiments

UNCLASSIFIED

Slide 23

SEM image of mixed enrichment culture

Fe³⁺ Reduction by *Halophiles* and *Archaea*

Fe³⁺ Reduction with time

UNCLASSIFIED

Slide 24

Reduction of Np(V) by halo-tolerant micro-organisms

- Organisms upselected from brine (GW) using and Fe³⁺ growth media
- 3 organisms selected, all *Archaea*?
- Iron and Np reduction observed

UNCLASSIFIED

Slide 25

Bio-enhanced Reduction of U(VI) by Halophiles

- Analogous to the Np Experiments
- Slow process
- U(IV) not yet confirmed, but is expected/likely product

Exp 5 Lactate

UNCLASSIFIED

Slide 26

Summary of Observations

- **US repository program is moving forward (Fukushima?)**
- **Establishing a favorable redox environment in the near-**field is critical to a successful remediation or long-term repository strategy for actinides:
 - Under reducing anoxic conditions higher-valent actinides are not expected to contribute to long-term subsurface migration
 - Lower solubility and immobility predominate
- WIPP addresses actinide redox through expert judgment that defined conservative oxidation-state distributions
 - WIPP-specific Pu-Fe interaction studies show reduced Pu oxidation states are established
 - Good success in showing that indigenous microorganisms impact

UNCLASSIFIED

Acknowledgements

LANL ACRSP Team

- Russ Patterson: DOE program manager for this research
- Carlsbad Environmental Monitoring and Research Center and operated by New Mexico State University
- Synchrotron-based studies: Advanced Photon Source facility at Argonne special thanks to Dan Olive and Jeff Terry (IIT)
- Research is supported by the Waste Isolation Pilot Plant, Department of Energy, Carlsbad Field Office and, in part, by the Office of Science ERSP

UNCLASSIFIED

Slide 28

Plutonium Speciation (Altmaier/Neck – INE)

