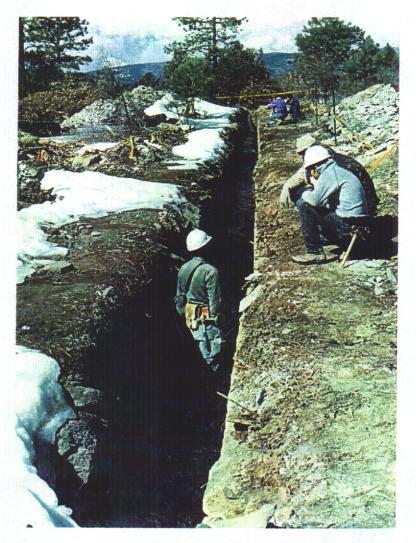
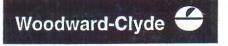
LA-UR-


Approved for public release; distribution is unlimited.

Title:	
Author(s):	
Intended for:	

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.



EVALUATION
OF THE
LOS ALAMOS
NATIONAL
LABORATORY

Prepared for

Los Alamos National Laboratory University of California Los Alamos, New Mexico 87545

24 February 1995

Woodward-Clyde Federal Services 500 12th Street Suite 100 Oakland, California 94607-4014

FINAL REPORT VOLUME II

SEISMIC HAZARDS EVALUATION OF THE LOS ALAMOS NATIONAL LABORATORY

by

Ivan Wong¹, Keith Kelson², Susan Olig¹, Tom Kolbe¹ Mark Hemphill-Haley¹, Jacqueline Bott¹, Robert Green³, Helen Kanakari³, Janet Sawyer¹, Walter Silva⁴, Cathy Stark⁴ Colleen Haraden², Clark Fenton¹, Jeffrey Unruh², Jamie Gardner⁵, Steven Reneau⁵, and Leigh House⁵

> Woodward-Clyde Federal Services 500 12th Street, Suite 100 Oakland, CA 94607

> > Prepared for the

Los Alamos National Laboratory University of California Los Alamos, New Mexico 87545

and the

U.S. Department of Energy

24 February 1995

¹Woodward-Clyde Federal Services, 500 12th Street, Suite 100, Oakland, CA 94607

²William Lettis & Associates, 1000 Broadway, Suite 612, Oakland, CA 94607

³Woodward-Clyde Consultants, 500 12th Street, Suite 100, Oakland, CA 94607

⁴Pacific Engineering & Analysis, 311 Pomona Avenue, El Cerrito, CA 94530

⁵Los Alamos National Laboratory, University of California, Los Alamos, NM 87545

LIST OF APPENDICES

Appendix A	Historical Earthquake Catalogue for the LANL Region
Appendix B	Historical Earthquake Catalogue for the Rio Grande Rift Used in Recurrence
Appendix C	Historical Earthquake Catalogue for the Colorado Plateau Transition Zone
	Used in Recurrence
Appendix D	Historical Earthquake Catalogue for the Southern Rocky Mountains Used in
	Recurrence
Appendix E	Historical Earthquake Catalogue for the Great Plains Used in Recurrence
Appendix F	Earthquake Recurrence Parameters
Appendix G	Lithologic Descriptions of Deposits Exposed in Trenches
Appendix H	Descriptions of Selected Soil Profiles in Trenches
Appendix I	Relocated Earthquakes in the LANL Region, 1973-1992
Appendix J	Core Hole Field Logs
Appendix K	Subsurface Geological and Geotechnical Data in the LANL Region
Appendix L	Empirical Attenuation Relationships
Appendix M	Shear Modulus Reduction and Damping Curves
Appendix N	Stochastic Attenuation Response Spectra - Variation of Parameters
Appendix O	Stochastic Attenuation Relationships for LANL Sites
Appendix P	Evaluation of Site Effects at the Nevada Test Site

APPENDIX A HISTORICAL EARTHQUAKE CATALOGUE FOR THE LANL REGION

EARTHQUAKE CATALOGUE EXPLANATION AND ABBREVIATIONS

Cat. No. Catalogue number Date Year, month and day Origin time in Greenwich Mean Time - hour, minute Time (GMT) and second Latitude in degrees Latitude Longitude Longitude in degrees Depth Depth in km Mag 1 or Mag 2 Magnitudes (After magnitude value, the scale and magnitude data source are specified) MD, MC Coda duration magnitude ML Local magnitude Mb Body-wave magnitude Intensity magnitude MI Magnitude data sources AS Sanford, 1976 CA Cash et al., 1978 CN Newton et al., 1976 GLD Golden, Colorado GS, NEIC National Earthquake Information Center, USGS LA, NM Los Alamos Seismographic Network **NMI** New Mexico Institute of Mines and Technology OL Olsen, 1979 SF Sanford (1994, written communication) SNM Socorro, New Mexico WC Woodward-Clyde Inten (MM) Modified Mercalli maximum intensity Dist (km) Source-to-site distance in km Data Srce Data source for earthquake location and origin time AS Sanford, 1978 CA Cash et al., 1978 CN Newton et al., 1976 DG Decade of North American Geology GS National Earthquake Information Center (NEIC), USGS Jaksha and Locke, 1978 and Jaksha et al., 1978 JA LA, NM Los Alamos Seismographic Network PE **NEIC Preliminary Determination of Epicenters** SA, ST Stover et al., 1988 Jaksha, 1985 SJ WC Woodward-Clyde No. Arr Number of P- and S-wave arrival times Az Gap Azimuth gap in seismographic coverage 0 Quality of location (see data sources for description) Std Err Standard error in km Horiz Horizontal Vertical Vert

1351 Events Selected Searched: 25 OCT 1994 File: CMBEDT9.RST By: JDJB

SOURCE DATABASE:

Root name: cmbedt8

Created: 25 OCT 1994 08:48

By: jdjb

Hypoctr rec: 1364
Comment rec: 131

Time span: 1873 08 03 05:00:00.00 -> 1991 02 04 05:13:00.00

SEARCH PARAMETERS:

Time: 0001 JAN 01 -> 2100 DEC 31 Mag 1: -9.99 -> 9.99 Type: All Lat: 35.000 -> 36.750 Mag 2: -9.99 -> 9.99 Type: None Long: -107.250 -> -105.250 Intensity: 0 -> 12 Mode: 0

Depth: .00 -> 999.00 Search Mode: DATABASE

CENTER FOR DISTANCE CALC: Lat 35.83 Long -106.35

Cat No.	Date year-mo-day	Time (GMT)	Lat	Long	Depth (km)	Mag1	Mag2	Inten				Az Gap	Q	Std-Err Horiz Vert
		-========	=======			-=======	=-22222222		-			•	=-	
1	1873 AUG 03	05:00:00.00	35.700	-105.900	.00			III	43	SA			G	
2	1893 JUL 12	13:40:00.00	35.000	-106.400	.00			٧	92	ST				
		EQH THREE SH	OCKS SHO	OK EVERY	HOUSE IN	ALBUQUERQU	E.							
		CLOCKS STOPPE	D. A CH	IANDELIER	SWUNG FO	R 10 MINUTE	s.							
		RIO GRANDE RI	FT ZONE.	REGION T	O THE N	STRONGLY SH	AKEN.							
3	1906 SEP 15	10:30:00.00	35.500	-106.000	.00				48	SA		·	Н	
4	1918 MAY 28	11:30:00.00	35.450	-106.100	.00	5.25MLOL		VII	48	AS				
		CERRILLOS. MI	NOR DAMA	GE IN SAN	ITA FE COL	JNTY,								
		20 MILES (33	KM) TO N	IORTHEAST.										
		NO ORIGINAL	DATA SOL	IRCE = EQ	Н									
		NON-INSTRUMEN	ITAL											
5	1921 JUL 31	03:55:00.00	36.000	-107.000	.00			IV	62	SA			G	
6	1930 MAR 23	18:56:00.00		-106.600	.00			IV	84	SA	• • •	- • -	F	
7	1930 DEC 03	21:36:00.00		-106.400	.00	4.50MLAS	• • • • • • • •	VI	92	SA	• • •	•		
8	1930 DEC 04	22:30:00.00		-106.600	.00	• • • • • • • • • • • • • • • • • • • •		111	84	SA	• • •	• • •	F	• • • • • • • • • • • • • • • • • • • •
9	1931 JAN 28	04:28:00.00		-106.600	.00		• • • • • • • •	III	84	SA			F	*****
10	1931 FEB 03	23:45:00.00	35.100	-106.450	.00	• • • • • • • • • • • • • • • • • • • •		٧	81	AS	• • •	• • •	•	• • • • • • • • • • • • • • • • • • • •
		ALBUQUERQUE.												
11	1931 FEB 05	04:48:00.00		-106,600		4.50MLAS	• • • • • • • • • • • • • • • • • • • •	VI	84	SA	• • •	• • •	•	• • • • • • • • • • • • • • • • • • • •
		EQH PEOPLE L				NEAR PANIC	•							
12	1936 SEP 09	12:55:00.00		-106.600	.00	• • • • • • • • • • • • • • • • • • • •	******	IV	84	SA	• • •			
13	1936 SEP 09	12:57:00.00		-106.600	.00	• • • • • • • • • • • • • • • • • • • •	******	11	84	SA			F	• • • • • • • • • • • • • • • • • • • •
14	1936 SEP 11	23:54:00.00		-106.600	.00	• • • • • • • • • • • • • • • • • • • •	•••••	111	84	SA		• • •	F	• • • • • • • • • • • • • • • • • • • •
15	1936 SEP 12	00:00:00.00		-106.600	.00	• • • • • • • •	• • • • • • • • • • • • • • • • • • • •	111	84	SA	•••	• • •		
16	1936 SEP 12	00:05:00.00		-106.600	.00	•••••		111	84	SA	•••	• • •		
17	1938 APR 15	21:00:00.00		-106.600	.00	• • • • • • • • •		111	84	SA	•••			• • • • • • • • • • • • • • • • • • • •
18	1938 APR 16	08:15:00.00		-106.600	.00			111	84	SA	• • •		F	*****
19	1947 NOV 06	16:50:00.00		-106.400	.00	4.25MLAS		VI,	92	AS	• • •	• • •	•	*****
		SL SAN ANTON ZAMORA. SOUTH				: CRACKED A	Τ							
20	1952 AUG 03	20:42:00.00		-106.000	.00			٧	R 1	AS				
21	1952 AUG 17	10:45:00.00		-106.200		4.00MLAS		v	39	AS		• • • •	•	•••••
						S IN HOME.		•	٠,	7.5	•••	•••	•	
		AS FELT IN E			- 10 MALI	en tu unuri								

Cat No.	Date year-mo-day	Time (GMT) hr-min-sec		•	(km)	Mag1	-	(MM)	(km)	Srce	Arr	Az Q Gap	Horiz Vert
		17:00:00.00 ALBUQUERQUE.	35.200	-106.700	.00	******							
		AS FELT ALONG ALBUQUERQUE TO	O BERNAL	ILLO NM.		·							
23	1954 NOV 03	20:39:00.00 EQH MINOR CR		-106.700 ORTED. A		AT ALBUQUER	QUE,	٧.	87	AS	•••	• • • •	*****
24	1955 AUG 12	SANDOVAL AND : 16:20:00.00		UEBLO. -106.000	.00	•••••		٧	35	SA			
		EQH SANTA FE											
25	1956 APR 26	03:30:00.00 SANDIA MTS.	35.100	-106.300	1.00	4.00		٧	81	AS	•••		
		IN TIJERAS CAL			I KIGIII ENL	D ILW							
26	1962 JUN 14			-106.867	10.00	2.80ML			54	AS			
27	1963 NOV 25	12:52:33.80			.00				118		• • •		*****
28	1965 DEC 29	00:05:24.00 NE OF ESTANCIA		-105.780	.00	3.10ML		••	103	AS	• • • •	••••	*****
29	1966 AUG 12	09:18:53.90				2.40MnTGG			115	SA	• • •		
		005 P AND/OR			IN HYPOCE	NTER SOLUTIO	ON						
30	1969 JUL 04	ORIGINAL DATA		- 106.100	10.00	2.80MLNMI	4 40mbNEIC	IV	37	82			
-	1,0, 102 04	AS FELT MOST					7.70HDHL10	•••	٠,	J.	•••	••••	
		MAXIMUM INTEN	SITY (M.	M.) IV	C)							
		HYPOCENTER SOI											
		OO9 P AND/OR I			IN HYPOCE	NTER SOLUTIO	ON .						
		MAGNITUDE (FRA			AVF)=4 . 4ſ) AUTHORITY							
31	1970 MAY 22	09:43:35.60		•		1.50ML			38	AS			
32	1970 JUL 31	11:57:31.00	35.400	-106.500	.00	2.70ML		• •	50	AS			
33	1970 AUG 07			-105.890	.00		• • • • • • • • • • • • • • • • • • • •	••	63	AS			
34	1970 NOV 28			-106.610	9.00	3.80MLGS	4.50mbNEIC	IV	84	SA	• • •	••••	• • • • • • • • • • • • • • • • • • • •
		REPORTED DAMAI		AIS USED	IN HYDOCE	NTER SOLUTION	אר						
		ORIGINAL DATA			TH HIFOCE	HIEK JOEGIT	214						
		LOCAL MAGNITUE	DE = 3.8	O SCALE	=ML AUT	HORITY= NOS	S						
35		05:35:21.70	36.300	-106.200		3.20ML	•••••	• •	54	AS	•••		
36	1971 JAN 04	07:39:06.70		-106.600	9.00	3.80MLNMI	4.70mbNEIC	VI	84	SA	• • •	••••	•••••
		013 P AND/OR F		ALC HICED	IN HADULE	MIED COLUTIO	NI						
		ORIGINAL DATA			IN HITOCE	MIEK SOLOTIN	JN .						
37	1971 JAN 04	13:15:00.00		-106.700	.00			٧	97	SA		F	
38	1971 FEB 18	11:28:13.70	36.220	-105.710	5.00	2.80MLNMI	3.70mbNEIC	111	72	SA		C	
39		11:36:52.70		-105.560		2.70MLNMI	4.00mbNEIC	• •	72	SA	•••	c	*****
40 41		03:55:13.50 22:12:36.70		-106.600 -105.670		3.00ML	3.80mbNEIC	••	57	AS	•••	• • • •.	•••••
42	1971 DEC 06	05:18:13.70		-106.320		2.30ML 3.20ML GS	4.20mbNEIC	· · ·	114 26	AS Sa	•••	B	
43	1971 DEC 06	05:22:50.70		-106.320		2.80ML			26	AS	• • • •		******
44		05:38:08.90		-106.320	.00	2.50ML			26	AS			*****
45		06:14:10.30		-106.320		3.10ML			26	AS			
46 47	1971 DEC 06	11:20:00.00		-106.300	.00		•••••	III	30	SA	• • •	F	•••••
47 48	1971 DEC 06	22:40:00.00 00:00:00.00		-106.300 -106.300	.00 .00			III	30 30	SA SA	• • •	F	
49		05:45:00.00		-106.300	-00			III	30	SA	• • • •	F	
50	1971 DEC 11	02:28:23.60		-106.320		2.50ML		•••	26	AS		••••	*****
51		01:53:34.90		-106.160		3.40ML	2.70MLNMI	••	38	AS			•••••
52 52	1972 MAR 28			-106.160		2.70ML		••	38	AS	•••	••••	
53 54	1972 MAR 31 1972 DEC 18	20:14:20.60 04:07:36.20		-106.160 -107.160		3.20ML 2.70ML	••••••	••	38 94	AS	•••	•••	•••••
55				-106,170			4.50mbNEIC	111	86 33	AS Sa	•••	c	

Cat No.	Date year-mo-day	Time (GMT)	Lat	Long	Depth (km)	Mag1	Mag2	Inten		Data Srce		Az Q Gap	Std-Err Horiz Vert
		-======================================	- ========	-======		- ========	:= - #22222 := - #22222		-			•	
56	1973 OCT 13	03:56:02.70	35.867	-106.333	.00	1.50ML			4	CN			
57	1973 NOV 25	16:45:20.90	35.600	-105.883	20.00	1.70ML		••	49	CN			
58	1973 NOV 25	16:52:01.30	35.600	-105.883	22.00	1.70ML			49	CN	• • •	•••	
59	1973 DEC 24	15:06:11.49		-106.101	10.36	1.98MDLA		••	48	LA	10	324 D	1.6 7.6
60	1974 JAN 04	23:29:31.60		-106,900	.00	1.70ML	• • • • • • • • • • • • • • • • • • • •	••	50	CN	•••	•••	
61	1974 JAN 17	23:04:20.10		-106.193	1.54	2.07MDLA			42	WC	10	268 .	.0 .0
62	1974 JAN 17	23:06:26.30		-106.200	.00	1.30ML		• -	41	CN	•••	••••	
63 64	1974 MAR 04 1974 MAR 07	06:55:01.00 13:52:14.20		-106.233 -106.600	.00 .00	1.70ML 1.30ML		• •	37 57	CN CN		••••	• • • • • • • • • • • • • • • • • • • •
65	1974 MAR 14	13:50:39.11		-107.213	10.00	1.15MDLA		••	86	LA	···	340 D	5.3 299.8
66	1974 MAR 23	10:44:15.00		-107.083	32.00	2.40ML		••	99	CN			3.3 277.0
67	1974 APR 02	11:06:53.73		-106.194	2.53	1.65MDLA		•••	45	WC	11	267 .	.0 .0
68	1974 APR 05	21:02:11.20		-107.217	25.00	1.30ML		••	85	CN			
69	1974 APR 08	16:13:53.50	35,090	-106.799	.00	1.30MDGS			92	GS	0	0.	.0 .0
70	1974 APR 20	20:43:01.80	35.933	-106.150	8.00	1.30ML			21	CN	• • •		
71	1974 APR 30	02:47:20.70	36.750	-105.783	.00	1.80ML		• •	114	CN			
72	1974 MAY 25	20:09:16.10	35.750	-106.417	.00	1.30ML			11	CN			
73	1974 JUN 05	18:18:08.90	36.267	-106.667	.00	1.70ML		••	56	CN	• • •		
74	1974 JUN 20	17:31:16.90		-105.883	.00	1.50ML	• • • • • • •		107	CN	• • •	• • • •	• • • • • • • • • • • • • • • • • • • •
75	1974 JUN 22	09:53:42.80		-106.700	.00	2.40ML		••	89	CN	• • •	••••	• • • • • • • • • • • • • • • • • • • •
76	1974 OCT 15	12:47:38.80		-107.083	.00	2.60ML	*****	••	93	CN	• • •	••••	
77 70	1974 OCT 18	04:30:57.30		-106.817	.00	2.30ML	• • • • • • • • • • • • • • • • • • • •	••	93	CN	• • •	••••	• • • • • • • • • • • • • • • • • • • •
78 79	1974 NOV 05 1974 NOV 07	19:33:18.00 03:07:36.00		-106.900 -106.750	.00 .00	1.30ML 1.10ML			61 60	CN CN	• • • •	••••	
80	1974 NOV 07	01:11:54.00		-105.750	.00	1.70ML		••	85	CN	•••	••••	
81	1974 DEC 29	12:11:22.10		-106,700	.00	1.50ML		••	96	CN		••••	
82	1975 JAN 03	12:33:13.00		-105.281	.00	1.70MDGS		••	115	GS	0	0.	.0 .0
83	1975 FEB 09	09:12:35.70		-106.233	26.00	2.00ML		••	41	CN			
84	1975 FEB 10	00:28:05.70		-106.217	32.00	1.30ML			46	CN			
85	1975 MAR 13	11:01:05.30		-106.917	26.00	1.70ML	******	••	96	CN			
86	1975 APR 08	15:12:10.60	35,826	-106.256	27.40	.80MDLA			8	LA	5	218 D	20.3 10.6
87	1975 MAY 09	15:44:27.90	36.267	-106.467	.00	.80ML	• • • • • • •	• •	50	CN			
88	1975 MAY 21	04:46:59.00	36.746	-106.662	.00	2.00MDGS			105	GS	0	Ο.	.0 .0
89	1975 MAY 28	09:21:38.80	35.767	-106.533	.00	.70ML			18	CN	• • •		
90	1975 AUG 25	12:21:14.60		-105.783	17.00	.80ML			52	CN		• • • •	
91	1975 AUG 29	18:01:50.80		-106.883	8.00	.80ML	•••••	••	64	CN	•••	•••	• • • • • • • • • • • • • • • • • • • •
92	1975 SEP 04	06:25:24.10		-106.450	.00	1.50ML	• • • • • • •	• •	69	CN	•••	••••	
93	1975 SEP 06			-106.175	3.85	2.30MLCN	*******	••	43	WC	10	268 .	.0 .0
94 95	1975 SEP 07 1975 SEP 07	13:43:26.47		-106.261 -106.242	4.93 8.07	1.30MLCN 1.40MLCN	•••••	••	42 46	LA	8	306 D	2.7 5.3
96	1975 SEP 10	01:01:48.20		-105.667	.00	2.00ML	*******	••	118	LA CN	9	308 D	2.9 6.8
97	1975 SEP 15	07:19:53.97		-106.167	.69	1.10MLCN		••	45	LA	7	304 D	1.8 44.9
98	1975 SEP 18	01:48:17.08		-106.856	15.85	1.11MDLA		••	52	LA	8	322 C	1.7 4.9
99	1975 SEP 25	03:39:02.53		-106.202	9.57	1.00MLCN		• • • • • • • • • • • • • • • • • • • •	46.		8	312 D	2.6 1.7
100	1975 SEP 25	15:28:50.20	36.000	-106.867	38.00	.50ML		••	50	CN			
101	1975 SEP 27	12:07:20.41	36.045	-106.890	6.76	.55MDLA			54	LA		318 C	1.1 1.4
102	1975 SEP 29	11:09:41.90	36.037	-106.862	7.39	3.04MDLA			52	LA	7	315 D	8.8 2.4
103	1975 SEP 29	11:14:20.52		-106.877	6.31	.69MDLA			53	LA	9	31 7 D	2.9 7.6
104	1975 SEP 29	11:17:07.27		-106.862	7.96	1.57MDLA	******			LA	12	315 C	1.1 1.2
105	1975 SEP 29	12:53:45.15		-106.876	10.00	.72MDLA			53	LA	9	317 D	1.4 145.0
106	1975 SEP 29	13:17:18.99		-106.850	7.24	1.97MDLA	• • • • • • • • • • • • • • • • • • • •	••	51	LA	11	312 C	1.1 1.4
107 108	1975 SEP 29 1975 SEP 29	14:19:41.70		-106.885	1.95	.72MDLA	• • • • • • • • • • • • • • • • • • • •	••	55	LA	8	317 D	2.0 18.4
109	1975 SEP 29	14:47:02.01 17:29:14.97		-106.847 -106.882	6.18	.77MDLA		••	51	LA	9	312 C	1.3 1.5
110	1975 DEC 03	13:41:32.10		-106.002	9.60 2.22	.60MDLA 1.44MDLA		• •	53 14	LA	9	318 D	3.1 2.2
111	1976 JAN 01	23:44:28.20		-106.178	7.39	1.44MDLA		•••	16 55	WC LA	9 13	166 . 318 C	.0 .0
112	1976 JAN 12	22:50:29.00		-106.217	.00	.70		••	71	CA		318 6	1.5 1.9
113	1976 JAN 22	20:12:46.14		-106.546	10.00	1.30MDLA		••	68	LA	13	280 D	.9 101.1
114	1976 MAR 07			-106.133	.00	.70		•••	73	CA			*****
												-	

Cat No.		Time (GMT) hr-min-sec	Lat Long	Depth (km)	Mag1	Mag2	(MM)	(km)	Srce	Arr	Az (Horiz	
115		18:30:04.00 MAGNITUDE LES	35.090 -106.110	.00	.40								
116	1976 MAR 27	06:54:28.00 MAGNITUDE LES	35.130 -106.430	.00	.40		••	78	AL				
117	1976 APR 01	09:26:16.00 MAGNITUDE LES	35.030 -106.690	.00	.40		••	94	AL	• • •			
118	1976 APR 03	05:56:56.90	35.233 -106.117	.00	.70	•••••		7 0	CA		•••		
11 9	1976 APR 10	22:39:33.49	36.288 -106.148	4.60	1.67MDLA			54	WC	15	139	0	-0
120	1976 APR 11	07:44:01.96	36.293 -106.152	4.05	1.94MDLA	• • • • • • •		54	WC	15	172	0	.0
121	1976 APR 11	07:45:31.28	36.286 -106.149	5.39	1.35MDLA	• • • • • • • • •	• •	54	WC	14	172		
122	1976 APR 17	02:40:33.41	36.050 -107.091	16.64	.51MDLA	• • • • • • • •	• •	71	LA	8	334 [
123	1976 APR 17	06:46:21.10	36.460 -106.286	10.00	96MDLA	• • • • • • • • • • • • • • • • • • • •	• •	70	LA	12	322 [247.6
124	1976 APR 24	08:14:18.92	35.682 -105.672	16.00	.72MDLA	• • • • • • • • • • • • • • • • • • • •		63	LA	10	301		
125	1976 APR 24	08:24:42.61	35.704 -105.750	11.22	1.47MDLA		• •	56	LA	10	271 (
126	1976 MAY 02	00:32:35.71	36.402 -106.762	9.41	2.69MDLA	• • • • • • • •	• •	73	WC	9	201		
127 128	1976 MAY 10 1976 MAY 15	07:55:37.00	35.500 -107.250 35.610 -106.930	.00	.70 1.00	•••••	• •	89	CA	•••	•••		• • • • •
120	1970 MMI 13	11:23:27.00 MAGNITUDE BET	WEEN 0.5 AND 1.5	.00	1.00		••	58	JA	•••	•••	• ••••	••••
129	1976 MAY 22	10:50:38.86	36.338 -105.782	10.01	.89MDLA			76	WC	13	200	0	.0
130	1976 MAY 22	14:04:58.64	36.345 -105.782	12.21	1.04MDLA			77	WC	12	200	0	.0
131	1976 MAY 24	13:36:02.00 MAGNITUDE LES	35.460 -107.090 SS THAN 0.5	.00	.40	*******	• •	79	JA	• • •	•••		••••
132	1976 MAY 26	01:32:34.00	35.430 -107.090	.00	-40			80	JA				
		MAGNITUDE LES	S THAN 0.5										
133	1976 MAY 26	07:10:39.55	36.709 -105.294	.00	.80MDGS			136	GS	0	0	0	.0
134	1976 JUN 01	16:39:58.73	36.522 -106.211	6.98	1.12MDLA			78	WC	8	194	0	.0
135	1976 JUN 08	03:57:17.45	36.116 -106.257	8.80	.80 CA			33	LA	5	315 (3	.4
136	1976 JUN 26	12:55:39.04	36.168 -106.207	2.55	2.00 CA		• •	40	WC	11	244	0	.0
137	1976 JUN 29	01:31:35.25	36.174 -106.239	2.53	1.50 CA			39	WC	7	244	0	.0
138	1976 JUL 05	12:39:19.42	36.157 -106.236	3.23	2.30 CA			38	WC	11	121	0	.0
139	1976 JUL 06	12:48:44.66	36.161 -106.227	3.11	2.00 CA		• •	38	MC	12	242	0	.0
140	1976 JUL 12	21:44:26.90	35.817 -107.083	.00	.80			66	CA	• • •			
141	1976 JUL 26	04:00:20.00	35.590 -106.890	.00	.40	•••••	••	56	JA	• • •		• ••••	• • • • •
1/2	107/ 41/0 00	MAGNITUDE LES			70								
142	1976 AUG 08	18:05:47.90	36.750 -106.517	.00	.70		• •	103		•••	• • •	• • • • • • •	• • • • •
143	1976 AUG 23	12:33:48.00	35.120 -106.430	.00	.40	•••••	• •	79	JA	• • •	•••	• • • • • •	• • • • •
144	1976 SEP 01	MAGNITUDE LES		00	80			400					
	1976 SEP 04		35.267 -107.217 35.020 -105.880	.00	.80	******	••	100		• • •		• • • • • •	
143	1910 SEP U4	06:41:41.00 MAGNITUDE LES		.00	.40		• •	99	JA	• • •	•••		
146	1976 SEP 12	18:59:02.60	35.400 -107.250	.00	1.80			0/					
147	1976 SEP 28	01:37:45.00	35.120 -107.150	.00	.40		• •	94 107	CA JA	• • • •		• • • • • •	• • • • •
	17.0 02.1 20	MAGNITUDE LES		.00	.40		••	107	JA	•••	•••		• • • • •
148	1976 OCT 02	00:13:28.32	36.218 -106.173	13.21	.70 CA			46	LA	5	305 E	4.6	3.9
149	1976 OCT 08	12:07:44.50	36.717 -106.583	.00	1.10		• • • • • • • • • • • • • • • • • • • •	101	CA				
150	1976 OCT 08	12:44:34.00	36.733 -106.700	.00	.80		• • • • • • • • • • • • • • • • • • • •	105			••••		
151	1976 DCT 08	15:44:50.80	35.033 -106.883	.00	1.70		•••	101					
152	1976 OCT 08	19:29:19.90	36.717 -106.700	.00	.80		••	103	CA				
153	1976 OCT 08	19:29:57.80	36.633 -106.667	.00	1.50			94	CA				
154	1976 OCT 08	19:33:40.60	36.599 -106.645	25.50	1.30MDGS		••	89	GS	0	0 .		
155	1976 OCT 08	20:18:13.20	36.150 -106.833	.00	.70		• •	56	CA	• • •			
156	1976 OCT 08	20:42:34.30	36.683 -106.583	.00	.80		••	97	CA				
157	1976 OCT 08	21:08:32.40	36.633 -106.583	.00	.80	•••••		92	CA				
158	1976 OCT 09	00:50:33.00	36.750 -106.717	.00	.80		••	107	CA				
159	1976 OCT 09	01:14:01.40	36.683 -106.633	.00	.30			98	CA				
160	1976 OCT 14	07:27:11.00	35.010 -105.850	.00	1.00		••	102	JA				
		MAGNITUDE BET	WEEN 0.5 AND 1.5		•						•	,	
16 1	1976 OCT 24	07:15:29.69	36.004 -106.273	9.87	.50 CA			21	WC	6	151 .	.0	.0
162	1976 NOV 02	20:23:59.80	35.500 -106.917	.00	.70	*******		63			•••		

Cat No.	Date year-mo-day	Time (GMT) hr-min-sec	Lat	Long	Depth (km)	Mag1	Mag2	Inten (MM)	Dist (km)			Az Q Gap	Std-Err Horiz Vert
====-	-=======-	-======	=====-	======-	-=====-	-========		=-===-	-===-	-==-	-===-	-===-=	=======
163	1976 NOV 03			-107.200	.00	.40		••	96	JA	• • •		
164	1976 NOV 03	MAGNITUDE LES 21:05:00.36		-107,230	8.54	1.09MDLA			07	WC	13	184 .	.0 .0
165	1976 NOV 09	13:24:50.32		-107.128	11.55	.52MDLA		• •	93	WC	12	200 .	.0 .0 .0 .0
166	1976 NOV 11	10:00:08.82		-106.142	6.27	1.00 CA			27	WC	11	104 .	.0 .0
167	1976 NOV 24	02:13:58.00		-107.090	.00	.40			80	JA			
	.,,= =.	MAGNITUDE LES			• • •								,
168	1976 DEC 10	14:42:08.43	36.709	-106.721	7.57	1.36MDLA			103	WC	20	228 .	.0 .0
169	1976 DEC 17	10:41:50.16	36.011	-106.136	4.93	1.40 CA			28	WC	10	108 .	.0 .0
170	1976 DEC 31	07:53:58.37	36.674	-106.685	7.15	2.11MDLA			98	WC	13	222 .	.0 .0
171	1977 JAN 03	01:02:36.50	36.450	-105.333	.00	1.50			115	CA			
172	1977 JAN 05	03:19:15.60	35.067	-106.617	.00	.50			88	CA	• • •		
173	1977 JAN 09	13:03:00.58		-106.188	.91	1.30 CA	• • • • • • • • •	••	21	LA	6	148 C	1.6 31.0
174	1977 JAN 20	23:26:47.43		-106.295	5,48	1.40MDLA		••	49	WC	12	156 .	
175	1977 FEB 01	12:44:37.90		-106.683	.00	.80		••	92	CA	• • •		
176	1977 FEB 17 1977 MAR 02	13:48:40.60		-106.633	.00	.70		••	89	CA	• • •	470	
177 178	1977 MAR 02	08:54:10.97 13:35:46.19		-106.176 -106.134	6.95 8.49	.30 CA	• • • • • • • • • • • • • • • • • • • •	••	30	WC	5 11	138 . 123 .	.0 .0 0. 0.
179	1977 MAR 14	19:54:04.00		-105.640	.00	.70		• •	28 86	WC JA		123 .	
180	1977 APR 03	19:26:49.25		-106.220	.12	2.32MDLA		••	36	WC	13	75 .	.0 .0
181	1977 APR 07	13:13:03.50		-107.217	.00	.70		••	88	CA			
182	1977 APR 09	11:08:02.31		-106.435	10.00	1.30 CA		•••	11	LA	6	261 D	5.4 4.1
183	1977 APR 11	16:45:35.89		-107.043	9.24	.80 CA		•••	65	WC	16	190 .	.0 .0
184	1977 APR 14	16:24:25.30		-106.767	.00	.50		•••	107	CA			
185	1977 APR 17	08:49:52.88	36.726	-106.703	7.17	1.16MDLA			104	LA	8	294 C	.8 1.0
186	1977 APR 18	03:12:54.04	36.700	-106.713	4.02	.67MDLA			102	LA	7	292 C	.9 1.5
187	1977 APR 24	11:37:38.40	36.341	-105.834	13.37	.74MDLA			73	LA	12	287 C	1.8 1.6
188	1977 APR 26	11:35:05.38	36,127	-106.182	7.97				36	WC	7	156 .	.0 .0
189	1977 APR 26	11:59:47.32	36.141	-106.216	4.66	.50 CA			37	WC	13	164 .	.0 .0
190	1977 APR 26	12:01:43.79		-106.253	.66	.86MDLA			32	WC	11	231 .	.0 .0
191	1977 APR 26	12:41:00.76		-106.218	1.51		•••••	••	37	LA	9	166 C	.4 5.8
192	1977 MAY 05	00:33:37.00		-106.833	.00	1.50	•••••	••	54	CA	• • •	••••	•••••
193	1977 MAY 13	08:19:46.30		-106.695	.00	1.00MDGS	• • • • • • • • • • • • • • • • • • • •	••	40	GS	0	ο.	.0 .0
194 195	1977 MAY 23 1977 MAY 26	06:42:00.90		-106.250	-00			• •	40	CA	• • •		•••••
196	1977 MAY 27	08:03:51.20 06:19:05.60		-106.683 -106.500	.00	.80	*******	• •	99	CA	• • •	•••	•••••
197	1977 MAY 28	23:12:00.00		-108.300	.00 .00	.80 .10	• • • • • • • • •	••	81 81	CA	• • •	••••	
198	1977 MAY 28	23:14:14.84		-107.138	3.32	.10 .67MDLA	*******	••	78	JA	•••	302 D	7.9 133.2
199	1977 MAY 29	05:10:42.50		-107.138		1.30			71	LA CA	7		7.9 133.2
200	1977 JUN 03	18:41:25.24		-106.264	1.21	1.36MDLA		••	13	WC	6	123 .	.0 .0
201	1977 JUN 07	01:58:12.10		-105.617	.00	1.00		•	118	CA			
202	1977 JUN 23	04:52:35.00		-107.110	10.00	.10		••	77	JA			
203	1977 JUN 27	00:34:21.57	36.502	-105.401	10.00	1.15MDLA			113	LA	10	310 D	1.5 173.8
204	1977 JUL 02	01:24:41.17	36.231	-107.219	9.16	1.87MDLA	*******		90	WC	13	219 .	.0 .0
205	1977 JUL 28	07:44:29.92	35.849	-106.185	3,47	1.14MDLA			15	WC	9	147 .	.0 .0
206	1977 JUL 29	16:42:08.76	35.106	-106.309	2.12	.89MDLA			80	WC	10	232 .	.0 .0
207	1977 JUL 31	14:21:38.00		-106.110	10.00	1.60	• • • • • • • •		55	JA	• • •		
208	1977 AUG 05	16:06:26.20		-107.233	.00	.70	• • • • • • • • • • • • • • • • • • • •	• •	97	CA	• • •		***** *****
209	1977 AUG 10	19:11:06.90		-106.867	.00	1.10		• •	56	CA			
210	1977 AUG 11	04:24:53.46		-106.189	4.87	.68MDLA	*******	••	15	WC	9	143 .	.0 .0
211	1977 AUG 20	13:52:07.35 05:43:25.70		-106.761 -106.067	7.00	1.72MDLA	•••••	••	104	WC	11	229 .	.0 .0
212 213	1977 AUG 21 1977 AUG 22	15:10:56.20		-106.067 -107.233	.00	.70	*******	••	31	CA	•••	••••	
214	1977 AUG 22	21:44:24.88		- 107.255 - 106.250	.00 16.16	2.00 .29MDLA	*******	••	83	CA	• • •	1/4	
215	1977 AUG 28	16:57:06.00		-100.230	9.00	.29MULA		**	18 92	WC JA	8	146 .	.0 .0
216	1977 AUG 29	07:13:38.43		-107.101	10.16	1.78MDLA		••	75	WC		172 .	.0 .0
217	1977 AUG 29	08:02:45.00		-107.250	6.00	.10		••	96	JA	12	1/2 .	
218	1977 AUG 29	08:31:38.16		-107.105	12.01	.87MDLA		•••	76	WC	9	181 .	.0 .0
219	1977 AUG 29	22:17:08.51	36.354	-106.644	17.12	1.23MDLA	*******			MC		189 .	.0 .0

Cat No.	Date year-mo-day	Time (GMT) hr-min-sec	Lat	Long	Depth (km)	Mag1	Mag2	Inten		Data Srce		Az Q Gap	Std-Err Horiz Vert
		-==========	-======	-======	-=====-	- ========	=-=======	=-==-			-===-		
220	1977 SEP 01	22:48:40.21		-107.088	6.67	1.24MDLA	• • • • • • • •	••	7 5	WC	9	175 .	
221	1977 SEP 02	11:29:22.75		-107.085	10.05	.83MDLA		• •	75 70	WC	13	154 .	
222 2 23	1977 SEP 04 1977 SEP 17	00:17:48.00 07:04:27.10		-107.100 -106.950	.00 .00	.10		••	79 58	JA CA	•••		
224	1977 OCT 02	14:38:35.70		-106.951	8.46	.85MDLA		••	54	WC	15	159 .	
225	1977 OCT 02	20:54:35.70		-106.867	.00	.80		• • • • • • • • • • • • • • • • • • • •	58	CA			
226	1977 OCT 04	05:48:57.80		-106.883	.00			••	55	CA	•••		
227	1977 OCT 04	06:08:00.50	35.733	-106.867	.00				48	CA			
228	1977 OCT 04	20:08:17.00	35.530	-105.420	.00	1.00			91	JA			
229	1977 OCT 04	20:57:42.24	36,181	-106.866	4.14	1.65MDLA	•••••	• •	61	WC	14	168 .	.0 .0
230	1977 OCT 06	04:20:52.40		-106.650	.00	.70		••	98	CA	• • •		
231	1977 OCT 13	19:28:17.24		-106.956	5.66	.94MDLA	• • • • • • • • • • • • • • • • • • • •	••	61	WC	16	175 .	
232	1977 NOV 06	12:21:39.40		-105.409	70.20	.50MDGS		• •	131	GS	0	0 .	
233	1977 NOV 11	11:26:55.27		-107.167	9.65	.95MDLA	• • • • • • • • • • • • • • • • • • • •	••	86	WC	14	105 .	
234 235	1977 NOV 16 1977 NOV 17	09:20:21.20 13:02:28.88		-107.217 -107.085	15.00 5.56	.61MDLA			82 75	CA WC	8	171 .	
236	1977 DEC 02	12:10:07.39		-107.003	2.72	.91MDLA		••	40	WC WC	8	245 .	
237	1977 DEC 10	00:13:50.80		-106.755	47.00	.60		••	99	CA			.0 .0
238	1977 DEC 10	06:58:57.30		-106.930	.00	.80MDGS		•••	54	GS	0	0.	.0 .0
239	1977 DEC 11	23:58:59.00		-107.170	1.00	.10	*******	•••	93	JA			
240	1977 DEC 14	16:41:39.90	36.119	-106.218	9.60	.80MDGS		••	34	GS	0	0.	.0 .0
241	1977 DEC 16	00:38:13.00	35.290	-107.180	3.00	.20			96	JA			
242	1977 DEC 16	00:47:48.00	35.290	-107.180	3.00	.10		• •	96	JA			
243	1977 DEC 19	09:14:42.00	35.420	-107.240	2.00	.20		• •	93	JA			
244	1977 DEC 24	19:28:23.10	35.451	-106.148	13.00	1.30	******	••	46	CA			
245	1978 JAN 21	05:05:33.00		-106.330	.00	• • • • • • • • • • • • • • • • • • • •	• • • • • • • •	• •	50	ММ	•••	••••	
246	1978 JAN 22	00:27:02.00		-106.906	3.00	• • • • • • • • • • • • • • • • • • • •		• •	54	CA	•••	••••	••••
247	1978 JAN 26	10:26:18.00		-106.830	.00			• •	64	CA	• • • •	••••	
248	1978 JAN 30	02:53:01.40		-106.843	8.47	.87MDLA	******	••	45	WC	17	166 .	
249 250	1978 FEB 07 1978 FEB 13	04:05:03.00 09:48:00.40		-107.120 -106.845	.00 4.80	.30 .80MDGS		• •	96 40	NM	0	0.	
251	1978 FEB 13	18:57:38.91		-100.843	10.74	1.51MDLA		. ••	49 77	GS WC	15	172 .	
252	1978 FEB 14	16:49:04.46		-106.927	10.47	1.35MDLA		••	73	WC	14	196 .	
253	1978 FEB 15	07:18:58.60		-106.780	.00			••	68	CA			
254	1978 FEB 23	11:30:41.10		-106.739	18.00			• • •	101	CA			
255	1978 FEB 23	12:43:45.90		-105.817	12.70	.30MDGS		••	73	GS	0	0.	
256	1978 FEB 26	10:27:50.67	36.309	-105.849	11.70	01MDLA			70	LA	7	310 C	
257	1978 FEB 28	01:15:47.60	36.632	-106.058	87.00				93	CA			
258	1978 MAR 05	02:58:32.00	36.623	-105.476	15.00	.70			118	CA			
259	1978 MAR 08	17:07:30.20		-106,116	5.00	1.70		• •	67	CA	• • •		••••
260	1978 MAR 12	00:30:12.13		-106,223	3.16	.54MDLA		• •	29	WC	9	147 .	
261	1978 MAR 12	02:28:48.16		-106.216	6.05	1.16MDLA		• •	29	WC	11	145 .	
262 263	1978 MAR 12	03:04:04.22		-106.230	7.37	.54MDLA		• •	27	WC	6	162 .	
264	1978 MAR 12 1978 MAR 12	06:04:43.28 06:22:07.13		-106.206 -106.215	2.53	.80 CA		• •	30	WC	9	144 .	
265	1978 MAR 12	11:41:57.91		-106.213	6.21 7.22		• • • • • • • • • • • • • • • • • • • •	••	28 28	WC WC	7 5	172 . 171 .	
266	1978 MAR 12	13:19:59.41		-106.210	5.12			••	28	WC	5	187 .	
267	1978 MAR 14	10:43:22.81		-106.220	4.90	1.57MDLA		••	29	WC	14	124 .	
268	1978 MAR 19	22:51:46.10		-105.643	7.00	.50	• • • • • • • • • • • • • • • • • • • •	•	75	CA			• •
269	1978 MAR 22	00:29:17.70	35.103	-105.686	45.00				101	CA	•••		
270	1978 MAR 22	06:27:44.50	36.420	-106.670	.00				72	CA			
271	1978 APR 12	09:07:04.60		-106.360	.00	1.30MDGS			46	GS	0	0.	
272	1978 APR 16	08:38:14.45		-107.133	10.00	1.21MDLA	• • • • • • • • • • • • • • • • • • • •	• •	100	LA	12	236 D	2.3 383.0
273	1978 APR 16	08:47:09.30		-107.138	11.00	.50		• ••	99	CA	• • •		• • • • • • • • • • • • • • • • • • • •
274	1978 APR 23	13:10:59.91		-106.975	5.97	.33MDLA	• • • • • • • • • • • • • • • • • • • •	• •	59	MC		136 .	
275	1978 APR 23	17:06:28.66		-106.963	8.47	.44MDLA	,	••	59	WC	18	134 .	
276 277	1978 APR 23 1978 APR 23	17:41:07.90 17:45:34.20		-106,216	6.00	.80		••	48	CA	•••	••••	
278	1976 APR 23	23:25:35.75		-106.204 -106.974	4.00 5.41	.80 1.27MDLA		••	43	CA	14	175	
_,,		,,	37.037	100,717	J.41	HEIMPLA		••	60	WC	10	135 .	.0 .0

Cat	Date	Time (GMT)	Lat	Long	Depth	Mag1	Mag2	Inten	Dist	Data	No.	Az	Q	Std-	Err
No.	year-mo-day	hr-min-sec		÷	(km)			(MM)	(km)	Srce	Arr	Gap		Horiz	Vert
		-=======					==-======	:=-===-						-====-	
279 2 8 0	1978 APR 23 1978 APR 24	23:59:49.45		-106.967 -106.975	8.59 9.18	1.18MDLA .67MDLA		••	59 60	WC WC	15 14	134 135		.0	٥.
281	1978 APR 24	02:09:22.09		-106.977	7.57	.77MDLA		•••	60	WC	17	136		.0	.0 .0
282	1978 APR 24	03:01:24.98		-106.976	4.23	.99MDLA		••	59	WC	16	136		.0	.0
283	1978 APR 27	23:41:26.70		-106.187	96.50	•••••	•••••		77	GS	0	0		.0	.0
284	1978 APR 30	00:32:00.10	36.645	-106.530	8.00	.70		• •	92	CA					
285	1978 APR 30	00:34:10.58	36.722	-106.728	4.48	.97MDLA	• • • • • • • • •		105	LA	10	278	C	1.3	1.5
286	1978 MAY 02	00:03:27.73		-106.837	4.38	.56MDLA		••	44	WC	16	132		.0	.0
287	1978 MAY 07	14:26:08.70		-106.230	13.20	.40MDGS	• • • • • • • • • • • • • • • • • • • •	• •	48	GS	0	0		.0	.0
288	1978 MAY 28	05:04:06.63		-106.810	5.40	.64MDLA		• •	72	WC	9	171		.0	.0
289	1978 JUN 23 1978 JUN 29	13:32:41.40 04:44:50.20		-106.152	12.99	.44MDLA	• • • • • • • • • • • • • • • • • • • •	••	64	WC	7	199		.0	.0
290 291	1978 JUN 29	05:21:53.50		-106.440 -106.251	25.00 47.00	.80 .30		• •	88 87	CA CA		• • •		• • • • • •	• • • • • •
292	1978 JUL 02	16:27:43.70		-106.525	.00	.80		••	99	NM	•••	•••	•		
293	1978 JUL 03	15:13:47.60		-107.250	.00	.50		••	87	NM	•••		•	••••	
294	1978 JUL 09	13:30:18.40		-106.610	.00	1.30	*******	••	95	NM			•		
295	1978 JUL 17	17:05:11.40		-106.171	.00	1.20	•••••	•••	47	NM			•		
296	1978 AUG 05	23:08:05.39	35.472	-106.201	3.94	1.97MDLA		••	42	WC	11	162		.0	.0
297	1978 AUG 15	06:55:00.60	36.705	-106.575	.00	1.20	•••••	••	99	NM					
298	1978 AUG 31	04:02:30.00	35.084	-106.553	.00	.50			85	NM					
299	1978 SEP 19	07:33:45.41	36.361	-105.547	9.27	1.67MDLA		••	93	WC	7	235		.0	.0
300	1978 SEP 24	18:01:47.20	35.750	-106.770	.00	.80MDGS		• •	39	GS	0	0	-	.0	.0
301	1978 SEP 24	18:19:08.63		-106.783	7.60	20MDLA		• • •	41	WC	12	216		.0	.0
302	1978 SEP 24	18:27:59.20		-106.770	.00	.40MDGS		••	39	GS	0	0		.0	.0
303	1978 SEP 24	20:24:33.00		-106.770	.00	_80MDGS	• • • • • • • •	• •	39	GS	0	0		.0	.0
304 205	1978 SEP 24	20:32:48.40		-106.770	.00	.80MDGS	• • • • • • • • • • • • • • • • • • • •	••	39	GS	0	0		.0	.0
305 306	1978 SEP 24 1978 SEP 24	20:47:32.48 21:18:51.40		-106.765 -106.827	9.16	23MDLA	• • • • • • • • • • • • • • • • • • • •	••	39	WC	14	108		.0	.0
307	1978 SEP 24	21:30:13.00		-106.770	3.20 .00	.80MDGS		••	45 39	GS GS	0	0		.0 .0	.0 .0
308	1978 SEP 24	21:43:15.70		-106.770	-00	.80MDGS	*******	••	39	GS	0	0		.0	.0
309	1978 SEP 24	22:37:35.40		-106.770	.00	.80MDGS		••	39	GS	0	0		.0	.0
310	1978 SEP 24	22:38:16.23		-106.754	10.23	35MDLA		••	38	WC	14	105		.0	.0
311	1978 SEP 24	23:15:22.80		-106.920	.00	.80MDGS		•••	56	GS	0	0		.0	.0
312	1978 SEP 24	23:24:01.80	35.750	-106.770	.00	.80MDGS			39	GS	0	0		.0	.0
313	1978 SEP 24	23:28:29.30	35.745	-106.805	10.10	.40MDGS	******		42	GS	0	0		.0	.0
314	1978 SEP 25	00:31:49.93	35.734	-106.765	5.81	.18MDLA			39	WC	15	107		.0	.0
315	1978 SEP 25	00:37:23.50		-106.755	16.90	1.70MDGS			37	GS	0	0		.0	.0
316	1978 SEP 25	00:49:26.22		-106.756	9.69	59MDLA	* *******	••	37	WC	9	160		.0	.0
317	1978 SEP 25	00:50:12.90		-106.782	14.60	.80MDGS		• •	39	GS	0	0		.0	.0
318	1978 SEP 25 1978 SEP 25	00:53:12.30		-106.751	9.00	.80MDGS	******	• • •	37	GS	0	0		.0	.0
319 320	1978 SEP 25	01:13:20.90 01:44:31.13		-106.694 -106.764	19.30	.80MDGS		• •	34	GS	0	0		.0	.0
321	1978 SEP 25	01:45:37.30		-106.770	6.84 .00	1.85MDLA	•••••	••	39 39	WC GS	16 0	99 0		.0	.0
322	1978 SEP 25	01:47:05.16		-106.760	10.28	04MDLA		••	38	WC	11	209		.0 .0	.0
323	1978 SEP 25	01:55:47.30		-106.732	21.90	.80MDGS		••	35	GS	Ö	0		.0	.0 .0
324	1978 SEP 25	02:02:57.50		-106.770	.00	.80MDGS		••	39	GS	0	0		.0	.0
325	1978 SEP 25	02:07:44.25	35.740	-106.778	8.22	O4MDLA		••	40	WC	15	110		.0	.0
326	1978 SEP 25	02:11:39.54	35.739	-106.765	8.17	32MDLA	******		39	WC	14	108		.0	.0
327	1978 SEP 25	02:12:07.37	35.740	-106.758	9.66	26MDLA			38	WC	16	150		.0	.0
328	1978 SEP 25	02:12:30.76		-106.763	10.16	.02MDLA	• • • • • • • • • • • • • • • • • • • •		39	WC	16	107		.0	.0
329	1978 SEP 25	02:15:47.58		-106.785	7.04				41	WC	10	246		.0	.0
330	1978 SEP 25	02:15:56.16		-106.767	10.57	.85MDLA		• •	39	WC	21	108		.0	.0
331	1978 SEP 25	02:17:49.21		-106.767	8.17	.62MDLA	******		39	WC	25	108		.0	.0
332 333	1978 SEP 25 1978 SEP 25	02:19:15.10		-106.770	.00	.80MDGS	******	• •	39	GS	0	0		.0	.0
334	1978 SEP 25	02:27:18.00 ° 02:27:53.20		-106.800 -106.790	8.20 15.10	1.70MDGS	*******		42	GS	0	0		.0	.0
335	1978 SEP 25	02:28:13.62		-106.757	10.60	1.70MDGS .31MDLA		••	41 38	GS UC	0 22	0 106	-	.0	.0
336		02:32:47.77		-106.757	10.09	12MDLA		••	38	WC WC	22 15	106		.0 .0	.0 .0
337		02:40:48.10		-106.770	.00	1.70MDGS		••	39		0	0		.0	.0
								• •			-	•	-		. •

Cat	Date	Time (GMT)	Lat	Long	Depth	Mag1	Mag2	Inten	Dist	Data	No.	Az	Q St	d-Err
No.	year-mo-day	hr-min-sec			(km)			(MM)	-		Arr	Gap	Hori	z Vert
							==- ===================================	=-===-			-==-			
338 339	1978 SEP 25	02:42:03.80 02:43:17.20		-106.770	.00	1.70MDGS		••	39		0	0		0.0
340	1978 SEP 25 1978 SEP 25	02:43:17.20		-106.699 -106.770	17.60 .00	.40MDGS		•••	32 39	GS GS	0	0		0.0
341	1978 SEP 25	03:11:03.03		-106.775	19.55	33MDLA		• • •	36	WC	13	128		0 .0
342	1978 SEP 25	03:32:49.30		-106.726	19.10	1.70MDGS		• • • • • • • • • • • • • • • • • • • •	34	GS	0	0		0.0
343	1978 SEP 25	03:44:31.88		-106.791	8.61	76MDLA			41	WC	11	153		0.0
344	1978 SEP 25	03:48:27.90	35,728	-106.782	9.27	43MDLA			41	WC	10	110		0.0
345	1978 SEP 25	03:57:32.29	35.728	-106.759	8.13	.57MDLA			39	WC	23	106		0.0
346	1978 SEP 25	04:01:17.40		-106.760	6.32	.27MDLA	• • • • • • • • • • • • • • • • • • • •		39	WC	23	106		0.0
347	1978 SEP 25	04:06:32.79		-106.753	17.21	55MDLA		• •	37	LA	13	129	С 2.	5 4.3
348	1978 SEP 25	04:09:44.40		-106.770	.00	EOMBLA			39	NM	47			
349 350	1978 SEP 25 1978 SEP 25	04:22:27.58 04:39:06.18		-106.779 -106.759	10.18 10.33	50MDLA .23MDLA		•••	40 38	WC WC	14 19	110 106		0.0
351	1978 SEP 25	04:59:08.18		-106.750	6.51	.31MDLA		•••	36 37	WC	22	104		0.0
352	1978 SEP 25	06:13:43.40		-106.770	.00	.80MDGS		••	39	GS	0	0		0.0
353	1978 SEP 25	06:42:01.20		-106.734	12.90	.70MDGS		• • • • • • • • • • • • • • • • • • • •	35	GS	0	ō		0.0
354	1978 SEP 25	06:42:03.29		-106.767	9,52			• • • • • • • • • • • • • • • • • • • •	39	WC	15	113		0.0
355	1978 SEP 25	06:42:16.16	35.794	-106.753	15.03	19MDLA			37	WC	13	123		0.0
356	1978 SEP 25	06:50:16.70	35.750	-106.770	.00	.80MDGS			39	GS	0	0		0.0
357	1978 SEP 25	06:55:34.94	35.728	-106.772	9.29	21MDLA			40	WC	17	108		0.0
358	1978 SEP 25	06:58:05.68		-106.782	12.92	-,40MDLA	•••••		41	LA	15	110		
359	1978 SEP 25	07:09:01.00		-106.793	9.40	.40MDGS		• •	41	GS	0	0		0 .0
360	1978 SEP 25	07:17:30.80		-106.768	14.40	.80MDGS		••	38	GS	0	0		0.0
361	1978 SEP 25	07:18:43.85		-106.761	8.96	12MDLA	•••••	••	39	WC	13	111		0.0
362 363	1978 SEP 25 1978 SEP 25	08:02:42.20 08:29:15.01		-106.770 -106.762	.00	1.70MDGS		• •	39	GS	0	0		0.0
364	1978 SEP 25	08:59:43.00		-106.754	6.34 .00	.42MDLA		••	39 37	WC NM	18	107		0 .0
365	1978 SEP 25	10:45:33.00		-106.766	7.21	.10MDLA		••	39	WC	17	107		0 .0
366	1978 SEP 25	12:28:40.30		-106.770	.00	.40MDGS		••	39	GS	0	0		0 .0
367	1978 SEP 25	12:30:47.49		-106.767	7.96	.12MDLA		•••	39	WC	16	107		0.0
368	1978 SEP 25	12:37:20.10		-106.770	.00	1.70MDGS	••••••	•••	39	GS	0	0		0.0
369	1978 SEP 25	12:56:36.50	35.750	-106.770	.00	.40MDGS			39	GS	0	0		0.0
370	1978 SEP 25	15:07:16.93	35.730	-106.787	9.61	16MDLA			41	WC	13	216		0.0
371	1978 SEP 25	16:03:18.60	35.806	-106.728	14.10	.40MDGS			34	GS	0	0		0.0
37 2	1978 SEP 25	16:04:45.30		-106.736	.00	24MDLA	• • • • • • • •		35	NM		• • •		
373	1978 SEP 26	02:16:31.40		-106.770	.00	.80MDGS	*******	••	39	GS	0	0		0 .0
374	1978 SEP 26	02:37:57.80		-106.762	9.60	.40MDGS		• •	37	GS	0	0		0.0
375 374	1978 SEP 26	15:32:21.90		-105.647	11.23	.79MDLA		••	84	LA	13	293		
376 377	1978 SEP 26 1978 SEP 26	15:52:36.00 16:55:24.70		-106.770 -106.701	.00 .00	.80MDGS .30	•••••	• •	39	GS	0	0		0 .0
378	1978 SEP 26	20:10:41.70		-106.767	9.91	.08MDLA		• •	32 39	NM WC	10	213	• ••••	0 .0
379	1978 SEP 27	20:21:12.00		-106.800	10.00	.30		••	89	NM				0 .0
380	1978 SEP 28	09:00:45.40		-106.802	7.80	1.69MDLA		••	90	WC	19	209		0 .0
381	1978 SEP 28	10:37:03.10		-106.737	13.50	.40MDGS		•••	35	GS	0	0		0.0
382	1978 SEP 28	12:12:23.24	35.112	-106.804	7.85	1.34MDLA			90	WC	18	208		0.0
383	1978 SEP 28	12:33:57.00	35.120	-106.800	9.00	.20			89	NM		• • •		
384	1978 SEP 28	12:50:39.32		-106.812	10.00	.88MDLA			94	LA	17	214	D 2.	0 417.0
385	1978 SEP 28	16:24:24.87		-106.816	9.01	.80MDLA			88	WC	15	204		0.0
386	1978 SEP 28	22:01:47.86		-106.806	8.53	2.08MDLA		• • •	91	WC	18	209		0 .0
387	1978 SEP 28	22:10:19.66		-106.800	10.47	.33MDLA		• •	92	WC	13	212		0 .0
388 389	1978 SEP 29 1978 SEP 29	00:37:03.00 02:44:12.94		-106.800 -106.805	8.00	.40 1 30MDLA	******	••	90	NM	70	200		
390	1978 SEP 29	02:50:56.90		-106.820	9.18 .00	1.39MDLA		••	90 80	WC GS	20 0	208 0		0.0 0.0
391	1978 SEP 29	09:00:46.20		-106.831	.00	1.10		••	82	NM				
392	1978 SEP 29	09:38:39.20		-106.804	7.38	2.18MDLA		••	90	WC	21	208		0 .0
393	1978 SEP 29	09:47:16.80		-106.811	.00	.30		•	88	NM				
394	1978 SEP 29	09:49:16.63		-106.801	10.00	.17MDLA		•••	91	LA	15	210		1 241.1
395	1978 SEP 29	09:50:39.23	35.056	-106.794	9.96	.44MDLA	*******		95	WC	9	218		0 .0
396	1978 SEP 29	21:26:34.80	35.099	-106.807	9.99	.24MDLA	******	• •	91	WC	12	210		0.0

Cat	Date	Time (GMT)	Lat	Long	Depth	Mag1	Mag2	Inten				Az	Q	Std-	Err
No.	year-mo-day				(km)			(MM)	-	Srce	Arr	Gap		Horiz	
397	1978 SEP 29	22:26:18,40		-106.804	-=====- 8.88		=======================================		-===-	==-	42	210		=====-	
398	1978 SEP 30	00:36:14.42		-106.801	9,42	.39MDLA 1.25MDLA	*******	••	91 91	WC WC	18	210		.0 .0	.0 .0
399	1978 SEP 30	00:38:59.54		-106.808	9.72	.41MDLA		••	92	WC	9	237		.0	.0
400	1978 SEP 30	00:52:40.00		-106.800	8.00	.40	*******	• • •	89	NM					-
401	1978 SEP 30	02:43:00.00	35.120	-106.800	9.00	.20	*******	• •	89	NM					
402	1978 SEP 30	07:48:17.00	35.120	-106.800	8.00	.50			89	NM	• • •				
403	1978 SEP 30	08:18:52.88	35.114	-106.802	7.84	1.61MDLA			89	WC	19	208		.0	.0
404	1978 SEP 30	10:58:28.10	35.217	-106.820	.00	.50			80	NM	•••	•••		••••	• • • • •
405	1978 SEP 30	11:52:46.33		-106.812	10.39	.79MDLA	•••••	• •	89	WC	16	206	•	.0	.0
406	1978 SEP 30	13:14:48.40		-106.820	.00				80	NM	• • •	•••		•••	
407	1978 SEP 30	14:56:52.00		-106.800	9.00	1.00	•••••	• •	88	NM	•••	• • •		• • • • •	
408	1978 SEP 30	15:39:08.00		-106.800	8.00	.50	******	• •	88	NM	4.	240		4 /	747 /
409 410	1978 SEP 30 1978 OCT 01	18:31:04.97 00:16:39.31		-106.815 -106.804	10.00 10.38	.79MDLA 1.41MDLA	•••••	• •	92 90	LA WC	14 17	210 208		.0	317.4
411	1978 OCT 01	11:46:57.02		-106.804	9.22	.90MDLA	•••••	••	90	WC	19	209		.0	.0 .0
412	1978 OCT 01	11:55:11.00		-106.800	9.00	.30	••••••	••	.88	NM		209			
413	1978 OCT 01	11:57:15.66		-106.799	7.06	.13MDLA	*******	••	90	WC	10	210		.0	.0
414	1978 OCT 01	14:35:04.00		-106.800	10.00	.50		••	87	NM	•••	•••			
415	1978 OCT 01	18:55:06.40	35.217	-106.820	.00				80	NM					
416	1978 OCT 01	20:09:40.00	35.110	-106.800	8.00	.50			90	NM					
417	1978 OCT 01	22:22:18.00	35.120	-106.790	9.00	.90	• • • • • • • •		88	NM					
418	1978 OCT 01	22:34:45.30	35.217	-106.820	.00	.50			80	NM	• • •	•••			
419	1978 OCT 02	02:03:44.72	35.124	-106.813	10.08	.42MDLA			89	WC	13	205		.0	.0
420	1978 OCT 02	03:11:37.00	35.118	-106.802	9.45	.93MDLA			89	WC	18	207	•	.0	.0
421	1978 OCT 02	03:31:56.30		-106.820	.00	.50	******		80	NM	• • •	• • •	•	• • • • •	• • • • •
422	1978 OCT 02	11:05:01.00		-106.800	10.00	-10	•••••	- •	88	NM	•••	• • • •	•	• • • • •	• • • • •
423	1978 OCT 02	11:06:39.90		-106.820	.00			••	80	NM	•••	• • •	•	••••	••••
424	1978 OCT 02	17:41:15.00		-106.790	10.00	.70	•••••	• •	86	MM	• • •	•••	•	• • • • •	• • • • •
425	1978 OCT 02	17:49:38.00		-106.800	10.00	.30	•••••	••	88	NM	•••		•	•••••	••••
426 427	1978 OCT 03 1978 OCT 03	11:07:35.10 12:28:23.60		-106.820 -106.820	-00	.40MDGS	• • • • • • • • •		80	GS	0	0		.0	.0
428	1978 OCT 03	12:29:27.40		-100.020	.00 .00	.30 .80	•••••	•••	80 84	MM MM	• • •	•••		• • • • •	• • • • •
429	1978 OCT 03	17:01:24.34		-106.798	10.06	.49MDLA		••	89	WC	12	207			.0
430	1978 OCT 04	03:15:56.00		-106.810	10.00	.30		•••	88	NM					
431	1978 OCT 05	03:14:03.80		-107.250	.00	.80		••	86	NM					
432	1978 OCT 05	11:39:39.00		-106.800	9.00	.40			87	NM	•••				
433	1978 OCT 07	23:13:18.76	36.091	-106.814	5.26	.88MDLA			51	WC	16	151		.0	.0
434	1978 OCT 10	07:34:07.30	35.860	-106.740	.00				35	NM					
435	1978 OCT 10	17:56:06.50	35.038	-106.316	.00	1.10			88	NM					
436	1978 OCT 11	13:43:06.98		-106.050	10.12	1.18MDLA			60	WC	13	101		.0	.0
437	1978 OCT 11	14:47:11.66		-105.988	12.44	O6MDLA		• •	63	WC	9	117	•	.0	.0
438	1978 OCT 11	15:41:32.70		-106.920	.00	.50	• • • • • • • •		83	NM	• • •	• • •		••••	• • • • •
439	1978 OCT 24	17:00:47.62		-105.449	9.48	1.84MDLA			129	WC	15	270		.0	.0
440 441	1978 OCT 24	20:04:39.10		-106.194	21.92	.94MDLA	******		70	LA	11	296		6.0	5.0
442	1978 OCT 25 1978 OCT 29	08:37:35.00 08:55:51.40		-106.250 -106.920	.00	.50	• • • • • • • • • • • • • • • • • • • •	• •	16	NM	• • •	•••		••••	• • • • •
443	1978 OCT 30	03:59:27.72		-106.549	.00 9.25	1.14MDLA		•.•	53	NM	17	127			
444	1978 OCT 30	05:46:14.10		-106.856	.00	.30		••	77 47	WC NM	17			.0	.0
445	1978 NOV 05	00:05:27.80		-106.592	22.90	.40MDGS		••	28	GS		0		0	
446	1978 NOV 05	06:40:24.70		-106.748	9.74	33MDLA		••	37	WC	11	251		.0	.0 .0
447	1978 NOV 14	17:45:49.67		-106.173	10.00	.84MDLA	•••••	••	78	LA	7	319			411.8
448	1978 NOV 15	23:43:06.87		-106.192	6.54	1.26MDLA	•••••	••	38	WC	16	78		.0	.0
449	1978 NOV 16	00:13:49.65	36.153	-106.190	3.15	.80 NM			39	WC	12	164		.0	.0
450	1978 NOV 16	02:11:57.35	36.153	-106.192	5.54	.50 NM			39	WC	10	120		.0	.0
451	1978 NOV 16	03:40:12.40		-106.190	7.00	.80MDGS			37	GS	0	0		.0	.0
452	1978 NOV 16	05:11:22.90		-106.208	.00	.30		• •	36	MM		•••			• • • • •
453	1978 NOV 16	09:12:27.08		-106.194	4.57	.80 NM		••	38	WC	9	120		.0	.0
454 455	1978 NOV 16	09:36:34.43		-106.191	6.24	(0)		• •	39	WC	8	165		.0	.0
455	1978 NOV 16	10:55:13.40	30, 35T	-106.159	6.40	.40MDGS		• •	40	GS	0	0	•	.0	.0

Martin M	Cat	Date	Time (GMT)	Lat	Long	Depth	Mag1	Mag2	Inten	Dist	Data	No.	Az	Q	Std-E	rr
156 1778 NOV 17 02:13:152:00 36:132 - 106. 186 .00 .	No.	year-mo-day	hr-min-sec			(km)			(MM)	(km)	Srce	Агг	Gap		Horiz V	/ert
457 1978 NOV 17 02:1412-8.13 36.15 1-06.190 5.31 3.08 NC 8 164 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							- 22222222	2-22222222	=-==-			-===-	-===-	= - ·	-=====	.====
458 1978 NOV 17 02;34;26,00 36,197 -106,182 20;53 43 NC 5 177 0 0 0 469 1978 NOV 17 12;34;31,30 50 164 -106,182 20;53 18 30 NM 35 NC 7 165 0 0 0 464 1978 NOV 17 12;34;31,30 50 164 -106,182 6 32 30 NM 35 NC 7 162 0 0 0 464 1978 NOV 17 13;35;174,70 50 186 4 99 90 NM 35 NC 1 12 0 0 0 462 1978 NOV 17 13;35;174,70 50 186 4 99 90 NM 35 NM 35 NM 18									. ••							
459 1978 BVD 17 05;9:34,76																
660 1978 100 17 123-151.70 36.152 105-186 49.9 30 MM 38 MC 8 162 0 0 0 0 0 0 0 0 0												_				
661 1978 NOV 17 13:06:17.65 16.153 - 106.186 4.99 30 NM 39 NC 14 120 0 0 0																
462 1978 BVO 17 13:31-47.70 36.128 -106.137 ,00 38 BV 7 118 0 0. 0. 464 1978 BVO 23 05:08-47.60 35.708 1.06-185 4.92 30 NW 38 BVC 7 118 0 0. 0. 464 1978 BVO 28 05:25:39 5.35 201 1106.709 5.58 1.9290LA 77 NC 16 269 0. 0. 466 1978 BVO 28 05:25:39 5.35 201 1106.709 5.58 1.9290LA 103 LA 9 281 D 2.9 224.6 467 1978 BVC 28 13:38:24.43 36.742 -106.335 10.00 2490LA 103 LA 9 281 D 2.9 224.6 467 1978 BVC 07 07:04:31.10 35.195 -106.829 00 6490LA 103 LA 9 281 D 2.9 224.6 646 1978 BVC 07 07:04:31.10 35.195 -106.829 00 6490LA 883 G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																
464 1978 NOV 18 00130149.84 38, 148 -106.185 4.92 30 MM 38 WC 7 118 . 0 . 0 . 0																
464 1978 NOV 23 05:08:47.60 35.745 -106.625 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	463															.0
666 1978 NOV 28 1318-124, 43 36.742 -106.515 10.00 24.00 1.00 24.00 24.7 UC 16.5 1.00 0.	464	1978 NOV 23	05:08:47.60	35,745	-106.625											
466 1978 DEC 03 03:59:23.29 55.637 -106.815 6.20 6.200L0 4.470 1978 DEC 07 07:04:31.10 55.195 -106.829 00 4.000 6.000 8.8 6 6 0 0 0 0 0 4.000 6.	465	1978 NOV 28	05:25:39.56	35.201	-106.709	5.58	1.92MDLA			77	WC	16	269		.0	.0
4689 1978 DEC 07 07:04:31.10	466	1978 NOV 28	13:38:24.43	36.742	-106.535	10.00	.24MDLA	******		103	LA	9	281	D	2.9 2	234.6
469 1978 DEC 07 20127123.38 35.138 -106.818 10.08 1.14MDLA 88 MC 21 203 0 0 0 0 0 0 1797 DEC 07 23225513 55.17 1-106.809 4.01 6.99MDLA 90 NC 10 232 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	467	1978 DEC 03	03:59:23.29	35.637	-106.815	6.20	.62MDLA	• • • • • • • •		47	WC	14	154		.0	.0
1978 DEC 07 23; 25; 50, 31 35; 107 106, 809 4, 01 6,990 40 50 232 0 0 0 0 0 0 0 0 0	468	1978 DEC 07	07:04:31.10	35.195	-106.829	.00	.40MDGS			83	GS	0	0		.0	.0
471 1978 DEC 13 21:55:43.80 35.048 -106.430 .00 .50 .80 .87 MM	469	1978 DEC 07	20:27:23.38	35.138	-106.818	10.08	1.14MDLA		••	88	WC	21	203	•	.0	-0
473 1978 DEC 15 00:15:12.10 35.949 -106.810 .00 .30									• •	90	WC	10	232	•	.0	.0
473 1978 DEC 15 18:59:31.33 35:151 106.825 10.08 9.4MDLA 60 WC 8 209 . 0 . 0 . 0 . 474 1978 DEC 17 02:59:39.70 35:055 -106.224 .00 .70 .97 MM								******	• •			• • •	• • •	•		
475 1978 DEC 16 23:06:34.44 35.317 -106.126 3.78 1.57NDLA 60 UC 8 209 . 0 . 0 . 0 . 475 1978 DEC 17 02:59:39.70 35.055 -106.224 .00 .70 .87 NM																
476 1978 DEC 17 02:59:39:707 35:055 -106.224 0.0 7.0 87 NM									••	-						
476 1978 DEC 17 05:59:06.20 35.126 -106.283 .00 1.00 .80 .86 MM									• •			_				.0
478 1978 DEC 17																
478 1978 DEC 17 16:13:02.30 35.077 -106.306 32.60 1.40M0GS															•••••	
479 1978 DEC 26 03:08:02.92 35.925 - 106.855 10.20 .22MDLA 47 WC 14 144 .0 0 .0 480 1978 DEC 29 20:44:50.18 35.174 - 106.141 10.00 1.45MDLA 75 LA 6 333 D 8.6 541.3 481 1978 DEC 31 04:09102.90 36.410 - 106.660 .00 .30 .70 NM																
480 1978 DEC 29 20:44:50.18 35.174 - 106.141 10.00 1.45MDLA 75 LA 6 333 D 8.6 541.3 481 1978 DEC 31 14:09:02.90 36.410 - 106.660 00 30 00																
481 1978 DEC 31 04:09:02.90 36.410 -106.660 .00 .30 .70 MM																
482 1978 DEC 31 14:09:53.98 36.112 -106.167 12.17 1.10 NM 35 NC 7 167 .0 .0 .0 .0 .483 1979 JAN 05 22:48:37.80 35.228 -106.854 .00 .70 81 NM																41.3
483 1979 JAN 05 22:48:37.80 35.228 -106.854 .00 .70 81 NM																. D
485 1979 JAN 12 23:08:17.01 35.258 -106.083 1.64 1.77MDLA 68 LA 11 284 D 2.7 5.9 485 1979 JAN 14 01:43:18.28 35.685 -107.154 10.57 1.20MDLA 74 WC 22 162 . 0 . 0 . 0 . 486 1979 JAN 17 01:53.886 36.284 -106.798 8.00 .46MDLA										-						
485 1979 JAN 14 01:43:18.28 35.685 -107.154 10.57 1.20MDLA 74 WC 22 162 . 0 . 0 . 0 . 486 1979 JAN 17 00:15:38.86 36.284 -106.798 8.00 . 46MDLA 65 WC 13 159 . 0 . 0 . 0 . 46MDLA 65 WC 13 159 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 .	484															5.9
487 1979 JAN 17 02:43:38.20 36.633 -106.702 .00 1.20 95 NM	485	1979 JAN 14	01:43:18.28	35.685	~107.154	10.57	1.20MDLA			74	WC	22	162			_
488 1979 JAN 17 08:22:56.60 36.289 -106.781 .00 .80 664 NM	486	1979 JAN 17	00:15:38.86	36.284	-106.798	8.00	.46MDLA		••	65	MC	13	159		.0	
489 1979 JAN 17 11:32:25.41 36.285 -106.811 7.08 1.54MDLA 65 MC 22 82 .0 .0 .0 490 1979 JAN 18 09:31:36.94 36.584 -106.563 8.32 1.72MDLA 86 WC 22 138 .0 .0 .0 491 1979 JAN 18 10:34:17.00 36.500 -106.430 .00 .70 .75 NM	487	1979 JAN 17	02:43:38.20	36.633	-106.702	.00	1.20			95	NM					
490 1979 JAN 18 09:31:36.94 36.584 -106.563 8.32 1.72MDLA 86 WC 22 138 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 .	488	1979 JAN 17	08:22:56.60	36.289	-106.781	.00	.80			64	MM					
491 1979 JAN 18 10:34:17.00 36.500 -106.430 .00 .70 .75 NM	489	1979 JAN 17		36.285	-106.811	7.08	1.54MDLA	• • • • • • • • • • • • • • • • • • • •	• •	65	MC	22	82		.0	.0
492 1979 JAN 19 02:20:30.06 36.296 -106.806 8.63 .20MDLA 666 WC 9 185 .0 .0 .0 493 1979 JAN 19 18:54:42.20 35.032 -106.207 .00 .50 89 NM			09:31:36.94			8.32	1.72MDLA	• • • • • • • • • • • • • • • • • • • •		86	WC	22	138		.0	.0
493 1979 JAN 19 18:54:42.20 35.032 -106.207 .00 .50 89 NM							.70			75	NM	•••	• • •			
494 1979 JAN 20 14:04:07.42 35.822 -106.883 2.09 .01MDLA									• •	66	WC	9	185		.0	.0
495 1979 JAN 20 15:17:30.63 35.800 -106.870 .22 .13MDLA 47 WC 16 138 .0 .0 .0 496 1979 JAN 21 11:40:04.90 36.652 -106.719 .00 1.30									• •	89	NM	•••	• • •	•	· · · · · ·	
496 1979 JAN 21 11:40:04.90 36.652 -106.719 .00 1.30 97 NM									••							3.7
497 1979 JAN 22 20:18:13.42 35.125 -106.804 8.37 .50MDLA 88 WC 12 205 . 0 . 0 . 0									• •						.0	.0
498 1979 JAN 24 14:14:30.73 35.113 -106.801 4.61 .94MDLA																• • • •
499 1979 JAN 24 16:13:11.20 35.165 -106.824 .00 .50 85 NM																
500 1979 JAN 25 02:51:26.18 35.115 - 106.806 7.07 .09MDLA 89 WC 10 207 .0 .0 501 1979 JAN 25 03:01:29.90 35.115 - 106.819 .00 .0 .00 .0 <td></td> <td>.0</td>																.0
501 1979 JAN 25 03:01:29.90 35.115 -106.819 .00																
502 1979 JAN 25 03:21:54.50 35.191 -106.829 .00 83 NM 503 1979 JAN 25 11:16:00.24 35.126 -106.810 8.50 .82MDLA 89 WC 15 205 .0 .0 504 1979 JAN 27 00:24:09.47 35.094 -106.805 5.66 .17MDLA 91 WC 13 211 .0 .0 505 1979 JAN 27 03:47:44.97 35.109 -106.816 6.84 .40MDLA 90 WC 12 208 .0 .0 506 1979 JAN 28 02:45:06.95 35.098 -106.799 7.24 .17MDLA 91 WC 13 211 .0 .0 507 1979 JAN 28 18:29:11.84 35.117 -106.802 8.14 .97MDLA 89 WC 22 207 .0 .0 508 1979 JAN 30 15:57:42.70 35.243 -106.825 .00 1.70 78 NM 510 1979 JAN 31 12:01:32.14 35.115 -106.805 10.19 .53MDLA 89 WC 20 207 .0 .0 511 1979 JAN 31 12:01:32.14 35.115 -106.805 10.19 .53MDLA 89 WC																
503 1979 JAN 25 11:16:00.24 35.126 -106.810 8.50 .82MDLA 89 WC 15 205 .0 .0 504 1979 JAN 27 00:24:09.47 35.094 -106.805 5.66 .17MDLA 91 WC 13 211 .0 .0 505 1979 JAN 27 03:47:44.97 35.109 -106.816 6.84 .40MDLA 90 WC 12 208 .0 .0 506 1979 JAN 28 02:45:06.95 35.098 -106.799 7.24 .17MDLA 91 WC 13 211 .0 .0 507 1979 JAN 28 18:29:11.84 35.117 -106.802 8.14 .97MDLA 89 WC 22 207 .0 .0 508 1979 JAN 28 18:37:03.25 35.112 -106.798 7.21 .03MDLA 89 WC 9 208 .0 .0 509 1979 JAN 30 15:57:42.70 35.243 -106.825 .00 1.70 78 NM 510 1979 JAN 31 12:01:32.14 35.115 -106.805 10.19 .53MDLA 89 WC 20 207 .0 .0 511 1979 JAN 31 16:29:26.42 35.121 -106.803																••••
504 1979 JAN 27 00:24:09.47 35.094 -106.805 5.66 .17MDLA																
505 1979 JAN 27 03:47:44.97 35.109 -106.816 6.84 .40MDLA 90 WC 12 208 . 0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	504	1979 JAN 27														
506 1979 JAN 28 02:45:06.95 35.098 -106.799 7.24 .17NDLA	505		03:47:44.97	35.109	-106.816											_
507 1979 JAN 28 18:29:11.84 35.117 -106.802 8.14 .97MDLA 89 WC 22 207 .0 .0 508 1979 JAN 28 18:37:03.25 35.112 -106.798 7.21 .03MDLA 89 WC 9 208 .0 .0 509 1979 JAN 30 15:57:42.70 35.243 -106.825 .00 1.70 78 NM 510 1979 JAN 30 18:15:06.83 35.101 -106.805 6.69 .15MDLA 91 WC 11 210 .0 .0 511 1979 JAN 31 12:01:32.14 35.115 -106.805 10.19 .53MDLA 89 WC 20 207 .0 .0 512 1979 JAN 31 16:29:26.42 35.121 -106.803 6.2911MDLA 89 WC 10 206 .0 .0 513 1979 FEB 02 18:05:35.38 35.132 -106.819 7.11 .35MDLA .88 WC 13 229 .0 .0 514 1970 FEB 03 18:05:35.38 35.132 -106.819 7.11 .35MDLA .88 WC 13 229 .0 .0	506	1979 JAN 28	02:45:06.95	35.098	-106.799											
508 1979 JAN 28 18:37:03.25 35.112 -106.798 7.21 .03MDLA	507	1979 JAN 28	18:29:11.84	35.117	-106.802											
509 1979 JAN 30 15:57:42.70 35.243 -106.825 .00 1.70			18:37:03.25	35.112	-106.798	7.21	.03MDLA									
510 1979 JAN 30 18:15:06.83 35.101 -106.805 6.69 .15MDLA 91 WC 11 210				35.243	-106.825	.00	1.70									
512 1979 JAN 31 16:29:26.42 35.121 -106.803 6.2911MDLA 89 WC 10 2060 .0 513 1979 FEB 02 18:05:35.38 35.132 -106.819 7.11 .35MDLA 88 WC 13 2290 .0	_					6.69	.15MDLA		• •	91	WC	11			.0	.0
513 1979 FEB 02 18:05:35.38 35.132 -106.819 7.11 .35MDLA 88 WC 13 2290 .0							.53MDLA		••	89	WC	20	207		.0	.0
51/ 1070 EED 07 10.27./1 47 75 119 10/ 910 0 /0 10m/									••	89	WC				0	.0
ס. ס. 10: 12: 10: 10:27:41.63 בארו 106.810 8.49 .10MDLA 89 WC 12 2070									••						.0	.0
	J14	IALA LER NZ	10:27:41.65	35.118	-106.810	8.49	.10MDLA	******	••	89	WC	12	207	•	.0	.0

Cat No.	Date year-mo-day	Time (GMT)	Lat	Long	Depth (km)	Mag1	Mag2	Inten (MM)	Dist (km)		-	Az (Gap	Std Horiz	
			-========	========		-=======	22- <u>22</u> 2=======							
515	1979 FEB 03	12:22:16.74	35.120	-106.806	8.21	02MDLA			89	WC	10	206	0	.0
516	1979 FEB 03	12:27:34.10		-106.807	9.26	17MDLA	• • • • • • • •	••	89	WC	13	206		.0
517	1979 FEB 03	12:39:51.22		-106.811	9.23	.30MDLA	• • • • • • • • • • • • • • • • • • • •	• •	91	MC	13	209		.0
518 519	1979 FEB 05	19:54:24.30 22:32:51.30		-106.832	.00	******	• • • • • • • • • • • • • • • • • • • •	••	85 87	NM	• • •	• • •		• • • • •
520	1979 FEB 05	23:10:38.51		-106.826 -106.794	.00 10.04			••	87 89	NM WC	14	232		
521	1979 FEB 05	23:10:43.26		-106.803	8.82	1.51MDLA		••	86	WC	17	252		.0 .0
522	1979 FEB 06	19:00:38.00		-106.284	.00	1.00		•••	75	NM				
523	1979 FEB 06	23:09:16.81		-106.264	.00	.50 NM	*******	••	22	WC		222		.0.
524	1979 FEB 06	23:15:08.98		-106.110	4.79	.93MDLA	******		62	WC	14	201		.0
525	1979 FEB 08	23:24:00.57	35,312	-106.122	3.13	1.33MDLA	*******		61	WC	18	192		.0
526	1979 FEB 09	09:39:58.30	35.023	-106.249	.00	.50			90	NM				
527	1979 FEB 10	19:34:44.53	35.108	-106.804	10.00	07MDLA		• •	90	LA	12	283 (1.6	214.6
528	1979 FEB 10	20:34:08.40	35.148	-106.841	.00	******		• •	88	MM				
529	1979 FEB 10	20:35:01.43		-106.873	10.00	19MDLA			97	LA	11	289 (230.4
530	1979 FEB 12	06:55:51.28		-106.801	6.95	.10MDLA	• • • • • • • • • • • • • • • • • • • •		91	WC	10	211	0	.0
531	1979 FEB 12	09:23:47.30		-106.750	.00	.50		• •	83	NM	• • •	• • • •		• • • • •
532 533	1979 FEB 12 1979 FEB 12	12:29:43.80		-106.808	.00	70MD 4	******	••	79	NM	47	200		
534	1979 FEB 13	15:17:29.76 15:21:08.73		-106.810 -106.798	3.06 8.37	.30MDLA	******		91	WC	13	209		.0
535	1979 FEB 15	04:41:53.30		-106.863	.00	1.67MDLA		••	90 81	WC NM	17	209		.0
536	1979 FEB 17	16:56:02.93		-106.806	6.01	.42MDLA		• •	89	WC	15	206		
537	1979 FEB 20	12:53:53.88		-106.807	6.41	.25MDLA		• •	90	WC	8	208		.0
538	1979 FEB 21	03:00:57.50		-106.841	.00	.30		••	88	NM				.0
539	1979 FEB 23	04:13:46.20		-106.826	.00		******	• • • • • • • • • • • • • • • • • • • •	88	NM				
540	1979 FEB 23	20:33:28.07	35.265	-106,129	20.42	1.54MDLA	******		66	WC	11	243		.0
541	1979 FEB 24	02:25:20.55	35,128	-106.816	11.20	1.13MDLA			89	WC	21	205		.0
542	1979 FEB 25	07:27:05.80	36.675	-106.673	.00	1.10			98	NM				
543	1979 FEB 25	07:57:56.71	35 . 123	-106.806	10.61	.56MDLA			89	WC	18	206	0	.0
544	1979 FEB 25	22:10:34.73		-106.804	4.54	.33MDLA		• •	89	WC	16	206	0	.0
545	1979 FEB 25	22:13:36.38		-106.803	7.41	• • • • • • • • • • • • • • • • • • • •		• •	88	WC	16	205	0	.0
546	1979 FEB 25	22:14:00.50		-106.843	10.30	.45MDLA	• • • • • • • • • • • • • • • • • • • •		86	WC	14	235	0	.0
547	1979 MAR 01	11:15:00.65		-106.174	3.36	.70 NM		• •	39	WC	9	118		-0
548 549	1979 MAR 01	16:38:57.74		-106.099	4.33	1.18MDLA	• • • • • • • • •		63	WC	12	227		.0
550	1979 MAR 03 1979 MAR 05	13:23:59.65 10:18:20.62		-106.806 -106.801	10.00	.04MDLA	******		90	LA	14	209 [192.7
551	1979 MAR 05	11:33:58.23		-106.801	3.18 6.15	.11MDLA .80MDLA	*******	••	89	WC	9	207		.0
552	1979 MAR 05	13:00:05.62		-106.200	5.21	2.66MDLA	•••••	••	89 55	WC WC	15 19	206 . 88 .		.0
553	1979 MAR 06	13:48:05.65		-106.809	4.47	.04MDLA	*******		89	WC	15	206 .	0	.0 .0
554	1979 MAR 07	10:51:05.87		-106.806	8.39	.76MDLA	*******	••	88	WC	13	205		.0
555	1979 MAR 07	10:54:01.18		-106.808	7.29	.71MDLA		•••	89	WC	12	206		.0
556	1979 MAR 07	11:03:53.21	35.109	-106.802	6.16	.07MDLA			90	WC	11	209 .		.0
557	1979 MAR 07	15:08:23.40	35.564	-106.119	.00	1.10		••	36	NM				
558	1979 MAR 07	22:11:35.46		-106.193	7.54	1.94MDLA			56	WC	20	88 .	.0	.0
559	1979 MAR 09	18:07:59.60		-106.399	.00	1.00			79	NM				
560	1979 MAR 10	13:53:24.47		-106.800	6.44	2.19MDLA			89	WC	21	207 .	.0	.0
561	1979 MAR 11	21:11:22.60		-106.820	.00		• • • • • • • • • • • • • • • • • • • •	• •	80	NM	• • •			• • • • •
562 563	1979 MAR 11	23:52:24.23		-106.814	6.34	31MDLA	*******	••	89	WC	9	206 .		.0
564	1979 MAR 12 1979 MAR 12	00:21:38.12 21:00:45.04		-106.811	6.11	.04MDLA	• • • • • • • • • • • • • • • • • • • •	• •	90	WC	12	209 .		.0
565		22:54:12.00		-106.207 -106.804	9.28	1.50 NM		••	13	WC	15	71 .		.0
566		23:03:27.68		-106.802	8.98 7.43	.44MDLA .48MDLA		••	90 89	WC WC	13 14	209 . 206 .		.0
567	1979 MAR 15	00:29:24.08		-106.805	6.64	.26MDLA		••	89	WC	11	206 .		.0 .0
568	1979 MAR 15	04:48:30.35		-106.817	6.42	.49MDLA		• •	90	WC	13	208 .		.0
569	1979 MAR 15	19:00:48.10		-106.347	.00	1.20		•••	81	NM				
570		11:25:59.48		-106.193	7.10	1.69MDLA			56	WC	21	88 .		.0
		17:14:34.02	35.116	-106.809	5.54	.04MDLA			89	WC		207 .		.0
		03:34:51.38		-106,806	8.47	1.05MDLA			88	WC	21	205 .	.0	.0
573	1979 MAR 19	02:28:50.22	36.547	-105.338	10.78	1.01MDLA	•••••	••	121	WC	16	265 .	.0	.0

Cat	Date	Time (GMT)	Lat	Long	Depth	Mag1	Mag2	Inten	Dist	Data	No.	Az	Q Sto	l-Err
No.	year-mo-day	hr-min-sec			(km)	•	_	(MM)		Srce		Gap		Vert
====-	-===========	- 222222222	-======	- #222222-	- ======-		EE-EE22225EE	=-==-	-====	==-	-===-	-===-		-====
574	1979 MAR 19	04:13:54.28		-106.806	8.46	.70MDLA		• •	88	WC	19	205	0	.0
575	1979 MAR 21	01:30:55.50		-106.820	.00	.30		••	80	NM	•••	•••		
576 577	1979 MAR 21 1979 MAR 21	02:27:09.10		-106.820	.00	1 16404	•••••	••	80	GS	0	0		
578	1979 MAR 21	02:27:41.63 08:10:01.40		-106.796 -106.848	11.86	1.18MDLA		••	89	WC	22	208		0.0
579	1979 MAR 21	15:56:07.70		-106.845	.00	.30	*******	• •	89	NM		• • • •		• • • • •
580	1979 MAR 22	18:08:55.60		106.818	.00 10.12	.50 .65MDLA	******	• •	84 88	NM WC	15	228		
581	1979 MAR 25	09:12:06.40		-106.820	.00			••	80	NM				
582	1979 MAR 25	12:14:07.55		-106.799	10.00	.34MDLA		••	90	LA	18	209		168.4
583	1979 MAR 25	20:04:24.89		-105.340	6.87	.71MDLA			117	WC	12	262		
584	1979 MAR 26	00:28:19.24		-106.799	6.90	20MDLA		•	91	WC	7	211		
585	1979 MAR 26	04:12:55.47		-106.057	4.73	.33MDLA			39	WC	13	153		
586	1979 MAR 27	19:08:42.60	35.123	-106.803	6.89	07MDLA			89	WC	9	206		
587	1979 MAR 28	18:49:19.18	35.095	-106.803	9.37	.28MDLA			91	WC	10	211		
588	1979 MAR 30	09:28:02.22	35,119	-106.801	7.68	2.00MDLA			89	WC	20	207		
589	1979 MAR 30	09:44:02.00	35.217	-106.820	.00	*******			80	NM				
590	1979 MAR 30	10:41:55.17	35.112	-106.796	7.05	2.58MDLA			89	WC	18	208	0	.0
591	1979 MAR 30	10:46:17.23	35.123	-106.799	7.88	34MDLA			88	WC	9	219	0	.0
592	1979 MAR 30	11:57:39.20	35.217	-106.820	.00	• • • • • • • • • • • • • • • • • • • •			80	MM				
593	1979 APR 01	05:13:10.80	36.333	-106.221	.00	.80			57	MM				
594	1979 APR 02	03:48:58.90	35.1 <i>7</i> 3	-106.835	21.80	.40MDGS			85	GS	0	0	0	.0
595	1979 APR 02	11:17:12.92	35.138	-106.816	6.00	- 07MDLA			88	WC	14	234	0	.0
596	1979 APR 02	17:49:56.06	35.120	-106.815	10.00	.52MDLA		• •	89	LA	20	230 (6.	133.0
597	1979 APR 04	00:44:17.20		-106.813	.00	1.00		••	88	NM	• • •			
598	1979 APR 04	12:14:07.26		-106.811	10.19	.10MDLA	******	••	91	WC	12	254	0	.0
599	1979 APR 06	21:56:11.69		-106.824	10.43	.04MDLA	• • • • • • • • •		88	MC	13	233	0	.0
600	1979 APR 07	03:43:50.80		-106.387	.00	.80	• • • • • • • • • • • • • • • • • • • •	••	94	MM	• • •	•••		• • • • •
601	1979 APR 07	03:45:17.00		-106.357	.00	1.10	•••••	• •	97	NM	•••	• • •		
602	1979 APR 07	08:17:06.73		-106.656	11.17	1.56MDLA		••	32	WC	20	124		
603	1979 APR 07	13:22:03.27		-106.099	7.53		*******	• •	23	WC	13	99		
604	1979 APR 07	23:35:39.95		-106.817	10.55	1.04MDLA		• •	87	WC	21	227		
605	1979 APR 07	23:40:53.41		-106.812	10.53	1.35MDLA		• •	89	WC	19	230		
606 607	1979 APR 11 1979 APR 11	01:49:54.74		-106.808	8.39	1.04MDLA		••	88	WC	15	228		
608	1979 APR 11	02:22:41.11 11:41:24.99		-106.821 -106.816	10.13	.60MDLA	•••••	• •	87	WC	15	227		
609	1979 APR 12	03:48:53.99		-106.812	9.43 9.49	.39MDLA	*******	••	89	WC	10	250		
610	1979 APR 12	09:33:47.00		-106.835	15.10	.34MDLA	•••••	••	87 85	WC	15 0	233		
611	1979 APR 13			-106.099	4.87	.29MDLA	•••••	••		GS WC	14	0 97 .		
612		18:01:41.30		-106.820	.00	.80MDGS		••	80	GS	0	0		
613	1979 APR 13	21:31:46.80		-106.820	.00	.80MDGS		••	80	GS	0	0		
614		22:32:36.20		-106.820	.00	.80MDGS		••	80	GS	ō	0		
615	1979 APR 14	08:41:59.50		-106.820	.00	.40MDGS	*******	•••	80	GS	ō	0		
616	1979 APR 16	09:49:37.16		-106.824	8.26	-29MDLA		•••	87	WC	13	231		
617	1979 APR 17	05:49:21.61	35.146	-106.807	8.37	.07MDLA			86	WC	11	201		
618	1979 APR 17	09:01:44.20	35.713	-106.696	.00	.30			34	NM				
619	1979 APR 17	10:24:25.35	35.688	-106.678	8.01	53MDLA	•••••		34	WC	9	201		.0
620	1979 APR 17	18:24:25.60	35.722	-106.692	.00	.30			33	NM				
621	1979 APR 18	03:25:20.31	35.136	-106.804	9.02	1.47MDLA			87	WC	22	203		.0
622		06:55:35.70		-106.816	9.40	.38MDLA			87	WC	20	202 .	0	.0
623	1979 APR 18	13:13:36.82		-106.801	8.65	.10MDLA			88	WC	16	204 .	0	.0
624		02:29:57.30		-106.483	.00	.30	• • • • • • • • • • • • • • • • • • • •		13	NM	• • •		• • • • • •	
625		00:43:53.77		-106.802	10.12	.16MDLA	******		87	WC	17	203 .	0	.0
626		05:31:15.70		-106.820	.00	.80MDGS		• •	80	GS	0	0.	0	.0
627		12:21:41.50		-106.820	.00	.80MDGS		• •	80	GS	0	Ο.	0	.0
628		12:59:46.10		-106.820	.00	.80MDGS		• •	80	GS	0	0.	.0	.0
629 630		05:48:24.30		-106.820	.00	.80MDGS	• • • • • • • • • • • • • • • • • • • •	••	80	GS	0	0.		.0
631		03:21:55.53 01:41:23.31		-106.801 -104.3950	10.14	.19MDLA		••	88	WC	13	204 .		.0
632		01:41:23.31		-106.750 -106.741	6.46	.34MDLA		••	67	WC	10	153 .		.0
43 E	1212 ALK 30	01144113101	30.37	-106.741	6.66	.65MDLA	•••••	••	68	WC	8	144 .	.0	.0

Cat	Date	Time (GMT)	Lat	Long	Depth	Mag1	Nag2	Inten	Dist	Data	No.	Az	Q	Std-	Err
No.	year-mo-day	hr-min-sec			(km)		==-=========		(km)			Gap		Horiz	
633	1979 APR 30	03:27:06.00		-106.722	.00	.50			66	NM		-===	-=-		
634	1979 APR 30	09:43:02.70		-107.215	.00	.70		••	84	NM	•••				
635	1979 APR 30	19:08:04.76		-106.798	10.22	.75MDLA			88	WC	16	205		.0	.0
6 3 6	1979 MAY 01	05:37:23.53	35.153	-106.822	10.82	.40MDLA			86	WC	14	226		.0	.0
637	1979 MAY 10	05:16:27.80	35.217	-106.820	.00	.40MDGS			80	GS	0	0		.0	.0
638	1979 MAY 10	09:26:52.20		-106.820	.00	.80MDGS	******		80	GS	0	0		.0	.0
639	1979 MAY 17	16:00:55.18		-106.697	8.78	.98MDLA		• •	73	WC	16	140		.0	.0
640 641	1979 MAY 22 1979 JUN 01	20:52:58.00		-105.709	.00	.50		• •	78	NM	40	707			
642	1979 JUN 01	03:48:59.35 14:41:08,50		-106.879 -107.001	5.92 .00	.69MDLA 1.30		••	103 108	LA NM	10	297		2.4	3.3
643	1979 JUN 05	05:26:09.40		-106.709	6.11	1.25MDLA		••	74	WC	15	176		.0	
644	1979 JUN 12	16:51:41.49		-106.452	6.76	1.30MDLA		• • • • • • • • • • • • • • • • • • • •	54	WC	17	227		.0	.0
645	1979 JUN 13	02:22:51.02	35.784	-106.720	8.88	43MDLA			34	WC	8	167		.0	.0
646	1979 JUN 22	09:32:29.60	36,610	-106.730	.00	.70			93	NM					
647	1979 JUN 25	12:17:26.20	36.250	-106.433	.00	1.00			47	NM					
648	1979 JUN 28	22:40:37.60	35.658	-107.020	.00			••	64	NM					
649	1979 JUN 28	23:12:39.37		-106.856	6.43	.57MDLA		••	61	WC	8	249		.0	.0
650	1979 JUL 08	15:55:04.30		-106.809	11.83	1.95MDLA		••	90	WC	14	208	٠	.0	.0
651	1979 JUL 15	21:27:29.80		-106.814	.00	.80		• •	87	NM			•	• • • • •	• • • • •
652 653	1979 JUL 21 1979 JUL 21	06:41:24.10 11:39:56.63		-107.230	.00	.50	*******	••	96	NM	• • • •				
654	1979 JUL 21	18:11:13.34		-106.805 -106.799	10.52 9.26	.54MDLA .70MDLA	•••••	••	88 89	MC MC	18 16	205 207		.0 .0	.0
655	1979 JUL 26	03:29:16.90		-106.750	.00	.70HDLA		••	98	NM		207	•		.0
656	1979 JUL 30	13:38:18.55		-106.881	10.12	1.51MDLA		••	90	WC	22	202	•	.0	
657	1979 AUG 07	21:00:09.80		-106.767	.00	.80MDGS	******	• • • • • • • • • • • • • • • • • • • •	39	GS	0	0		.0	,0
658	1979 AUG 12	13:03:50.30	36.346	-105.924	.00	.50			69	NM					
659	1979 AUG 14	18:56:54.92	36.181	-106.855	.67	.97MDLA			60	WC	14	179		.0	.0
660	1979 AUG 15	04:24:40.18	35.114	-106.804	8.49	1.21MDLA			90	WC	20	208		.0	.0
661	1979 AUG 17	09:38:20.00	35.015	-105.616	.00	1.20			112	NM					
662	1979 AUG 17	18:55:38.00		-106.984	.00	1.40	•••••	••	61	NM					
663	1979 AUG 17	18:58:20.70		-106.984	.00	.30		••	61	NM	• • •	• • •			• • • • •
664 665	1979 AUG 17 1979 AUG 18	20:44:07.15		-106.996	7.90	17MDLA	• • • • • • • • • • • • • • • • • • • •	••	62	LA	8	299		2.0	3.3
666	1979 AUG 10	00:39:07.02 28:44:06.70		-106.585 -107.056	6.21 .00	.18MDLA	•••••	• •	70	WC	10	197		.0	.0
667	1979 AUG 18	00:39:07.60		-106.670	.00	.50		••	66 77	NM NM	• • •	• • • •		****	
668	1979 AUG 20	11:09:33.04		-106.724	7.76	1.00MDLA		••	84	WC	13	215			.0
669	1979 AUG 25	04:35:42.25		-107.105	12.80	1.33MDLA	*******	•••	79	WC	17	136		.0	.0
670	1979 AUG 25	04:37:02.36		-107.116	4.76	.44MDLA		•••	80	WC		136		.0	.0
671	1979 AUG 26	15:37:15.18	36.542	-106.724	6.08	.58MDLA			86	WC	8	220		.0	.0
672	1979 AUG 26	22:53:05,19		-106.752	10.23	1.16MDLA	,		87	WC	10	231		.0	.0
673	1979 AUG 26	23:22:17.74		-106.709	6.35	.99MDLA		••	84	MC	12	208	•	.0	.0
674	1979 AUG 28	01:19:42.82		-107.117	5.96	.17MDLA	******	••	80	MC	9	142		.0	.0
675	1979 AUG 31	17:26:29.52		-107.101	7.72	1.49MDLA		• -	80	WC	19	139		.0	.0
676 677	1979 AUG 31 1979 SEP 01	18:51:33.64 21:15:50.70		-105.969 -106.540	12.76	1.03MDLA		• •		WC 1	13	184	-	.0	.0
678	1979 SEP 04	18:36:12.11		-106.340	10.72 .06	.90MDLA 1.73MDLA		• •	76 40	WC	15	210 133	-	.0	.0
679	1979 SEP 05	08:31:00.41		-105.514	11.36	.41MDLA		••	40 103	WC WC	11 11	243		.0 .0	.0 .0
680	1979 SEP 06	08:37:18.40		-107.250	.00	.70		••	99	NM		£43			.0
681	1979 SEP 20	18:45:30.70		-105.708	.00	.30			58	NM					
682	1979 SEP 21	02:55:44.80	35.744	-106.100	4.56		******		24	WC	11	108		.0	.0
683	1979 SEP 21	10:43:00.77	35.747	-106.098	3.68				25	WC	14	131		.0	.0
684	1979 SEP 22	09:03:28.96		-106.221	1.34	•••••	• • • • • • • • • • • • • • • • • • • •	••	17	WC	14	77		.0	.0
685	1979 SEP 22	23:04:19.00		-106.670	.00	.50	• • • • • • • •	• •	95	NM					
686	1979 OCT 02	23:15:51.19		-106.813	9.14	1.06MDLA		• •	89	WC	20	205		.0	.0
687 488	1979 OCT 05	19:25:45.00		-106.767	.00	.80	• • • • • • • • • • • • • • • • • • • •	••	48	NM	• • •	•••	•	• • • • •	• • • • •
688 689		18:59:10.40 05:23:54.10		-106.721 -106.828	.00	.70		• •	48	NM	•••		•	• • • • • •	• • • • •
690		15:25:17.10		- 106.828 - 105.853	.00 .00	.80 80		• •	44	NM		• • •	•	•	• • • • •
691		00:07:24.00		-105.295	.00	.80 .80		• •	69 115	NM NM	• • •	• • •	•	•••••	
				/	.00			••	(13	r(F)	•••	• • •	•		

Cat	Date	Time (GMT)	Lat	Long	Depth	Mag1	Mag2	Inten	Dist	Data	No.	Az	Q	Std-	Err
No. ====-	year-mo-day	hr-min-sec			(km)			(MM)		Srce		Gap	_	Horiz '	
692	1979 OCT 21	17:18:52.60		- 106.740 -		.70			-===- 46	==-· NM	·===-	-===-		-======	
693	1979 OCT 26	15:39:11.90		-106.920		••••		••	55	NM	•••				
694	1979 OCT 28	05:55:36.50	35.914	-106.767	.00				39	NM					
695	1979 OCT 28	08:22:34.35	35.916	-106.787	7.26	.62MDLA			41	WC	11	110		0	.0
696	1979 OCT 28	16:41:19.60		-106.745	12.40	.80MDGS		••	40	GS	0	0		.0	.0
697	1979 OCT 29	04:05:49.89		-106.506		1.33MDLA	******	• •	70	WC	17	137		.0	.0
698 699	1979 NOV 03	01:11:10.53		-106.754	9.21	1.74MDLA		• •	90	WC	17	142		.0	.0
700	1979 NOV 03	06:10:48.60 07:18:47.90		-106.812 -106.761	.00.	.30 .30		••	90 95	NM NM	•••	• • •			• • • • •
701	1979 NOV 03	18:24:41.67		-106.227		1.82MDLA		••	37	LA	12	244		2.5	9.0
702	1979 NOV 03	18:24:41.77		-106.220		1.87MDLA			35	WC	12	241		.0	.0
703	1979 NOV 06	02:15:35.51	36.076	-106.879	8.01	1.63MDLA			55	WC	20	158		.0	.0
704	1979 NOV 11	13:13:58.50	36.174	-106.573	44.50				43	GS	0	0		.0	.0
705	1979 NOV 11	13:28:45.10	35.881	-106.248	.00	1.30			11	NM					
706	1979 NOV 11	18:37:17.00		-106.749	.00	1.30			92	NM					
707	1979 NOV 13	06:42:02.50		-106.581	.00	.50			63	NM					
708	1979 NOV 13	13:58:35.20		-106.711	.00	.70		• •	86	NM	• • •	•••			
709	1979 NOV 13	21:31:27.64		-106.792	10.71	1.10MDLA		••	. 66	WC	20	154	-	.0	.0
710 711	1979 NOV 13	21:58:33.45 08:43:31.08		-106.784	9.81	1.17MDLA		••	66	WC	19	151		.0	.0
712	1979 NOV 14	21:40:43.49		-106,937 -106,692	.33 3.82	1.18MDLA .55MDLA	*******		53 42	WC	20	152		.0	.0
713	1979 NOV 19	02:56:38.09		-106.700	8.38	.60MDLA		••	42	WC WC	12 10	108 112	-	.0 .0	.0 .0
714	1979 NOV 23	04:14:22.40		-106.770	15.80	.40MDGS		••	78	GS	0	0		.0	.0
715	1979 NOV 23	09:40:08.40		-106.733	.00	1.00		••	105	NM					
716	1979 NOV 23	10:15:59.90		-106.639	.00	.80		• • • • • • • • • • • • • • • • • • • •	94	NM					
717	1979 NOV 24	15:28:13.53		-106.739	5.38	.91MDLA		•••	79	WC	14	197		.0	.0
718	1979 NOV 24	15:34:06.40	36.469	-106.720	.00	.50		••	78	NM	•••				
719	1979 NOV 26	10:11:03.29	36.331	-106.862	7.66	.98MDLA	•••••		72	WC	9	218		.0	.0
720	1979 NOV 29	06:34:42.30	36.735	-106.559	.00	.50	******		102	NM					
721	1979 NOV 29	06:38:32.50	36.735	-106.559	.00	.70		••	102	NM					
722	1979 DEC 15	01:18:11.70	36.250	-105.920	.00	-50			61	NM	• • •				
723	1979 DEC 18	11:25:48.78		-106.946	66.17	.13MDLA		• •	82	LA	7	205	-	8.6	9.3
724	1979 DEC 18	16:39:24.90		-106.673	3.85	.89MDLA	• • • • • • • • •		30	MC	12	186		.0	.0
725	1979 DEC 20	00:29:22.57		-106.678	3.84	.74MDLA	• • • • • • • •	••	31	WC	14	187	•	.0	.0
726 727	1979 DEC 20 1979 DEC 20	01:34:59.40		-106.685	.00	.30	• • • • • • • •		31	NM	•••	•••	•	*****	• • • • •
728	1979 DEC 20	04:47:08.50 05:22:22.00		-106.736 -106.755	6.80	.80MDGS			36	GS	0	0		.0	.0
729	1979 DEC 20			-106.755	.00 4.98	.80MDGS .09MDLA		• •	38	GS	0	0		.0	.0
730	1979 DEC 22	17:20:10.50		-106.680	.00	.UYMDLA	• • • • • • • • • • • • • • • • • • • •	• •		WC		116	•	.0	.0
731	1979 DEC 22	17:34:35.86		-106.690	13.28	31MDLA		•••	31 32	NM WC		181	•	.0	
732	1979 DEC 23	23:50:47.02		-106.822	5.19	.40MDLA			89	WC	9	205		.0	.0 .0
733	1979 DEC 24	13:03:39.30		-106.800	.00	.80		•••	96	NM					
734	1979 DEC 24	13:54:41.19		-106.802	6.37	1.17MDLA	*******	•••	87	WC	18	204		.0	.0
735	1979 DEC 24	14:07:01.23	35.132	-106.802	6.56	.55MDLA			88	WC	15	204		.0	.0
73 6	1979 DEC 28	04:49:02.04	36.306	-105.854	12.13	.40MDLA		• •	69	WC	19	187		.0	.0
737	1979 DEC 28	06:48:05.60	36.420	-106.750	.00	.50			75	NM					
738	1980 JAN 01	04:52:19.80		-106.796	5.00	.30	• • • • • • • • •		91	NM	• • •				• • • • •
 0	4000 05	DEPTH CONSTRA					IT								
739	1980 JAN 05	05:51:02.20		-106.904	5.00				61	NM	• • •	•••	•		• • • • •
740	1000 344 05	DEPTH CONSTRA													
740	1980 JAN 05	13:29:53.10		-106.850	5.00	.50 . KM OF EVEN	,,	••	60	NM		• • •	•	• • • • • •	• • • • •
741	1980 JAN 08	DEPTH CONSTRA 00:22:44.22		-106.824	8.28				/ =	uc	45	247		_	^
742	1980 JAN 09	13:08:18.80		-106.624	5.00	.49MDLA	• • • • • • • • • • • • • • • • • • • •	• •	45 54			216	•	.0	.0
. 14		DEPTH CONSTRA					**************************************	• •	54	NM	• • •	•••	•	•••••	
743	1980 JAN 12		-	-106.547	5.00	.30	• • • • • • • •		42	NM					
	-	DEPTH CONSTRA						• •	74	MPI	•••	•••	•	• • • • • •	
744	1980 JAN 31	03:59:29.31		-106.035	1.30	.12MDLA		••	54	LA	9	292	D	.6	8,5
745	1980 FEB 07		35.553	-106.819	4.68	1.13MDLA		••		WC		161		.0	.0

Cat	Date	Time (GMT)	Lat	Long	Depth	Mag1	Mag2	Inten	Dist	Data	No.	Az	Q	Std-	Err
No.	year-mo-day				(km)			(MM)				Gap		Horiz	
746	1980 FEB 09	-====== 20:06:46.74		-106.612	-=====- 5.00	-=====================================			·===: 88	= GS	10	-===-			
747		21:06:23.53		-106.903	3.24	1.32MDLA		••	85	MC PP	16	256		.0 .0	.0 .0
748	1980 FEB 15	10:28:39.95		-106.887	5.00	.60MDGS			50	GS	6	0		.0	.0
749	1980 FEB 15	11:30:37.11	35.942	-106.919	7.05	.19MDLA			53		10	241		.0	.0
750	1980 FEB 16	10:02:44.60	35.728	-106.878	4.00	.40	******		49	MM					
751	1980 FEB 19	15:04:13.20		-106.431	8.15		• • • • • • • • • • • • • • • • • • • •		15	WC	7	160		.0	.0
752	1980 FEB 21	11:13:10.26		-106.810	10.00	.60MDLA	•••••	• •	74	LA	12	273	Đ	1.1	189.9
753	1980 FEB 25	00:54:09.80		-106.616		1.30		• •	97	NM	• • •	• • •	•	••••	• • • • •
754	1980 FEB 26	DEPTH CONSTRA 22:14:05.74		-106.163		1.01MDLA			F2	LA		201	_		24.4
755	1980 FEB 27	00:16:57.72		-106.758	9.68	26MDLA		••	39	WC	8 14	291 209			26.1
756	1980 FEB 28	11:14:56.84		-106.381	6.26	.32MDLA		• • •	69	WC	12	129		.0 .0	.0 .0
757		15:26:00.20		-106.638	5.00	.50		••	75	NM		127			
		DEPTH CONSTRA						••		••••	•••	•••	•	••••	
758	1980 MAR 03	21:54:22.80		-106.044	5.00	******	*******		62	NM					
		DEPTH CONSTRA	INED; NO	STATION	WITHIN 1	O KM OF EVEN	Т						-		
759	1980 MAR 05	11:06:56.60	36.172	-106.806	5.00		•••••		56	NM					
		DEPTH CONSTRA			WITHIN 1	O KM OF EVEN	Т								
760	1980 MAR 09			-106.553	5.00	.70	•••••	••	91	NM		• • •			
7/4	4000 445 44	DEPTH CONSTRA			_		Г								
761	1980 MAR 14	23:44:25.90		-106.039	5.00				70	NM	• • •	• • •	٠	• • • • •	
762	1980 MAR 15	DEPTH CONSTRA 10:09:30.70							444						
702	1900 MAK 13	DEPTH CONSTRA		-106.876		1.60		• •	100	NM	•••	•••	•	••••	• • • • •
763	1980 MAR 15	17:53:17.84		-106.952	8.69	.79MDLA			60	WC	10	148		^	•
764	1980 MAR 16	14:46:01.42		-106.965	10.26	04MDLA		••	60	WC	19 11	151		.0 .0	.0 .0
765	1980 MAR 19	03:36:31.65		-106.459	4.48	.30 NM			20	WC		182		.0	.0
766	1980 MAR 25	23:42:58.20		-106.052	5.00			•••	66				-	.0	.0
		DEPTH CONSTRA			WITHIN 1							•••	•		
767	1980 MAR 29	06:02:25.65	35.672	-106.531	13.14	.50 NM			24	LA	5	314	С	1.8	2.1
768	1980 APR 01	02:23:03.81	36.110	-106.218	7.08	.40 NM			33	WC	8	156		.0	.0
769	1980 APR 03	10:04:05.40		-106.602	5.00	.60	• • • • • • • • • • • • • • • • • • • •	• •	92	NM					
		DEPTH CONSTRA					ſ								
770	1980 APR 05	06:44:51.02		-106.974		14MDLA	•••••	• •		LA	10	286		.9	1.0
771 772	1980 APR 09	10:19:05.69		-105.882	9.46	.40 NM	•••••	• •	67		9	250		.0	.0
773	1980 APR 15	14:43:33.20 15:07:43.68		-106.696 -106.647	2.70	1.60MDGS	•••••	••	32	GS	0	0		.0	.0
774	1980 APR 18	15:08:07.64		-106.774	7.40 8.00	1.60MDGS .50MDGS	• • • • • • • • • • • • • • • • • • • •	• •	28	GS	0	0		.0	.0
775		15:25:54.30		-106.774	5.00	.80MDGS	*******	••	39 40	GS	0	0	_	.0	.0
776		15:53:23.79		-106.777	5.13	.19MDLA		• •	40 39	GS WC	0 14	0 133		.0 n	.0
777		03:13:04.78		-105.685	13.67	1.02MDLA		••	61	WC	16	263		.0 .0	.0 .0
778	1980 APR 23	07:25:23.70		-106.797	7.25	11MDLA		•••	41	LA	10	296		1.1	1.3
779	1980 APR 23	07:26:39.56		-106.804	3.10	80MDGS			42	GS	0	0		.0	.0
780		07:27:49.65	35.894	-106.804	.80	1.10MDGS			42	GS	0	0	c	.0	.0
		09:08:45.31		-106.789	3.80	.60MDGS	• • • • • • • • • • • • • • • • • • • •	• •	41	G\$	0	0	b	.0	.0
		18:34:33.24		-106.786	6.76	13MDLA	• • • • • • • • •		40	LA	9	329	Ç	1.6	2.4
	1980 APR 24	05:12:28.44		-106.721	.04	.03MDLA	• • • • • • • • • • • • • • • • • • • •		34	MC	11	148	•	.0	-0
		12:12:08.10		-106.795	1.00		• • • • • • • •	• •	41	NM	• • •	• • •			
		19:11:57. <i>9</i> 7 19:12:33.48		-106,777 -106,783	7.13 7.03	1.000014	• • • • • • • • • • • • • • • • • • • •	• •	39	WC		132		.0	.0
		22:30:33.13		-106.778	6.65	1.90MDLA	•••••	• •	39	WC	12	135		.0	.0
788		08:49:14.72		-106.778	3.63	OZMDLA .55MDLA		••	39 38	WC	12 15	133 129		.0	.0
789		07:26:01.42		-106.785	6.73	28MDLA		••	40	WC WC	11	137		.0 .0	.0
790		02:22:17.08		-106.673	2.80			••	30	GS	0	0 :		.0	.0 .0
		02:22:20.10	35.879		3.00	•••••		••	30	NM					
792		02:49:58.40	35.584	-107.206	5.00	.80		••	82	NM		•••			
		DEPTH CONSTRAI			WITHIN 10	KM OF EVENT						-			
793		10:56:15.20	35.771 -		5.00	.30		••	27	NM	• • •	•••	•		
		DEPTH CONSTRAI	NED; NO	STATION 1	WITHIN 10) KM OF EVENT									

Veal - March Veal - March Veal - March Veal Veal - March Veal - Vea	Cat	Date	Time (GMT)	Lat	Long	Depth	Mag1	Mag2	Inten	Dist	Data	No.	Az (Std	-Err
9796 1980 MAY 06 0049-195, 98 33.623 - 106.975 157 - 1.990LA 60 LA 12 294 C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	No.	year-mo-day	hr-min-sec			(km)									
1990 187 06 08 06 08 08 08 08 08	zzzz-	- ***********	- = = = = = = = = = = =	-======-	======	=====	-========	=- ====================================	-===-	-====	==-	-===-	-===-		-====
1980 NAY 06 11:40:322 R2 35.643 - 106.980 5.00 0									• •						
1990 MAY 66 12-01-162_87 35.623 - 166_0980 5.00 8.00-068 61 68 0 0 0 0 0 0 0 0 0								4	• •						
1980 MAY 13 01:10:13.77 35.591 - 106.970 10.74 - 1990 10.74									• •						
1980 NAY 16 07:47:10.06 35.888 106.685 .80 .80 .00											-	-			
BOD 1980 MAY 16 09:19-27.67 35.087 - 106.133 5.09 1.05MUA 26 MC 10 94 .0 .0 .0 .0 .0 .0 .0 .															
1900 MAY 16 09:11:18.76 35.00 - 108.823 10.43								*				-			
1980 MAY 19 07:06:327.51 35.800 - 106.688															
1980 MAY 20 35:132-92.43 35.854 - 106.576 2.70 2.200cs 21 6S 0 0 0 0 0 0 0 0 0															
BOB MAY 20 23:55:19.29 35.877 -106.712 3.10 50MD0S 33 6S 0 0 a 0 0												_			
1980 MAY 25 03:59:14.40 36.598 - 105.332 5.00 60															
DEPH CONSTRAINED, NO STATION WITHIN 10 KM OF EVENT 10												-			.0
806 1980 MAY 25 17:39:17:38 36.252 106.223 7.70 SRNDLA	005	1700 MAI ES								124	rteri	• • • •	•••		• • • • • • • • • • • • • • • • • • • •
1980 MAY 27 20:52:14.09 35.891 106.794 6.00 80MDGS	806	1980 MAY 25		-						4.9	uc	0	151	n	0
BABB MAY 27 21:20:09.47 \$5.889 106.790 \$5.00 1.20MDGS \$6.00 \$0.00															
1980 JUN 02 12:41:47.09 35.756 106.929 3.00 20MDGS 53 GS 0 0 0 0 0															
1980 JUN 03 18-45-33.10 36-480-105-305 5.00 119 NM												-			
DEPTH CONSTRAINED; NO STATION WITHIN 10 DW OF EVENT 1980 JUN 07 00:55:44.46 35.886 -106.691 .00 .70M050S .31 GS 0 0 a .0 .0 312 1980 JUN 18 07 07.04:01.66 36.014 -106.135 4.14 .61M0LA .28 MC 9 94 .0 .0 313 1980 JUN 13 11:51148.20 35.892 -106.670 3.30 .40M06S .30 GS 0 0 a .0 .0 314 1980 JUN 13 11:55:53.80 35.894 -106.677 4.00 .30 .40M06S .30 GS 0 0 a .0 .0 315 1980 JUN 13 12:00:01.48 35.879 -106.683 2.30 1.10M0GS .31 GS 0 0 b .0 .0 316 1980 JUN 15 19:58:04.77 35.986 -106.155 8.28 .80 MM .25 WC 7 183 .0 .0 317 1980 JUN 15 19:58:04.77 35.986 -106.155 8.28 .80 MM .25 WC 7 183 .0 .0 318 1980 JUN 20 08:14:16.60 36.00 -106.155 7.55 .40 MM .26 WC 7 98 .0 .0 318 1980 JUN 25 08:11:42.79 35.780 -106.6794 1.00 .20 .41 MM 320 1980 JUN 25 08:11:42.79 35.751 -106.942 .66 1.29M0LA .30 WC 12 200 .0 .0 321 1980 JUN 25 08:11:42.79 35.751 -106.942 .66 1.29M0LA .36 WC 18 144 .0 .0 322 1980 JUN 27 00:74:753.26 35.955 -106.687 5.00 1.10M0GS .48 8 GS 0 0 c .0 .0 323 1980 JUN 27 00:74:753.26 35.955 -106.687 5.00 1.10M0GS .48 8 GS 0 0 c .0 .0 324 1980 JUN 27 01:74:753.26 35.955 -106.682 5.00 1.20M0GS .45 GS 0 0 c .0 .0 325 1980 JUN 27 01:74:753.26 35.955 -106.682 5.00 1.20M0GS .45 GS 0 0 0 c .0 .0 326 1980 JUN 27 01:74:753.26 35.955 -106.682 5.00 1.20M0GS .45 GS 0 0 0 c .0 .0 326 1980 JUN 27 01:74:753.26 35.955 -106.682 5.00 1.20M0GS .45 GS 0 0 0 c .0 .0 327 1980 JUN 27 01:74:753.26 35.955 -106.682 5.00 1.20M0GS .45 GS 0 0 0 c .0 .0 328 1980 JUN 27 01:74:753.26 35.956 -106.682 5.00 1.20M0GS .45 GS 0 0 0 c .0 .0 329 1980 JUN 28 23:04:10.30 35.980 -106.151 7.89 1.10 MM .25 WC 5 90 .0 .0 320 1980 JUN 28 25:04:10.30 35.980 -106.151 7.89 1.10 MM .25 WC 5 90 .0 .0 321 1980 JUL 13 06:16:50.45 36.707 -106.603 5.89 .40 MM .59 WC 5 WC 5 90 .0 .0 322 1980 JUL 13 06:16:50.45 36.707 -106.640 5.00 1.20 .0 .30M0GS .89 GS 0 0 0 0 .0 .0 323 1980 JUL 13 06:44:45.70 36.697 10.00 324 1980 JUL 13 06:45:50.45 36.707 -106.648 5.00 .30M0GS .76 GS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			_									_			
811 1980 JUN 07 00:55:44,46 35,886 -106.697									••		****	•••	••••	• • • • • •	••••
812 1980 JUN 13 11:11:48.20 35.892 - 106.670 3.30 4.0mbgs 30 65 0 0 a . 0 . 0 . 0 . 1 813 1980 JUN 13 11:11:48.20 35.892 - 106.670 3.30 4.0mbgs 30 65 0 0 a . 0 . 0 . 0 . 1 815 1980 JUN 13 11:55:53.80 35.894 - 106.677 4.00	811	1980 JUN 07		•						31	GS	0	0 a	.0	.0
813 1980 JUN 13 11:11:48.20 35.802 -106.670 3.30 4.0MDGS 30 6S 0 0 a .0 .0 .814 1980 JUN 13 11:55:53.80 35.894 -106.677 4.00	812	1980 JUN 08	07:04:01.66	36.014	-106.135										
1980 JUN 13 11:55:53.80 35.894 - 106.677 4.00	813	1980 JUN 13	11:11:48.20	35.892	-106.670	3.30	.40MDGS					0		_	
815 1980 JUN 15 12:00:01.48 35.879 - 106.683 2.30 1.10MGCS 31 6S 0 0 b 0 0 .0 .0 .1 816 1980 JUN 15 19:58:04.72 35.986 - 106.155 8.28 .80 NM 25 MC 7 88 .0 .0 .0 .0 .1 817 1980 JUN 20 08:14:16.80 36.000 - 106.152 7.55 .40 NM 26 MC 7 98 .0 .0 .0 .0 .1 818 1980 JUN 23 01:03:08:00 35.883 - 106.794 1.00 .20 41 NM	814	1980 JUN 13	11:55:53.80	35.894	-106.677	4.00				30	NM				
816 1980 JUN 25 09:58:04.72 35.986 - 106.155 8.28 80 NM 25 MC 7 98 0 0 0 817 1980 JUN 20 08:14:16.80 36.000 - 106.152 7.55 .40 NM 26 MC 7 98 0 0 0 818 1980 JUN 23 07:03:08.00 35.883 - 106.794 1.00 .20 41 NM 819 1980 JUN 23 17:44:11.58 35.730 - 106.659 8.10 .11NDLA 30 MC 12 200 0 0 0 820 1980 JUN 25 08:11:42.79 35.751 - 106.942 .66 1.29MDLA 36 MC 15 127 0 0 821 1980 JUN 25 20:07:15.47 35.940 - 105.970 8.37 1.59MDLA 36 MC 15 127 0 0 822 1980 JUN 27 00:32:47.25 35.950 - 106.857 5.00 1.10NDGS 48 GS 0 0 c 0 0 0 823 1980 JUN 27 00:47:53.26 35.958 - 106.829 5.00 1.20MDGS 48 GS 0 0 c 0 0 0 824 1980 JUN 27 00:47:53.26 35.958 - 106.829 5.00 1.20MDGS 48 GS 0 0 c 0 0 0 825 1980 JUN 27 01:44:29.85 35.945 - 106.821 6.74 54MDLA 44 MC 15 1779 0 0 825 1980 JUN 27 01:44:29.85 35.958 - 106.821 6.74 54MDLA 44 MC 15 1779 0 0 826 1980 JUN 27 01:44:29.85 35.958 - 106.821 6.74 54MDLA 44 MC 15 1779 0 0 827 1980 JUL 07 18:02:33.00 35.240 - 107.250 0 0 10 NM 59 MC 9 96 0 0 0 827 1980 JUL 07 18:02:33.00 35.240 - 107.250 0 0 10 10 NM 59 MC 9 96 0 0 0 828 1980 JUL 10 09:11:47.12 35.042 - 106.460 5.00 1.20 100 105 SJ 828 1980 JUL 13 06:14:59.045 36.779 - 106.667 10.00 .100 105 SJ 831 1980 JUL 13 06:14:59.045 36.779 - 106.667 10.00 .100 .100 NM 832 1980 JUL 13 06:44:58.70 36.699 - 106.611 5.00 1.20 .80 M	815	1980 JUN 13	12:00:01.48	35.879	-106.683	2.30	1.10MDGS			31	GS				
817 1980 JUN 20 08:14:16.80 36.000 - 106.152 7.55 .40 MM	816	1980 JUN 15	19:58:04.72	35.986	-106.155	8.28	.80 NM			25	WC	7	183		
819 1980 JUN 23 17:44:11.58 35.730 -106.659 8.10 .11MDLA 30 WC 12 200 .0 .0 .0 820 1980 JUN 25 08:11:42.79 35.751 -106.942 .66 1.29MDLA 54 WC 18 144 .0 .0 .0 821 1980 JUN 25 00:07:15.47 35.751 -106.942 .66 1.29MDLA .36 WC 15 127 .0 .0 .0 821 1980 JUN 27 00:32:47.25 35.950 -106.857 5.00 1.10MDGS .48 GS 0 0 c .0 .0 .0 .0 823 1980 JUN 27 00:47:53.26 35.958 -106.829 5.00 1.20MDGS .48 GS 0 0 c .0 .0 .0 .0 .22 1980 JUN 27 01:44:29.85 35.955 -106.829 5.00 1.20MDGS .48 GS 0 0 c .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	817	1980 JUN 20	08:14:16.80	36.000	-106.152	7.55	.40 NM			26	WC	7	98 .		
820 1980 JUN 25 08:11:42.79 35.751 -106.942 66 1.29MDLA 54 WC 18 144 0 0 0 821 1980 JUN 25 20:07:15.47 35.940 -105.970 8.37 1.59MDLA 36 WC 15 127 0 0 0 0 821 1980 JUN 27 00:32:47.25 35.950 -106.857 5.00 1.10MDGS 48 GS 0 0 c 0 0 0 823 1980 JUN 27 00:47:53.26 35.958 -106.829 5.00 1.20MDGS 48 GS 0 0 c 0 0 0 0 824 1980 JUN 27 00:47:53.26 35.958 -106.829 5.00 1.20MDGS 45 GS 0 0 c 0 0 0 0 824 1980 JUN 27 01:44:29.85 35.958 -106.821 6.74 54MDLA 44 WC 15 179 0 0 0 0 825 1980 JUN 28 23:04:10.30 35.980 -106.151 7.89 10 NM 25 WC 5 90 0 0 0 0 826 1980 JUL 05 10:24:06.12 36.305 -106.063 5.89 40 NM 55 WC 9 96 0 0 0 827 1980 JUL 07 18:02:33.00 35.240 -107.250 .00 .10 105 SJ 828 1980 JUL 10 09:11:47.12 35.042 -106.140 5.00 .30MDGS 89 GS 0 0 b 0 0 0 829 1980 JUL 13 06:14:19.00 36.719 -106.640 5.00 1.20 102 NM 828 1980 JUL 13 05:16:50.45 36.749 -106.697 10.00 829 1980 JUL 13 06:44:58.70 36.699 -106.641 5.00 1.30 828 1980 JUL 13 06:44:58.70 36.699 -106.641 5.00 1.30 828 1980 JUL 13 06:49:18.90 36.697 -106.645 5.00 1.20 828 1980 JUL 13 06:49:18.90 36.697 -106.645 5.00 1.20 828 1980 JUL 13 06:49:18.90 36.697 -106.646 5.00 1.30 829 1980 JUL 13 06:49:18.90 36.697 -106.648 5.00 1.30 829 1980 JUL 13 06:49:18.90 36.697 -106.648 5.00 20 828 1980 JUL 13 06:49:18.90 36.697 -106.648 5.00 20 828 1980 JUL 13 06:49:18.90 36.697 -106.648 5.00 20 828 1980 JUL 14 12:45:20.44 36.456 -106.526 10.16 5.1MDLA 72 WC 18 146 0.0 0.0 833 1980 JUL 13 12:45:20.44 36.456 -106.526 10.16 5.1MDLA 72 WC 18 146 0.0 0.0 835 1980 AUG 23 10:05:18.43 35.625 -106.622 9.41 25MDLA 34 WC 12 84 0.0 0.0 835 1980 AUG 23 17:21:37.70 36.282 -106.697 5.00 30 80	818	1980 JUN 23	01:03:08.00	35.883	-106.794	1.00	.20		• •	41	MM				
821 1980 JUN 25 20:07:15.47 35.940 -105.970 8.37 1.59MDLA 36 MC 15 127 . 0 . 0 822 1980 JUN 27 00:32:47.25 35.950 -106.857 5.00 1.10MDGS 48 68 0 0 c . 0 . 0 823 1980 JUN 27 00:32:47.25 35.958 -106.829 5.00 1.20MDGS 45 68 0 0 c . 0 . 0 824 1980 JUN 27 01:44:29.85 35.958 -106.821 6.74 54MDLA 44 MC 15 179 . 0 . 0 825 1980 JUN 27 01:44:29.85 35.945 -106.821 6.74 54MDLA 44 MC 15 179 . 0 . 0 826 1980 JUL 02 82:304:10.30 35:980 -106.151 7.89 10 NM 25 MC 5 90 . 0 . 0 826 1980 JUL 05 10:24:06.12 36:305 -106.063 5.89 .40 NM 59 MC 9 96 . 0 . 0 827 1980 JUL 07 18:02:33.00 35:240 -107.250 .00 .10 105 S.J	819	1980 JUN 23	17:44:11.58	35.730 ·	-106.659	8.10	.11MDLA			30	WC	12	200 .	.0	.0
822 1980 JUN 27 00:32:47.25 35.950 -106.857 5.00 1.10MDGS 48 GS 0 0 c 0 0 .0 823 1980 JUN 27 00:47:53.26 35.958 -106.829 5.00 1.20MDGS 45 GS 0 0 c 0 0 .0 824 1980 JUN 27 01:44:29.85 35.945 -106.821 6.74 .54MDLA 44 UC 15 179 .0 0 .0 825 1980 JUN 28 23:04:10.30 35.980 -106.151 7.89 .10 NM 25 UC 5 90 .0 .0 826 1980 JUL 05 10:24:06.12 36.305 -106.063 5.89 .40 NM 59 WC 9 96 .0 .0 827 1980 JUL 05 10:24:06.12 36.305 -106.063 5.89 .40 NM 59 WC 9 96 .0 .0 827 1980 JUL 07 18:02:33.00 35.240 -107.250 .00 .10 105 SJ 828 1980 JUL 10 09:11:47.12 35.042 -106.140 5.00 .30MDGS 89 GS 0 0 b .0 .0 829 1980 JUL 13 00:14:19.00 36.719 -106.640 5.00 1.20 102 NM 829 1980 JUL 13 00:14:19.00 36.719 -106.640 5.00 1.20 102 NM 831 1980 JUL 13 00:14:19.00 36.779 -106.640 5.00 1.30 100 NM 831 1980 JUL 13 00:14:18.90 36.679 -106.647 5.00 1.30 100 NM 833 1980 JUL 13 00:14:18.90 36.677 -106.648 5.00 .20 98 NM 833 1980 JUL 14 12:45:20.44 36.456 -106.562 10.16 .51MDLA 72 UC 18 146 .0 .0 833 1980 AUG 81 18:03:29.69 36.008 -106.774 4.33 1.09MDLA 34 UC 14 233 .0 .0 .0 835 1980 AUG 81 18:33:29.69 36.008 -106.774 4.33 1.09MDLA 43 UC 12 84 .0 .0 .0 837 1980 AUG 22 13:33:11.84 35.741 -107.186 5.00 .30 .73 NM 839 1980 SEP 02 22:32:04.98 35.795 -106.649 7.50 .30 .30 73 NM 839 1980 SEP 02 22:32:04.98 35.785 -106.699 7.50 .30 .30 73 NM 839 1980 SEP 01 02:07:10.22 35.785 -106.699 7.53 90 .50 NM 90 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	820	1980 JUN 25	08:11:42.79	35.751	-106.942	.66	1.29MDLA		• •	54	WC	18	144 .	.0	.0
823 1980 JUN 27 00:47:53.26 35.958 -106.829 5.00 1.20MDGS 45 GS 0 0 c 0 0 0 824 1980 JUN 27 01:44:29.85 35.945 -106.821 6.74 54MDLA 44 WC 15 179 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	821	1980 JUN 25	20:07:15.47	35.940 ·	-105.970	8.37	1.59MDLA			36	WC	15	127 .	.0	.0
824 1980 JUN 27 01:44:29.85 35.945 -106.821 6.74 .54MDLA 44 WC 15 179 .0 .0 825 1980 JUN 28 23:04:10.30 35.980 -106.151 7.89 .10 NM	822	1980 JUN 27	00:32:47.25	35.950 ·	-106.857	5.00	1.10MDGS			48	GS	0	0 0	.0	.0
825 1980 JUL 28 23:04:10.30 35:980 -106.151 7.89 .10 NM 25 UC 5 90 .0 .0 .0 826 1980 JUL 05 10:24:06.12 36.305 -106.063 5.89 .40 NM 59 WC 9 96 .0 .0 .0 827 1980 JUL 07 18:02:33.00 35:240 -107.250 .00 .10 105 SJ		1980 JUN 27	00:47:53.26	35.958	-106.829	5.00	1.20MDGS	• • • • • • • • • • • • • • • • • • • •		45	GS	0	0 0	.0	.0
826 1980 JUL 05 10:24:06.12 36.305 -106.063 5.89 .40 NM 59 WC 9 96 .0 .0 827 1980 JUL 07 18:02:33.00 35.240 -107.250 .00 .10 105 SJ		1980 JUN 27	01:44:29.85	35.945 ·	-106.821	6.74	.54MDLA			44	WC	15	179 .	.0	.0
827 1980 JUL 07 18:02:33.00 35.240 -107.250 .00 .10 105 SJ						7.89	.10 NM			25	WC	5	90 .	0	.0
828 1980 JUL 10 09:11:47.12 35.042 -106.140 5.00 .30MDGS 89 GS 0 0 b .0 .0 829 1980 JUL 13 04:14:19.00 36.719 -106.640 5.00 1.20 102 NM DEPTH CONSTRAINED; NO STATION WITHIN 10 KM OF EVENT 830 1980 JUL 13 05:16:50.45 36.749 -106.697 10.00 10.00 100 NM DEPTH CONSTRAINED; NO STATION WITHIN 10 KM OF EVENT 831 1980 JUL 13 06:44:58.70 36.699 -106.641 5.00 1.30 100 NM DEPTH CONSTRAINED; NO STATION WITHIN 10 KM OF EVENT 832 1980 JUL 13 06:49:18.90 36.677 -106.648 5.00 .20 98 NM 833 1980 JUL 14 12:45:20.44 36.456 -106.562 10.16 .51MDLA 72 WC 18 146 . 0 .0 834 1980 AUG 08 10:05:18.43 35.625 -106.622 9.41 .25MDLA 34 WC 14 233 . 0 .0 835 1980 AUG 13 18:33:29.69 36.008 -106.774 4.33 1.09MDLA 43 WC 12 84 . 0 .0 836 1980 AUG 23 17:21:37.70 36.461 -106.577 5.00 .30 73 NM DEPTH CONSTRAINED; NO STATION WITHIN 10 KM OF EVENT 838 1980 SEP 02 22:32:04.98 35.990 -106.127 2.99 .50 NM 27 WC 11 95 . 0 .0 840 1980 SEP 10 02:07:10.22 35.735 -106.914 .08 .57MDLA 52 WC 17 142 . 0 .0 841 1980 SEP 11 02:07:10.22 35.735 -106.914 .08 .57MDLA 52 WC 17 142 . 0 .0 842 1980 SEP 11 16:16:53.20 36.484 -105.257 5.00 .10 DEPTH CONSTRAINED; NO STATION WITHIN 10 KM OF EVENT 843 1980 SEP 12 19:27:20.50 36.304 -106.610 5.00 .10 DEPTH CONSTRAINED; NO STATION WITHIN 10 KM OF EVENT 844 1980 SEP 12 19:27:20.50 36.304 -106.610 5.00 .10 DEPTH CONSTRAINED; NO STATION WITHIN 10 KM OF EVENT						5.89	.40 NM			59	WC	9	9 6 .	.0	.0
829 1980 JUL 13 04:14:19.00 36.719 -106.640 5.00 1.20 102 NM							.10			105	SJ	• • •		• • • • •	
DEPTH CONSTRAINED; NO STATION WITHIN 10 KM OF EVENT 830 1980 JUL 13 05:16:50.45 36.749 -106.697 10.00								• • • • • • • • •	• •			0	0 E	0.	.0
830 1980 JUL 13 05:16:50.45 36.749 -106.697 10.00	829	1980 JUL 13							••	102	NM	• • •			• • • • •
831 1980 JUL 13 06:44:58.70 36.699 -106.641 5.00 1.30 100 NM DEPTH CONSTRAINED; NO STATION WITHIN 10 KM OF EVENT 832 1980 JUL 13 06:49:18.90 36.677 -106.648 5.00 .20 98 NM 833 1980 JUL 14 12:45:20.44 36.456 -106.562 10.16 .51MDLA 72 WC 18 146 0 .0 834 1980 AUG 08 10:05:18.43 35.625 -106.622 9.41 .25MDLA 34 WC 14 233 0 .0 835 1980 AUG 13 18:33:29.69 36.008 -106.774 4.33 1.09MDLA 43 WC 12 84 0 .0 836 1980 AUG 22 13:33:11.84 35.741 -107.186 5.00 .40MDGS 76 GS 0 0 d .0 .0 837 1980 AUG 23 17:21:37.70 36.461 -106.577 5.00 .30 73 NM DEPTH CONSTRAINED; NO STATION WITHIN 10 KM OF EVENT 838 1980 SEP 02 22:32:04.98 35.990 -106.127 2.99 .50 NM 27 WC 11 95 0 .0 840 1980 SEP 11 02:07:10.22 35.735 -106.914 .08 .57MDLA 52 WC 17 142 0 .0 841 1980 SEP 11 09:57:08.34 35.884 -106.678 2.00 1.20MDGS 30 GS 0 0 a .0 .0 842 1980 SEP 12 19:27:20.50 36.304 -106.610 5.00 .10 DEPTH CONSTRAINED; NO STATION WITHIN 10 KM OF EVENT 843 1980 SEP 12 19:27:20.50 36.304 -106.610 5.00 .10 DEPTH CONSTRAINED; NO STATION WITHIN 10 KM OF EVENT 844 1980 SEP 12 19:27:20.50 36.304 -106.610 5.00 .10 DEPTH CONSTRAINED; NO STATION WITHIN 10 KM OF EVENT	970	1000 44 47													
DEPTH CONSTRAINED; NO STATION WITHIN 10 KM OF EVENT 832 1980 JUL 13 06:49:18.90 36.677 -106.648 5.00 .20 98 NM									• •			4	2 9 5 D	.0	.0
832 1980 JUL 13 06:49:18.90 36.677 -106.648 5.00 .20 98 NM	031	1900 JUL 13							• •	100	MM	• • •	••••		• • • • •
833 1980 JUL 14 12:45:20.44 36.456 -106.562 10.16 .51MDLA	832	1080 111 17													
834 1980 AUG 08 10:05:18.43 35.625 -106.622 9.41 .25MDLA 34 WC 14 233 0 . 0 835 1980 AUG 13 18:33:29.69 36.008 -106.774 4.33 1.09MDLA 43 WC 12 84 0 . 0 836 1980 AUG 22 13:33:11.84 35.741 -107.186 5.00 .40MDGS 76 GS 0 0 d . 0 . 0 837 1980 AUG 23 17:21:37.70 36.461 -106.577 5.00 .30 73 NM															•••••
835 1980 AUG 13 18:33:29.69 36.008 -106.774 4.33 1.09MDLA 43 WC 12 84 0 . 0 836 1980 AUG 22 13:33:11.84 35.741 -107.186 5.00 .40MDGS 76 GS 0 0 d . 0 . 0 837 1980 AUG 23 17:21:37.70 36.461 -106.577 5.00 .30 73 NM DEPTH CONSTRAINED; NO STATION WITHIN 10 KM OF EVENT 838 1980 SEP 02 22:32:04.98 35.990 -106.127 2.99 .50 NM 27 WC 11 95 0 . 0 839 1980 SEP 06 12:55:37.79 36.282 -106.499 7.53 52 WC 10 147 0 . 0 840 1980 SEP 11 02:07:10.22 35.735 -106.914 .08 .57MDLA 52 WC 17 142 0 . 0 841 1980 SEP 11 09:57:08.34 35.884 -106.678 2.00 1.20MDGS 30 GS 0 0 a . 0 . 0 842 1980 SEP 11 16:16:53.20 36.484 -105.257 5.00 1.10 122 NM DEPTH CONSTRAINED; NO STATION WITHIN 10 KM OF EVENT 843 1980 SEP 12 19:27:20.50 36.304 -106.610 5.00 .10 58 NM DEPTH CONSTRAINED; NO STATION WITHIN 10 KM OF EVENT															
836 1980 AUG 22 13:33:11.84 35.741 -107.186 5.00 .40MDGS															_
837 1980 AUG 23 17:21:37.70 36.461 -106.577 5.00 .30															
DEPTH CONSTRAINED; NO STATION WITHIN 10 KM OF EVENT 838 1980 SEP 02 22:32:04.98 35.990 -106.127 2.99 .50 NM												-			.0
838 1980 SEP 02 22:32:04.98 35.990 -106.127 2.99 .50 NM		.,							• •	13	ALTI	• • •	••••	• • • • • •	•••••
839 1980 SEP 06 12:55:37.79 36.282 -106.499 7.53	838	1980 SEP 02								27	ur	11	05		Λ
840 1980 SEP 11 02:07:10.22 35.735 -106.914 .08 .57MDLA .52 WC 17 1420 .0 841 1980 SEP 11 09:57:08.34 35.884 -106.678 2.00 1.20MDGS .30 GS 0 0 a .0 .0 842 1980 SEP 11 16:16:53.20 36.484 -105.257 5.00 1.10 .122 NM DEPTH CONSTRAINED; NO STATION WITHIN 10 KM OF EVENT 843 1980 SEP 12 19:27:20.50 36.304 -106.610 5.00 .10 .58 NM DEPTH CONSTRAINED; NO STATION WITHIN 10 KM OF EVENT															
841 1980 SEP 11 09:57:08.34 35.884 -106.678 2.00 1.20MDGS 30 GS 0 0 a .0 .0 842 1980 SEP 11 16:16:53.20 36.484 -105.257 5.00 1.10 122 NM DEPTH CONSTRAINED; NO STATION WITHIN 10 KM OF EVENT 843 1980 SEP 12 19:27:20.50 36.304 -106.610 5.00 .10 58 NM DEPTH CONSTRAINED; NO STATION WITHIN 10 KM OF EVENT															
842 1980 SEP 11 16:16:53.20 36.484 -105.257 5.00 1.10 122 NM DEPTH CONSTRAINED; NO STATION WITHIN 10 KM OF EVENT 843 1980 SEP 12 19:27:20.50 36.304 -106.610 5.00 .10 58 NM DEPTH CONSTRAINED; NO STATION WITHIN 10 KM OF EVENT															
DEPTH CONSTRAINED; NO STATION WITHIN 10 KM OF EVENT 843 1980 SEP 12 19:27:20.50 36.304 -106.610 5.00 .10	842														.0
843 1980 SEP 12 19:27:20.50 36.304 -106.610 5.00 .10									••		mi1	• • •	••••		••••
DEPTH CONSTRAINED; NO STATION WITHIN 10 KM OF EVENT	843	1980 SEP 12								58	NM				
8// 1080 SED 13 33-78-30 9/ 7/ 304 40/ /F3			DEPTH CONSTRA					 VT			:		•		
	844	1980 SEP 12								58	GS	0	0 ь	.0	.0

Cat No.	Date year-mo-day	Time (GMT) hr-min-sec	Lat	Long	Depth (km)	Mag1	Mag2	Inten						d-Err z Vert
	-============	-========	-==========	=====			==-===========		- ====	-==-	-==-	-===-	===	====
845	1980 SEP 12		36.485 -1		5.00	.70	******	••	121	NM	• • •			
846	1980 SEP 13	DEPTH CONSTRA 00:22:56.70	36.414 -1		5.00	U KM UF EV	ENI		92	NM				
		DEPTH CONSTRA			-		ENT	••	,,,	iat.	•••	•••		
847	1980 SEP 13	03:04:53.64	35.503 -1	07.205	5.00	.50MDGS			86	GS	0	0	۱. ط	0.
848	1980 SEP 15	07:47:13.86	35.886 -1	06.626	6.60	1.00MDGS			26	GS	0	0	ا. ء	
849	1980 SEP 15	09:14:16.08	35 .9 07 -1	06.853	5.00	.60MDGS			46	GS	0	0	a .(0.
850	1980 SEP 18	15:42:22.20	36.013 -1		7.52	.26MDLA		• •	50	WC	12	252	(0.
851	1980 SEP 20	21:14:44.10	36.265 -1		5.00	.40		••	92	NM	• • •	• • •	• • • • • •	
852	1980 SEP 23	DEPTH CONSTRA 05:57:56.02										25.4		
853	1980 SEP 24	18:14:45.05	36.013 -10 35.549 -10		7.38 4.58	.73MDLA	•••••	••	49 57	WC	14 15	251 171		
854	1980 SEP 25	10:40:19.30	36.066 -1		5.00	.60		••	53 52	, WC NM	15	371		
	.,	DEPTH CONSTRA						••	72	Mil	•••	•••	• •	• • • • • • •
855	1980 SEP 25	17:38:33.70	35.909 -1		1.00	1.20			33	NM				
856	1980 SEP 25	18:31:09.50	35.882 -1	06.701	.00	.90			32	NM				
857	1980 SEP 25	19:01:25.80	35.882 -1	06.737	1.00	.90			35	NM				
858	1980 SEP 25	20:53:00.40	35.882 -1	06.722	1.00	1.10			34	NH				
859	1980 SEP 25	22:07:31.09	35.876 -1		.80	.20MDGS	******		39	GS	0	0 (). t	0.
860	1980 SEP 29	09:17:48.70	36.680 -10		5.00	.40	*******		99	NM				
0/1	1000 050 30	DEPTH CONSTRA												
861	1980 SEP 29	11:58:53.40	36.697 -10		5.00	.70	-,	••	100	NM	• • •	•••	• • • • •	••••
862	1980 SEP 29	DEPTH CONSTRA 22:00:31.00	36.706 -10		5.00		ENT		400	****				
002	1760 SEP 29	DEPTH CONSTRA				.30	 ENT	••	100	MM	•••	•••		
863	1980 OCT 08	19:56:47.30	36.476 -10		9.06	.83MDLA	ENI		86	uc	17	201		
864	1980 OCT 11	20:31:41.00	36.530 -10		.00	2.20	• • • • • • • • • • • • • • • • • • • •	••	90	WC SJ	13	201		
865	1980 OCT 19	06:18:00.42	36.152 -10		4.52			• • • • • • • • • • • • • • • • • • •	39	WC	11	119		
866	1980 OCT 19	07:24:29.47	36.153 -10		5.74	.20 NM	*******	• • • • • • • • • • • • • • • • • • • •	39	WC	12	119		
867	1980 OCT 25	19:42:52.07	35.544 -10	07.164	5.00				80	GS	0	0 1		
868	1980 OCT 25	19:42:52.29	35.540 -10	07.171	7.23	.33MDLA			81	WC	20	153		
869	1980 OCT 26	10:29:13.83	35.893 -10	06.687	3.00	.80MDGS			31	GS	0	0 0		
870	1980 OCT 27	11:33:07.38	35.969 -10	06.709	2.00	.70MDGS	• • • • • • • •		36	GS	0	0 i		.0
871	1980 OCT 28	12:32:02.13	35.967 -10		5.00	.40MDGS			28	GS	0	0 0) . I	.0
872	1980 NOV 13	19:49:05.51	35.687 -10		.03	.60 NM		••	16	WC	7	231 .	0	.0
873	1980 NOV 16	21:32:09.20	35.873 -10		1.10	1.00MDGS		• •	39	GS	0	0 a		
874 875	1980 NOV 17	21:06:49.60	35.659 -10		1.47	.50 NM	• • • • • • • •		19	WC	7	236 .		.0
876		13:21:13.94 14:20:52.49	35.886 -10 35.851 -10		3.70	.60MDGS		• •	33	GS	0	0 a		
877	1980 NOV 20	02:11:24.60	36.641 -10		5.00	53MDLA			30	WC		129 .	0	.0
	1700 1101 20	DEPTH CONSTRA						••	99	NM		••••	• • • • •	••••
878	1980 NOV 22	00:16:27.97	36.351 -10			1.47MDLA			77	WC	19	207 .	.0	
879	1980 NOV 27	09:28:17.58	36.420 -10			1.08MDLA		•••	103	WC	14	247 .		
880	1980 NOV 29	08:19:48.97	36.407 -10		14.85	1.70MDLA	*******		98	WC	17	240 .		
881	1980 NOV 30	07:20:30.52	36.541 -10	6.649	15.22	.88MDLA	• • • • • • • • • • • • • • • • • • • •	••	83	WC	21	195 .		•
882		09:23:48.29	35.590 -10	7.213	5.00	.30MDGs			83	GS	0	0 0		
883	1980 DEC 13	16:51:44.70	35.628 -10		5.00	• • • • • • • • • • • • • • • • • • • •	•••••	••	82	MM				
		DEPTH CONSTRA			WITHIN 10	KM OF EVE	NT							
884		11:12:19.80	35.602 -10		5.00	.50			84	MM		••••		• • • • •
oor		DEPTH CONSTRA					NT							
885		20:57:59.60	35.021 -10		5.00	.10	********	• •	90	NM	• • •	•••	• • • • •	• • • • •
886		DEPTH CONSTRA 09:27:29.72	35.878 -10		3.00 3.00				70		^	^	_	_
		17:11:12.60	36.324 - 10		8.55	.60MDGS		••	30 59	GS Lec	0	0 a		
		02:02:57.14	35.742 -10		8.06	26MDLA		••	58 73	WC WC	8 8	93 . 194 .		
		03:18:08.42	35.757 -10		5.00	.80MDGS	• • • • • • • • • • • • • • • • • • • •	••	47	GS	0	0 b		
890		11:57:27.20	36.408 -10		11.00	.10		••	78					
		22:16:48.70	36.381 -10		4.00	.10		••	75	NM		•••		
892	1981 JAN 01	03:58:16.22	35.537 -10	6.686	5.00	1.20MDGS			45	GS	4	0 Ь	.0	.0

Cat	Date	Time (GMT)	Lat Long	Depth	Mag1	Mag2	Inten	Dist	Data	No.	Az	Q St	d-Err
No.	year-mo-day			(km)			(MM)						z Vert
			-======================================			22-22222222	=-===-						
893	1981 JAN 06	13:39:12.88	35.960 -106.583			******	• •		LA		280		0 89.2
894	1981 JAN 10	06:25:58.50	35.605 -107.236				• •.	84	NM	•••	• • •	• ••••	• ••••
895	1001 (8) 11		AINED; NO STATION			ENT		٠.					
67)	1981 JAN 11	09:34:12.90	35.597 -107.232			Thit		84	MM	•••	• • •	• • • • • • •	• • • • • • • • • • • • • • • • • • • •
904	1001 (4) 11		AINED; NO STATION			ENI				4-	4.46		
896 897	1981 JAN 11 1981 FEB 12	17:24:00.56	36.314 -106.573			******	• •	57		15	149	•	0.0
071	1901 PEB 12	04:51:18.90	36.742 - 106.713		.80	*******	••	106	NM	•••	• • •	• • • • • •	• • • • • • •
898	1981 FEB 20	12:05:10.40	AINED; NO STATION					0.5					
070	1901 FEB 20		35.067 -106.445 AINED; NO STATION		.50	ENT	••	85	MM .	• • •	•••	• • • • • • • • • • • • • • • • • • • •	• • • • • • •
899	1981 FEB 23	13:41:38.12	36.037 -106.876					F 7	ше	45	100		
900	1981 FEB 28	08:49:46.74	36.240 -106.221		.25MDLA .20 N M		• •	53 47	WC WC	15 8	198 147		
901	1981 MAR 06	07:41:33.39	35.558 -107.006		52MDLA		••	67	WC	_	164	-	
902	1981 MAR 08	02:21:21.70	36.335 -106.217		JZMULA		••	57	WC	11 13	180	-	
903	1981 MAR 09	12:29:56.90	36.663 -106.643		.60			96	NM		100		J .U
, 03	1701 1841 07		AINED; NO STATION			ENT	• •	70	ren:	• • •	• • • •		
904	1981 MAR 15	12:44:35.56	35.907 -106.493		.10 NM			15	WC	7	266		
905	1981 MAR 20	13:57:40.26	36.285 -106.544				•••	53	WC	10	143	-	
906	1981 MAR 24	00:57:28.53	35.656 -106.952		.60MDGS	•••••	••	58		3	0		
907	1981 MAR 24	21:48:51.05	35.548 -106.835		.79MDLA		••	54	GS WC	د 11		-	
908	1981 APR 01	02:17:38.00	35.340 -107.090		.79mbla .50	*******	••		-	11	184		0.0
909	1981 APR 05	00:48:48.18	35.876 -106.820		.80MDGS		• •	86	SJ			· · · · · ·	
910	1981 APR 05	00:48:55.70	35.889 -106.767		.90	• • • • • • • • • • • • • • • • • • • •	••	43	GS		0		0.0
911	1981 APR 05	04:14:14.78	35.872 -106.779		.48MDLA	•••••	••	38 39	NM WC	 19	444		
912	1981 APR 19	09:00:43.70	36.376 -106.375		.20MDGS		••	61		3	111	-	
913	1981 APR 20	14:44:57.67	35.870 -106.764		.ZOMDGS	******	• •	38	GS GS	7	0		
914	1981 MAY 02	17:08:19.40	36.449 -106.597				••	72	NM		U	a .	0.0
,,,	.,		AINED; NO STATION			VENT	••	12	MLI	• • •	•••	• ••••	• • • • • • •
915	1981 MAY 03	10:36:39.93	35.539 -106.239		.86MDLA	******		34	WC	10	239		٠ ،
916	1981 MAY 06	05:41:24.38	36.001 -106.762		.30MDGS		••	42	GS	5	0		
917	1981 JUN 06	02:25:17.15	35.899 -106.729		.50MDGS		••	35	GS	4	0	-	
918	1981 JUN 06	02:52:59.88	35.891 -106.765		1.30MDGS		• •	38	GS	4	0	•	
919	1981 JUN 15	12:28:03.43	35,709 -106,659		1.10MDGS		••	31	GS	4	0		
920	1981 JUN 28	04:37:59.70	35 483 -106.796		.20MDGS		••	56	GS	4	0		
921	1981 JUL 30	08:43:14.08	35.735 -106.671		.10MDGS		••	31	GS	4	0	-	
922	1981 JUL 30	09:47:34.95	35.745 -106.654		1.30MDGS		••	29	GS	3	0		
923	1981 AUG 03	05:11:42.81	35.693 -106.122		.57MDLA		••	26	WC	8	148		
924	1981 AUG 04		36.573 -106.191					84	ым	_			
		DEPTH CONSTRA	INED; NO STATION	S WITHIN	10 KM OF F	VFNT	••	-	14111	•••			
925	1981 AUG 18	00:16:27.85	36.667 -106.698		1.18MDLA	• • • • • • • • •		98	LA	13	222	D 2.2	2.7
926	1981 AUG 27	11:49:57.53	35.895 -106.728		.40MDGS	******	•••	35	GS	3	0		
927	1981 SEP 09	21:41:49.10	36.594 -106.736		1.10		•••	92	NM				
		DEPTH CONSTRA	INED; NO STATION					-		•••			*****
928	1981 SEP 10	05:52:53.34	35.723 -106.867		.20MDGS			48	GS	5	0	c .(0, 0
929	1981 SEP 11	17:09:14.10	35.884 -106.746		1.10			36	NM		•••		
930	1981 SEP 11	18:46:07.50	35.868 -106.785	5.00	.50		•••	40	NM				
931	1981 SEP 11	20:26:60.00	35.861 -106.824	5.00	.50			43	NM				,
932	1981 SEP 11	21:25:41.30	35.855 -106.823	5.00	.30	•••••		43	NM				
		DEPTH CONSTRA	INED; NO STATION	S WITHIN	10 KM OF EN	/ENT		•					
933	1981 SEP 14	19:51:04.64	36.618 -106.758		1.00MDGS			95	GS	11	0 1	ь .0	.0
934	1981 SEP 16	04:04:56.10	36.010 -106.144	5.00				27	NM		•••		
		DEPTH CONSTRA	INED; NO STATION	S WITHIN	10 KM OF EV	/ENT							
935	1981 SEP 21	04:19:04.12	36.519 -106.647		.86MDLA			81	WC	23	187	(.0
936		02:15:59.46	36.514 -106.499	10.45	.53MDLA			77		15	159		
937		07:40:22.82	35.527 -106.443		.87MDLA			35	WC		187		
938		11:26:03.40	35.274 -107.246		.40	• • • • • • • •	• •	102	NM				
			INED; NO STATION		KM OF EVEN	I T							
939		14:30:16.00	35.260 -107.240		.90	******		103	SJ			. ,,,,,	
940	1981 OCT 21	08:41:48.69	36.465 -106.668	10.61	1.72MDLA	• • • • • • • •		76	WC	22	166	0	.0

Cat	Date	Time (GMT) Lat	Long	Depth	Mag1	Mag2	Inten	Dist	Data	No.	Az	Q	Std-	Err
No.	year-mo-day -=========	hr-min-sec	:======	(km)			(MM) =-===-			Arr		=-	Horiz	
941			4 -106.899	4.10	.40MDGS				GS	3	0		.0	.0
942	1981 NOV 01		7 -106.680	5.00	.60MDGS		• • • • • • • • • • • • • • • • • • • •	96	GS	8	0		.0	.0
943	1981 NOV 02		4 -106.121	11.47	.62MDLA			47	-	19	221	_	.0	.0
944	1981 NOV 03	09:01:40.81 36.4	8 -106.671	3.40	.10MDGS		••	71	GS	5	0		.0	.0
945	1981 NOV 05	06:40:03.40 35.38	32 -106.324	5.00	.70			50	NM					
		DEPTH CONSTRAINED;	O STATION	ITHIN 10	KM OF EVENT									
946	1981 NOV 06	12:23:50.98 35.6	0 -107.226	5.00	.10MDGS			83	GS	3	0	ď	.0	.0
947	1981 NOV 11	00:50:02.60 36.7	9 -106.718	5.00	1.50			104	NM					
		DEPTH CONSTRAINED;	O STATION W	VITHIN 10	KM OF EVENT									
948	1981 NOV 11	00:56:02.10 36.6	5 -106.697	5.00	.9 0			99	NM					
		DEPTH CONSTRAINED;	O STATION L	ITHIN 10	KM OF EVENT									
949	1981 NOV 24	06:51:19.38 35.76	4 -106.760	10.52	1.29MDLA			38	WC	16	125		.0	.0
950	1981 NOV 26	09:09:02.50 36.68	7 -106.697	5.00	.60		• •	100	NM	• • •				
		DEPTH CONSTRAINED;	O STATION W	ITHIN 10	KM OF EVENT									
951	1981 NOV 29	18:21:04.90 35.5	1 -106.139	5.00	.10	• • • • • • • •	• •	40	MM					
		DEPTH CONSTRAINED;			KM OF EVENT									
952	1981 DEC 03		1 -106.885	5.00	.50MDGS	• • • • • • • • •	• •	55	GS	3	0	С	.0	.0
953	1981 DEC 23		5 -105.657	5.00	.50	• • • • • • • •	• •	71	ММ	•••	•••	•	••••	• • • • •
		DEPTH CONSTRAINED;												
954	1981 DEC 25		0 -105.843	5.00	.20		• •	68	NM	• • •		•		• • • • •
		DEPTH CONSTRAINED;												
9 55	1981 DEC 27		6 -107.109	5.00	1.10	• • • • • • • • • • • • • • • • • • • •	• •	85	NM	• • •	•••	•	• • • • •	• • • • •
057	1001 0=0 30	DEPTH CONSTRAINED;												
956 057	1981 DEC 29		1 -106.139	5.00	.10MDGS		• •	40	GS	4	0	d	.0	.0
957	1981 DEC 30		9 -106.901	5.00	.40	• • • • • • • • • • • • • • • • • • • •	• •	79	NM	• • •	• • •	•	• • • • •	• • • • •
958	1981 DEC 31	DEPTH CONSTRAINED; 18:14:03.50 36.09		5.00				24						
9,00	1901 DEC 31	DEPTH CONSTRAINED;	7 -106.570		.30		• • •	36	NM	• • • •	• • • •	•		• • • • •
959	1982 JAN 06		5 -106.556	5.00	.20MDGS			36	GS	6	0	_		•
960	1982 JAN 08		4 -106.566	5.00	.20		••	36	NM		U	U	.0	.0
,,,,	.,02 0/// 00	DEPTH CONSTRAINED;				•••••	••	20	MIT	• • •	•••	•		• • • • •
961	1982 JAN 11	-	1 -106.627	9.43	07MDLA			33	WC	12	215		.0	.0
962	1982 JAN 12		0 -106.588	5.00	.10		•••	28	NM					
		DEPTH CONSTRAINED;	O STATION W	ITHIN 10	KM OF EVENT							•		
963	1982 FEB 18		9 -106.849	5.00	.40MDGS			45	GS	5	0	ь	.0	.0
964	1982 FEB 22	10:47:03.20 35.49	9 -107.185	5.00				88	NM	,				
965	1982 FEB 26	20:22:50.58 35.17	5 -106.767	7.91	.72MDLA			82	WC	10	230		.0	.0
966	1982 FEB 28	09:08:27.87 36.04	8 -106.937	4.70	.20MDGS			58	GS	2	0	ь	.0	_0
967	1982 FEB 28		1 -106.765	5.00				107	NM					
		DEPTH CONSTRAINED;												
968	1982 FEB 28		1 -106.806	5.00		• • • • • • • • • • • • • • • • • • • •	• •	108	MM	•••	•••		• • • • •	• • • • •
0/0	1002 !!! 02	DEPTH CONSTRAINED;												
969	1982 MAR 02		1 -105.287	5.00		• • • • • • • •	• •	96		6	0		.0	.0
970 971	1982 MAR 02		1 -105.454		2.56MDLA	• • • • • • • •	• •		LA	20	239	D	2.9	2.2
711	1982 MAR 02	16:14:00.60 36.62 DEPTH CONSTRAINED; N	9 -106.658	5.00	.90	•••••	• •	93	NM	• • •	•••	•	• • • • •	
972	1982 MAR 02		0 STATION W	10.00				70			300	_	·	
973	1982 MAR 02		4 -105.328	5.00	.45MDLA .90	•••••	••	79	LA		302			362.1
	.,	DEPTH CONSTRAINED;				• • • • • • • • • • • • • • • • • • • •	••	93	MM	• • •	• • •	•	• • • • •	
974	1982 MAR 04		8 -105.256	10.00	.86MDLA			99	LA	10	303	D	1 2	152.1
975	1982 MAR 05		1 -106.718	5.00			••	105	NM	•••				
		DEPTH CONSTRAINED;								•••	•••	•	••••	• • • • •
976			1 -106.657	5.00	.90			91	NM					
		DEPTH CONSTRAINED; N		ITHIN 10	KM OF EVENT			•						
977	1982 MAR 06	03:51:04.40 36.72	3 -106.716	5.00	1.30			104	NM					
		DEPTH CONSTRAINED; N	O STATION W	ITHIN 10	KM OF EVENT									-
978			1 -106.692	5.00		• • • • • • • • • • • • • • • • • • • •		99	NM					<i>.</i>
		DEPTH CONSTRAINED;	W MOLTATE O	ITHIN 10	KM OF EVENT									

Cat No.	Date year-mo-day		Lat	Long	Depth (km)	Mag1	Mag2	Inten (MM)	(km)	Srce	Arr	Gap		Std- Horiz	Vert
979	1982 MAR 07		36.689	-106.654	5.00	1.10			99		•===-			-=====	
980	1982 MAR 07	DEPTH CONSTRA 05:17:00.90	-	-106.670		1.10			99	NM					
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	DEPTH CONSTRA			-			••	,,	(4F)	•••	•••	•		••••
981	1982 MAR 23	23:14:00.40		-106.651		1.00			90	NM					
002	1002 ADD 04	DEPTH CONSTRA	_								_			_	_
982 983	1982 APR 06 1982 APR 18	11:53:21.87 05:46:16.07		-106.761 -105.276	9.42 10.00	.30MDLA .82MDLA		••	63 97	WC LA	9 12	257 302		.0	.0 176.5
984	1982 APR 19	07:34:46.75		-105.821	11.85	1.03MDLA		••	72	WC	11	193		.0	.0
985	1982 APR 24	04:12:07.24	35.723	-106.708	9.94	.30MDLA			34	WC	13	188		.0	.0
986	1982 APR 25	09:36:02.90	35.881	-106.865	5.00	.20MDGS	******		47	GS	3	0	¢	.0	.0
987	1982 MAY 03	18:42:33.30		-106.939	5.00	.10MDGS	******	••	57	GS	3	0	С	.0	.0
988	1982 MAY 04	12:21:13.24		-106.650	5.00	1.40MDGS	•••••	••	96	GS	14		þ	.0	.0
989 990	1982 MAY 05	21:13:45.14		-106.608	5.00	1.30MDGS	• • • • • • • • • • • • • • • • • • • •	••	78	GS	5		ď	.0	.0
991	1982 MAY 05 1982 MAY 06	21:27:25.78 01:53:43.71		-106.624 -106.699	5.00 5.00	1.20MDGS 2.00MDGS	*******	••	83	GS	3	0		.0	.0
992	1982 MAY 06	01:59:02.13		-106.700	5.00	1.30MDGS	•••••	••	99 101	GS GS	11 12	0	b	.0 .0	.0 .0
993	1982 MAY 16	12:08:48.90		-106.813	5.00	.70MDGS		•••	100	GS	4	0		.0	.0
994	1982 MAY 16	13:08:34.63		-106.714	5.00	1.60MDGS			94	GS	10		ь	.0	.0
995	1982 MAY 16	13:26:06.12	36.629	-106.714	5.00	1.10MDGS			94	GS	4	0	c	.0	.0
996	1982 MAY 16	16:16:53.40	36.670	-106.708	.00	2.70MLLAEQS			99	DG					
997	1982 MAY 16	16:20:45.17		-106.715		1.50MDGS	• • • • • • • • • • • • • • • • • • • •	• •	96	GS	5	0	þ	.0	.0
998 999	1982 MAY 16 1982 MAY 16	17:39:56.11		-106.720		1.00MDGS	•••••	••	92	GS	3	0	-	.0	.0
1000	1982 MAY 16	19:54:49.39 20:04:21.54		-106.696 -106.738		1.30MDGS		• •	96	GS	6	0		.0	.0
1001	1982 MAY 16	22:01:28.11		-106.735		1.80MDGS 1.30MDGS		••	104 94	GS GS	6 5	0		.0 0.	.0 .0
1002	1982 MAY 16	22:08:45.30		-106.707	5.00	1.00MDGS		••	92	GS	5	0		.0	.0
1003	1982 MAY 16	22:36:57.87		-106.736	5.00	.80MDGS	•••••	•••	94	GS	4	Õ		.0	.0
1004	1982 MAY 16	23:30:29.04	36.658	-106.743	5.00	1.20MDGS		••	98	GS	4	0		.0	.0
1005	1982 MAY 16	23:34:15.69	36.660	-106.630	5.00	1.50MDGS		• •	96	GS	6	0	ь	.0	.0
1006	1982 MAY 16	23:47:57.08		-106.794	5.00	1.90MDGS		• •	108	GS	6	0	d	.0	.0
1007	1982 MAY 17	00:07:48.59		-106.741		1.50MDGS	• • • • • • • •	••	97	GS	6	0		.0	.0
1008 1009	1982 MAY 17 1982 MAY 17	00:32:12.01 00:33:28.21		-106.688 -106.637		1.40MDGS		••	95	GS	5	0		.0	.0
1010	1982 MAY 17	00:33:26.27		-106.637		1.30MDGS 1.20MDGS		• •	86 96	GS GS	6 4	0		.0	.0
1011	1982 MAY 17	01:04:52.68		-106.698		1.30MDGS		••	97	GS	5	0		.0 .0	.0 .0
1012	1982 MAY 17	01:20:13.43		-106.719	5.00	.80MDGS			98	GS	4	0		.0	.0
1013	1982 MAY 17	01:54:11.69	36.644	-106.698	5.00	1.60MDGS			96	GS	7	0		.0	.0
1014	1982 MAY 17			-106.568	5.00	1.20MDGS	• • • • • • • • •	• •	93	GS	5	0	Ь	.0	.0
1015	1982 MAY 17	02:13:15.30		-106.770	5.00	.50MDGS	• • • • • • • • • • • • • • • • • • • •	• •	100	GS	4	0	d	.0	.0
1016	1982 MAY 17	02:28:21.57		-106.720	5.00	.80MDGS	• • • • • • • •	••	89	GS	5	0	b	.0	.0
1017 1018	1982 MAY 17 1982 MAY 17	02:37:06.32 02:46:05.03		-106.717 -106.771		2.00MDGS	• • • • • • •	••	97	GS	6	0	Ь	.0	.0
1019	1982 MAY 17	05:29:40.69		-106.777	.00 5.00	2.60MLLAEQS .70MDGS	•••••	••	102	DG	•••	•••		•••••	
1020	1982 MAY 17	10:36:41.65		-106.653		1.40MDGS		••	92 93	GS GS	5 6	0		.0	.0
1021	1982 MAY 17	11:36:43.61		-106.689	5.00	.90MDGS			94	GS	5	0		.0 .0	.0 .0
1022	1982 MAY 18	19:35:36.22	36.634	-106.702		1.30MDGS			95	GS	5	ō		.0	.0
1023		06:59:16.92	36.630	-106.650	5.00	1.70MDGS	• • • • • • • • • • • • • • • • • • • •		93	GS	5	0	b	.0	.0
1024		07:03:09.72		-106.714		1.40MDGS	• • • • • • • • • • • • • • • • • • • •	• •	99	GS	6	0	С	.0	.0
1025		09:09:57.76		-106.643		1.50MDGS	• • • • • • • • • • • • • • • • • • • •	• •	87	GS	5	0	Ь	.0	.0
1026 1027	1982 MAY 19 1982 MAY 19	09:31:53.53 13:26:23.41		-106.693			•••••	••	96	GS	4	0		.0	.0
1028	1982 MAY 20	07:07:51.85		-106.852 -106.737		1.10MDGS 1.10MDGS	• • • • • • • • • • • • • • • • • • • •	••	110	GS	4	0		.0	-0
1029		07:09:33.78		-106.731					99 98	GS GS	4	0		.0	.0
1030		17:02:49.84		-106.718		1.40MDGS		••	99	GS	6	0		.0 .0	.0 .0
1031	1982 MAY 21	05:51:11.64		-106.643		1.20MDGS			93	GS	5	0		.0	.0
1032		08:59:28.01	36.653	-106.728		1.30MDGS	••••		97	GS	5	ō		.0	.0
1033		10:02:42.10		-106.804	5.00	.90MDGS		••	89	GS	5	0	а	.0	.0
1034	1982 MAY 24	00:48:33.78	36.671	-106.716	5.00	1.30MDGS	• • • • • • •	••	99	GS	6	0	а	.0	.0

Cat	Date	Time (GMT)	Lat	Long	Depth	Mag1	Mag2	Inten	Dist	Data	No.	Az	Q	Std-	Err
No.	year-mo-day	hr-min-sec			(km)			(MM)	(km)	Srce	Arr	Gap		Horiz	Vert
1035	1982 MAY 24	01:03:49.63		-======- -106.718	5.00	1.30MDGS	:=- ===================================	=-===-	-====		-==-			-====-	
1036	1982 MAY 24	08:43:52.32		-106.713	5.00	1.50MDGS		• •	98 99	GS GS	5 8	0		.0 .0	.0 .0
1037	1982 MAY 25	05:45:50.24		-106.708	5.00	1.00MDGS		••	97	GS	4	0		.0	.0
1038	1982 MAY 25	09:38:17.66	36.644	-106.693	5.00	.90MDGS		•••	95	GS	4	0		.0	.0
1039	1982 MAY 25	18:50:42.69	35.337	-107.188	5.00	.50MDGS			94	GS	4	0	С	.0	.0
1040	1982 MAY 26	05:59:52.76	36.696	-106.712	5.00	1.50MDGS			101	GS	8	0	а	.0	.0
1041	1982 MAY 26	06:30:53.79		-106.551	5.00	1.50MDGS		••	95	GS	6	0	Ь	.0	.0
1042	1982 MAY 26	20:39:44.68		-106.723	4.58	1.77MDLA		••	83	WC	10	125		.0	.0
1043 1044	1982 MAY 26	22:37:15.68		-106.910	5.00	1.90MDGS		••	112	GS	7	0		.0	.0
1044	1982 MAY 27 1982 MAY 27	03:32:41.78 06:23:31.42		-106.728 -106.718	.06 5.00	1.30MDGS	*******	• •	97	WC	11	172		.0	.0
1046	1982 MAY 27	06:31:18.64		-106.718	5.00	1.10MDGS	• • • • • • • •	• •	97	GS GS	8 7	0		.0	.0
1047	1982 MAY 27	08:41:47.21		-106.821	5.00	1.70MDGS		•••	98 109	GS	8	0		.0 .0	.0 .0
1048	1982 MAY 27	16:26:09.62		-106.741	10.01	1.23MDLA		••	82	WC	8	129		.0	.0
1049	1982 MAY 28	02:41:09.72		-107.036	16.33			• •	64	WC	9	202		.0	.0
1050	1982 MAY 29	07:24:50.57	36.655	-106.724	5.00	1.00MDGS		••	98	GS	4	0		.0	.0
1051	1982 MAY 29	07:28:49.38	36.666	-106.703	5.00	1.30MDGS			98	GS	4	0		.0	.0
1052	1982 MAY 29	09:30:36.23	36.650	-106.702	5.00	1.30MDGS	• • • • • • • • • • • • • • • • • • • •	• •	96	GS	5	0	a	.0	۔0
1053	1982 MAY 30	00:07:44.00		-106.622	5.00	1.30MDGS			52	GS	5	0	b	.0	.0
1054	1982 MAY 30	03:27:52.81		-106.718	5.00	1.20MDGS		••	99	GS	9	0	а	.0	.0
1055 1056	1982 MAY 31	09:37:08.50		-106.800	6.00	2.00ML GS	• • • • • • • •	IV	91	SA	•••	•••		••••	
1056	1982 JUN 02 1982 JUN 12	09:19:03.04 10:46:52.93		-106.671	5.00	1.80MDGS	• • • • • • • • • • • • • • • • • • • •	••	99	GS	9	0		.0	.0
1058	1982 JUN 12	10:59:16.11		-106.739 -106.714	5.00 5.00	1.20MDGS 2.00MDGS		••	101	GS	5	0		.0	.0
1059	1982 JUN 26	13:32:40.52		-106.798	9.05	.71MDLA			97 47	GS WC	13 9	0 270		.0	.0
1060	1982 JUN 29	08:42:17.03		-106.751	5.00	1.00MDGS	*******	••	104	GS	5	0		.0 .0	.0 .0
1061	1982 JUN 29	11:43:25.80		-106.736	5.00	1.80MDGS		••	100	GS	12	0		.0	.0
1062	1982 JUN 29	11:51:02.71		-106.752	5.00	.80MDGS			107	GS	3	0		.0	.0
1063	1982 JUN 29	11:51:58.83	36.016	-106.279	5.00	.30MDGS	*******	•••	22	GS	3	Õ		.0	Õ
1064	1982 JUN 29	11:54:48.61	36.500	-106.607	5.00	1.20MDGS			78	GS	4	0	d	.0	.0
1065	1982 JUN 29	11:57:23.91		-106.711	7.08	1.53MDLA	•••••	••	97	WC	10	124		.0	.0
1066	1982 JUN 29	12:25:54.38		-106.734	5.00	1.20MDGS	• • • • • • • •		102	GS	4	0	d	.0	.0
1067	1982 JUN 29	13:33:43.00		-106.838	5.00	1.50MDGS	• • • • • • • • • • • • • • • • • • • •	••	110	GS	7	0	С	.0	.0
1068 1069	1982 JUN 30 1982 JUL 02	05:30:51.67 01:19:38.04		-106.669	5.00	1.40MDGS	•••••	••	95	GS	11	0		.0	.0
1070	1982 JUL 02	06:02:43.43		-106.723 -106.755	5.00	.80MDGS	•••••	• •	98	GS	6	0		.0	.0
1071	1982 JUL 04	03:19:33.11		-106.655	5.00 5.00	1.20MDGS 2.00MDGS	•••••	• •	108	GS	3	0		.0	.0
1072	1982 JUL 04	22:13:01.66		-105.859		1.30MDGS	• • • • • • • • • • • • • • • • • • • •	• •	95 41	GS	7 3	0		.0	.0
1073	1982 JUL 06	21:05:59.72		-107.201		1.30MDGS		••	61 105	GS GS	3	0		.0	.0
1074		03:28:30.26		-106,767	5.00	1.10MDGS		••	102	GS	5	0		.0 .0	.0
1075	1982 JUL 08	04:03:43.42		-106.661	5.00	1.60MDGS	*******		91	GS	8	0		.0	.0
1076	1982 JUL 12	16:37:07.91	35.575	-107.120	8.27	2.61MDLA			75	WC	8	157		.0	.0
1077		06:05:51.19	36.249	-106.623	5.00	1.10MDGS			53	GS	4	0		.0	.0
1078	1982 JUL 22	11:23:29.11		-106.941	.23	1.22MDLA	• • • • • • • • • • • • • • • • • • • •		56	WC	14	146		.0	.0
1079		12:46:23.99		-106.949	3.35	1.70MDLA	• • • • • • • • • • • • • • • • • • • •	• •	56	WC	24	146		.0	.0
1080 1081		13:16:52.59		-106.905	5.00	1.10MDGS	• • • • • • • • • • • • • • • • • • • •	••	50	GS	4	0 1		.0	.0
1082	1982 JUL 22 1982 JUL 23	20:51:01.22 21:37:00.75		-107.082	1.14	1.74MDLA		••	78	WC	6	205		.0	.0
1083		04:48:01.08		-106.850 -106.688	5.00 12.23	.60MDGS		• •	47	GS	4	0 (.0	.0
1084		04:55:04.52		-106.726		2.93MDLA 1.40MDGS		••	102	WC	5	133		.0	.0
1085		07:01:14.33		-106.646		2.00MDGS		••	97 90	GS	4	0 1		.0	.0
1086		17:08:40.33		-106.672		2.52MDLA	*******	••	89 104	GS WC	4 5	0 d 139 .		.0	.0
1087		02:22:25.13		-106.689		1.83MDLA		••	100	WC	7	130		.0 .0	.0 .0
1088	1982 AUG 10	08:11:03.56		-106.697		1.50MDLA		••	99	WC	6	128		.0	.0
1089		10:03:39.79		-106.722		2.20MDGS			98	GS	11	0 8		.0	.0
1090		18:56:08.89		-106.951	5.00	1.70MDGS			103	GS	11	0 8		.0	.0
1091		23:01:37.57	35.792			1.60MDGS			54	GS	3 `	0 0	d	.0	.0
		01:52:41.12		-106.649		1.86MDLA			75	LA	18	96 [)	1.5	4.7
1093	1982 AUG 19	05:18:31.40	36.052 ·	-106.789	5.00	1.30MDGS		••	47	GS	6	0 1	5	.0	.0

Cat	Date	Time (GMT)	Lat	Long	Depth	Mag1	Mag2	Inten	Dist	Data	No.	Az	Q	Std-I	Err
No.	year-mo-day				(km)			(MM)				•		Horiz 1	
1094	1982 SEP 03	03:27:07.64		-=====- -106,103	-=====- 5.00	1.20MDG	;		-===- 28		-==- 9	0		-====-: .0	
1095	1982 SEP 07			-106.661	5.00	1.60MDGS		••	103		4	0		.0	.0
1096	1982 SEP 25	21:00:00.90		-106.688	.00	2.60MLLA		•••	96						
1097	1982 OCT 06	23:15:01.60	35.157	-106.344	5.00	1.30	******		75	NM					
		DEPTH CONSTRA	AINED;NO	STATION W	ITHIN 10	KM OF EV	/ENT								
1098	1982 OCT 25	06:10:03.90		-106.223	5.00	1.00		• •	54		• • •	•••			• • • • •
1099	1982 OCT 29	22:35:00.70		-106.650	5.00	.50		••	58			•••	•		• • • • •
1100	1982 NOV 02			-106.255	5.00	1.20		••	90	NM	• • •	• • • •	•	••••	• • • • •
1101	1982 NOV 06	DEPTH CONSTRA 14:03:17.10	•	-106.668					07	1163					
1101	1762 NOV 00	DEPTH CONSTRA				1.10	EVENT	• ••	93	NM	• • •	•••	•		
1102	1982 NOV 08	15:37:17.40	•	-106.714		1.20	EACUI		97	NM					
		DEPTH CONSTRA						••			•••	•••	•		
1103	1982 NOV 09		•	-106.686		1.20			95	NM					
		DEPTH CONSTRA	AINED; NO	STATIONS	WITHIN	10 KM OF	EVENT								
1104	1982 NOV 13	09:21:02.50	36.652	-106.688	5.00	1.50			96	NM					
		DEPTH CONSTRA	AINED; NO	O STATIONS	WITHIN	10 KM OF	EVENT								
1105	1982 NOV 13			-106.732		1.60			103	NM	• • •	•••	•	••••	• • • • •
	4000 47	DEPTH CONSTRA					EVENT								
1106	1982 NOV 13			-106.714		2.70	*******	• •	101		• • •	• • •	•		• • • •
1107	1982 NOV 13	09:57:55.60 DEPTH CONST24	· · · · · · · · · · · · · · · · · · ·	-106.722		2.10	EVENT.	• •	49	NM	• • •	• • • •	•		• • • • •
1108	1982 NOV 22		-	-106.634	5.00	1.00			90	NM					
1100	1902 NOV 22	DEPTH CONSTRA					EVENT	••	90	MM	• • • •	•••	•	••••	• • • • •
1109	1982 NOV 22		•	-106.950	5.00	.80	LVLNI		111	NM					
		DEPTH CONSTRA					EVENT	••		****	•••	•••	•		
1110	1982 DEC 02		•	-107.083	5.00	.40	•••••		68	NM					
		DEPTH CONSTRA	AINED; NO	STATIONS	WITHIN	10 KM OF	EVENT								
1111	1982 DEC 15	14:54:59.58	36.026	-106.852	8.13	.93MDLA			50	WC	10	191		.0	.0
1112	1982 DEC 16	04:08:03.68	35.691	-106.918	.51	.82MDLA		••	54	WC	16	148		.0	.0
1113	1982 DEC 18	01:21:43.22		-105.396	5.81	1.72MDLA		• •	94	LA	8	309	D	5.9	6.3
1114	1982 DEC 22			-105.280	5.00	1.00	•••••		108	MM	•••	• • •	•	••••	
1115	1982 DEC 24	DEPTH CONSTRA												_	
1116	1982 DEC 24	19:08:45.28 02:24:12.99		-106.936 -106.651	9.26 4.89	1.79MDLA 1.54MDLA				WC	11			.0	.0
1117	1983 JAN 01	15:15:19.10		-106.895	.00	.20		••	80 50	WC NM	7	217		.0	.0
1118	1983 JAN 06	00:44:53.90		-105.792	.00	1.60		• •	113		•••	•••			
1119	1983 JAN 08	01:30:12.90		-106.696		1.10		•••	94		•••		В	•••••	
1120	1983 JAN 12	14:50:39.70	35.061	-106.737	.00	1.70	4	••	92	NM			-		
1121	1983 JAN 14	13:41:37.00	36.650	-106.797	.00	.80			99	NM					
1122	1983 JAN 14	15:35:58.80	36.592	-106.653	.00	.60			89	NM			С		
1123	1983 JAN 15	15:38:58.60		-106.750	.00	.80		• •	106	NM			D		
1124	1983 JAN 23	22:39:07.70		-107.128	.00	.40	******		94	NM			D		
1125	1983 JAN 25	05:14:11.20		-106.773	.00	.50	•••••	• •	40	NM	• • •	• • •			
1126 1127	1983 JAN 29 1983 FEB 01	05:17:34.00		-106.747	.00	1.50	• • • • • • •		106	NM	• • •	• • •		• • • • • •	
1128	1983 FEB 01	03:54:51.90 15:50:29.00		-106.608 -107.174	.00	1.40	• • • • • • • •	••	87	NM	• • •	• • •		•••••	
1129	1983 FEB 04	18:14:38.80		-106.167	.00 7.21	1.20 1.52MDLA		••	83	MM	•••	340			
1130	1983 FEB 11	04:19:20.18		-106.764	4.41	.49MDLA		••	19 39	WC WC	8	219 147		.0	.0
1131	1983 FEB 15	19:57:55.10		-105.768	.00	.30		• •	56	NM	11	147		.0	.0
1132	1983 FEB 19	17:06:34.70		-106.683	.00	.80		••	92	NM	• • •				
1133	1983 FEB 19	17:15:06.20		-106.724	.00	1.10		••	102		• • •			•••••	
1134	1983 FEB 24	21:23:56.30	35.112	-106.700	.00	1.60	******	••	86						
1135	1983 FEB 28	04:52:20.25	36.090	-106.227	-00	1.14MDLA	******	••	31	WC	8	134		.0	.0
1136		20:41:22.90		-106.704	-00	1.40	• • • • • • • • •	• •	84	NM	• • •		C		
1137	1983 MAR 11	02:04:15.80		-106.741	.00	1.60	• • • • • • • •	• •	102	NM	• • •	•••			
1138	1983 MAR 15	04:28:43.86		-106.225	3.38	.99MDLA		••	30	WC	13	181		.0	.0
1139 1140	1983 APR 05 1983 APR 06	17:40:34.61 10:39:44.74		-106.227 -106.225	10.00	.65MDLA		• •	29	LA	19	117			22.6
1170	,703 AFK VO	10137144,/4	JU.U/8	-106.225	2.45	1.10MDLA			30	WC	15	117	٠	.0	.0

Cat	Date	Time (GMT)	Lat	Long	Depth	Mag1	Mag2	Inten	Dist	Data	No.	Az Q	Std-Err
No.	year-mo-day	hr-min-sec			(km)			(MM)	(km)	Srce	Arr	Gap	Horiz Vert
1141	1983 APR 16	08:17:59.50		-106.128	.00	.50			-===- 43		- ===-	-===-=	
1142	1983 APR 17	04:04:51.70		-107.238	.00	.90	*******	••	92	MM		B	*****
1143	1983 APR 25	08:05:18.80	36.723	-106.132	.00	1.00	•••••	••	101	NM		B	
1144	1983 MAY 20	15:51:03.39	35.520	-107.016	1.72	1.03MDLA			69	LA	5	324 D	8.4 121.2
1145	1983 MAY 26	17:17:50.60	36.625	-105.318	.00	2.50		• •	128	NM		D	
1146	1983 MAY 27	20:05:34.74		-106.918	-07	.54MDLA	• • • • • • • • •	• •	58	LA	6	298 D	4.8 120.2
1147	1983 JUN 11 1983 JUN 24	18:01:57.70		-105.534	.00	.90		• •	76	NM	• • •	D	
1148 1149	1983 JUN 27	06:28:50.28 01:51:05.36		-106.670 -106.875	10.49	EAMDLA		• •	76	WC	13	214 .	.0 .0
1150	1983 JUL 02	00:07:56.70		-106.170	.97 .00	.51MDLA 1.10		••	62 85	WC NM	11	267 .	.0 .0
1151	1983 JUL 08	09:49:14.43		-106,872	11.56	.35MDLA		••	48	WC	12	C	0.
1152	1983 JUL 12	16:37:08.20		-107.110	5.00	2.50MD LA		••	74	SA		A	.0 .0
1153	1983 JUL 19	17:12:43.15	36.175	-106.848	5.62	.75MDLA		••	59	WC	9	262 .	.0 .0
1154	1983 JUL 20	10:11:53.36	36.347	-105.810	1.24	1.62MDLA	*******		75	WC	15	196 .	.0 .0
1155	1983 JUL 24	10:14:16.70	36.639	-106.901	.00	1.00			103	NM		A	*****
1156	1983 AUG 01	07:19:40.73		-105.824	7.87	1.11MDLA		••	69	LA	6	267 C	2.0 1.3
1157	1983 AUG 03	09:17:29.81		-106.903	8.15	1.49MDLA	• • • • • • • • • • • • • • • • • • • •	••	58	WC	17	222 .	.0 .0
1158	1983 AUG 03	10:05:39.50		-107.241	.00	.50	• • • • • • • • • • • • • • • • • • • •	••	85	NM	• • •	D	
1159 1160	1983 AUG 07 1983 AUG 09	04:48:01.90		-106.699	5.00	2.70MD LA		• •	97	SA	• • •	A	
1161	1983 AUG 19	00:36:08.30 15:09:22.29		-106.014 -105.779	.00 12.13	1.00	• • • • • • • • • • • • • • • • • • • •	••	88	NM	•••	C	
1162	1983 AUG 14	14:45:02.45		-105.779	.12	1.75MDLA 1.79MDLA		••	77	WC	12	200 .	.0 .0
1163	1983 AUG 23	00:24:44.30		-105.991	.00	.80	*******	••	11 34	WC NM	8	138 .	.0 .0
1164	1983 SEP 16	12:05:04.30		-106.193	.00	.90	*******	••	49	NM	•••	B	
1165	1983 SEP 19	05:07:56.61		-106.098	5.26	1.08MDLA		••	25	WC		191 .	.0 .0
1166	1983 SEP 23	22:57:24.50		-106.516	.00	.90		••	59	NM		D	
1167	1983 OCT 09	22:47:05.38	36.093	-106.536	1.85	1.73MDLA			34	WC	9	118 .	.0 .0
1168	1983 OCT 17	23:56:53.50	36.645	-105.505	.00	1.60		• •	118	NM		C	
1169	1983 OCT 23	17:51:33.80		-105.779	.00	.60			71	NM		D	
1170	1983 OCT 23	18:36:35.50		-106.207	.00	.60			50	NM		A	•••••
1171	1983 OCT 29	03:57:07.34		-106.536	2.54	1.40 NM	• • • • • • • • • • • • • • • • • • • •	• • •	76	WC	12	232 .	.0 .0
1172 1173	1983 NOV 08 1983 NOV 10	07:53:52.57		-105.798	10.00	1.46MDLA	• • • • • • • • •	• •	73	LA	9	276 D	2.7 2.0
1174	1983 NOV 16	18:24:47.50 10:15:25.01		-105.812 -105.998	.00	.70		••	72	NM	• • •	B	
1175	1983 NOV 28	17:31:12.61		-105.967	10.00 13.95	1.50MDLA 1.67MDLA	*******	••	89	LA	6	301 D	3.0 57.8
1176	1983 DEC 02	22:10:00.33		-105.557	.48	.88MDLA	•••••	••	83 40	WC	9	175 .	.0 .0
1177	1983 DEC 02	22:44:08.57		-106.467	11.59	1.68MDLA		••	69 58	WC WC	5 6	286 . 217 .	.0 .0
1178	1983 DEC 28	04:56:15.30		-105.781	.00	.70		••	74			_	.0 .0
1179	1984 JAN 28	20:45:45.41		-106.233	8.89	2.14MDLA		•••	38	WC		240 .	.0 .0
1180	1984 JAN 29	04:28:12,10	35.000	-106.750	.00	.80			99			B	
1181		11:10:20.50	36.415	-105.310	.00	1.10			114			В	
1182		09:05:24.37		-106.736	9.68	1.48MDLA			40	WC	12	204 .	.0 .0
1183	1984 FEB 16	18:50:48.80		-106.690	.00	1.40	• • • • • • • • • • • • • • • • • • • •		88	MM		B	
1184 1185	1984 MAR 15	12:50:06.70		-106.215	.00	-90	• • • • • • • •		35	NM		D	
1186		21:12:10.60 19:44:03.88		-106.726 -106.273	.00	.80		• •	51		• • •	D	*****
1187		14:12:01.70		-106.273 -106.768	8.93	1.80 NM	• • • • • • • •	••	16	WC .		155 .	.0 .0
1188		14:17:43.60		-106.768	.00 .00	.60 .90	•••••	••	38			В	•••••
1189		07:03:15.70		-106.254	.00	1.80		••	36		• • •	В	•••••
1190		04:47:59.40		-106.698	.00	.80	• • • • • • • • • • • • • • • • • • • •	••	14 90		• • •	A	
1191		19:33:03.10	36.495		.00	1.90		••	75		• • •	B	
1192		02:54:18.70	36.684		.00	1.90		••	95		• • •	B	*****
1193		04:55:15.10	35.508		.00	.20		•••	42			B	***** ****
1194		05:17:57.50	36.136 -		.00	1.00		••	52		• • •	C	*****
1195		12:02:52.80	36.545		5.64	1.75MDLA			80	WC	11	134 .	.0 .0
1196		20:58:05.70	36.330 -		.00	.50	• • • • • • • •	••	59	NM		С	• • • • • • • • • • • • • • • • • • • •
1197 1198		19:12:32.70	35.442 -		.00	1.00	• • • • • • • • • • • • • • • • • • • •	••	85			В	
1199		07:45:15.58 07:10:46.30	36.305 - 36.662 -		10.00	.43MDLA	******	••	54	LA		215 D	1.9 332.3
,,	OT BUL IJ	VI.10.40.30	JO.002 .	100.010	.00	1.30	••••••	• •	95	NM .		В	•••••

Cat	Date	Time (GMT)	Lat	Long	Depth	Mag1	Mag2	Inten	Dist	Data	No.	Az Q	Std	-Err
No.	year-mo-day	hr-min-sec	-======		(km)	·		(MM)	-	\$rce		Gap	Horiz	
1200	1984 JUL 15	07:35:11.50		-106.653	.00	1.40	*******		99	NM		В		
1201	1984 JUL 18	18:16:20.90	36.201	-106.852	.00	.50			61	MM		В		
1202	1984 JUL 19	16:50:20.52	36.058	-106.159	3.39	.83MDLA			31	MC	6	136 .	.0	.0
1203	1984 JUL 20	22:27:38.39		-105.527	10.00	1.12MDLA		••	86	LA	8	311 D		316.3
1204	1984 JUL 27	19:02:22.35		-106.940	10.00	1.04MDLA		••	68	LA	5	287 D	1.4	39.8
1205	1984 AUG 08	23:22:58.60		-106.129	-00	1.50	* * * * * * * * * * * * * * * * * * * *	••	76	NM	• • •	D		
1206 1207	1984 AUG 12 1984 AUG 12	00:43:03.10 09:56:35.50		-105.430 -106.074	.00	.70 .30	•••••	••	99 57	NM	•••	D		
1208	1984 AUG 12	11:32:34.23		-106.868	7.94	1.11MDLA			57 52	NM WC	 9	171 .	0	0
1209	1984 SEP 22	05:36:45.00		-106.138	.00	.90		• •	51	NM		B		
1210	1984 SEP 24	01:33:29.00		-106.631	.00	1.40		• • •	94	NM		B		
1211	1984 SEP 27	04:05:27.23	36.168	-106.882	3.26	1.82MDLA			61	WC	8	236 .	.0	.0
1212	1984 OCT 13	21:24:29.90	35.757	-106.029	.00	1.30			30	NM		C		
1213	1984 OCT 29	23:40:24.80	35.662	-106.464	.00	1.00			21	NM		D		
1214	1984 NOV 07	03:21:45.81		-106.268	11.22	.09MDLA	• • • • • • • •	••	36	WC	6	170 .	.0	.0
1215	1984 NOV 13	08:20:02.90	•	-106.719	.00	.70	*******	••	87	NM	•••	D		
1216	1984 NOV 18	14:14:13.11		-106.413	3.12	.90 NM		••	7	WC	9	240 .	.0	.0
1217 1218	1984 NOV 20 1984 NOV 20	00:48:23.97 01:21:42.46		-106.415	1.27	1.10MDLA	•••••	••	8	WC	7	242 .	.0	.0
1219	1984 NOV 20	23:12:42.60		-106.417 -106.654	3.41 .00	.69MDLA 1.10	*******	••	7	WC	12	240 .	.0	.0
1220	1984 DEC 10	09:07:58.40		-106.634	.00	-80	******	•••	90 9	NM NM	• • •	C	• • • • •	
1221	1984 DEC 25	14:29:36.90		-106.567	.00	1.00	*******	••	85	NM	•••	D		
1222	1985 JAN 01	19:33:50.15		-106.913	1.30	.50MDGS		••	56	GS	3	0 c		.0
1223	1985 JAN 01	19:41:19.89		-106.909	1.20	.40MDGS		•••	56	GS	3	0 c		.0
1224	1985 JAN 01	19:46:01.32	36.016	-106.857	.00	.50MDGS			50	GS	3	0 с		.0
1225	1985 JAN 01	20:18:11.36	36.052	-106.987	1.40	.40MDGS		••	63	GS	3	0 d	.0	.0
1226	1985 JAN 02	12:43:19.94	35.79 5	-106.935	6.46	1.22MDLA		••	53	LA	7	154 C	1.7	3.1
1227	1985 JAN 03	13:38:03.50	35.827	-106.955	5.00	.90MDGS		••	55	GS	3	0 Ь	.0	.0
1228	1985 JAN 03	16:31:24.70		-106.960	7.67	1.34MDLA		• •	55	WC	6	162 .	.0	.0
1229	1985 JAN 06	21:02:30.93		-106.741	7.48	2.51MDLA		••	35	WC	5	125 .	.0	.0
1230	1985 JAN 26	11:50:56.90		-105.942	5.00	.40MDGS		••	45	GS	3	0 с	.0	.0
1231 1232	1985 JAN 27 1985 JAN 27	09:08:21.01 19:39:12.82		-106.229 -106.826	5.00	.20MDGS		• •	48	GS	3	0 d		.0
1233	1985 FEB 01	17:06:43.52		-106.626	10.11 5.03	1.07MDLA 1.34MDLA	•••••	••	80	WC	6	208 .	.0	.0
1234	1985 FEB 16	05:13:48.08		-106.975	5.00	1.00MDGS		••	75 64	WC GS	8 3	158 . 0 d	.0	.0
1235	1985 FEB 17	00:37:32.69		-107.020	5.00	1.50MDGS		••	76	GS	5	0 b	0. 0.	.0 .0
1236	1985 MAR 13	01:23:10.75		-105.821	5.00	.40MDGS		•••	74	GS	4	0 d	.0	.0
1237	1985 APR 07	19:01:46.87	36.122	-106.820	13.63	•••••	•••••	••	53	WC		184 .	.0	.0
1238	1985 APR 17	17:36:58.38	36.323	-106.850	5.00	.30MDGS			71	GS	5	0 с	.0	.0
1239	1985 APR 25	16:53:43.39	35.499	-106.844	8.12	.83MDLA			58	MC	9	192 .	.0	.0
1240	1985 MAY 01	18:46:47.10		-106.410	4.05	.93MDLA			21	MC	9	147 .	.0	.0
1241	1985 MAY 14	21:49:28.37		-106.008	5.00	.70MDGS	• • • • • • • •	• •	31	GS	3	0 ь	.0	.0
1242	1985 MAY 15	23:11:51.56		-105.979	7.62	.57MDLA	• • • • • • • • • • • • • • • • • • • •		65	WC	7	254 .	.0	.0
1243	1985 MAY 30 1985 JUN 19	18:46:30.81		-106.556	25.86	1.46MDLA	*******	• •	28	WC	8	189 .	.0	.0
1244 1245	1985 JUN 25	21:05:09.85 00:39:00.95		-106.235 -106.141	14.31	1.74MDLA	• • • • • • • • • • • • • • • • • • • •	••	50	WC	8	184 .	.0	.0
1246	1985 JUN 29	10:45:45.12		-106.141	5.00 5.00	1.40MDGS 1.00MDGS	•••••	••	91 ==	GS	4	0 c	.0	.0
1247	1985 JUN 29	12:16:05.75		-105.779	5.00	.70MDGS		••	55 86	GS GS	3 3	0 с 0 b	.0	.0
1248	1985 JUL 01	05:27:19.77		-106.242	4.46		*******	• •	82	WC	7	170 .	0. 0.	.0 .0
1249	1985 JUL 13	16:15:30.70		-106.436	5.63	.90MDLA		••	47	WC	12	154 .	.0	.0
1250	1985 JUL 16	06:18:06.00		-106.555	5.00	1.60MDGLD	••••	••	88	PE	1	••••		
1251	1985 JUL 17	06:23:18.95	35.164	-106.542	5.00	1.90MDGLD		••	76	PE	1			••••
1252	1985 JUL 18	20:59:09.65		-106.481	5.00	.80MDGS		•	78	GS	10	0 Ь	.0	.0
1253	1985 JUL 18	21:08:59.12		-106.481	5.00	1.40MDGS			78	G\$	13	0 Ь	.0	.0
1254	1985 JUL 30	16:02:16.73		-107.029	5.00	2.10MDGS		••	91	GS	3	0 с	.0	.0
1255		01:22:27.42		-106.243	.33	.38MDGS	••••••		41	GS	4	310 .	3.3	99.9
1256 1257		22:30:01.34 06:10:40.14		-106.673 -106.700	.43	.30MDGS	• • • • • • • •	••	88	GS	6	344 .	.3	41.3
1258		08:55:24.52		-106.790 -106.373	36.05	.43MDGS		••	43	GS	6	342 .	7.2	4.2
	.700 MAN 03	VU.JJ:E4.36	JJ.412	100.3/3	42.45	.43MDGS		• •	. 40	GS	6	336 .	13.6	6.3

Cat	Date	Time (GMT)	Lat Long	Depth	Mag1	Mag2	Inten	Dist	Data	No.	Az Q	Std-Err	-
No.	year-mo-day	hr-min-sec		(km)		==- =======	(MM)		Srce		Gap	Horiz Ver	
1259	1986 MAR 12	18:15:01.78	36.392 -106.6			*******	==-	-===- 66	LA	-===- 6	== 298 D	4.6 480	
1260	1986 MAR 18	18:03:54.53	36.410 -106.6					71	LA	8	303 D		
1261	1986 APR 02	16:58:13.97	36.074 -106.4	00 1.39	.72MDLA			27	WC	9	247 .	.0	.0
1262	1986 APR 28	23:28:30.52	35.483 -106.7					55	LA	9	346 D	2.6 116	5.2
1263	1986 MAY 17	15:25:00.03	35.729 -106.1				••	22	WC	5	242 .		.0
1264 1265	1986 JUN 04 1986 JUN 07	05:43:15.99	36.014 -105.4			******	• •	80	LA	7	279 D		
1266	1986 JUN 26	11:09:09.38 23:00:45.71	36.350 -105.76 36.638 -106.3		-	*******	••	77	WC	7	259 .		.0
1267	1986 JUL 04	05:49:25.72	36.134 -106.1				••	90 38	GS WC	4 8	308 . 207 .	_	8.8
1268	1986 JUL 08	05:38:23.40	36.395 -106.6				••	70	LA	9	303 D	.0 2.0 233	.0
1269	1986 JUL 10	17:52:54.43	36.327 -106.4					57	LA	5	285 D	3.2 267	
1270	1986 JUL 16	17:35:09.61	36.329 -105.78	36 9.28	1.30MDLA			75	WC	8	243 .	_	.0
1271	1986 JUL 16	17:47:04.28	35.948 -106.4	98 2 .9 1	.18MDLA	******		14	LA	4	296 C	.0	.0
1272	1986 SEP 18	04:20:04.85	36.582 -106.6				• •	88	GS	7	309 .	2.3 6	. 9
1273	1986 OCT 08	03:44:56.38	35.218 -106.25			*******	• •	68	GS	7	337 .		.2
1274 1275	1986 DEC 17 1987 JAN 03	17:57:00.59	35.032 -106.89				••	99	LA	12	354 D	10.3 281	
1275	1987 JAN 03	16:44:42.41 13:11:49.18	36.019 -106.3		,		••	21	GS	10	329 .		.3
1277	1987 FEB 25	17:22:49.76	36.039 -106.2 36.742 -106.4			•••••	••	24	WC	8	208 .		.0
1278	1987 FEB 28	19:36:49.25	35.326 -107.16			••••••	••	101 93	GS GS	5 7	311 .		'.3
1279	1987 MAR 11	06:08:43.40	35.942 -106.20			• • • • • • • • • • • • • • • • • • • •	•••	15	MC	6	350 . 194 .		3.3
1280	1987 MAR 28	17:16:09.81	35.275 -106.79				••	74	LA	6	348 D	7.9 198	.0
1281	1987 APR 04	14:15:08.54	36.460 -105.95		1.44MDLA			78	LA	5	322 D	82.8 999	
1282	1987 APR 18	07:50:12.33	36.343 -105.79	8 12.24	1.37MDLA	*******	•••	76	WC	7	254 .	_	.0
1283	1987 APR 23	19:45:16.92	36.314 -106.50	9 11.18	.18MDGS			56	GS	5	285 .	_	.6
1284	1987 APR 25	08:17:45.36	35.217 -105.70	0 10.00	1.17MDLA	• • • • • • • • • • • • • • • • • • • •		90	LA	12	313 D	1.8 186	
1285	1987 MAY 29	02:44:12.20	35.759 -106.85		1.29MDLA	• • • • • • • • • • • • • • • • • • • •		46	LA	5	357 D	219.5 119	.1
1286	1987 JUL 01	17:04:08.67	36.086 -106.11		.59MDGS	• • • • • • • •	••	36	GS	8	176 .	8.2 2	.3
1287	1987 JUL 07	05:37:50.49	36.729 -105.39		.22MDGS	* ******	• •	132	GS	4	353 .	21.2 99	.9
1288 1289	1987 JUL 08	09:49:11.62	35.700 -106.60		13MDLA	• • • • • • • •	• •	27	LA	7	334 D	14.7 15	
1290	1987 JUL 09 1987 JUL 28	01:47:06.60 04:35:36.50	36.305 -106.66 36.370 -105.91		. 22MDGS		• •	60	GS	10	296 .	11.0 99	
1291	1987 SEP 03	17:48:59.17	36.470 -106.44		.43MDLA	******	••	72	LA	10	323 D		.5
1292	1987 SEP 12	13:34:24.41	36.742 -105.82		.69MDGS		••	72 112	WC GS	9 8	217 . 255 .		.0
1293	1987 SEP 22	19:29:05.94	36.173 -106.76		.54MDGS	******	• •	53	GS	8	255 .	1.6 4 5.2 28	4
1294	1987 SEP 22	19:29:06.65	35.997 -106.60		.54MDLA		••	29	WC	7	240 .		.0
1295	1987 OCT 11	13:02:51.48	36.589 -106.52	3 8.72	.69MDLA			86	WC	9	246 .		.0
1296	1987 OCT 14	07:22:15.31	36.386 -106.79	5 10.34	.63MDLA			74	WC	8	261 .		.0
1297.		17:49:19.51	35.945 -107.22		.85MDGS			80	GS	6	300 .	128.2 99	.9
1298	1987 OCT 31	04:33:23.40	36.583 -106.46		.29MDLA	******	••	84	HC	7	236 .	.0	.0
1299	1987 DEC 09	14:24:02.98	35.779 -105.57		.65MDLA	• • • • • • • • •		70	LA	5	276 D	5.7 345	.9
1300 1301	1987 DEC 19 1988 JAN 12	09:18:14.52 23:23:30.90	36.283 -106.26		.22MDLA	• • • • • • • • • • • • • • • • • • • •	••	51	MC	6	261 .		.0
1302	1988 JAN 13	03:51:31.28	35.034 -105.77		1.36MDGS			103	GS	8	322 .		.2
1303	1988 JAN 15	06:10:18.24	35.491 -106.09 36.561 -106.45		.57MDGS	• • • • • • • •	* *	44	GS	6	296 .	31.5 24.	
1304	1988 FEB 24	17:20:50.63	36.347 -105.78		1.19MDLA 1.14MDLA		••	82 77	LA	10	301 D	2.0 259	
1305	1988 MAR 09	20:11:36.60	35.993 -106.82		1.98MDLA		••	46	WC La	16 9	177 . 306 C		.0
1306	1988 MAR 21	10:53:17.03	35.591 -107.20		2.00MDGS		••	82	GS	16	340 .	2.0 2. 3 20.	.5
1307	1988 APR 08	18:41:03.71	35.991 -106.86		1.23MDLA		• • •	50	LA	8	274 C	1.8 2.	
1308		23:09:21.88	35.949 -106.67	6 16.92	1.28MDLA			32	LA	7	294 D	4.4 7.	
1309		22:38:20.92	35.548 -106.29	1 220.85	2.93MDLA			32	GS	7	321 .		.5
1310		11:47:14.41	36.385 -106.67		1.30MDGS		• •	68	GS	7	301 .	7.1 29.	
1311		12:14:19.25	36.385 -106.65		.86MDGS		• •	67	GS	6	300 .	3.8 16.	.5
1312 1313		13:09:38.46	36.388 -106.66		_98MDGS	• • • • • • • • • • • • • • • • • • • •	••	68	GS	6	300 .	3.5 20.	
1314		13:47:05.98 12:53:49.20	36.361 -106.64 35.712 -104.05		1.41MDGS		••	65	GS	7	298 .	9.6 15.	
1315		03:59:23.89	35.712 -106.05 36.325 -106.36		.87MDLA		••	30	WC	10	269 .		.0
1316		05:57:20.74	35.667 -106.26		2.09MDLA .25MDGS	*******	• •	55	LA	10	348 D	9.9 9.	
1317	1988 AUG 16		35.075 -105.98		1.54MDGS		••	20 90	GS GS	6 8	306 . 324 .	6.2 28.	
				,			••	70	43	0	JE4 .	5.8 19.	. 0

Cat	Date	Time (GMT)	Lat	Long	Depth	Mag1	Mag2	Inten	Dist	Data	No.	Az	Q	Std-	Err
No.	year-mo-day	hr-min-sec			(km)			(MM)	(km)	Srce	Arr	Gap		Horiz	Vert
====-			-=====-	-======-	-=====-	- 22222222		z-==	- ====	-==-	-==-	•		·====-	
1318	1988 SEP 01	00:14:39.06	35.104	-105.963	46.55	1.63MDGS	*******		88	GS	6	333		3.2	4.9
1319	1988 SEP 01	05:36:14.67	35.441	-106,312	35.21	1.10MDLA			43	LA	8	318	D	7.8	3.1
1320	1988 SEP 02	20:25:18.84	35.848	-105.746	5.00	1.72MDGS			55	GS	3	349		55.5	21.6
1321	1988 DEC 07	22:08:45.88	36,122	-106.742	10.21	.83MDLA			48	WC	8	253		.0	.0
1322	1988 DEC 25	07:52:33.93	35.118	-105.957	.00	2.80MDSNM	• • • • • • • • • • • • • • • • • • • •		87	PE	14				
1323	1989 MAR 01	08:26:59.68	36,133	-106.678	6.95	.13MDLA			45	WC	8	244		.0	.0
1324	1989 MAR 22	04:20:07.29	36.332	-105.769	15.10	.17MDLA	• • • • • • • •		76	WC	7	177		.0	.0
1325	1989 MAR 23	21:49:06.49	35.787	-106.201	10.00	1.05MDLA			14	LA	5	296	Đ	26.8	30.0
1326	1989 APR 06	07:18:01.10	35.641	-106.806	13.49	.65MDLA		••	46	LA	8	309	С	2.3	4.8
1327	1989 MAY 27	09:58:34.78	36.408	-105.796	13.56	1.25MDLA			81	LA	10	349	D	5.7	2.1
1328	1989 JUN 22	00:10:36.71	35.897	-106.345	17.25	.77MDLA			7	LA	5	214	D	5.9	3.5
1329	1989 JUN 23	22:41:11.25	35.786	-106.230	.32	1.16MDLA		• •	12	LA	4	293	D	.0	.0
1330	1989 JUN 30	21:54:32.32	36.611	-106.277	.61	.77MDGS			87	GS	4	312		.9	29.6
1331	1989 JUL 22	04:58:35.00	36.437	-105.972	1.67	.54MDLA			75	LA	4	283	D	.0	.0
1332	1989 JUL 26	01:43:10.78	36.153	-106.250	27.31	.21MDLA	• • • • • • • • • •		37	WC	6	228		.0	.0
1333	1989 SEP 07	05:34:21.83	36.242	-106.975	10.00	.93MDLA			73	LA	7	313	D	2.8	222.4
1334	1989 SEP 21	23:45:06.87	36.330	-106.475	10.00	.85MDLA			57	LA	4	350	С	.0	.0
1335	1989 OCT 20	18:39:05.23	35.759	-106.371	10.00			••	8	GS	6	255	D	109.6	6.8
1336	1989 OCT 26	20:43:51.97	35.865	-106.510	41.90				15	LA	6	349	D	17.7	8.2
1337	1989 OCT 27	22:11:19.98	35.653	-106.842	10.00				49	GS	6	358	D	94.3	266.3
1338	1989 NOV 05	10:11:50.37	36.285	-105.912	10.00	1.38MDGS	• • • • • • • •		64	GS	7	286	D	225.3	6.6
1339	1990 MAR 08	07:50:33.95	35.766	-106.534	6.02	.47MDLA			18	LA	6	317	D	3.2	5.4
1340	1990 APR 27	22:31:33.21	35.678	-105.431	10.00	.93MDGS			85	GS	9	350	D	29.9	194.3
1341	1990 MAY 10	11:45:31.94	35.897	-106.345	10.00	1.26MDGS			7	GS	7	313	D	28.6	34.9
1342	1990 MAY 13	03:15:31.67	36.375	-106.920	10.00	1.29MDLA			79	LA	9	352	Ð	13.7	331.8
1343	1990 JUL 01	16:55:57.85	35.913	-106.196	16.16	.99MDLA			17	LA	10	293	С	1.4	.7
1344	1990 JUL 01	17:20:17.66	35.913	-106.211	13.63	.95MDLA			16	LA	9	288	С	1.6	1.4
1345	1990 JUL 05	07:27:18.37	35.926	-106.176	14.88	1.46MDLA			19	LA	9	302	C	1.1	1.0
1346	1990 JUL 14	21:27:23.25	36.152	-106.713	18.26	1.07MDLA			48	LA	9	344	D	4.4	9.7
1347	1990 JUL 29	14:52:49.60	35.926	-106.182	16.21	1.00MDLA			19	LA	9	300		.9	. 8
1348	1990 SEP 03	23:05:19.54	35.805	-106.151	13.71	1.03MDLA			18	LA	10	311		1.7	1.0
1349	1990 SEP 13	19:26:59.43	35.930	-105.785	37.57	1.38MDLA			52	LA	6	349		12.0	9.8
1350	1991 FEB 04	03:31:00.00	35.936	-106.312	3.70	2.00MDLA			12	LA					
1351	1991 FEB 04	05:13:00.00	35.932	-106.312	2.40	2.00MDLA			12	LA					

Printed: 25 OCT 1994 15:56 JDJB

APPENDIX B HISTORICAL EARTHQUAKE CATALOGUE FOR THE RIO GRANDE RIFT USED IN RECURRENCE

159 Events Selected Searched: 25 OCT 1994 File: rec.rst By: jdjb

SOURCE DATABASE:

Root name: rec

Created: 11 APR 1994 14:21

By: jdjb

Original file: rec.dmp Type: ASCII Dump

Hypoctr rec: 159 # Comment rec: 0

Time span: 1918 05 28 11:30:00.00 -> 1988 06 16 22:38:20.92

SEARCH PARAMETERS:

Depth: .00 -> 999.00 Search Mode: DATABASE

CENTER FOR DISTANCE CALC: Lat 35.83 Long -106.35

Cat No.	Date year-mo-day	Time (GMT) hr-min-sec	Lat	Long	Depth (km)	Mag1	Mag2	Inten (MM)		Data Srce		Az Gap	Q	Std- Horiz	
====-	-========- 1918 MAY 28	11:30:00.00		-106,100	-=====- .00	5.25ML	=======================================		====		-===-	-===-	=-	- 22222 -	-====
2	1931 FEB 05	04:48:00.00		-106.100	.00	4.50ML		VI I	48 84	AS	• • • •	• • •	•	• • • • • •	• • • • •
3	1952 AUG 17	10:45:00.00		-106,200	.00	4.00ML		A 1	39	SA AS	• • •	• • •	•	••••	• • • • •
4	1954 NOV 03	20:39:00.00		-106.700	.00	4.00ML		٧	87	AS	•••	• • • •	•		••••
5	1955 AUG 12	16:20:00.00		-106.000	.00	4.00ML		v	35	SA	• • •	• • •	•		• • • • • •
6	1970 NOV 28	07:40:11.80		-106.610	9.00	3.80ML		٧I	84	SA	• • •	• • •	•	••••	• • • • •
7	1971 JAN 04	13:15:00.00		-106.700	.00	3.80ML		v	97	SA	• • •	• • •		••••	••••
8	1973 MAR 17	07:43:05.50		-106.170	6.00	2.40ML		111	33	SA			F	• • • • • •	••••
9	1973 OCT 13	03:56:02.70		-106.333	.00	1.50ML	.00		4	CN	•••	•••	C	••••	• • • • • • • • • • • • • • • • • • • •
10	1973 NOV 25	16:45:20.90		-105.883	20.00	1.70ML	.00	••	49	CN	• • •	•••	٠	••••	• • • • •
11	1973 DEC 24	15:06:11.49		-106.101	10.36	1.98MD		• •	48	LA	10	324		1.6	7.6
12	1974 JAN 17	23:04:20.10		-106.193	1.54	2.07MD			42	WC	10	268		.0	.0
13	1974 MAR 04	06:55:01.00		-106.233	.00	1.70ML	.00	•••	37	CN			:	-	.0
14	1974 APR 02	11:06:53.73	36.215	-106.194	2.53	1.65MDI		•	45	WC	11	267			
15	1974 APR 30	02:47:20.70		-105.783	.00	1.80ML	.00	•••	114	CN			•	.0	.0
16	1974 JUN 20	17:31:16.90		-105.883	.00	1.50ML	.00	•••	107	CN		•••	•		*****
17	1974 JUN 22	09:53:42.80	35.083	-106.700	.00	2.40ML	.00	••	89	CN		•••	•	••••	
18	1974 OCT 18	04:30:57.30	35.083	-106.817	.00	2.30ML	.00	•••	93	CN			•		••••
19	1974 DEC 30	12:11:22.10	35.017	-106.700	.00	1.50ML	.00		96	CN	•••		•		••••
20	1975 FEB 09	09:12:35.70	36.183	-106.233	26.00	2.00ML	.00		41	CN			•	•••••	
21	1975 SEP 04	06:25:24.10	35.217	-106.450	.00	1.50ML	.00		69	CN			•		••••
22	1975 SEP 06	03:46:49.99	36.187	-106.175	3.85	2.30ML			43	WC	10	268		.0	.0
23	1975 SEP 10	01:01:48.20	36. <i>7</i> 33	-105.667	.00	2.00ML	.00		118	CN					
24	1975 SEP 15	07:19:53.97	36.210	-106.167	.69	1.10ML			45	LA	7	304	D	1.8	44.9
25	1975 SEP 25	03:39:02.53	36.226	-106.202	9.57	1.00ML			46	LA	8	312		2.6	1.7
26	1975 DEC 03	13:41:32.10	35.798	-106.176	2.22	1.44MDL	.A .00	••	16	WC	9	166		.0	.0
27	1976 APR 11	07:44:01.96	36.293	-106.152	4.05	1.94MDL	.A .00		54	WC	15	172		.0	.0
28	1976 MAY 22	14:04:58.64	36.345	-105.782	12.21	1.04MDL	.A .00		77	WC	12	200		.0	.0
29	1976 JUN 08	03:57:17.45	36.116	-106.257	8.80	.80 0	A .00		33	LA	5	315	С	.3	.4
30	1976 JUN 26	12:55:39.04	36.168	-106.207	2.55	2.00 0	A .00		40	WC	11	244		.0	.0
31	1976 JUL 05	12:39:19.42	36.157	-106.236	3.23	2.30	A .00		38	WC	11	121		.0	.0
32	1976 OCT 02	00:13:28.32	36.218	106.173	13.21	.70	A .00		46	LA	5	305	D	4.6	3.9
33	1976 OCT 08	15:44:50.80	35.033		.00	1.70	.00		101	CA					
34	1976 OCT 24	07:15:29.69	36.004	106.273	9.87	.50 0	A .00		21	WC	6	151		.0	.0
35	1976 NOV 11	10:00:08.82	36.007	106.142	6.27	1.00 0	A .00	••	27	WC	11	104		.0	.0
36	1976 DEC 17	10:41:50.16	36.011		4.93	1.40	A .00		28	WC	10	108		.0	.0
37	1977 JAN 05	03:19:15.60	35.067	106.617	.00	.50	.00	••	88	CA	• • •			• • • • •	

Cat No.	Date year-mo-day	Time (GMT) hr-min-sec	Lat	Long	Depth (km)	Mag1	Mag2	Inten (MM)		Data Srce			۵	Std-	
====-	-==========	-======================================	-=======	-======-			==-=========					Gap	-=-	Horiz	
38	1977 JAN 09	13:03:00.58	35.961	-106.188	.91	1.30 CA	.00		21	LA	6	148	c	1.6	31.0
39	1977 JAN 20	23:26:47.43		-106.295	5.48	1.40MDLA	.00		49	WC	12	156		.0	.0
40	1977 APR 03	19:26:49.25		-106.220	.12	2.32MDLA	.00	••	36	WC	13	75		.0	.0
41 42	1977 APR 09 1977 APR 24	11:08:02.31		-106.435	10.00	1.30 CA	.00	• •	11	LA	6	261		5.4	4.1
43	1977 APR 24	11:37:38.40 12:01:43.79		-105.834 -106.253	13.37 .66	.74MDLA .86MDLA	.00	••	73 73	LA	12	287		1.8	1.6
44	1977 MAY 05	00:33:37.00		-106.833	.00	1.50	.00	••	32 54	WC CA	11	231		.0	.0
45	1977 MAY 13	08:19:46.30		-106.695	.00	1.00MDGS	.00		40	GS				.0	.0.
46	1977 JUN 03	18:41:25.24		-106.264	1.21	1.36MDLA	.00	•••	13	WC	6	123		.0	.0
47	19 7 7 JUN 07	01:58:12.10	36.717	-105.617	.00	1.00	.00		118	CA					
48	1977 JUL 28	07:44:29.92	35.849	-106.185	3.47	1.14MDLA	.00		15	WC	9	147		.0	.0
49	1977 JUL 31	14:21:38.00		-106.110	10.00	1.60	.00	••	55	JA	• • •				
50	1977 AUG 11	04:24:53.46		-106.189	4.87	.68MDLA	.00	• •	15	WC	9	143	•	.0	.0
51 52	1977 AUG 21	05:43:25.70		-106.067	.00	.70	-00	••	31	CA		• • •	•	*****	• • • • •
52 53	1977 OCT 02 1977 DEC 02	20:54:35.70 12:10:07.39		-106.867 -106.300	.00	.80	.00	• •	58	CA	• • •	•••	•		••••
54	1977 DEC 02	16:41:39.90		-106.300	2.72 9.60	.91MDLA	.00	••	40	WC	8	245		.0	.0
55	1977 DEC 24	19:28:23.10		-106.218	13.00	.80MDGS 1.30	.00 .00	••	34	GS	0	0		.0	.0
56	1978 MAR 14	10:43:22.81		-106.220	4.90	1.57MDLA	.00	••	46 29	CA WC	14	124		.0	
57	1978 APR 12	09:07:04.60		-106.360	.00	1.30MDGS	.00	••	46	GS	0	0		.0	.0
58	1978 APR 23	17:41:07.90		-106.216	6.00	.80	.00	• • • • • • • • • • • • • • • • • • • •	48	CA					
59	1978 JUL 17	17:05:11.40	35.432	-106.171	.00	1.20	.00		47	NM		• • • •	:		
60	1978 AUG 05	23:08:05.39	35.472	-106.201	3.94	1.97MDLA	.00	• •	42	WC	11	162		.0	.0
61	1978 AUG 31	04:02:30.00		-106.553	.00	.50	.00	• •	85	NM					
62	1978 SEP 26	15:32:21.90		-105.647	11.23	.79MDLA	.00	• •	84	LA	13	293	C	1.8	4.0
63	1978 SEP 29	09:38:39.20		-106.804	7.38	2.18MDLA	-00	••	90	WC	21	208		.0	.0
64	1978 OCT 25	08:37:35.00		-106.250	.00	.50	.00		16	MM	• • •	• • •			• • • • •
65 66	1978 NOV 15	23:43:06.87		-106.192	6.54	1.26MDLA	.00	• •	38	WC	16	78		.0	.0
67	1978 NOV 28 1978 DEC 03	05:25:39.56 03:59:23.29		-106.709 -106.815	5.58	1.92MDLA	.00	• •	77	WC	16	269		.0	.0
68	1978 DEC 03	20:27:23.38		-106.818	6.20 10.08	.62MDLA 1.14MDLA	.00	• •	47	WC	14	154	-	.0	.0
69	1978 DEC 15	18:59:31.33		-106.825	10.08	.94MDLA	.00 .00	••	88 87	WC WC	21 17	203 200		.0	.0
70	1978 DEC 31	14:09:53.98		-106.167	12.17	1.10 NM	.00	••	35	WC	7	167		.0 .0	.0 .0
71	1979 JAN 05	22:48:37,80		-106.854	.00	.70	.00	•••	81	NM			•		.0
72	1979 JAN 30	15:57:42.70	35,243	-106.825	.00	1.70	.00		78	NM			:		
73	1979 FEB 06	23:09:16.81	36.019	-106.264	.00	.50 NM	.00		22	WC	6	222		٠.0	.0
74	1979 FEB 13	15:21:08.73		-106.798	8.37	1.67MDLA	.00		90	WC	17	209		.0	.0
75 74	1979 MAR 01	11:15:00.65		-106.174	3.36	-70 NM	.00		39	WC	9	118		.0	.0
. 76	1979 MAR 05	13:00:05.62		-106.200	5.21	2.66MDLA	.00		55	WC	19	88		.0	0
77 78	1979 MAR 07 1979 MAR 09	15:08:23.40		-106.119	.00	1.10	.00	• •	36	NM	• • •	• • •	-		
79	1979 MAR 10	18:07:59.60 13:53:24.47		-106.399 -106.800	.00	1.00	.00	• •	79	NM	• • •	• • •			••••
80		21:00:45.04		-106.207	6.44 9.28	2.19MDLA 1.50 NM	.00	• •	89	WC	21	207		.0	.0
81		11:25:59.48		-106.193	7.10	1.69MDLA	.00 .00	••	13	WC	15	71		.0	.0
82	1979 MAR 30	10:41:55.17		-106.796	7.05	2.58MDLA	.00	••	56 89	WC WC	21 18	88 208		.0	.0
83	1979 APR 04	00:44:17.20	35.135	-106.813	.00	1.00	.00	••	88	NM				.0	.0
84		08:17:06.73	35.680	-106.656	11.17	1.56MDLA	.00	••	32	WC	20	124		.0	.0
85		23:40:53.41	35.124	-106.812	10.53	1.35MDLA	.00		89	WC	19	230		.0	.0
		05:31:15.70		-106.820	.00	.80MDGS	.00	• •	80	GS	0	0		.0	0
		05:48:24.30		106.820	.00	.80MDGS	.00	••	80	GS	0	0		.0	.0
		09:26:52.20		106.820	.00	.80MDGS	.00	••	80	GS	0	0		.0	.0
		20:52:58.00 15:55:04.30		105.709	.00	.50	.00	••	78		• • •	•••		• • • • •	
		21:27:29.80		-106.809 -106.814	11.83	1.95MDLA	.00	••	90	WC	14	208		.0	.0
		13:38:18.55	35.140		.00 10.12	.80 1.51MDLA	.00	••	87		• • •				••••
		04:24:40.18	35.114			1.21MDLA	.00 .00	••	90 on	WC	22	202		.0	.0
		18:51:33.64		105.969	12.76	1.03MDLA	.00	• •	90 49	WC WC	20 13	208 184		.0	.0
		18:36:12.11	35.481 -		.06	1.73MDLA	.00	••	40	WC	11	133		.0 .0	.0 .0
96	1979 OCT 02	23:15:51.19	35.128 -		9.14	1.06MDLA	.00	•••	89	WC		205		.0	.0
										_		~ - • •	-	. •	• •

Cat	Date	Time (GMT)	Lat	Long	Depth	Mag1	Mag2	Inten	Dist	Data	No.	Az	Q	Std-E	rr
No.	year-mo-day				(km)			(MM)		Srce		Gap		Horiz V	
97	1979 OCT 15	15:25:17.10		- 105 . 853	.00	.80			-===-		-===	-===-	=		====
98	1979 NOV 03	18:24:41.77		-106.220	.00	1.87MDLA	.00 .00	••	69 3 5	NM WC	12	241	•	.0	
99	1979 NOV 11	13:28:45.10		-106.248	.00	1.30	.00	••	11	NM					.0
100	1979 DEC 18	16:39:24.90		-106.673	3.85	.89MDLA	.00		30	WC	12	186		.0	
101	1979 DEC 24	13:54:41.19	35.134	-106.802	6.37	1.17MDLA	.00	• •	87	WC	18	204		.0	.0
102	1980 FEB 07	21:21:53.08	35.553	-106.819	4.68	1.13MDLA	.00		52	HC	12	161		٠0	.0
103	1980 FEB 26	22:14:05.74	35.3 9 1	-106 163	1.51	1.01MDLA	.00		52	LA	8	291	D	6.2	26.1
104	1980 MAR 29	06:02:25.65	35.672	-106.531	13.14	.50 NM	.00		24	LA	5	314	С	1.8	2.1
105	1980 MAY 16	08:09:27.67	35.987	-106.133	5.09	1.05MDLA	.00		26	WC	10	94		.0	.0
106	1980 MAY 25	17:39:37.38		-106.223	7.70	.58MDLA	.00	• •	48	WC	9	151		.0	.0
107	1980 JUN 08	07:04:01.66		-106.135	4.14	.61MDLA	.00	• •	28	WC	9	94		.0	.0
108	1980 JUN 15	19:58:04.72		-106.155	8.28	.80 NM	.00	• •	25	WC	7	183		.0	.0
10 9 110	1980 JUN 25 1980 SEP 02	20:07:15.47		-105.970	8.37	1.59MDLA	.00		36	WC	15	127		.0	.0
111	1980 SEP 02	22:32:04.98 18:14:45.05		-106.127 -106.821	2.99	.50 NM	.00	••	27	WC	11	95 .		.0	.0
112	1980 OCT 08	19:56:47.30		-105.814	4.58 9.06	1.03MDLA .83MDLA	.00	• •	53	WC	15	171 .		.0	.0
113	1980 NOV 13	19:49:05.51		-106.342	.03	.60 NM	.00 .00	• •	86 16	WC WC	13 7	201 . 231 .		.0	.0
114	1981 JAN 01	03:58:16.22		-106.686	5.00	1.20MDGS	.00	••	45	GS	4	0 H		.0 .0	.0 .0
115	1981 FEB 20	12:05:10.40		-106.445	5.00	.50	.00	• • • • • • • • • • • • • • • • • • • •	85	NM					
116	1981 MAR 24	21:48:51.05		-106.835	8.18	.79MDLA	.00	• • • • • • • • • • • • • • • • • • • •	54	WC	11	184			.0
117	1981 MAY 03	10:36:39.93	35.539	-106.239	7.33	.86MDLA	.00	•••	34	WC	10	239		.0	.0
118	1981 JUN 15	12:28:03.43	35.709	-106.659	5.00	1.10MDGS	.00		31	GS	4	0 (.0	.0
11 9	1981 JUL 30	09:47:34.95	35.745	-106.654	5.00	1.30MDGS	.00		29	GS	3	0 E	Ь	.0	.0
120	1981 AUG 03	05:11:42.81	35.693	-106.122	8.06	.57MDLA	.00		26	WC	8	148		.0	.0
121	1981 OCT 01	07:40:22.82	35.527	-106.443	7.69	.87MDLA	.00		35	WC	19	187		.0	.0
122	1981 NOV 02	06:22:41.21		-106.121	11.47	.62MDLA	.00	••	47	WC	19	221 .		.0	.0
123	1981 NOV 05	06:40:03.40		-106.324	5.00	.70	-00		50	NM		• • • •			
124	1982 FEB 26	20:22:50.58		-106.767	7.91	.72MDLA	.00		82	WC	10	230 .		.0	.0
125	1982 APR 19	07:34:46.75		-105.821	11.85	1.03MDLA	.00	• •	72	WC	11	193 .	•	.0	.0
126 127	1982 MAY 31 1982 JUN 26	09:37:08.50		-106.800	6.00	2.00ML GS	.00	IV	91	SA	•••	8		• • • • • • • •	• • • •
128	1982 AUG 14	13:32:40.52 18:56:08.89		-106.798 -106.951	9.05	.71MDLA	.00	• •	47	WC	9	270 .		.0	.0
129	1982 SEP 03	03:27:07.64		-106.931	5.00 5.00	1.70MDGS 1.20MDGS	.00 .00		103	GS	11	0 a		.0	.0
130	1982 OCT 06	23:15:01.60		-106.344	5.00	1.30	.00	••	28 75	GS NM	9	0 0	3	.0	.0
131	1982 OCT 25	06:10:03.90		-106.223	5.00	1.00	.00	••	54	NM	•••		•	• • • • • • •	• • • •
132	1982 DEC 24	19:08:45.28		-106.936	9.26	1.79MDLA	.00	••	87	WC	11	216 .		0	.0
133	1983 JAN 06	00:44:53.90		-105.792	.00	1.60	.00	•••	113	NM		0			
134	1983 JAN 12	14:50:39.70	35.061	-106.737	.00	1.70	.00	•••	92	NM		A		· · · · · · · · · · · · · · · · · · ·	
135	1983 FEB 04	18:14:38.80	35.916	-106.167	7.21	1.52MDLA	.00		19	WC	8	219 .		.0	.0
136	1983 FEB 24	21:23:56.30	35.112	-106.700	.00	1.60	.00		86	NM		0			
137	1983 FEB 28	04:52:20.25		-106.227		1.14MDLA	.00		31	WC	8	134 .		.0	.0
138	1983 MAR 15	04:28:43.86		-106.225	3.38	.99MDLA	.00	• •	30	WC	13	181 .		.0	.0
139	1983 APR 06	10:39:44.74		-106.225	2.45	1.10MDLA	.00		30	WC	15	117 .		.0	.0
140 141	1983 APR 16 1983 JUL 20	08:17:59.50 10:11:53.36		-106.128	.00	.50	.00	• -	43	MM	• • •	D		· · · · · · · · · · · · · · · · · · ·	
142		07:19:40.73		-105.810 -105.824	1.24	1.62MDLA	.00	• •	75	WC	15	196 .		.0	.0
143		15:09:22.29		-105.824	7.87 12.13	1.11MDLA 1.75MDLA	.00	••	69	LA	6	267 C			1.3
144	1983 AUG 14	14:45:02.45	35.813		.12	1.79MDLA	.00		77	WC	12	200 .		.0	.0
145		00:24:44.30	35.746		.00	.80	.00	••	11	WC	8	138 .		.0	.0
146		12:05:04.30	36.254		.00	.90	.00	••	34 40		• • •	В		••••	• • •
147		05:07:56.61	35.748		5.26	1.08MDLA	.00	••	49 25	NM WC	···	A		.0	
148		22:57:24.50	35.315		.00	.90	.00	••	59			D			.0
149		22:47:05.38	36.093 -		1.85	1.73MDLA	.00	••	34	WC	9	118 .		.0	.0
150		17:51:33.80	36.269 -	-105.779	.00	.60	.00	••	71			D			
		18:36:35.50	36.267 -	106.207	.00	.60	.00		50			A			
152		03:57:07.34	35.159		2.54	1.40 NM .	.00	••	76	WC	12	232 .		.0	.0
153		07:53:52.57	36.307 -			1.46MDLA	.00		73	LA	9	276 D			2.0
		22:10:00.33	35.257 -		.48	.88MDLA	.00	• •	69	WC	5	286 .		.0	.0
(()	1983 DEC 02	22:44:00.)/	35.312 -	100.467	11.59	1.68MDLA	.00	••	58	WC	6	217 .		.0	.0

Cat	Date	Time (GMT)	Lat	Long	Depth	Mag1	Mag2	inten	Dist	Data	No.	Az	Q	Std-	Err
No.	year-mo-day	hr-min-sec			(km)			(HH)	(km)	Srce	Arr	Gap		Horiz Y	Vert
====-	-=======	- =========	-======	-=======-	-=====	-=========		==-===-	-====	==-	-===-	-===	-=-	-=====	=====
156	1983 DEC 28	04:56:15.30	36.317	-105.781	.00	.70	.00		74	NM			В		
157	1984 JAN 28	20:45:45.41	35.498	-106.233	8.89	2.14MDLA	.00		38						
158	1984 APR 18	19:44:03.88	35.964	-106.273	8.93	1.80 NM	.00		16	WC	7	155		.0	.0
159	1988 JUN 16	22:38:20.92	35.548	-106.291	220.85	2.93MDLA	.00		32	GS	7	321		3.0	- 5

APPENDIX C ORADO PLATEAU

HISTORICAL EARTHQUAKE CATALOGUE FOR THE COLORADO PLATEAU
TRANSITION ZONE USED IN RECURRENCE

183 Events Selected Searched: 25 OCT 1994 File: rec.rst By: jdjb

SOURCE DATABASE:

Root name: rec

Created: 11 APR 1994 13:50

By: jdjb

Original file: rec.dmp Type: ASCII Dump

Hypoctr rec: 183 # Comment rec: 0

Time span: 1974 01 04 23:29:31.60 -> 1985 07 30 16:02:16.73

SEARCH PARAMETERS:

Depth: .00 -> 999.00 Search Mode: DATABASE

CENTER FOR DISTANCE CALC: Lat 35.83 Long -106.35

Cat No.	Date year-mo-day	Time (GMT) hr-min-sec	Lat	Long	Depth (km)	Mag1	Mag2	Inten				Az	Q	Std-E	
		-=======	- 222222 -	=====-	- •	. ========		(MM) 		Srce ==-		Gap		Horiz \ ====	
1	1974 JAN 04	23:29:31.60		-106.900	.00	1.70ML	.00		50	CN					
2	1974 MAR 23	10:44:15.00		-107.083	32.00	2.40ML	.00	••	99	CN	•••	•••	•	•••••	• • • • •
3	1974 JUN 05	18:18:08.90		-106.667	.00	1.70ML	.00	• • •	56	CN		•••	•	*****	
4	1974 OCT 15	12:47:38.80		-107.083	.00	2.60ML	.00		93	CN		•••	•		
5	1974 DEC 29	01:11:54.00		-107.100	.00	1.70ML	.00	• • • • • • • • • • • • • • • • • • • •	85	CN			•		
6	1975 MAR 13	11:01:05.30	36.567	-106.917	26.00	1.70ML	.00	• • •	96	CN			•		
7	1975 MAY 21	04:46:59.00	36.746	-106.662	.00	2.00MDGS	.00	• • •	105	GS		0	•	.0	
8	1975 SEP 18	01:48:17.08	36.046	-106,856	15.85	1.11MDLA	.00	•••	52	LA	8	322	-	1.7	4.9
9	1975 SEP 29	11:09:41.90	36.037	-106.862	7.39	3.04MDLA	.00		52	LA	7	315	-	8.8	2.4
10	1976 JAN 01	23:44:28.20	36.050	-106.893	7.39	1.21MDLA	.00		55	LA	13	318	-	1.5	1.9
11	1976 JAN 22	20:12:46.14	36.422	-106.546	10.00	1.30MDLA	-00		68	LA	13	280	D		101.1
12	1976 APR 17	02:40:33.41	36.050	-107.091	16.64	.51MDLA	.00	• •	71	LA	8	334		3.2	4.2
13	1976 APR 17	06:46:21.10	36.460	-106.286	10.00	.96MDLA	.00		70	LA	12	322	D	1.8 2	
14	1976 MAY 02	00:32:35.71	36.402	-106.762	9.41	2.69MDLA	.00		73	WC	9	201		.0	.0
15	1976 MAY 10	07:55:37.00	35.500	-107.250	.00	.70	00		89	CA	• • •				
16	1976 MAY 15	11:23:27.00	35.610	-106.930	.00	1.00	.00		58	JA					
17	1976 JUL 12	21:44:26.90	35.817	-107.083	.00	.80	.00		66	CA					
18	1976 AUG 08	18:05:47.90	36.750	-106.517	.00	.70	.00		103	CA					
19	1976 SEP 01	11:26:24.40	35.267	-107.217	.00	.80	.00		100	CA					
20	1976 SEP 12	18:59:02.60	35.400	-107.250	.00	1.80	.00		94	CA					
21	1976 OCT 08	20:18:13.20	36,150	-106.833	.00	.70	.00		56	CA					
22	1976 NOV 02	20:23:59.80		-106.917	.00	.70	.00		63	CA					
23	1976 NOV 03	21:05:00.36	35.332	-107.230	8.54	1.09MDLA	.00		97	WC	13	184		.0	.0
24	1977 APR 07	13:13:03.50		-107.217	_00	.70	-00		88	CA					
25	1977 APR 11	16:45:35.89		-107.043	9.24	.80 CA	.00		65	WC	16	190		.0	٠0
26	1977 MAY 27	06:19:05.60	36.550	-106.500	.00	.80	.00	• •	81	CA					
27	1977 MAY 29	05:10:42.50		-107.050	.00	1.30	.00		71	CA		• • •			
28	1977 JUL 02	01:24:41.17	36.231		9.16	1.87MDLA	.00		90	WC	13	219	-	.0	.0
29	1977 AUG 05	16:06:26.20	35.333 ·		.00	.70	.00		97	CA					
30	1977 AUG 10	19:11:06.90	35.550 ·		.00	1.10	.00		56	CA					
31	1977 AUG 22	15:10:56.20	35.617		.00	2.00	.00		83	CA					
32	1977 AUG 29	07:13:38.43	35.541		10.16	1.78MDLA	.00	••	75	WC	12	172		.0	.0
33	1977 AUG 29	22:17:08.51	36.354		17.12	1.23MDLA	.00		64	WC	17	189		.0	.0
34	1977 OCT 02	14:38:35.70	35.800		8.46	.85MDLA	.00		54	₩C	15	159		.0	.0
35	1977 OCT 04	20:57:42.24	36.181		4.14	1.65MDLA	.00	• •	61	WC	14	168	-	.0	.0
36	1977 OCT 13	19:28:17.24	36.073		5.66	.94MDLA	-00	• •	61	WC	16	175		.0	.0
37	1977 NOV 11	11:26:55.27	35.430 -	107.167	9.65	.95MDLA	.00	••	86	MC	14	105	•	.0	.0

Cat No.	Date year-mo-day	Time (GMT)	Lat	Long	Depth (km)	Mag1	Mag2	Inten					Q		-Err	
	-=====================================		- ======	- 2222222 -			==-====================================	(MM) ======		Srce		Gap	. =	Horiz -====		
38	1977 NOV 17	13:02:28.88	35.520	-107.085	5.56	.61MDLA	.00		75	WC	8	171		.0	.0	
39	1977 DEC 10	06:58:57.30	35.730	-106.930	.00	.80MDGS	.00		54	GS	0	0		.0	.0	
40	1978 JAN 30	02:53:01.40	35.874	-106.843	8.47	.87MDLA	.00		45	WC	17	166		.0	.0	
41	1978 FEB 13	09:48:00.40	36.007	-106.845	4.80	.BOMDGS	.00		49	GS	0	0		.0	.0	
42	1978 FEB 13	18:57:38.91		-107.197	10.74	1.51MDLA	.00	• •	77	WC	15	172		.0	.0	
43	1978 FEB 14	16:49:04.46		-106.927	10.47	1.35MDLA	.00	••	73	WC	14	196		.0	.0	
44 45	1978 APR 16 1978 APR 23	08:38:14.45		-107.133	10.00	1.21MDLA	.00	• •	100	LA	12	236			383.0	
45	1978 APR 30	23:25:35.75 00:32:00.10		-106,974	5.41	1.27MDLA	.00		60	WC	16	135		.0	.0	
47	1978 MAY 02	00:03:27.73		-106.530 -106.837	8.00 4.38	.70 .56MDLA	.00	••	92	CA	•••	132			••••	
48	1978 MAY 28	05:04:06.63		-106.810	5.40	.64MDLA	.00 .00	••	44 72	WC WC	16 .9	171		.0	.0	
49	1978 JUN 29	04:44:50.20		-106.440	25.00	.80	.00	••	88	CA			•	.0	.0	
50	1978 JUL 03	15:13:47.60		-107.250	.00	.50	.00	••	87	NM	•••		•	••••	• • • • •	
51	1978 JUL 09	13:30:18.40	36.659	-106.610	.00	1.30	.00		95	NM			•			
52	1978 AUG 15	06:55:00.60	36.705	-106.575	_00	1.20	.00	••	99	NM		•••				
53	1978 SEP 25	01:44:31.13	35.735	-106.764	6.84	1.85MDLA	.00	••	39	WC	16	99		.0	.0	
54	1978 OCT 03	12:29:27.40	35.584	-107.224	-00	.80	.00		84	NM						
55	1978 OCT 07	23:13:18.76		-106.814	5.26	.88MDLA	.00	• •	51	WC	16	151		.0	.0	
56	1978 OCT 11	15:41:32.70		-106.920	.00	.50	.00	• •	83	NM		• • •		• • • • •	• • • • •	
57 50	1978 OCT 30	03:59:27.72		-106.549	9.25	1.14MDLA	.00	• •	77	WC	17			.0	.0	
58 59	1979 JAN 14 1979 JAN 17	01:43:18.28		-107.154	10.57	1.20MDLA	.00	• • •	74	WC	22	162		.0	.0	
60	1979 JAN 17	09:31:36.94		-106.811 -106.563	7.08 8.32	1.54MDLA 1.72MDLA	.00	••	65	WC	22	82		.0	.0	
61	1979 JAN 18	10:34:17.00		-106.430	.00	.70	.00 .00	• •	86 75	WC NM	22	138		.0	.0	
62	1979 FEB 12	09:23:47.30		-106.750	.00	.50	.00		83	NM NM	•••	•••	•	••••	• • • • •	
63	1979 APR 07	03:45:17.00		-106.357	.00	1.10	-00	••	97	NM	•••	• • • •	•		• • • • •	
64	1979 APR 30	01:44:15.07		-106.741	6.66	.65MDLA	.00	•••	68	WC	8	144		.0	.0	
65	1979 APR 30	09:43:02.70	35.546	-107.215	.00	.70	.00	•••	84	NM						
66	1979 MAY 17	16:00:55.18	36.426	-106.697	8.78	.98MDLA	.00		73	WC	16	140		.0	.0	
67	1979 JUN 02	14:41:08.50	36.645	-107.001	.00	1.30	-00		108	NM						
68	1979 JUN 05	05:26:09.40		-106.709	6.11	1.30MDLA	.00		74	WC	15	176		.0	.0	
69	1979 JUN 12	16:51:41.49		-106.452	6.76	1.10MDLA	.00	••	54	WC	17	227		.0	.0	
70	1979 JUN 22	09:32:29.60		-106.730	.00	.70	.00	• •	93	NM			•	••••		
71 72	1979 JUN 25 1979 JUN 28	12:17:26.20 23:12:39.37		-106.433	.00	1.00	.00	• •	47	NM	• • •			• • • • •	• • • • •	
73	1979 AUG 07	21:00:09.80		-106.856 -106.767	6.43	.57MDLA	.00	• •	61	WC	8	249		.0	.0	
74	1979 AUG 14	18:56:54.92		-106.767	.00 .67	.80MDGS .97MDLA	.00	••	39	GS	0	0		.0	.0	
75	1979 AUG 17	18:55:38.00		-106.984	.00	1.40	.00 .00	••	60 61	WC	14	179	•	.0	.0	
76		11:09:33.04		-106.724		1.00MDLA	-00	••	84	NM WC	13	215	•			
77		04:35:42.25		-107.105	12.80	1.33MDLA	.00	••	79	WC	17	136		.0 .0	.0	
78	1979 AUG 31	17:26:29.52	35.452	-107.101	7.72	1.49MDLA	.00	•••	80	WC	19	139		.0	.0	
79	1979 SEP 01	21:15:50.70	36.499	-106.540	10.72	.90MDLA	.00		76	WC	15	210		.0	.0	
80	1979 SEP 06	08:37:18.40	35.326	-107.250	.00	.70	.00		99	NM						
81		19:25:45.00		-106.767	.00	.80	.00		48	NM						
82	1979 OCT 12	18:59:10.40		-106.721	.00	.70	.00		48	NM				• • • • •		
		05:23:54.10	_	-106.828	.00	.80	.00	• •	44	NM	• • •	• • •				
	1979 OCT 21 1979 OCT 28	17:18:52.60 16:41:19.60		-106.740 -106.745	.00	.70	.00	••	46	NM	• • •	•••	•		• • • • •	
		04:05:49.89		-106.745	12.40	.80MDGS	.00	••	40	GS	0	0		.0	.0	
		01:11:10.53		-106.754	18.38 9.21	1.33MDLA 1.74MDLA	.00 .00	• •	70	WC	17	137		.0	.0	
		02:15:35.51		-106.879	8.01	1.63MDLA	.00	••	90 55	WC WC	17 20	142 158		.0	.0	
		18:37:17.00		-106.749	.00	1.30	.00	••	92		-20	158		.0	.0	
90		06:42:02.50		-106.581	.00	.50	.00	••	63			• • • •				
9 1	1979 NOV 13	21:58:33.45		-106.784	9.81	1.17MDLA	.00		66	WC	19	151		.0	.0	
		08:43:31.08	35.781	-106.937	.33	1.18MDLA	.00		53	WC	20	152		.0	.0	
		02:56:38.09		-106.700	8.38	.60MDLA	.00		43	WC	.10	112		.0	.0	
		15:28:13.53		-106.739	5.38	.91MDLA	-00		79	WC	14	1 9 7		.0	.0	•
		10:11:03.29		-106.862	7.66	.98MDLA	.00		72	WC	9	218		.0	.0	
70	1717 DEC 20	04:47:08.50	35.914	-106.736	6.80	.80MDGS	-00	••	36	GS	0	0	•	.0	.0	

Cat No.	Date year-mo-day	Time (GMT) hr-min-sec	Lat	Long	Depth (km)	Mag1	Mag2	Inten (MM)		Data Srce		Az Gap	Q	Std-Er Horiz Ve	
		- =========	- ====== -	-=====-		- =======	=======================================					•	-=-	-====-==	
9 7	1979 DEC 24	13:03:39.30	36.614	-106.800	.00	.80	.00		96	NM					
98	1979 DEC 28	06:48:05.60		-106.750	.00	.50	.00		75	NM	•••		-		
99	1980 JAN 05	13:29:53.10		-106.850	5.00	.50	.00	••	60	MM	• • •	• • •		••••	• • • •
100	1980 FEB 10	21:06:23.53		-106.903	3.24	1.32MDLA	.00	• •	85	WC	16	256		.0	.0
101 102	1980 FEB 15 1980 FEB 21	10:28:39.95 11:13:10.26		-106.887 -106.810	5.00 10.00	.60MDGS	-00	••	50	GS	6	0		.0	0.
103	1980 FEB 25	00:54:09.80		-106.616	5.00	1.30	.00 .00	••	74 97	LA NM	12	273		1.1 18	89.9
104	1980 MAR 02	15:26:00.20		-106.638	5.00	.50	.00	• -	75	NM	•••		•		• • • •
105	1980 MAR 09	07:59:04.40		-106.553	5.00	.70	.00	•••	91	NM	• • • •		•		· · · ·
106	1980 MAR 15	10:09:30.70	36.622	-106.876	5.00	1.60	.00		100	NM					
107	1980 MAR 15	17:53:17.84	35.601	-106.952	8.69	.79MDLA	.00		60	WC	19	148		.0	.0
108	1980 APR 03	10:04:05.40	36.638	-106.602	5.00	.60	.00		92	NM					
109	1980 APR 15	14:43:33.20	35.909	-106.696	2.70	1.60MDGS	.00		32	GS	0	0	b	.0	.0
110	1980 APR 24	19:12:33.48		-106.783	7.03	1.90MDLA	.00		39	WC	12	135		.0	.0
111	1980 MAY 01	02:49:58.40		-107.206	5.00	.80	.00	••	82	NM					
112	1980 MAY 06	12:01:02.87		-106.980	5.00	.80MDGS	.00	• •	61	GS	0	0		.0	.0
113 114	1980 MAY 16	07:47:10.06		-106,685	.80	.80MDGS	.00	• •	31	GS	0	0		.0	.0
115	1980 MAY 27 1980 JUN 07	21:20:09.47		-106.790 -106.691	5.00	1.20MDGS	.00	••	40	GS	0	0.		.0	.0
116	1980 JUN 13	12:00:01.48		-106.683	.00 2.30	.70MDGS	.00 .00	• •	31 71	GS	0	0		.0	.0
117	1980 JUN 25	08:11:42.79		-106.942	.66	1.29MDLA	.00	••	31 54	GS WC	0 18	0 144		.0 .0	.0 .0
118	1980 JUN 27	00:47:53.26		-106.829	5.00	1.20MDGS	.00	••	45	GS	0	0		.0	.0
119	1980 JUL 14	12:45:20.44		-106.562	10.16	.51MDLA	.00	••	72	WC	18	146		.0	.0
120	1980 AUG 13	18:33:29.69		-106.774	4.33	1.09MDLA	.00	••	43	WC	12	84		.0	.0
121	1980 SEP 11	02:07:10.22		-106.914	.08	.57MDLA	.00		52	WC	17	142		.0	.0
122	1980 SEP 11	09:57:08.34	35.884	-106.678	2.00	1.20MDGS	.00		30	GS	0	0		.0	.0
123	1980 SEP 13	03:04:53.64	35.503	-107.205	5.00	.50MDGS	.00		86	GS	0	0	b	.0	.0
124	1980 SEP 23	05:57:56.02	36.013	-106.847	7.38	.73MDLA	.00		49	WC	14	251		.0	.0
125	1980 SEP 25	10:40:19.30	36.066	-106.845	5.00	.60	.00		52	NM					
126	1980 SEP 25	17:38:33.70		-106.702	1.00	1.20	.00		33	NM					
127	1980 OCT 11	20:31:41.00		-106.850	.00	2.20	.00		90	SJ	• • •	• • •	•		• • • •
128	1980 OCT 26	10:29:13.83		-106.687	3.00	.80MDGS	,00	• •	31	GS	0	0		.0	.0
129 130	1980 NOV 16 1980 NOV 20	21:32:09.20		-106.781	1.10	1.00MDGS	.00	• •	39	GS	0	0	а	.0	.0
131	1980 NOV 20	02:11:24.60		-106.796	5.00	.50	.00	• •	99	NM	• • •		٠		• • • •
132	1980 NOV 22	00:16:27.97 07:20:30.52		-106.916 -106.649	12.42 15.22	1.47MDLA	.00	••	77	WC	19	207		.0	.0
133	1980 DEC 17	09:27:29.72		-106.679	3.00	.88MDLA	.00 .00		83	WC	21	195		.0	.0
134	1980 DEC 23	03:18:08.42		-106.861	5.00	.80MDGS	.00	••	30 47	GS GS	0	0		.0	.0
135	1981 MAR 24	00:57:28.53		-106.952	5.00	.60MDGS	.00	••	58	GS	3	0		.0 .0	.0 .0
136	1981 APR 01	02:17:38.00		-107.090	.00	.50	.00	•••	86	SJ					.0
137	1981 APR 05	00:48:55.70	35.889	-106.767	.00	.90	.00		38	NM	•••				
138	1981 JUN 06	02:52:59.88	35.891	-106.765	5.00	1.30MDGS	.00		38	GS	4	0	a	.0	.0
139	1981 SEP 09	21:41:49.10	36.594	-106.736	5.00	1.10	.00		92	NM	• • •				
140	1981 SEP 11	17:09:14.10		-106.746	1.00	1.10	.00		36	NM	• • •				
141	1981 SEP 21	04:19:04.12		-106,647	13.86	.86MDLA	.00		81	WC	23	187		.0	.0
142 143	1981 SEP 26	02:15:59.46		-106.499	10.45	.53MDLA	.00	••	77	WC	15	159		.0	.0
144	1981 OCT 16 1981 OCT 21	14:30:16.00		-107.240	.00	.90	.00	••	103	SJ	• • •			••••	
145		08:41:48.69 06:51:19.38		-106.668 -106.760	10.61	1.72MDLA	.00	••	76	WC	22	166		.0	.0
146		09:54:14.09		-106.780	10.52	1.29MDLA	.00	••	38	WC	16	125		.0	.0
147	1981 DEC 27	00:59:04.80		-105.565	5.00 5.00	.50MDGS 1.10	.00 .00		55 es	GS	3	0	C	.0	.0
148	1982 MAY 05	21:13:45.14		-106.608	5.00	1.30MDGS	.00	••	85 78	NM GS	···	•••			
149		18:50:42.69		-107.188	5.00	.50MDGS	.00		94	GS GS	4	0		.0	.0
150		22:37:15.68		-106.910	5.00	1.90MDGS	.00	••	112	GS	7	0		.0 .0	.0 .0
151	1982 MAY 30	00:07:44.00		-106.622	5.00	1.30MDGS	.00	• • • • • • • • • • • • • • • • • • • •	52	GS	5	0		.0	.0
152	1982 JUL 06	21:05:59.72	35.183	-107.201	5.00	1.30MDG\$.00		105	GS	3	0		.0	.0
		16:37:07.91	35. 575	-107.120	8.27	2.61MDLA	-00	••	75	WC	8	157		.0	.0
		06:05:51.19		-106.623	5.00	1.10MDG\$.00	• •	53	GS	4	0		.0	.0
155	1982 JUL 22	12:46:23.99	35 695	-106.949	3.35	1.70MDLA	-00	••	56	WC	24	146		.0	.0

Cat No.	Date year-mo-day	Time (GMT) hr-min-sec	Lat	Long	Depth (km)	'Mag1	Mag2	Inten (MM)	(km)	Data Srce	Arr	Az G Gap	Std- Horiz	Vert
156	1982 JUL 22	20:51:01.22	35.457	-107.082	1.14	1.74MDLA	.00		78	WC	6	205 .		.0
157	1982 AUG 18	23:01:37.57	35.792	-106.943	5.00	1.60MDGS	.00		54	GS	3	0 0		
158	1982 AUG 19	01:52:41.12	36.463	-106.649	1.38	1.86MDLA	.00		75	LA	18	96 D	1.5	4.7
159	1982 AUG 19	05:18:31.40	36.052	-106.789	5.00	1.30MDGS	.00		47	GS	6	0 b	.0	.0
160	1982 OCT 29	22:35:00.70	36.288	-106.650	5.00	.50	-00		58	NM				
161	1982 NOV 13	09:57:55.60	36.148	-106.722	5.00	2.10	.00		49	NM				
162	1982 NOV 22	03:01:38.20	36.705	-106.950	5.00	.80	.00		111	NM				
163	1982 DEC 15	14:54:59.58	36.026	-106.852	8.13	.93MDLA	.00		50	WC	10	191 .	.0	.0
164	1982 DEC 16	04:08:03.68	35.691	-106.918	.51	.82MDLA	.00		54	WC	16	148	.0	.0
165	1982 DEC 30	02:24:12.99	36.506	-106.651	4.89	1.54MDLA	.00		80	WC	7	217 .	.0	.0
166	1983 JAN 14	13:41:37.00	36.650	-106.797	.00	.80	.00		99	NM		D		
167	1983 JAN 25	05:14:11.20	35.932	-106.773	.00	.50	.00		40	NM		В		
168	1983 FEB 01	03:54:51.90	36.590	-106.608	.00	1.40	.00		87	MM		D		
169	1983 FEB 04	15:50:29.00	36.168	-107.174	.00	1.20	.00		83	NM		D		
170	1983 APR 17	04:04:51.70	35.419	-107.238	.00	.90	.00	••	92	NM		В		
171	1983 MAY 20	15:51:03.39	35.520	-107.016	1.72	1.03MDLA	.00	••	69	LA	5	324 D	8.4	121.2
172	1983 MAY 27	20:05:34.74	35.593	-106.918	.07	.54MDLA	.00		58	LA	6	298 D	4.8	120.2
173	1983 JUN 27	01:51:05.36	36.196	-106.875	.97	.51MDLA	.00		62	WC	11	267 .	.0	.0
174	1983 JUL 12	16:37:08.20	35.576	-107.110	5.00	2.50MD LA	.00		74	SA		A		
175	1983 JUL 19	17:12:43.15	36.175	-106.848	5.62	.75MDLA	.00		59	WC	9	262 .	.0	.0
176	1983 JUL 24	10:14:16.70	36.639	-106.901	.00	1.00	.00		103	NM		A		
177	1983 AUG 03	09:17:29.81	36.088	-106.903	8,15	1.49MDLA	.00		58	WC	17	222 .	.0	.0
178	1983 AUG 03	10:05:39.50	35.595	-107.241	.00	.50	.00		85	NM		D		
179	1984 MAY 26	19:33:03.10	36.495	-106.495	.00	1.90	.00		75	NM		A		
180	1984 JUN 04	02:54:18.70	36.684	-106.453	.00	1.90	.00		95	MM		B		
181	1984 SEP 27	04:05:27.23	36.168	-106.882	3.26	1.82MDLA	-00	• •	61	WC	8	236 .	.0	.0
182	1985 JAN 06	21:02:30.93	35.842	-106.741	7.48	2.51MDLA	.00		35	WC	5	125 .	.0	.0
183	1985 JUL 30	16:02:16.73	36.444	-107.029	5.00	2.10MDGS	.00	••	91	GS	3	0 c	.0	.0

APPENDIX D HISTORICAL EARTHQUAKE CATALOGUE FOR THE SOUTHERN ROCKY MOUNTAINS USED IN RECURRENCE

31 Events Selected Searched: 25 OCT 1994 File: rec.rst By: jdjb

SOURCE DATABASE:

Root name: rec

Created: 11 APR 1994 14:15

0

By: jdjb

Original file: rec.dmp

Type: ASCII Dump

Hypoctr rec: 31

Comment rec:

Time span: 1952 08 03 20:42:00.00 -> 1984 06 30 12:02:52.80

SEARCH PARAMETERS:

Time: 0001 JAN 01 -> 2100 DEC 31

Mag 1: -9.99 -> 9.99 Type: All Mag 2: -9.99 -> 9.99 Type: None

Lat: -90.000 -> 90.000 Long:

-180.000 -> 180.000

Intensity: 0 -> 12 Mode: 0

Depth:

.00 -> 999.00 Search Mode: DATABASE

CENTER FOR DISTANCE CALC: Lat 35.83 Long -106.35

Cat	Date	Time (GMT)	Lat	Long	Depth	Mag1	Mag2	Inten	Dist	Data	No.	Az Q	Std-Err
No.	year-mo-day	hr-min-sec			(km)			(MM)		Srce		Gap	Horiz Vert
====-	1952 AUG 03	20:42:00.00		-106.000	-=====- .00							-===-=	22222 - 52222
2	1976 APR 24	08:24:42.61		-105.750	11.22	4.33MIWC 1.47MDLA	.00	٧	81	AS	•••		
3	1976 MAY 26	07:10:39.55		-105.750	.00	.80MDGS	.00 .00	• •	56	LA	10	271 C	
4	1976 JUN 01	16:39:58.73		-106.211	6.98	1.12MDLA	.00		136	GS	0	0.	.0 .0
5	1977 JAN 03	01:02:36.50		-105.333	.00	1.50	.00	• •	78 115	WC CA	8	194 .	.0 .0
6	1977 JUN 27	00:34:21.57		-105.401	10.00	1.15MDLA	.00		113	LA	10	310 D	1 5 177 0
7	1977 OCT 04	20:08:17.00		-105.420	.00	1.00	.00	••	91	JA		ט טוכ	1.5 173.8
8	1977 NOV 06	12:21:39.40		-105.409	70.20	.50MDGS	.00	••	131	GS		0.	^ ^
9	1978 MAR 05	02:58:32.00		-105.476	15.00	.70	.00	••	118	CA	-	٠.	.0 .0
10	1978 MAR 08	17:07:30.20		-106.116	5.00	1.70	.00	• • •	67	CA	• • • •	••••	*****
11	1978 MAR 19	22:51:46.10		-105.643	7.00	.50	.00	• • •	75	CA			*****
12	1978 SEP 19	07:33:45.41		-105.547	9.27	1.67MDLA	.00	• • •	93	WC	7	235 .	.0 .0
13	1978 OCT 11	13:43:06.98		-106,050	10.12	1.18MDLA	.00	• • • • • • • • • • • • • • • • • • • •	60	WC	13	101 .	.0 .0
14	1978 OCT 24	17:00:47.62	36.738	-105.449	9.48	1.84MDLA	.00	•••	129	WC	15	270 .	.0 .0
15	1979 MAR 25	20:04:24.89	36.488	-105.340	6.87	.71MDLA	.00	••	117	WC	12	262 .	.0 .0
16	1979 AUG 12	13:03:50.30	36.346	-105.924	.00	.50	.00	•••	69	NM			
17	1979 OCT 19	00:07:24.00	36.411	-105.295	.00	.80	.00		115	NM	•••		
18	1979 DEC 15	01:18:11.70	36.250	-105.920	.00	.50	.00	••	61	NM			
19	1980 MAY 23	03:51:14.40	36.586	-105.332	5.00	.60	.00		124	NM		••••	
20	1980 NOV 29	08:19:48.97	36.407	-105.519	14.85	1.70MDLA	.00		98	WC	17	240 .	.0 .0
21	1981 DEC 23	21:06:02.40	35.525	-105.657	5.00	.50	.00		71	NM			
22	1982 MAR 02	16:05:21.23	35.891	-105.454	.28	2.56MDLA	.00		81	LA	20	239 D	2.9 2.2
23	1982 APR 18	05:46:16.07	35.876	-105.276	10.00	.82MDLA	.00		97	LA	12	302 D	1.1 176.5
24	1982 JUL 04	22:13:01.66	36.213	-105.859	4.60	1.30MDGS	-00	••	61	GS	3	0 d	.0 .0
25	1982 DEC 18	01:21:43.22	35.488	-105.396	5.81	1.72MDLA	-00	• •	94	LA	8	309 D	5.9 6.3
26	1983 APR 25	08:05:18.80	36.723	-106.132	.00	1.00	.00		101	NM		В	*****
27	1983 MAY 26	17:17:50.60		-105.318	.00	2.50	.00		128	NM		D	
28	1983 JUN 11	18:01:57.70		-105.534	.00	.90	.00		76	NM		D	
29	1983 OCT 17	23:56:53.50		-105.505	.00	1.60	.00	••	118	NM		c	
30	1983 NOV 28	17:31:12.61		-105.967	13.95	1.67MDLA	.00	••	83	WC	9	175 .	.0 .0
31	1984 JUN 30	12:02:52.80	36.545	-106.219	5.64	1.75MDLA	.00	••	80	WC	11	134 .	.0 .0

APPENDIX E HISTORICAL EARTHQUAKE CATALOGUE FOR THE GREAT PLAINS USED IN RECURRENCE

20 Events Selected Searched: 25 OCT 1994 File: rec.rst By: jdjb

SOURCE DATABASE:

Root name: rec

Created: 11 APR 1994 14:11

By: jdjb

Original file: rec.dmp

Type: ASCII Dump

Hypoctr rec: 20

0

Comment rec:

Time span: 1930 12 03 21:36:00.00 -> 1988 12 25 07:52:33.93

20 1988 DEC 25 07:52:33.93 35.118 -105.957 .00 2.80MDSNM

SEARCH PARAMETERS:

Time: 0001 JAN 01 -> 2100 DEC 31 Mag 1: -9.99 -> 9.99 Type: All Lat: -90.000 -> 90.000

Mag 2: -9.99 -> 9.99 Type: None

Long:

-180.000 -> 180.000

Intensity: 0 -> 12 Mode: 0

Depth:

.00 -> 999.00 Search Mode: DATABASE CENTER FOR DISTANCE CALC: Lat 35.83 Long -106.35

Cat No.	Date year-mo-day	Time (GMT) hr-min-sec	Lat	Long	Depth (km)	Mag1	Mag2	Inten (MM)	Dist (km)			Az Gap	Q	Std-Err Horiz Vert
====-	-==========	-=============	-======-	======-	-====-	- ========		==-===-				•	=-	
1	1930 DEC 03	21:36:00.00	35.000	-106.400	.00	4.50MLAS	.00	VI	92					
2	1956 APR 26	03:30:00.00	35.100	-106.300	1.00	4.00	.00	٧	81	AS			_	
3	1975 JAN 03	12:33:13.00	35.266	-105.281	.00	1.70MDGS	.00		115	GS	0	0	_	.0 .0
4	1976 OCT 14	07:27:11.00	35.010	-105.850	.00	1.00	.00	••	102	JA			-	
5	1978 OCT 10	17:56:06.50	35.038	-106.316	.00	1.10	.00		88	NM		•••		
6	1978 DEC 16	23:06:34.44	35.317	-106.126	3.78	1.57MDLA	.00		60	WC	8	209	•	.0 .0
7	1978 DEC 17	05:59:06.20	35.126	-106.283	.00	1.00	.00		78	NM			•	
8	1978 DEC 17	16:13:02.30	35.077	-106.306	32.60	1.40MDGS	.00	•••	84	GS	0	0	•	.0 .0
9	1978 DEC 29	20:44:50.18	35.174	-106,141	10.00	1.45MDLA	.00	•••	75	LA	6	333	-	8.6 541.3
10	1979 JAN 12	23:08:17.01	35.258	-106.083	1.64	1.77MDLA	.00	•••	68	LA	11	284		2.7 5.9
11	1979 FEB 06	19:00:38.00	35.158	-106.284	.00	1.00	.00		75	NM	1.			2.1 3.7
12	1979 FEB 08	23:24:00.57	35.312	-106.122	3.13	1.33MDLA	-00	• • •	61	WC	18	192		.0 .0
13	1979 FEB 23	20:33:28.07		-106.129	20.42	1.54MDLA	.00	••	66	WC	11	243	-	.0 .0
14	1979 MAR 15	19:00:48.10		-106.347		1.20	.00	• • • • • • • • • • • • • • • • • • • •	81	NM	''	£43	•	.0 .0
15	1979 AUG 17	09:38:20.00		-105.616	.00	1.20	.00	•••	112	NM	•••	***	•	
16	1982 NOV 02	23:54:05.70		-106.255	5,00	1.20	.00		90	NM	• • •	• • • •	•	*****
17	1983 JUL 02	00:07:56.70		-106.170	.00	1.10	.00		85	NM	• • •		•	
18	1983 AUG 09	00:36:08.30		-106.014	.00	1.00	.00	••	88	NM	• • •			•••••
19	1983 NOV 16	10:15:25.01		-105.998	10.00	1.50MDLA	.00	• •	89		•••		C	7.0 57.0
20	1099 NEC 25		35.017			1.30MDEA	.00	••	07	LA	6	301	U	3.0 57.8

.00

87 PE

14

APPENDIX F EARTHQUAKE RECURRENCE PARAMETERS

RECURRENCE PARAMETERS FOR VARYING COMPLETENESS RANGES FOR EACH SEISMOTECTONIC PROVINCE AND CIRCULAR SOURCE REGION

Province or areal source	a- and b- values (\pm 1 s.d.) for M_L \geq 0.5 (No. of events)	a- and b- values (\pm 1 s.d.) for M_L \geq 1.0 (No. of events)	a- and b- values (\pm 1 s.d.) for M_L \geq 1.5 (No. of events)	a- and b- values (\pm 1 s.d.) for M_L \geq 2.0 (No. of events)	a- and b- values (\pm 1 s.d.) for $M_L \ge 2.5$ (No. of events)
Rio Grande Rift	-2.50, 0.68±0.04 (159)	-2.27, 0.80±0.05 (107)	-2.06, 0.89±0.08 (62)	-2.36, 0.79±0.11 (24)	-3.16, 0.79±0.11 (10)
Colorado Transition Zone	-2.27, 0.87±0.05 (183)	-2.02 1.04±0.09 (93)	-1.81 1.15±0.16 (39)	-1.90 1.11±0.26 (12)	(only 6 events)
Great Plains	not complete	-2.52, 0.83±0.13 (20)	-2.84, 0.70±0.16 (8)	(only 3 events)	(only 3 events)
Southern Rocky Mountains	-3.07, 0.69±0.09 (31)	-2.92, 0.77±0.13 (19)	-2.57, 0.93±0.21 (12)	(only 3 events)	(only 3 events)
Radius of 20 km	-2.59, 0.75±0.14 (13)	(only 10 events and 2 points)	(only 5 events)	(no events)	(no events)
Radius of 40 km	-2.42, 0.75±0.06 (78)	-2.15, 0.89±0.09 (49)	-2.03 0.95±0.14 (24)	-2.26 0.86±0.19 (9)	(only 4 events)
Radius of 60 km	-2.40, 0.78±0.04 (170)	-2.13 0.94±0.07 (101)	-2.10 0.96±0.10 (45)	-2.43 0.84±0.14 (16)	(only 7 events)
Radius of 80 km	-2.45, 0.81±0.04 (261)	-2.16 0.66±0.06 (152)	-1.98 1.07±0.10 (68)	-2.58 0.85±0.13 (19)	-2.67 0.82±0.17 (10)

ACTIVITY RATES COMPUTED FOR FIXED b-VALUES FOR VARYING COMPLETENESS RANGES FOR EACH SEISMOTECTONIC PROVINCE

Province	Activity Rates at M_w 5 using earthquakes of $M_L \ge 0.5 \ (\pm 1 \ std)$	Activity Rates at M_w 5 using earthquakes of $M_L \ge 1.0 \ (\pm \ 1 \ \text{std})$	Activity Rates at M_W 5 using earthquakes of $M_L \ge 1.5 \ (\pm 1 \ \text{std})$
Rio Grande Rift (b=0.75)	6.28x10 ⁻⁷ (5.0x10 ⁻⁸)	8.26x10 ⁻⁷ (8.0x10 ⁻⁸)	8.72x10 ⁻⁷ (1.11x10 ⁻⁷)
Rio Grande Rift (b=0.85)	2.32x10 ⁻⁷ (1.8x10 ⁻⁸)	3.46x10 ⁻⁷ (3.3x10 ⁻⁸)	4.13x10 ⁻⁷ (5.2x10 ⁻⁸)
Rio Grande Rift (b=0.95)	8.4x10 ⁻⁸ (6.7x10 ⁻⁹)	1.43×10 ⁻⁷ (1.4×10 ⁻⁸)	1.92x10 ⁻⁷ (2.4x10 ⁻⁸)
Colorado Plateau (b=0.9)	1.76x10 ⁻⁷ (1.3x10 ⁻⁸)	2.12x10 ⁻⁷ (2.2x10 ⁻⁸)	1.96x10 ⁻⁷ (3.1x10 ⁻⁸)
Colorado Plateau (b=1.0)	6.38x10 ⁻⁸ (4.7x10 ⁻⁹)	8.67x10 ⁻⁸ (9.0x10 ⁻⁹)	8.99x10 ⁻⁸ (1.4x10 ⁻⁸)
Colorado Plateau (b=1.1)	2.30x10 ⁻⁸ (1.7x10 ⁻⁹)	3.53x10 ⁻⁸ (3.7x10 ⁻⁹)	4.09x10 ⁻⁸ (6.6x10 ⁻⁹)
Southern Rocky Mountains (b=0.7)	2.75x10 ⁻⁷ (4.9x10 ⁻⁸)	3.13x10 ⁻⁷ (7.2x10 ⁻⁸)	3.47x10 ⁻⁷ (1.0x10 ⁻⁷)
Southern Rocky Mountains (b=0.8)	1.02x10 ⁻⁷ (1.8x10 ⁻⁸)	1.31x10 ⁻⁷ (3.0x10 ⁻⁸)	1.63x10 ⁻⁷ (4.7x10 ⁻⁸)
Southern Rocky Mountains (b=0.9)	3.72x10 ⁻⁸ (6.7x10 ⁻⁹)	5.40x10 ⁻⁸ (1.2x10 ⁻⁸)	7.53x10 ⁻⁸ (2.2x10 ⁻⁸)
Great Plains (b=0.7)	not complete	6.56x10 ⁻⁷ (1.5x10 ⁻⁷)	4.58x10 ⁻⁷ (1.6x10 ⁻⁷)
Great Plains (b=0.8)	not complete	2.79x10 ⁻⁷ (6.2x10 ⁻⁸)	2.21x10 ⁻⁷ (7.8x10 ⁻⁸)
Great Plains (b=0.9)	not complete	1.17x10 ⁻⁷ (2.6x10 ⁻⁸)	1.05x10 ⁻⁷ (3.7x10 ⁻⁸)

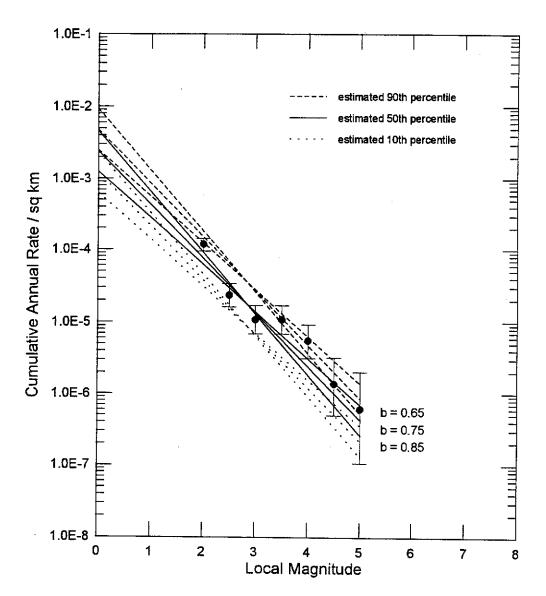
RETURN PERIODS FOR A M 6.3 RANDOM EARTHQUAKE WITHIN THE RIO GRANDE RIFT PROVINCE WITHIN THE STUDY REGION

Activity rate	b = 0.65	b = 0.75	b = 0.85
Assigned Lower Bound	279 yrs	668 yrs	1679 yrs
Computed Mean (different for each b-value)	556 yrs	1334 yrs	3350 yrs
Assigned Upper Bound	1109 yrs	2723 yrs	6683 yrs

TABLE F-4

RETURN PERIODS FOR A M 6.0 RANDOM EARTHQUAKE WITHIN THE COLORADO PLATEAU TRANSITION ZONE WITHIN THE STUDY REGION

Activity rate	b = 0.8	b = 0.9	b = 1.0
Assigned Lower Bound	589 yrs	1820 yrs	5495 yrs
Computed Mean (different for each b-value)	1175 yrs	3631 yrs	10965 yrs
Assigned Upper Bound	2344 yrs	7244 yrs	22387 yrs

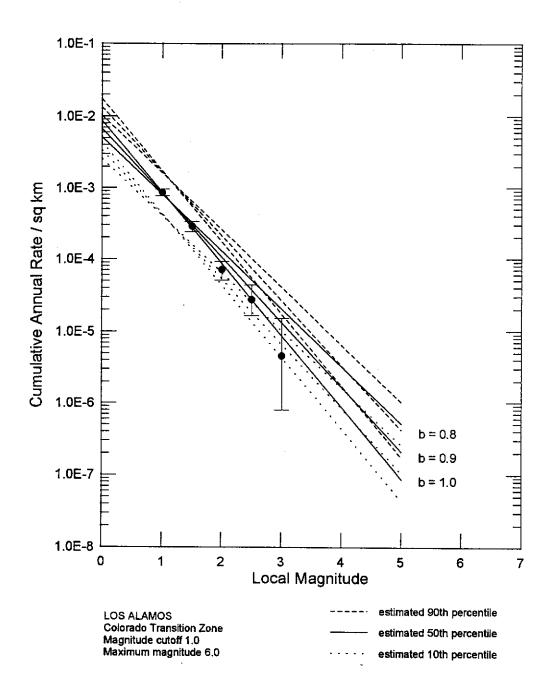

RETURN PERIODS FOR A M 6.3 RANDOM EARTHQUAKE WITHIN THE SOUTHERN ROCKY MOUNTAINS PROVINCE WITHIN THE STUDY REGION

Activity rate	b = 0.7	b = 0.8	b = 0.9
Assigned Lower Bound	1413 yrs	4074 yrs	11789 yrs
Computed Mean (different for each b-value)	2818 yrs	8318 yrs	23442 yrs
Assigned Upper Bound	5623 yrs	16595 yrs	46774 yrs

TABLE F-6

RETURN PERIODS FOR A M 6.0 RANDOM EARTHQUAKE WITHIN THE GREAT PLAINS PROVINCE WITHIN THE STUDY REGION

Activity rate	b = 0.6	b = 0.7	b = 0.8
Assigned Lower Bound	468 yrs	1175 yrs	3090 yrs
Computed Mean (different for each b-value)	933 yrs	2344 yrs	6310 yrs
Assigned Upper Bound	1862 yrs	4677 yrs	12303 yrs

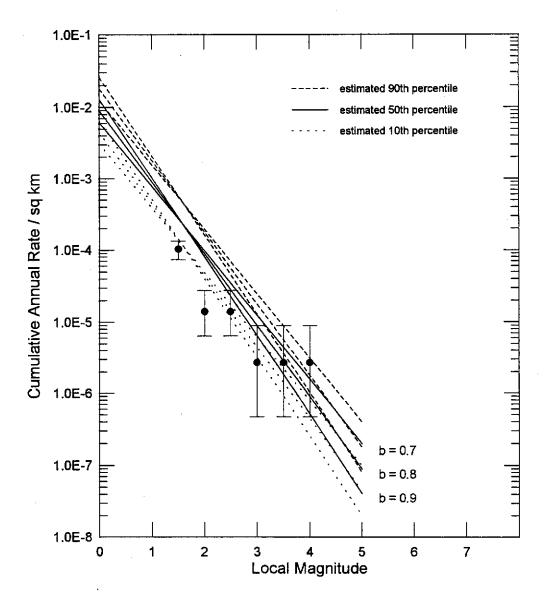

LOS ALAMOS Rio Grande Magnitude cutoff 2.0 Maximum magnitude 6.25

Project No. 91C0509

Los Alamos Seismic Hazards

Woodward-Clyde Federal Services

RANGE OF RECURRENCE CURVES INCORPORATED INTO THE PROBABILISTIC ANALYSIS FOR THE RIO GRANDE RIFT

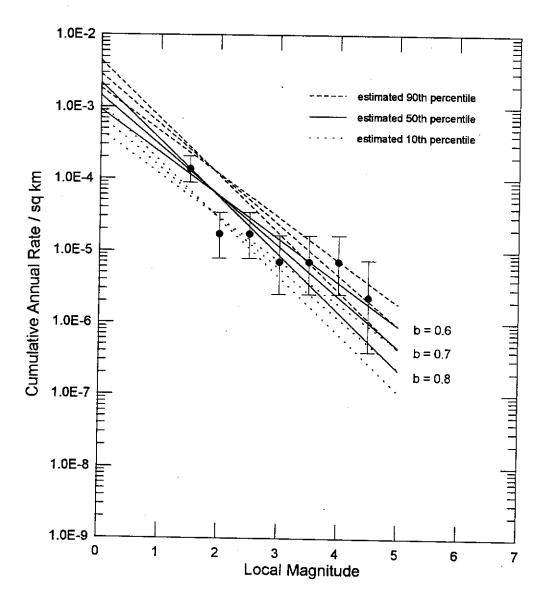


Project No. 91C0509

Los Alamos Seismic Hazards

Woodward-Clyde Federal Services

RANGE OF RECURRENCE CURVES INCORPORATED INTO THE PROBABILISTIC ANALYSIS FOR THE COLORADO PLATEAU TRANSITION ZONE



LOS ALAMOS Southern Rocky Mountains Magnitude cutoff 1.5 Maximum magnitude 6.25

Project No. 91C0509

Los Alamos Seismic Hazards

RANGE OF RECURRENCE CURVES INCORPORATED INTO THE PROBABILISTIC ANALYSIS FOR THE SOUTHERN ROCKY MOUNTAINS

LOS ALAMOS Great Plains Magnitude cutoff 1.5 Maximum magnitude 6.0

Project No. 91C0509

Los Alamos Seismic Hazards

Woodward-Clyde Federal Services

RANGE OF RECURRENCE CURVES INCORPORATED INTO THE PROBABILISTIC ANALYSIS FOR THE GREAT PLAINS

APPENDIX G LITHOLOGIC DESCRIPTIONS OF DEPOSITS EXPOSED IN TRENCHES

DESCRIPTION OF COLLUVIAL WEDGE FORMATION

Large normal-faulting earthquakes in the Basin and Range province generally rupture to the surface producing fault scarps from 1 to as much as 6 m high. The initial geometry of the scarp is abrupt and highly angular, but degradation by surficial processes will rapidly erode the near-vertical free face of the scarp and, given at least many tens of thousands of years of quiescence on the fault, will completely obliterate all trace of scarp morphology (Wallace, 1977; Nelson, 1992). Sediments derived from both the fault scarp and from eolian influx are deposited at its scarp base in a wedge-shaped, fining-upwards sequence (Figure G-1) that can be divided into a proximal debris facies overlain by a generally more distal wash facies (Nelson, 1992; Forman et al., 1991). These genetic characteristics of colluvial wedges, described in more detail below, can be complicated or altogether eliminated by numerous tectonic and depositional factors (see McCalpin, 1987; Nelson, 1992).

Before the ground motion ceases, talus can begin to accumulate at the base of the free face (Nelson, 1992). This generally coarse material is comprised of blocks, fragments and a subordinate amount of loose sediment shed off of the free face by gravity-controlled processes (e.g., falling, toppling, slumping or sliding) (Wallace, 1977; McCalpin, 1987; Forman et al., 1991). These deposits tend to be poorly sorted, poorly stratified (Nelson, 1992) and have clasts that show complex patterns of preferred orientations, although clasts are dominantly deposited with the shortest axis perpendicular to the slope (McCalpin et al., 1993). In fact, McCalpin et al. (1993) found in his study of colluvial wedge fabrics that elongate clasts dominantly show a preferential alignment of long axes parallel or subparallel to the transport direction. This package of coarse material commonly tapers away from the fault and is referred to as the debris facies. The toe of the wedge is supported by sorted clasts that are imbricated parallel to the wedge surface (sorted-debris wedges) (Nelson, 1992). These deposits are generally mixed with and are gradational to the overlying wash facies deposits (Nelson, 1992; Forman et al., 1991).

After the free face has been buried by the proximal debris wedge and the scarp begins to erode to a gentler slope, commonly in 100 years or less, deposition changes from gravity-controlled processes to wash-controlled processes that include sheetwash, rill wash, and rain splash (Nelson, 1992; Forman et al., 1991). The change in the mode of deposition is accompanied by a marked decrease in the rate of deposition (Forman et al., 1991). The wash facies deposits are therefore influenced by eolian deposition, soil development and burrowing. The wash facies is better sorted and stratified, and composed of finer-grained sediment than the debris facies (McCalpin, 1987). The lower wash facies tend to be sandier than the upper wash facies sediment, but both may have scattered clasts and fragments as minor components.

Ideally, each successive faulting event creates a new free face that ravels to form a colluvial wedge over the wash facies of the pre-existing wedge. Thus, the number of events may be determined by identifying discrete fining-upwards packages of debris and wash colluvium that perhaps are capped by vesicular A horizons and other evidence of pedogenesis (soil development). In practice, complications in making these determinations can arise because climatic events can also result in deposition of a package of coarser colluvium, or events closely spaced in time may not allow enough time for soils to develop, particularly on steep slopes with coarse parent material. However, other lines of evidence can be used to help distinguish climatic-related deposits from those associated with surface-faulting events. The presence of fissures, fault terminations, and abrupt changes in fabric orientations of clasts at the base of a colluvial wedge may help to identify faulting-related deposits. Rejuvenation of the scarp free-face during a surface-faulting earthquake will result in a sudden increase in the slope angle, corresponding to an abrupt change in the preferential alignment of clasts to a more steeply dipping slope-parallel fabric at the base of the proximal debris facies relative to the underlying wash facies. Thus, where discernible, this abrupt change in fabric can be used to help distinguish colluvium associated with surface-faulting events from colluvium associated with climatic or other non-tectonic events. Complications may also arise in identifying events because the scarp is higher after each faulting event and successive colluvial wedges are deposited on steeper slopes resulting in wedges that are thinner and spread farther downslope than underlying wedges (Ostenaa, 1984). The genetic facies of these latter wedges may be less distinct and the only evidence of the associated events may be basal stone lines (McCalpin, 1987).

During the paleoseismic investigations at LANL, we differentiated deposits on the basis of depositional process and origin. In particular, we identified and described colluvial wedges associated with scarp-forming events along the Rendija Canyon fault and colluvial deposits that potentially may be colluvial wedges associated with surface-faulting events on the Pajarito fault. We also used colluvial-wedge thicknesses on the Rendija Canyon fault to estimate scarp height and displacement per event. Theoretical models of how normal fault scarps degrade (e.g., Nash, 1986) suggest that scarp heights are roughly twice the colluvial wedge thickness as long as slopes of surfaces offset are not too steep and recurrence intervals are not too short, resulting in thinner wedges (Ostenaa, 1984). Summary descriptions of stratigraphic units identified during the paleoseismic studies are presented in Tables G-1 through G-11.

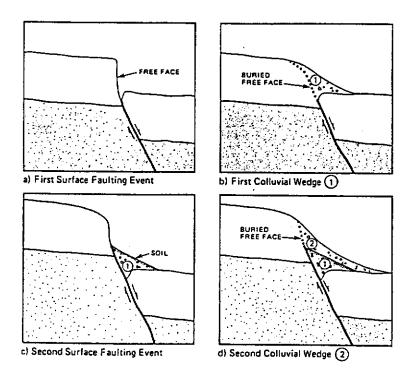


Figure G-1. Generalized diagram of colluvial wedge formation (from Schwartz and Coppersmith, 1984)

G-3

TABLE G-1. WATER CANYON TRENCH LITHOLOGIC DESCRIPTIONS (PLATE 5)

Stratigraphic Unit Color (Dry)	Description
1 10YR6/2 light brownish gray (matrix)	Colluvium; unsorted gravel; 95% cobbles and boulders, 5% matrix; rounded to subangular; randomly oriented; matrix supported; dominant clast size >0.8 m; approximately 60% tuff, 40% dacite; matrix consists of loose silt sand and gravel; lower contact appears diffuse and wavy; number of boulders and unit thickness decrease to the west.
2 7.5YR4/6 strong brown (matrix)	Alluvium; moderately- to poorly-sorted gravel; 70% cobbles and boulders, 30% matrix; rounded to subangular; randomly oriented; matrix supported; dominant clast size <0.8 m; approximately 80% tuff, 20% dacite; matrix consists of loose gravelly sand; lower contact appears diffuse and wavy; a dark brown (7.5YR3/4) clay coats under sides of clasts in the upper half of the unit.
3 10YR6/4 light yellowish brown (matrix)	Alluvium; moderately-sorted gravel; 80% pebbles, 20% sand and 10% cobbles; surrounded to subangular; dominant clast size < 0.6 m; clast supported mixed with discontinuous zones of sandy matrix support or open framework; gravel are subangular to well rounded and poorly graded; lower contact appears diffuse and wavy; axes of elongated gravel and cobbles are typically orientated horizontally; unit thickens and sandy matrix content increases to the west.
5 10YR6/4 light yellowish brown (matrix)	Alluvium; moderately-sorted gravel; 50% cobbles, 50% pebbles, trace sand; rounded to subangular; framework supported; randomly oriented clasts; lower contact is gradual and smooth; the unit forms a lens.
6 10YR6/4 light yellowish brown (matrix)	Alluvium; moderately-sorted gravel; 70% cobbles, 20% pebbles, 10% sand; well rounded to subangular; matrix supported; matrix consists of loose sandy gravel; dominant clast size >0.6 m; approximately 50% tuff and 50% dacite; lower contact is diffuse and wavy.

7 10YR6/4 light yellowish brown (matrix)	Alluvium; moderately-sorted gravel; 80% gravel to small cobbles 20% sand; well rounded to subangular with most being subrounded to rounded; matrix supported; matrix consists of loose sandy gravel; lower contact is diffuse and smooth.
8 7.5YR4/6 strong brown (matrix)	Alluvium; moderately-sorted gravel; 90% fine pebbles to coarse sand, 5% cobbles, 5% clay; cobbles rounded to subrounded; pebbles are subangular to angular; matrix supported; dominant clast size <0.1 m; matrix consists of red brown clay; lower contact is gradual and smooth; axes of elongated cobbles are typically orientated horizontally; cobbles increase to the west.
9	Alluvium; well-sorted gravel; 70% gravel, 30% sand; well rounded to subangular; clast to matrix supported; dominant clast size < 0.1 m; matrix consists of loose medium to coarse sand in discontinuous lenses; lower contact is clear and smooth.
9a	Alluvium; well-sorted gravel; 80% pebbles, 10% sand, 10% cobbles; well rounded to subrounded; framework supported; dominant clast size <0.3 m; lower contact is clear and wavy; thick clay accumulation separates Unit 9a from underlying Unit 6 between 14 and 16 meters.
9b	Alluvium; similar to 9a, but elongated cobbles locally lie horizontally along upper and lower contacts.
10	Alluvium; moderately-sorted gravel; 70% cobbles, 20% sand 10% gravel; well rounded to subangular; matrix supported; dominant clast size >0.6 m; matrix consists of loose gravelly sand.
11 7.5YR6/2 pinkish gray	Colluvium; moderately-sorted gravel; 80% pebbles, 10% cobbles, 10% sand; well rounded to subangular; matrix supported; dominant clast size <0.1 m; gradational matrix consists of loose coarse sand at the base to sandy silt near the top; cobble content increases to the west; lower contact is diffuse and wavy.
12 7.5YR6/4 light yellowish brown	Colluvium; silty sand; 60% silty sand, 30% cobbles and boulders, 10% clay; 90% tuff 10% dacite; subangular to angular; matrix supported; matrix consists of reddish brown clay; lower contact is gradual and wavy; as exposed, unit is locally confined to a depression between Stations 31 and 33.5 m.

13 10YR7/3 very pale brown	Colluvium; reworked tuff; 80% sand 20% boulders and tuff slabs; 100% tuff; angular; large tuff clasts are typically 0.8 m in diameter and supported by a coarse sandy matrix; upper 10 cm of the unit is a possible Btb soil horizon consisting of a sand containing common clay films, which impart a strong brown color (7.5YR 5/6); as exposed, unit is locally confined to a depression between Stations 31 and 33.5 m.
14	Alluvium; moderately- to poorly-sorted sand; 80% sand, 20% cobbles; well rounded to subangular clasts; dominant clast size < 0.1 m.
15	Colluvium; reddish moderately-sorted silt; 70% silt; 20% sand; 10% gravel; dominant clast size < 0.05 m.
16	Colluvium; gray silty sand, 80% sand; 30% gravel; 10% cobbles; clasts rounded; dominant clast size < 0.1 m.

TABLE G-2. WATER CANYON TEST PITS 1, 2 & 3 LITHOLOGIC DESCRIPTIONS (PLATE 5)

Stratigraphic Unit Color (Dry)	Description
TP1-1 7.5YR6/0 gray	Colluvium and Loess; silt; homogeneous; weakly coherent and nonstratified; lower contact is gradual and wavy.
TP1-2 7.5YR3/4 dark brown	Bt soil horizon; silty clay; contains occasional mottled red stains; lower contact is gradual and smooth.
TP1-3 10YR4/6-5/8 dark reddish brown yellowish brown	Colluvium; silty sand to sandy silt; nonstratified; contains very few flat, angular, tuff pebbles and few to many, 10YR 4/6, El Cajete pumice clasts; pumice concentrate near the base; lower contact is clear and smooth.
TP1-4 5YR4/4 reddish brown	Alluvium; sandy gravel; dominant clast size < 0.2 m with few up to 0.6 m; predominately rounded with some 5YR 4/4 angular clasts; clasts are typically tuff with some dacite and few pumice.
TP2-1 4YR4/4 reddish brown	Colluvium and Loess; similar to TP1-1 description.
TP2-2 7.5YR3/4 dark brown	Bt soil horizon; similar to TP1-2, but contains El Cajete pumice clasts.
TP2-3 10YR4/6-5/8 dark reddish brown yellowish brown	Colluvium; similar to TP1-3.

TP3-1 7.5YR6/0 gray	Colluvium and Loess; similar to TP1-1, but contains El Cajete pumice clasts.
TP3-2 7.5YR5/4 brown	Colluvium; clayey silt; nonstratified; mottled with dark brown, 7.5YR 3/4; lower contact gradual and smooth.
TP3-3 7.5YR5/8 yellowish red	Colluvium; silt; dark brown and yellow laminations; platy structure; lower contact gradual and smooth; 7.5YR 5/8 thickens to the west.
TP3-4 7.5YR5/6 yellowish red	Alluvium; sandy gravel, dominant clast size < 0.4 m with some up to 0.6 m; angular to subangular tuff, with 7.5YR 5/6 most elongated; matrix supported; matrix consists of silty sand; unit fines upward with basal clasts yellowish crudely imbricated to the east; lower contact gradual and smooth.
TP3-5 10YR4/6-5/8 dark reddish brown yellowish brown	Alluvium; similar to TP1-3, but contains no pumice clasts.
TP3-6 7.5YR3/4 dark reddish brown	Alluvium; sandy gravel; dominant clast size < 0.3 m with some up to 0.6 m; 90% tuff, 10% dacite; most are 7.5YR 3/4 angular to subangular and elongated; basal clasts crudely imbricated to the east.

TABLE G-3. WATER TANKS TRENCH 1 LITHOLOGIC DESCRIPTIONS (PLATE 6)

Stratigraphic Unit Color (Dry)	Description
1a 7.5YR5/4-5/6 brown to strong brown (matrix)	Debris colluvium (tectonic?); poorly-sorted gravel; 90% cobbles and few boulders, 10% silty sand; clasts are 100% tuff, most angular and elongated; unit dips to the west and becomes progressively steeper to the west; discontinuous CaCO ₃ coatings; dominant clast size 0.6 m; matrix supported; matrix consists of loose, slightly effervescent, silty sand.
1b 10YR5/4 yellowish brown (matrix)	Colluvium/fissure fill; sandy gravel; 40% pebbles and cobbles, 60% matrix; fining upward with elongated and angular base clasts near vertically oriented, 100% tuff; dominant clast size < 0.6 m; matrix supported; matrix consists of loose silty sand; lower contact is gradual and smooth.
2 7.5YR4/4 brown to dark brown	Colluvium/fissure fill; silty sand with gravel; 50% sand, 30% gravel, 10% silt, 10% clay; sand is fine to medium grain; gravel is generally <0.2 m, angular and some elongated; elongated clasts are near vertical and matrix is looser near the base.
3 7.5YR4/6 strong brown	Debris colluvium (tectonic?); poorly-sorted gravel; 80% gravel, 10% silt, 10% clay; clasts are 100% tuff, angular, frequently elongated and discontinuously coated with CaCO ₃ ; orientation rotates from near vertical to slope parallel to the east; matrix supported; matrix consists of loose clayey silt; very slightly effervescent; lower contact gradual and smooth.
5a 7.5YR4/4 brown to dark brown	Colluvium (tectonic?); moderately- to poorly-sorted clayey gravel; 60% gravel, 15% silt, 15% clay, 10% sand; clasts are angular, commonly <0.6 m, occasionally up to 0.2 m, 100% tuff, discontinuously coated with CaCO ₃ , slope-parallel; CaCO ₃ seam divides unit; matrix supported; matrix consists of clayey silt; clay content decreases from top to bottom as sand content increases; clay films are evident in the upper half of the unit; lower contact is gradual and wavy.

5b 5YR4/4 reddish brown	Colluvium (tectonic?); moderately- to poorly-sorted clayey gravel; 70% gravel, 20% clay, 10% silty sand; dominant clast size 0.3 m; most are elongated, angular, 100% tuff; elongated clasts are slope parallel; matrix supported; matrix consists of silty clay; well developed clay films completely cover grains and locally imparts blocky structure; lower contact is gradual and wavy; elongated cobbles and chroma decrease to the east, downslope.
6 7.5YR5/4 to 4/6 brown to strong brown	Colluvium; moderately- to poorly-sorted silty gravel; 50% gravel, 20% silt, 10% sand, 10% clay; dominant clast size <0.05 m with few >0.3 m; clasts are angular, often elongated, 100% tuff, generally slope parallel and matrix supported; matrix consists of sandy silt with clay; chroma generally increases downslope; lower contact is gradual and smooth; surface may be offset along CaCO ₃ filled fractures that are difficult to follow within the unit.
10 7.5 YR5 /4 brown	Colluvium; moderately-sorted silty gravel; 70% gravel, 25% silt, 5% fine sand; clasts are 100% tuff with most <0.1 m; matrix supported; matrix consists of sandy silt; lower contact is gradual and smooth.
11 7.5YR4/6 strong brown	Colluvium (tectonic?); moderately- to poorly-sorted silty gravel; 70% gravel, 15% silt, 10% sand, 5% clay; dominant clast size < 0.05 m; clasts are subangular tuff becoming fewer to the east; suggestion of a stone line occurs at the base; matrix supported; matrix consists of silty sand; contact with lower unit is gradual and smooth; the unit is offset along 3 vertical CaCO ₃ -filled fractures at the east end of the trench.
12 7.5YR5/6 strong brown	Colluvium; gravelly silt 40% silt, 30% gravel, 25% fine sand, 5% clay; clasts are 100% tuff, frequently elongated, angular, slope parallel, commonly <0.2 m with few >0.4 m; matrix supported; matrix consists of sandy silt with suggestion of subangular to prismatic structure; contact with lower unit is gradual and smooth; offsets occur at the east end along 3 vertical CaCO ₃ -filled fractures.

13 7.5YR5/4 brown	Colluvium; moderately- to poorly-sorted silty gravel with sand; 45% gravel, 30% silt, 20% sand, 5% clay; dominant clast size <0.1 m; clasts are 100% tuff, commonly, elongated, slope parallel and decrease in number to the east away from the fault; matrix supported; matrix consists of sandy silt and commonly contains roots and root pores; clast size fines to the east with increased clay imparting a darker color (7.5YR 4/6) and platy to angular blocky structure; contact with lower units is clear and smooth with 3 apparent offsets occurring along CaCO ₃ -filled fractures that originate below and terminate without offset at the top of the unit.
14 10YR5/1-5/2 dark yellowish brown (moist)	Mottled buried soil in colluvium; well-sorted sandy silt; mottled color; zone of aeration; iron stains abundant at the base; appears modified by vadose zone processes such as water ponded at a permeability contrast; contact with lower unit is clear and smooth.
15 10YR6/6 brownish yellow (moist)	El Cajete pumice deposit (air fall?); well-sorted gravel; 95% gravel, 5% clay; dominant clast size < .06 m; clasts are 100% pumice fragments that contain abundant biotite, indicative of the El Cajete Pumice; homogeneous and unstratified; dark reddish clay (5YR 3/4) forms common thin coatings and concentrations along bands or lamellae; roots concentrate along the lower, clear and smooth contact; thickness increases to the east with decreasing slope; sorting, lithology, texture, and stratification suggest that this unit is probably a primary air-fall deposit; alternatively, there is a small possibility that the pumice fragments have been reworked as colluvium.
16 5YR3/4 dark reddish brown (moist)	Colluvium/reworked pumice; clayey silty gravel similar to Unit 15, but with more matrix and an increase of 10% clay; clay films are many and thin, imparting a platy structure; CaCO ₃ stringers concentrate along the lower, clear and smooth contact; unit is highly disrupted by bioturbation.
17 7.5YR3/4 dark brown (moist)	Bt soil horizon/colluvium; Clay with gravel; 60% clay, 40% gravel; gravel are subangular pumice with dominant clast size < .06 m; most have thick continuous clay films; clay decreases downward; lower contact is clear and wavy.

18 10YR3/3-3/2 grayish brown (moist)	Colluvium with A soil horizon; silt with gravel; 15% gravel 65% silt 5% sand 15% organics; 5% of gravel contains clasts >0.3 m angular, elongated, 100% tuff, slope parallel and become fewer to the east, downslope; matrix is composed of a silt, which becomes darker (10YR 2/3 moist) where this unit overlies Unit 15; includes small pockets of silt at the base near Stations 3 to 4 m and Stations 9 to 10 m, that may be deposits of primary loess; contact with lower unit is gradual and smooth.
Qbt	Bandelier Tuff; flesh to pinkish, coarsely crystalline, moderately welded.

TABLE G-4. WATER TANKS TRENCH 2 LITHOLOGIC DESCRIPTIONS (PLATE 6)

Stratigraphic Unit Color (Dry)	Description
1	Colluvium; moderately-sorted gravel with silt and sand; 60% gravel, 30% sand, 10% silt; dominant clast size < 0.08 m with few up to 0.4 m; clasts are angular tuff; matrix supported; matrix consists of loose granular sandy silt.
2	Colluvium; poorly-sorted sand with silt and gravel; 45% sand, 30% silt, 20% gravel, 5% clay; dominant clast size < 0.05 m with some up to 2.0 m; 100% tuff; fines away from the fault; towards the fault, boulders comprise 30% of the volume with many weathered, soft and slightly iron stained; matrix supported; matrix consists of loose, granular, sandy silt with clay; clay imparts a reddish color; contact with the lower unit is clear and smooth.
3	Colluvium/fissure fill; similar to Unit 4; unsorted gravel with sand; 70% gravel, 30% sand; dominant clast size >0.4 m with some up to 1.5 m; angular to subangular tuff clasts; predominately clast supported with open framework; where present, matrix consists of loose sand.
4	Debris colluvium (tectonic?); unsorted gravel with sand; 70% gravel, 30% sand; dominant clast size >0.4 m with some up to 1.5 m; angular to subangular tuff clasts; clast to matrix supported; matrix consists of loose sand containing abundant, powdery Stage III to IV CaCO ₃ ; unstable and susceptible to caving.
5	Debris colluvium (tectonic?); similar to Unit 4; unsorted gravel with sand; 80% gravel, 20% sand; dominant clast size > 0.6 m with some up to 2.0 m; angular to subangular tuff clasts; clast to matrix supported; matrix consists of loose sand and Stage II to III CaCO ₃ .
6	Colluvium/colluvial wedge(?); unsorted gravel with sand; 70% gravel, 30% sand dominant clast size >0.4 m; angular to subangular tuff clasts with some elongated; elongated clasts are concentrated at the distal end and near slope parallel; matrix supported; matrix consists of sand.

л ···	
7	Colluvium; poorly-sorted silty gravel with sand; 45% gravel 30% silt, 20% sand, 5% clay; dominant clast size <0.05 m with few up to 2.0 m; 100% tuff, angular to subangular with some elongated; fines to the east away from the fault; clast orientation varies from random to slope parallel; matrix supported; matrix consists of loose sandy silt with clay; clay imparts a reddish yellow color; contact with the lower unit is clear and smooth.
8	Colluvium; poorly-sorted silty gravel with sand; 45% gravel 30% silt, 20% sand, 5% clay; dominant clast size < 0.05 m with few up to 2.0 m; 100% tuff, angular to subangular with some elongated; clast orientation varies from random to slope parallel; matrix supported; matrix consists of loose sandy silt with clay.
9	Colluvium; poorly-sorted clayey gravel with sand; 40% gravel 30% sand, 20% silt, 10% clay; dominant clast size <0.1 m with few up to 0.4 m; 100% tuff; angular to subangular with some elongated and typically slope parallel; matrix supported; matrix consists of sandy silt with clay; many, moderately thick clay films coat grains; clay imparts a reddish color; contact with lower unit is clear and smooth.
10	Colluvium; moderately- to poorly-sorted silty sand with gravel; 40% sand, 30% gravel, 30% silt; dominant clast size < 0.01 m with few up to 0.3 m; 100%tuff, angular to subangular with some elongated; elongated clasts concentrate along the slope parallel lower contact; matrix supported; matrix consists of a loose, homogeneous silty sand; lower contact is clear and smooth.
11	Colluvium; moderately- to poorly-sorted gravel with sand and silt; 60% gravel, 30% sand, 10% silt; dominant clast size < 0.3 m with few up to 1.0 m; 100% tuff, angular to subangular with some elongated and slope parallel; fines away from the fault; matrix supported; matrix consists of sandy silt; lower contact is clear and smooth.
12	Colluvium; moderately- to poorly-sorted sand with silt and gravel; 80% sand, 10% silt, 10% gravel; dominant clast size < 0.05 m with few up to 0.6 m; 100% tuff, angular to subangular; fines away from the fault.

13	Mottled buried soil in colluvium; sandy silt; mottled color; zone of aeration; iron stains abundant at the base; appears modified by vadose zone processes such as water ponded at a permeability contrast; exhibits large (+/- 0.1 m) platy to blocky structure at distal end; contact with lower unit is clear and smooth to gradual and wavy.
14	El Cajete pumice deposit (air fall?); moderately-sorted gravel; 95% gravel, 5% clay; dominant clast size < .06 m clasts are 100% pumice fragments that contain abundant biotite, indicative of El Cajete Pumice; homogeneous and unstratified; dark reddish clay (5YR 3/4) forms common thin coatings and concentrations along bands or lamellae; roots concentrate along the lower, clear and smooth contact which is; thickness increases to the east with decreasing slope; lithology, sorting, stratification, and texture suggest that this unit is probably a primary air-fall deposit, alternatively, there is a small possibility that the pumice fragments have been reworked as colluvium; includes a thin, variable and discontinuous A horizon of the modern soil.
Qbt	Bandelier Tuff; flesh to pinkish, coarsely crystalline, moderately welded.

TABLE G-5. PAJARITO CANYON TRENCH LITHOLOGIC DESCRIPTIONS (PLATE 7)

Stratigraphic Unit Color (Dry)	Description
1 10YR5/2 grayish brown	Colluvium; silt; 60% silt, 30% roots, 10% gravel; dominant clast size < 0.1 m occasionally up to 0.3 m; 80% dacite 20%, tuff; loam to silty loam; loose; granular; nonsticky and nonplastic; lower contact is clear and wavy.
2 10YR7/3 very pale brown	Loess and Colluvium; Silt with gravel; 65% silt, 30% fine gravel, 5% organics; dominant clast size <0.05 m occasionally >0.2 m; angular to subrounded, some elongated; 90% dacite, 10% tuff; matrix supported; matrix consists of a nonsticky and nonplastic, moderate platy to granular silt loam; fines away from the fault to the east; lower contact is clear and wavy.
3 5YR3/4 dark reddish brown	Colluvium; clay to clayey gravel; dominant clast size < 0.01 m with few up to 0.9 m; matrix supported; matrix is sticky and very plastic clay with a weak blocky structure; lower boundary is gradual and smooth. Contains buried pedogenic Bt horizon.
4 7.5YR4/4 brown to dark brown (moist)	Loess; sandy clayey silt; 50% silt, 20% clay, 20% sand, 10% gravel; clasts are 90% tuff, 10% dacite; matrix supported; matrix consists of moderately blocky, slightly sticky and plastic, clay loam; lower contact is clear and smooth, contains a buried pedogenic Bt horizon.
5 5YR3/4 dark reddish brown	Alluvium and Colluvium; slightly-sorted silty sand with gravel; 40% silt, 25% gravel, 20% sand, 15% clay dominant clast size < 0.01 m with some up to 0.2 m; angular; 90% tuff, 10% dacite; matrix supported; matrix consists of silty sand; strong prismatic to angular blocky structure; clay coats ped surfaces and fills fractures; lower contact is clear and smooth; thins to the east and west; cobbles increase to the west. Contains a buried pedogenic horizon.

6 5YR4/4 to 7.5YR4/6 reddish brown to strong ground	Alluvium; moderately-sorted gravel; 90% gravel, 5% sand, 5% silty clay; dominant clast size 0.2 m with few up to 1.0 m; subangular to subrounded with some elongated and sub-horizontally imbricated; 70% tuff, 30% dacite; matrix supported; matrix consists of sand and silt; lower boundary is clear and smooth.
7 7.5YR5/6 strong brown	Colluvium/slopewash; moderately-sorted sand with gravel; 40% sand, 30% gravel, 25% silt, 5% clay; dominant clast size < 0.01 m with few > 0.4 m; 70% tuff, 30% dacite; subangular to subrounded; matrix supported; matrix consists of sandy silt; lower contact is clear and smooth.
8 10YR4/6 to 5YR4/4 strong brown to reddish brown	Loess and Colluvium; moderately-sorted sandy silt; 80% very fine sand to silt, 10% clay, 5% gravel, 5% coarse sand; nonsticky and nonplastic sandy loam; coarse subangular blocky to prismatic structure; thins to the west, towards the fault; possible stone line at the upper contact, contains buried pedogenic Bt horizon.
9 5YR3/4 to 7.5YR5/4 dark reddish brown to brown	Colluvium/slopewash; unsorted silty sand with gravel; 40% sand, 30% silt, 20% gravel, 10% clay; gravel content increases to 40% in pods; dominant clast size <0.01 m; 95% tuff, 5% dacite; nonsticky nonplastic; moderate angular blocky structure; thins to the east and west
10 7.5YR6/4 light brown	Alluvium/debris-flow deposit (?); unsorted gravel; 60% gravel 20% silt, 15% sand; 5% clay; 80% dacite, 20% tuff; dominant clast size >0.6 m with some up to 2.0 m; rounded to subrounded; cobbles and boulders increase towards the fault; matrix supported although some clasts are in contact; matrix consists of loose well graded sand and silt with iron staining and some clay coatings; noticeably coarser than Unit 11; thins and fines away from the fault; lower contact is diffuse and smooth.

11 7.5YR5/6 strong brown	Alluvium/debris-flow deposit (?); unsorted gravel; 85% gravel, 10% sand, 5% clay; dominant clast >0.3 m with some up to 1.5 m; 70% dacite, 30% tuff; rounded to subrounded; subangular clasts present but rare; moderate imbrication primarily in cobbles; matrix supported; matrix consists of loose, fine to coarse graded sand; thick clay films coat most clasts and commonly grains.
12a	Bandelier Tuff; flesh to pinkish color; coarsely crystalline; 10% pumice clasts, most <0.01 m; 10% lithics, most <0.01 m; nonwelded, moderately friable; 0.01 vertical seam/fracture at 22 m contains granular, CaCO ₃ rich filling; other vertical fractures between 22-23 m are narrower and iron stained.
12b 7.5YR7/6 dry reddish brown	Pyroclastic deposit/tuff (?); 50% very fine sand, 30% coarse crystals, 20% pumice, trace lithics;
12c	Surge deposit; sub-horizontal bedding; dark reddish brown irregular clay seam separates Units 12b and 12c.
12d	Pyroclastic or Eolian deposit; 40% subangular to rounded tuff clasts, most <0.01; 15% crystal fragments, 10% pumice, 35% very fine sand; tan to fleshy pink; contains reddish brown clay seams along subhorizontal partings/fractures.
12e	Pyroclastic deposit; possible flow(?), lahar(?), reworked (?); similar to 12b, but contains larger lithic and pumice clasts; grain supported; angular to subrounded; clay films along vertical partings, seams and filling wider vertical fractures (5YR 4/4, red brown).
13 7.5YR6/4-5/6 light brown to strong brown	Alluvium/inset channel deposit; moderately-sorted sand and gravel; cobbles up to 0.8 m; 80% tuff, 20% dacite; subangular to rounded; matrix supported; matrix consists of well-sorted medium coarse sand and fine gravel, most subrounded; moderate to strong cementation; many clay films coat grains and occasionally form bridges; cobbles become infrequent at the west end; roots common in the upper third of the unit.

1	
14a 10YR7/3 very pale brown	<u>Graben-fill deposit</u> ; moderately-sorted silty to very fine sand; angular blocky structure; common clay films on ped surfaces; infrequent gravel and cobbles; lacks apparent bedding; appears massive and homogeneous; root casts or vesicles are fine and common; fractured to locally highly sheared; MnO ₂ occasionally coats ped faces.
14b 10YR7/3 very pale brown	Graben-fill deposit; similar, but distinct from 14a by coarser sand, lighter color, higher density, greater silt content in matrix, blocky structure and less shearing; it defines three west-dipping pods that probably represent bedding.
15 7.5YR5/6 strong brown	Colluvium; unsorted silty sand with gravel; 70% silty sand, 30% gravel and cobbles; angular to subangular clasts.
16	Colluvium; unsorted gravel with sand and silt; 60% gravel and cobbles 40% sand and silt; angular to subangular clasts; elongated clasts are west dipping and imbricated; thins and fines to the east.
17	Alluvium/debris-flow deposit (?); unsorted sandy and cobbles gravel; 60% gravel, 20% silt, 15% sand, 5% clay; 80% dacite, 20% tuff; dominant clast size > 0.6 m, some up to 2.0 m; rounded to subrounded cobbles and few boulders; matrix supported; matrix consists of loose unsorted sand and silt with some clay coatings (strong brown 7.5YR 4/6); noticeably coarser than Unit 11; thins away from the fault; lower contact is diffuse and smooth.
18 7.5YR3/4 dark brown	Alluvium/channel deposit; similar to 13, contains less clasts and overall appears to be finer grained.

TABLE G-6. GUAJE PINES TRENCH 1 (GPT1) LITHOLOGIC DESCRIPTIONS (PLATE 8)

Stratigraphic Unit Color (Dry)	Description
1 10YR5/3 yellowish brown	Colluvium; silt with trace of sand and gravel; few angular pebbles; rare round pebbles; hint of platy structure at the base; very loose; abundant roots; number and size of gravel increases to east; contact with lower Unit 2 gradual and smooth; contact with Unit 12 clear wavy; flatter areas to the west disturbed by plowing, may contain substantial loess component.
2a 7.5YR4/4-5/4 brown to dark brown	Bt soil horizon; well-sorted silt with clay; trace of sand, few pebbles and cobbles up to 0.8 m; 50% tuff, 50% dacite; number and size of clasts increase to the east; subrounded with dominant clast size <0.1 m; randomly distributed; thin continuous clay films coat gravel; silt matrix contains sufficient clay to impart sticky and plastic consistence; angular blocky structure; lower contact is gradual irregular; unit terminates in the east at the fault and pinches out over Unit 2b to the west.
2b 7.5YR6/4 to 7/8 light brown to strong brown	Alluvium/loess; silt with trace of sand and gravel; few roots; angular blocky to massive structure; vesicular; contact with Unit 3 abrupt and smooth, with Unit 5, gradual smooth, may contain substantial loess component.
3 10YR7/2 light gray (upper) 7.5YR4/6 (lower)	Alluvium; silt with traces of sand clay and gravel; gravel are subangular with most less than 0.1 m; few clay films on fractures; gravel content increases toward the fault; subdivided into Units 3x and 3y in the east; contact with Units 5 and 4b is gradual and wavy.
3x	Colluvium; poorly-sorted silty gravel; 60% gravel, 35% silt, 5% clay; dominant clast size < 0.7 m; subangular to subrounded; 90% dacite, 10% tuff; mottling associated with variable clay content; lower contact is gradual and wavy.

Зу	Colluvium; moderately- to poorly-sorted gravelly silt with clay; 30% gravel, 65% silt, 5% clay; angular to subrounded dacite and tuff clasts, commonly <0.1 m with some >0.2 m; matrix supported; reddish brown mottling 5YR 4/4; clay films coat vesicles, pores, ped faces, and gravel.
3z	Fissure fill; poorly-sorted gravelly silt with clay and sand; 50% silt, 40% subangular to subrounded gravel, 5% sand, <5% clay; similar to Unit 8; clay forms thin coats on clasts and ped surfaces; matrix supported; matrix consists of silty gravel with clay; east half contains more gravel and less clay; west half is more clayey and redder; contains less gravel and appears slightly darker than Btb of Unit 5a.
4a 7.5YR4/6 to 4/4 brown to strong brown	Colluvium/alluvium; moderately- to poorly-sorted gravel with silt; gravel is 90% dacite, 10% tuff with some angular pumice; subangular to rounded; contains occasional cobbles, most < 0.2 m; matrix supported; matrix consists of coarse sand cemented with clay (10YR 4/6); clay films are common, thin to moderately thick coatings on gravel; sandy lenses are very fine to coarse and well sorted; no bedding observed; few fractures contain CaCO ₃ ; lower contact with Unit 4d is gradational, and with Unit 4b is gradual and wavy.
4b	Alluvium; poorly-sorted gravel with sand; 80% gravel, 20% sand; gravel consists of 40% boulders from 1.0 m to 2.5 m most are rounded dacite and 40% subangular to rounded cobbles and pebbles, 80% tuff, 20% dacite; few tuff clasts are oxidized; matrix supported; matrix consists of gravelly silty sand; contact with 4c is abrupt and smooth.
4c 7.5YR4/6 strong brown (moist)	Alluvium; moderately- to poorly-sorted sandy gravel; 95% rounded, pebbly gravel; most clasts are < 0.3 m; matrix supported; matrix consists of sticky and plastic, sandy clay to clayey sand.
4d	Colluvium; poorly-sorted silty gravel; 50% boulders up to 1.5; few cobbles; subrounded to rounded; 80% dacite 20% tuff; matrix supported; matrix consists of silt with clay and sand; 35% silt, 10% sand and 5% clay; clay films are thin, common coatings on clasts and ped surfaces.

5 7.5YR4/4 brown	Alluvium; moderately- to poorly-sorted gravelly silt with clay; gravel consists of subangular to rounded clast <0.2; 60% dacite 40% tuff and some angular pumice; gravel increases to 80% at the west end forming a stone line at the upper contact; matrix supported; matrix consists of silty, clayey sand to clayey sandy silt; mottled by 7.5YR 6/4 sand; fines downward and eastward; clay films are common on angular blocky ped faces, pores and grains; lower contact is gradual and irregular.
5a 5YR4/4-4/6 reddish to yellowish brown	Btb soil horizon; moderately-sorted clayey gravel with sand and silt; 50% gravel, 30% clay, 10% sand, 10% silt; clasts are angular to subrounded, most <0.1 m; randomly distributed; matrix supported; matrix consists of clay with sand and silt; sticky and plastic.
6a 7.5YR6/8 reddish brown	Alluvium; gravel; 75% pebbles, 20% cobbles up to 1.0 m, 5% matrix; matrix consists of well graded loose sandy silt; few clay films coat clasts; crudely layered; lower contact with Unit 6b is clear and irregular and with 6c diffuse irregular.
6b 7.5YR5/6-6/6 reddish brown	Alluvium; poorly-sorted silty sand; coarse grained; few pebbles; subangular to rounded up to 0.1; loose to medium dense; lower contact is clear and wavy; possibly a sand lens within Unit 6.
6c 7.5YR4/6 strong brown	Alluvium; moderately- to poorly-sorted sandy gravel; 20% tuff cobbles up to 0.8 m near top of unit; subrounded to round; 70% tuff and dacite pebbles; 10% matrix; matrix consists of fine-grained silty sand, with little clay.
7 7.5YR4/6 strong brown	Alluvium; moderately-sorted gravelly sand; 80% pebbles, most < 0.1 m, trace cobbles; fines downward; becomes bouldery to the east; matrix supported; matrix consists of moderate to poorly graded, coarse to medium sand with distinct layering; lower contact is clear and smooth.
8 7.5YR5/4 brown	Alluvium; poorly-sorted silty gravel; 20% cobbles; subangular to round; 60% dacite, 30% tuff; most <0.8 m; 60% pebbles, subrounded to round; well graded with no preferred orientation; matrix supported; matrix consists of fine-grained sandy silt; lower contact is gradual and smooth.

9 7.5YR5/4 brown	Alluvium; poorly-sorted silty sandy gravel; 40% gravel, most < 0.5 m, few up to 1.5 m; angular to rounded; few pumice clasts; matrix supported; matrix consists of silty sand; lower contact is abrupt and smooth; more boulders to the east.
10 7.5YR4/6 strong brown	Alluvium; moderately-sorted sandy gravel with silt; 80% dacite 20% tuff; angular to subrounded, with 5% cobbles; stone line forms along upper contact; matrix supported; fines and thickens to the east.
10a	Alluvium; similar to Unit 10 except slightly smaller pebbles < 0.1 m; more silt in matrix; slightly less well bedded; inset into Unit 11.
11 7.5YR4/6 strong brown	Alluvium; moderately-sorted silty sand with gravel; contains lenses of coarse sand and fine gravel; silty areas impart prismatic structure; some crude bedding is evident; grades from silty fine sand in the west to sandy gravel in the east; thins to the west; lower contact is abrupt and smooth.
12 7.5YR4/6 strong brown	Alluvium; moderately-sorted gravel; contains coarse sand, pebbles and cobbles, some elongate; 100% dacite; angular to subrounded, with most <0.1 m; elongate clasts are horizontal; common thin clay films impart color and cement grains; coarsens to the east.

TABLE G-7. GUAJE PINES TRENCHES 2, 3, AND 4 (GPT2, GPT3, AND GPT4) LITHOLOGIC DESCRIPTIONS (PLATE 8)

Stratigraphic Unit Color (Dry)	Description
13 10YR5/3 brown	Colluvium/plowed zone; silt with trace sand, clay and gravel; rare clasts up to 0.2 m; subrounded tuff and dacite clasts; trace of platy structure near base; abundant roots; lower contact is abrupt and wavy; may contain substantial loess component.
14 10YR6/3 pale brown	Colluvium; silt with trace of clay common sand grains and pebbles up to 0.15; massive to angular blocky structure, slightly platy in the upper 4 cm; abundant krotovina; more gravelly, more vesicular to the east end of GPT-2; may contain substantial loess component.
15 7.5YR4/4 brown to dark brown	Colluvium; moderately-sorted sandy silt; soil horizon in the upper 20 cm; parent material is a sandy silt with a trace of gravel; most clasts < 0.1 m; subangular to rounded; 70% dacite, 30% tuff; common thin clay films bridging pores and on ped faces; slightly sticky and plastic; angular blocky structure with numerous vesicles; The Bt horizon has angular blocky to prismatic structure with many roots; thickens to the east; many thick clay films along pores and ped faces; sticky and plastic; lower boundary is clear and smooth.
16 7.5YR4/4 brown to dark brown	Colluvium; moderately- to poorly-sorted gravelly silt with clay; 50% gravel most <0.1 m; angular to subrounded; 90% dacite 10% tuff; clay films coat clasts and ped surfaces.
16a	Colluvium; moderately- to poorly-sorted gravel; 90% gravel, 10% matrix; contains two elongate dacite clasts > 1.0 m that parallel fault; matrix supported; matrix consists of gravelly sand with clay; thin clay films coat grains and larger clasts; lower contact is clear and smooth.
17 7.5YR6/4 light brown	Colluvium; poorly-sorted silty gravel; 70% gravel, clasts are composed of 70% boulders and cobbles and 30% pebbles; 60% dacite, 40% tuff; subangular to subrounded; matrix supported; matrix consists of sandy silt; thickens toward the fault and becomes coarser; lower contact is clear and smooth.

18	Alluvium; poorly-sorted gravel; 90% gravel mostly dacite boulders up to 2.2 m, 10% sand; subangular to subrounded; matrix supported; matrix consists of gravely sand with common thin clay films.
19a 7.5YR4/6 strong brown	Alluvium; poorly-sorted sandy gravel; 75% pebbles and cobbles; bedded; most are rounded and framework supported; 20% sand, medium to coarse grained, slight fining upward; 5% matrix, loose, moderately sorted and very porous; lower contact with 19b and 19c is abrupt and smooth.
19b 7.5YR5/4 brown	Alluvium; moderately- to poorly-sorted sandy gravel; 70% cobbles and boulders; subrounded to rounded; 70% tuff, 30% dacite; 20% pebbles <0.1 m occurring in framework-supported pockets, some are crudely bedded; 10% matrix; matrix consists of medium to coarse grained silty sand with little clay; some pockets near the lower contact have greenish matrix; finer grained and better sorted to the east; lower contact is abrupt and smooth.
19c 7.5YR4/6 strong brown	Alluvium; moderately- to poorly-sorted gravel; clast supported to open framework; 80% dacite, 20% tuff; subangular to subrounded, most <0.1 m, up to 0.3 m; variable thickness; clasts commonly coated with thin clay films; when present, matrix is sand and clay; lower contact is clear and smooth.
19d	Alluvium; poorly-sorted sandy gravel; sand, pebbles and occasional cobbles; some clasts elongate and near horizontal; matrix supported; matrix consists of sand.
19x	Alluvium or Fissure fill(?); poorly-sorted gravel; 80% pebbles and cobbles, 15% sand, 5% clay; subangular to subrounded; dominant grain size <0.1 m; 90% dacite, 10% tuff; few clasts are elongate and parallel to the fault scarp; matrix supported; matrix consists of pebbly coarse sand; thin clay films coat and bridge grains.
20 5YR4/2-6/4 olive gray to light olive gray	Pond Deposit (?); well-sorted clay; prismatic structure near the top, massive in the center and to the east with extensive shearing to the west near the fault; the prismatic zone contains <1% tuff clasts <0.1 m and coarse sand size fragments; massive and sheared zones contain 15% sand; lower contact is abrupt and wavy; pinches out to the east.

21 2.5YR4/8-3/6 red to dark red	Debris Flow or Alluvium; poorly sorted clayey gravel; 65% cobbles and pebbles; 60% tuff, 40% dacite, most highly oxidized and subangular to subrounded; matrix supported; matrix consists of silty clay with sand; clay films coat clasts.
22	Alluvium; poorly sorted sandy gravel; 90% pebbles, 10% sand; clasts are 100% dacite, subangular to rounded, most less than 1 cm diameter; clasts contain thin clay coatings; crude bedding; deposit is distinct from Unit 19 based on less clay and fewer cobbles; lower contact is clear and smooth.

TABLE G-9. SPORTSMAN'S CLUB TRENCH 1 (SCT1) LITHOLOGIC DESCRIPTIONS (PLATE 11)

Stratigraphic Unit Color (Dry)	Description
1 10YR5/2 grayish brown	Alluvium/colluvium; moderately- to poorly-sorted gravelly sand with silt; clasts are subrounded to rounded pumice, commonly < 0.1 m, occasionally up to 0.3 m; very loose; many fine rootlets; thickens to the west; lower contact is clear and smooth.
2 10YR5/2 grayish brown	Alluvium/overbank deposits; well-sorted silt with trace of gravel; loose; contains many roots; onlaps terrace deposits to the east; thickens to the west; lower contact is abrupt and smooth.
3 10YR4/2 dark grayish brown	Alluvium/overbank deposits; moderately- to poorly-sorted silt with gravel; coarsens downward and to the east, to a gravel with loose sandy matrix; 80% dacite, 20% tuff; rounded to subrounded pebbles and cobbles; lower contact is clear and smooth.
	Alluvium/channel deposit; poorly-sorted gravel; 90% gravel, 10% loose sandy matrix; clasts are 70% dacite, 20% tuff; subangular to rounded; commonly <0.4 m with occasional boulder to 1.5 m; matrix supported; lower contact is abrupt and wavy.
5	Cerro Toledo bedrock; reworked pyroclastics; horizontally bedded, pumice-rich gravelly sand.

TABLE G-10. SPORTMAN'S CLUB TRENCH 2 (SCT2) LITHOLOGIC DESCRIPTIONS (PLATE 11)

Stratigraphic Unit Color (Dry)	Description
1 10YR5/3 brown	Alluvium/colluvium; poorly-sorted gravelly sand; 30% angular to subrounded gravel, 70% sand; clasts are pumice < 0.1 m with few angular lithics; very loose granular sand is composed of crystals, crystal and fragments, and occasional lithic fragment; some bedding is evident with the suggestion of two discontinuous fining upward sequences; less dense than underlying units due to pumice content.
1a 10YR5/2 grayish brown	Alluvium/colluvium; poorly-sorted gravelly sand; 30% angular to subrounded gravel, 70% very loose granular sand; dominant clast size < 0.1 m; contains many fine rootlets; coarse, crystal-rich sand forms discontinuous lenses; lower contact is clear and wavy.
2 10YR6/1-6/2 gray to light brownish gray	Alluvium/colluvium, burn layer 1; similar to Unit 1, but contains charcoal fragments that imparts a gray to dark gray cast; lower contact is clear and smooth; pinches out to the west.
3 10YR6/1-6/2 gray to light brownish gray	Alluvium/colluvium; poorly-sorted gravelly sand; similar to Unit 1, but slightly grayer and sandier; contains charcoal flecks; lower contact is clear and smooth; pinches out to the west.
4 10YR6/1-6/2 gray to light brownish gray	Alluvium/colluvium; poorly-sorted gravelly sand; similar to Units 2 and 3, but contains a light brown pumice-rich gravelly zone in the center; sand increases above and below this zone and is slightly grayer containing charcoal flecks; lower contact is clear and smooth.
5 10YR5/2 grayish brown	Alluvium/colluvium; moderately-sorted coarse sand with gravel; 70% coarse, crystal- and lithic-rich sand; 30% gravel, most are subangular to subrounded pumice < 0.1 m; contains numerous charcoal flecks; lower contact is clear and smooth.

6 10YR6/3 pale brown	Alluvium/colluvium; poorly-sorted gravelly sand; 70% sand, 30% gravel; dominant clast size < 0.2 with occasional lithics to 0.4 m and subrounded pumice to 0.5 m; contains charcoal-rich zone in the center.
7 10YR6/3 pale brown	Alluvium/colluvium; poorly-sorted gravelly sand; 60% sand, 40% gravel; similar to overlying Unit 4 but separated by a charcoal-rich layer; lithic clasts are angular and pumice clasts are subrounded to rounded; dominant clast size <0.1 m with few up to 0.4 m; sand is crystal-rich and contains pumice and few lithics; toward the west gravel content increases to 70%, most angular to subrounded pumice; matrix is a fine pumice sand with common crystals and trace of lithics; the burn layer becomes gravelly and darker; bedding is evident and dips to the east.
8 10YR7/3 very pale brown	Cerro Toledo bedrock; well-sorted beds of reworked pyroclastics; horizontal to gently west dipping; beds include pumice-rich sandy gravel and lithic- and crystal-rich coarse sand.

TABLE G-11. SPORTSMAN'S CLUB TRENCHES 3 and 4 (SCT3 and SCT4) LITHOLOGIC DESCRIPTIONS (PLATE 11)

Stratigraphic Unit Color (Dry)	Description									
1	Colluvium/slope wash; gravelly sand with silt; contains abundant roots; loose; contact with Unit 3 is abrupt and wavy, with Unit 4 clear and planar.									
2	Cerro Toledo bedrock; reworked pyroclastics; moderate to strongly weathered; contains abundant pumice fragments up to 0.1 m.									
2x	Colluvium; sandy gravel; small pumice pebbles in sand matrix; 85% clasts up to 0.1 m; 15% sand and silt; overlies Cerro Toledo with abrupt contact.									
3 7.5YR6/2-4/6	Alluvium; poorly-sorted sandy gravel; few boulders, abundant cobbles and pebbles; 50% tuff, 50% dacite; subangular to rounded; imbrication and layering is strong near the base and weak to absent above; matrix is loose sand.									

TABLE G-8. COUNTY LANDFILL EXPOSURE (CLEI) LITHOLOGIC DESCRIPTIONS (PLATE 9)

Stratigraphic Unit	Description
Bla	Bedrock; Bandelier Tuff.
B1b	Bedrock; weathered upper part of Bandelier Tuff.
PC	Weathered bedrock/colluvium; gravel with silt and sand matrix; yellowish brown; 40% to 90% angular cobbles and boulders of moderately welded tuff; disarticulated with matrix between clast faces; loose to moderately indurated.
FC	Alluvium or Loess; fine sandy silt, yellowish brown; moderately indurated.
B2	Alluvium; fine sandy silt, yellowish brown, moderately indurated.
В3	Alluvium; medium to fine pumice pebbles and sand, yellowish brown.
B4	Alluvium or Loess; fine sandy silt, yellowish brown; moderately indurated.
B5	Alluvium; medium pumice pebbles and sand, yellowish brown.
B6	Alluvium or Loess; fine sandy silt, yellowish brown; moderately indurated.
В7	Rhyolite ash? fine sandy silt with glass shards; white.
В8	Alluvium; pumice and dacite gravel; imbricated, and grades upward from pea gravel to fine sand; reddish yellow near base to yellow near the top.
В9	Alluvium; pumice and dacite gravel; slightly coarser than Unit B8; mostly medium to coarse sand; upper part of unit is small pumice gravel, imbricated.
B10	Alluvium; massive silty sand with rare clasts of tuff; some dacite gravel.
B11	Alluvium; pumice gravel; pumice clasts up to 2 cm, rounded and imbricated, silt and fine sand matrix; poorly to moderately indurated.

B12	Alluvium; pumice gravel; pumice clasts up to 2 cm, rounded and imbricated; silt matrix; poorly to moderately indurated.
В13	Weathered bedrock/alluvium; clayey sandy silt; strongly developed soil structure; reddish brown; base of unit consists of small clasts of tuff, possibly weathered from bedrock and not depositional; poorly indurated.
B14	Alluvium or Loess; massive silt; slightly pink-gray, with rare subrounded clasts < 3-4 cm; poorly to moderately indurated.
B15	Alluvium; pumice gravel; small (<1-2 cm) pumice clasts; rounded and imbricated; small interbed of fine to medium sand and silt; yellow gray; matrix consists of silt and fine sand; poorly to moderately indurated.
B16	Alluvium; pumice gravel; small (<1-2 cm); more silty matrix than B15; yellow gray; moderately to poorly indurated.

APPENDIX H DESCRIPTIONS OF SELECTED SOIL PROFILES IN TRENCHES

Horizon	Depth		olor	Texture		cture		Consiste	ence	Clay File	ms	Salts	HC1	Boundary
	(cm)	Dry	Moist		Primary	Secondary	Dry	Moist	Wet	Primary	Secondary		Rxn	
						T								
<u> </u>		***			Gua	je Pines Site:	GPT1,	17m				L	l	
Ap	0-28	-	-	-	-	-	-	-	-	-	_	-	- 1	-
Bt	28-56	7.5YR 6/4	7.5YR 4/4	L	2/3 m abk	-	h	-	s,p	2 n/mk pf/co	2npo	-	-	gs
Bw1	56-90	7.5YR 6.5/4	7.5YR 5/3	L	2 f/m abk	-	h	-	ss,ps	vl n po/co	-	-	- 1	gw
Bw2	90-137	7.5YR 6.5/4	7.5YR 5/3	L	2 f/m abk	•	h	-	ss,ps	vl n po/co	-	_	-	gw
2Bt1b	137-170	7.5YR 4.5/5	7.5YR 4/6	CL	2 f/m sbk		h	vfi	s,p	2 n/mk pf/br/co	-	-	-	gs
2Bt2b	170-240	7.5YR 5.5/5	7.5YR 5/6	Ĺ	1/2 m abk	-	h	fi	s,ps/p	2 n pf/br/co	-	-	-	gs
3Bt3b	240-310		7.5YR 5/4	L L	l f abk	•	-	fi	95/5 THE	2 mk pf/br/co	1npf/br	-	-	
Notes: Co	lor of clay film	s in horizons Bt,	Bw1, $Bw2$, and 2	Bt1b 7.5 Y	R 4/4. Horizon	s Bw1 and Bw	v2 are id	entical, e	xcept					
for weak p	arent material	in Bw2.												
			1	Guaje Pine	s Site: GPT2,	6m (soil devel	oped in	unit 20 o	nly)	·	<u> </u>	L		
Btlb	140-165	-	5YR 4/6	C	3 c abk	3c/vcpr/c	eh	efi	s,p	4 k pf	-	-		CS
Bt2b	165-190	-	5YR 4/6	С	2/3 c abk	2с/усрт	vh	vfi	s,p	4 k pf	-	-	- 1	cw
Bt3b	190-230		5.75YR 6/6	С	1/2 m/c abk	-	h/vh	fi/vfi	s,p	4 k pf	-	-	-	-
Notes: Sta	ge III MnO in	upper 15cm of he	orizon Bt1b, stage	I, nodular l	MnO below 15	cm to base of	horizon	Stage I	MnO in					
horizons B	t2b and Bt3b.	Soil is gleyed clo	ser to fault.					-			*			
											1			
					G	uaje Pines Sit	e: GPSI	Pi				L		
Ap	0-65	<u>-</u>	-	L	-	-	-	-	-	-	-	-	- 1	
Bt	65-100	7.5YR 7/5		L	3 m abk	-	h,vh	-	s,p	2 mk po	-	-	eo	cw
Bwkj	100-150	7.5YR 6.5/5	-	L	M	-	h	-	ss,ps	1 n po	-	ΚI	ve	gs
Bw	150-250	7.5YR 7/4	-	SiL	M		sh	-	so,ps		-	-	eo	C\$
2Cu	250+	-	-	-	-	-	-	-	-	-	-	-	-	
Notes: Ho	rizon Bt bound	lary broken by ver	ry thin wedges of	clay into u	iderlying horiz	ons. Spacing	of clay v	vedges 10)-20 cm apa	rt.			1	
Stage I Mn	O on ped faces	 Color of clay fi 	lms 5YR 3/3. Cl	ay lined we	dges (5YR 3/3)	extend through	h base o	of horizon	Bwki, mos	t				
terminate h	alf-way through	h horizon. Lowe	ег, арргох. 25 ст	, part of we	dges are lined v	with CaCO3 w	ith clay	in center.	Clay in we	dges				
up to 2mm	thick.						1		•				1	
					_									
<u> </u>					Gı	uaje Pines Sit	e: GPSI	22						
Ap	0-25		-	-	-	-	T - T	-	-	_	_	-	- 1	as
Bwkj	25-60	7.5YR 6/4	-	L,	1 m abk	m	h	-	s,ps/p	l n po	vlnpo	ve	-	cw
Bw	60-100	7.5YR 6/4	•	SiL	1 m abk	-	h	- 1	ss,ps/p	v1 n po	-	eo		CS
2Cu	100-200	•	-	SL	-	-	1 - 1	- 1	_	-	-		- 1	<u></u>
Notes: Wit	hin horizon By	vkj clay wedges e	xtend to base of	horizon. Lo	wer 10 - 15 cm	of wedges an	e carbon	ate-lined	clay septa.				T I	
Clay wedge	color, 7.5 YR	4/4 (dry). Horiza	on Bw has one cl	ay wedge de	own to 83 cm.									
							1 1							

μ	4
١	
١	د

Horizon	Depth	Co	olor	Texture	Stru	cture		Consiste	nce	Clay Filt	ns	Salts	HCi	Boundary
	(cm)	Dry	Moist		Primary	Secondary	Dry	Moist	Wet	Primary	Secondary	Julio	Rxn	Dominary
					G	uaje Pines Sit	e: GPS	P3	<u> </u>		<u>,</u>	<u> </u>	1011	
Ap	0-27	-	-	-	_	-	-	-	-	-	_	l -	_	as
Bw1	27-80	7.5YR 5.5/5	-	L	1/2 m abk	-	h/vh	-	s,ps	1 n pf/po	 	 _		gw
Bw2	80-100	7.5YR 6/4	-	SiL	l m abk	-	sh	-	ss,ps	1 n po	-	-	_	cs
2Cu	100+	-	-		-	-	-	-	-	-	 	-	-	
Notes: Cla	y films in hori	izon Bw1, 7.5 YR	4/4. Clay films	in horizon F	3w2, 7.5 YR 4.:	5/6.					1			
											ļ 			
					Pajar	ito Canyon S	te: PCT	1, 9m	·		L .,	1		
Al	0-6	10YR 6/2	10YR 2/2	SiL	m	sg	lo	-	ss,ps	-	_	-	-	aw
A2	6-19	10YR 6/2	10YR 2/2	SiL	m	1msbk	so	-	ss,ps	-	-	-		aw
AB	19-37	10YR 7/2	10YR 4/7	L	m	lmsbk	h	_	ss,p	1 n pf/po	_	-	-	CS
Bt1	37-66	10YR 7/3	8.25YR 4/4	CL	2/3 f/m abk	-	vh	-	ss,p	2 n pf/po/co	-	-	-	CS
Bt2	66-85	7.5YR 5/4	7.5YR 4/4	C	3 f/m abk		ch	-	s,p	2 n/mk pf/co	-	-	-	cs
Bt3	85-121	7.5YR 4/4	7.5YR 4/6	CL	3 f/m abk	1fpr	h	-	ss/s,p	2 n pf/po/co	-	-	-	as
2Bt4	121-151	7.5YR 6/4	7.5YR 4/6	CL	m		SO	-	ss/s,ps/p	2/3 mk br/co	-	-	-	88
3Btb	151-220	7.5YR 5/5	7.5YR 4/6	C	3 m abk	2crpr	h	vfr	S.D	3 mk pf/co	-	-	-	+
Notes: Cla	y films in hori	zon AB, 7.5 YR 4	1/3. Clay films in	horizon Bt	1, 7.5 YR 4/3.	Horizon Bt3,	clay filn	ıs 7.5 YR	4/4 and sta	ge	1			
I MnO. Ho	orizon 3Btb sta	ge II MnO and M	InO coatings on p	ed faces.										
1.5	- 0.45				Water	Canyon Site	WCT1	, 4.5m				*		
A1	0-10	10YR 6/2	10YR 2/2	SiL	m	sg	lo	-	ss,ps	-	-	-		aw
A2	10-15	10YR 5/2	10YR 3/2	SiL	m	sg	lo	-	ss,ps	-	-	-	- 1	aw
BA	15-25	7.5YR 4/4	7.5YR 4/3	SCL	2 m abk		h	•	ss,ps	2/3 mk pf/co	-	-	-	cw
Bt1	25-60	-	7.5YR 4/3	С	3 m abk	1mpr	-	vfi	s,p	3/4 k pf/po/br/co	-	-	- 1	gw
Bt2	60-90	7.5YR 6/4	7.5YR 4.5/5	SCL	m	Imabk	h	vfr	ss,ps	3/4 mk/k co	-	-	- 1	dw
Bw	90-150	7.5YR 7/4	7.5YR 5/5	SL	m	-	sh	fr	so,po	2 n br/co	-	-	-	-
Notes: Hor	rizon BA, mol	ding from horizon	n A2. Horizon A	2 is coming	into the upper	part of the hor	rizon Bt	along peo	faces and p	oores.				
Some pores	are invertebra	ate burrows. Clay	films in horizon	B ₁₂ , 7.5 YF	₹ 3/4.									

Horizon	Depth	Co	olor	Texture	Stru	cture	T	Consiste	nce	Clay Filn	38	Salts	HCl	Boundary
	(cm)	Dry	Moist		Primary	Secondary	Dry	Moist	Wet	Primary	Secondary	Julia	Rxn	Boundary
			-		Wa	ter Canyon S	ite: WC	SP1			,	<u> </u>	1 2 2 2 1	
A1	0-5	10YR 6/2	10YR 2/2	SiL	m	<u> </u>	lo/so	- 1	ss,ps		_	Ι -	- 1	aw
A2	5-19	10YR 5/2	10YR 2/2	SiL	m	-	lo	-	ss,ps	_		 _	_	aw
Bt1	19-46	7.5YR 4/4	7.5YR 4.5/5	CL	2 m abk	-	h	vfi	ss,ps	3 mk/k pf/po/br/co	2npfpo	 -	_	cw
Bt2	46-80	7.5YR 5.5/5	7.5YR 5/4	CL	1 m/c abk	-	T -	fr	s,p	2 n pf/co		 -	_	ds
Bw	80-162	7.5YR 5/6	7.5YR 4.5/5	L	1 m/c abk	m	-	fr	ss,ps	vl n po/co	vlnpf	-	-	cs
2C	162-192	_	-	-	-	•	_	-		-	-	<u> </u>		
Notes: In	horizon Bt1 th	e color changes in	the lower half to	7.5 YR 6/3	, clay films als	o change in th	e lower	half, 1-2n	pf/po with					
a color of	7.5 YR 4/4. H	orizon A2 is com	ng through horizo	on Bt1 thro	igh fractures ar	id pores.	T							
	<u> </u>													
		· · · · · · · · · · · · · · · · · · ·			Wate	r Tanks Site:	WCT1	5.5m		· · · · · · · · · · · · · · · · · · ·			LI	
A1	0-5	10YR 6/2	10YR 2/2	SiL	2 f gr		lo/so	-	ss,ps	-	-	-	- 1	aw
A2	5-13	10YR 5/2	10YR 3/2	SiL	m	-	lo	-	ss,ps		-		- 1	aw
Bt1	13-30	7.5YR 7/3	7.5YR 3.5/4	CL	3 m abk	vh	-	-	ss,ps/p	2 n/mk pf/po/co	-	-	-	cw
Bt2	30-66	7.5YR 6.3/4	7.5YR 4.5/4	L	l m abk	sh/h	fi	-	ss,ps	2 n pf/po/co	-	_	-	cw
2Bt3	66-100	7.5YR 4/6	7.5YR 4/4	SCL	m	h	-		ss,ps	3 n/mk pr/co	-		-	cw
2Bw	100-180	10YR 8/4	7.5YR 5/6	S	sg	-	lo	lo	80 DO	v1/1 n.co	-	_	- 1	
Notes: Ho	rizon Bt1 clay	films, 7.5 YR 3/4	and ped interiors	7.5 YR 7/2	2. Questionable	pedogenic or	gin for c	arbonate	in horizons		V		1	
Bt2 and 2B	3t3. Horizons	Bt3 and 2Bw with	in El Cajete,											

					Rendi	a Canyon Ar	rea: TP1	(Qt2)	L	= **!		L		
Ap	0-15	7.5YR 4/6	7.5YR 4/4	SiL	3 m pl	-	sn	-	ss,ps	-	-	- 1	- 1	
AC	15-24	7.5YR 5/4	7.5YR 4/4	SiCL	2 f/m sbk	-	sh/h	-	ss,p	=	-			
2Bw1b	24-47	7.5YR 4/4	7.5YR 4/4	CL	2 f/m sbk	_	sh	_	s,p	2 n pf/po		K I-		
2Bw2b	47-61	7.5YR 4/6	7.5YR 4/4	CL	2 f/m sbk	-	sh		s,p	1 n pf/po	-	IX 1-		
3Btkb2	61-104	5YR 4/6	5YR 4/6	SCL	2 m abk	_	h			3 mk pf/po/br/co		VI.		
3Coxb2	104-140	7.5YR 4/4	7.5YR 4/6	LS	Sg	-	10		s,p	2 lilk bi/bo/or/co		K I+	-+	gi :
4Coxb2	140-190	7.5YR 5/4	7.5YR 4/4	LS	sg	-	lo		ss.po		-		-	<u>ci</u>
			ent material. Plat		in An related	to cultural dis		Horizon	so,po		-		-	-
in loess par	ent material.	Clasts of dacite w	elded and unweld	ed Bandelia	er triff claste ur	to 23 cm in	horizone	2Bw2h	3Rthb2 cod	уки				
3Coxb2, wi	ith carbonate f	laments in horizo	m 3Btkb2. In hor	izon 2Rw2	clay films in	liscontinuous	7000E 01	1000 30C	Z of horizon					
			TO THE PARTY OF TH	LEATE DESTRUCTION	omy minus in	112011111111111111111111111111111111111	ZUITES AL	piox. 307	O OL ROLIZO	1.				
							l i		l					

Horizon	Depth	Co	olor	Texture	Stru	cture	1	Consiste	nce	Clay Filr	ne	Salts	HCl	Boundary
	(cm)	Dry	Moist		Primary	Secondary	Dry	Moist	Wet	Primary	Secondary	Saus	Rxn	Dominary
					Rendi	ja Canyon Ar					300071331	<u> </u>	I IOM	
A	0-7	10YR 5/4	10YR 3/3	SiL	2 m pr		so	-	so,po	<u> </u>	T	Τ	l1	CS
Bw	7-34	7.5YR 4/4	7.5YR 4/4	SiCL	2 m sbk	-	sh/h	_	ss,p	vl n pf/po	 	 		aw
2Bt1b	34-67	5YR 3/4	5YR 4/4	SC	3 m pr		h/vh	-	vs,p	3 mk pf/po/co	 	-		
2Bt2b	67-105	5YR 3/4	5YR 4/4	SC	3 f/m abk	<u> </u>	h/vh	-	s,p	3 mk pf/po/co		-	-	gs aw
3Coxb	105-119	7.5YR 5/4	7.5YR 4/4	S	m	1	vh		\$0,po	vl n pf			-	cw ·
4Coxb	119-163	7.5YR 6/6	7.5YR 4/4	S	sg		lo		*0 DO			<u> </u>		- CW
2 cm pine r	needle mat at s	urface. Clay film	s along permeabi	lity contras	ts in horizon 30	oxb. Both ho	rizons 3	Coxb and	4Coxb cor	tain		<u> </u>		
discontinuo	ous lenses of fl	uvial deposits.				T .	<u> </u>		1001000					
				```			1							
					Rendi	ja Canyon Ar	ea: TP3	(Ot2)			t	Li	ll	
AV	0-3	10YR 6/3	10YR 4/4	Si	2 m pl	-	so	-	\$0,po					8.5
AB	3-9	10YR 5/4	7.5YR 4/4	SiC	l m pl	-	sn	<del>-</del>	s,p					CS
Bw1	9-43	7.5YR 4/4	7.5YR 4/4	SiC	2 m sbk	_	sn	-	5,p	1 n pf/po	-	_		cs
Bw2	43-62	7.5YR 4/4	7.5YR 4/4	SiCL	2 f/m sbk	-	sn		5,p	1 n pf/po		_		cw
2Btb	62-106	5YR 4/4	5YR 3/4	SC	2 m abk	-	h	-	s,p	3 mk pf/po/co				aw
3Bwb	106-127	7.5YR 4/4	7.5YR 4/4	SCL	2 m abk	-	h	-	s.ps	l mk pf/po		-	<u> </u>	8W
4Coxb	127-190	7.5YR 4/6	7.5YR 3/4	S	sg	-	lo	-	s,ps			_		
Notes: AV	horizon appea	ers to engulf horiz	on AB, evidence	of stripping	. Horizon Bw	2 superimpose	d on 2B	ib.					-	
						<u> </u>	T			······································	7			
					Rendi	a Canyon Ar	ea: TP4	(Qt6)	<u>-</u>			LI		
A	0-10	10YR 4/2	10YR 3/2	SL	1 f sbk	-	so	- 1	so,po	-	_		T	
AB	10-36	10YR 5/3	10YR 4/3	SL	2 m sbk	-	sh	-	so,po	-	_			gs gs
С	36-80	10.5YR 5/3	-	SL	m	-	<b> </b>		so,po		_			<u>_</u>
Notes: AB	horizon define	ed on slight redde	ning and increase	of structure	6.	-				***			<del></del> +	
						·						<del></del>	<del></del> +	
					Rendija C:	anyon Area: ]	rP5 (Qt	3, eroded	l)	· · · · · · · · · · · · · · · · · · ·			L	
A	0-6	10YR 5/3	10YR 3/2	SiL	m	-	so	- 1	so,po					CS
AB	6-14	10YR 5/4	10YR 3/3	SL	2 f sbk		sh	- 1	\$0,po		-			cs
BC	14-43	7.5YR 4/6	7.5YR 3/4	LS	1 f sbk	_	lo	-	so,po	1 mk co	-			aw
2Cox	43-59	10YR 6/6	10YR 4/4	S	m	_	so	-	so,po	-	_			
Notes: 1 - 2	2 cm pine need	le mat. Gravel ir	horizon 2Cox m	ade up of p	umice.							<del>-</del>		
_														

Horizon	Depth	Co	olor	Texture	S	Structure Consistence			ence	Clay Films			HCl	Boundary
	(cm)	Dry	Moist	1	Primary	Secondary	Dry	Moist	Wet	Primary	Secondary	Salts	Rxn	Dominary
L					Ren	dija Canyon Are						.1	2000	
A	0-10	10YR 5/4	10YR 3/3	Si	2 m pl/shl		so	<u> </u>	so,po	_	_	T -	I _ !	cs
AB	10-22	10YR 6/4	10YR 4/4	SiL	2 m sbk		sh	-	ss,po	-		-	_	cs
Bt	22-49	7.5YR 4/4	7.5YR 4/4	SiL	3 m abk	-	h	-	s,p	2/3 n/mk pf/po/co	-	-	- 1	cs
Bk	49-63	10YR 6/4	10YR 4/3	L	2 f/m sbk		h	-	s,ps	1 n po/co	-		_	gw
2Ck1b	63-78	10YR 6/4	10YR 4/3	SC	1 f sbk	-	sh	-	ss,po	-		-	<del>  _  </del>	gw
2Ck2b	78-120	10YR 4/4	10YR 3/4	S	sg	-	10		SO DO	-	•	<del> </del>	-	
Notes: 1 -	2 cm pine need	dle mat. RC-1 co	ollected at bottom	a of horizon	Bt and RC-2	collected at cont	act of h	orizon B	k and 2Ck1					
Carbonate of	coatings on cla	ist bottoms, secon	ndary cycle, in ho	orizon 2Ck1b	o. In horizor	2Ck2b prexisting	g carbo	nate, no s	econdary				1	-
cycle. Coa	tings on botton	ns of clasts are thi	ick and discontir	nuous.					-					
LEGEN	D			_								·	L	
Color :	3.6	750 A	g.			_								
Color :		<b>Texture:</b> Si - Silt		ruture:		Consistence:			Films:	Salts:		Bound		1
Color Cit	iari useu	Si - Silt SiL - Silty L	gts	ade - massive		dry		iency	HCl React		a - abr	i		
ļ		L - Loam			lo - loose	V1 - 1	very few	e - slightly		c - cles	Ì			
		SL - Sandy I	Toom 1	- single gr - weak		so - soft	1 - fe		effervescent		g - gra	I		
•		SCL - Sandy		- weak moderate		sh - slightly ha		ommon	es - strongly		d - diff			
ı		Loam				h - hard		3 - many		effervescent		s - smooth		I
İ		S - Sand	3 -	- strong		vh - very hard		4 - c	ontinuous	ev - violently		w - wavy		
I		SC - Sandy (	Clay size	•=		eh - extremely	hard	thickness		effervescer		i - irre		ł
		CL - Clay Lo		e - very fine	_	ine				777		b - broken		
		C - Clay L		fine		moist lo - loose		n - th		KI - stage	I carbonate			
		C - Ciny		- medium		vfr - verv friabl	ام	mk - thick	moderatel	ıy				J
				coarse		fr - friable	le	k - th	-					1
			~	COMSC		fi - firm		K - U	ilck					Į.
			typ	ne		vfi - very firm		M AFF	hology					
				- granular		efi - extremely	firm		ed faces		-			
ı				- platy	,	OII - CAUCIIIOI,	111111	DO - I						1
i				- prismatic	2	wet			pores oridges					İ
				r - columna		so - nonsticky			colloid					
				k - angular		ss - slightly stic	·kv	<b>.</b> .	JOHOJU					
				k - subangi		s - sticky	- K.J							J
				ocky		vs - very sticky								
				•		,,								I
					т	plasticity								
					1	po - nonplastic	:							1
						ps - slightly pl								1
			•			p - plastic								
					,	vp - very plasti	c							]
						• • •								i

Horizon	Depth	d	olor	Texture	Stru	icture		Consiste		Clay Fili	ms	Salts	HCI	Boundary
	(cm)	Dry	Moist		Primary	Secondary	Ъгу	Moist	Wet	Primary	Secondary	1	Rxn	
							T				1			
, , , , ,	·				Gua	je Pines Site:	GPT1,	17m						
Ap	0-28	_	-	-	-	Ĭ -	1 -	-	-	-	T -	-	- 1	-
Bt	28-56	7.5YR 6/4	7.5YR 4/4	L	2/3 m abk	-	h	-	s,p	2 n/mk pf/co	2npo	-	-	gs
Bwl	56-90	7.5YR 6.5/4	7.5YR 5/3	L.	2 f/m abk	-	h	-	ss,ps	v1 n po/co	<u> </u>	-	-	gw
Bw2	90-137	7.5YR 6.5/4	7.5YR 5/3	L	2 f/m abk	-	h	-	ss,ps	v1 n po/co	_	-	-	gw
2Bt1b	137-170	7.5YR 4.5/5	7.5YR 4/6	CL	2 f/m sbk	-	h	vfi	s,p	2 n/mk pf/br/co	-	-	-	gs
2Bt2b	170-240	7.5YR 5.5/5	7.5YR 5/6	L	1/2 m abk	-	h	ſi	s,ps/p	2 n pf/br/co	-	-	-	gs
3Bt3b	240-310	-	7.5YR 5/4	L	l fabk	-	-	fi	ss/s,ps	2 mk pf/br/co	1npf/br	-	-	-
Notes: Co	lor of clay film	is in horizons Bt.	Bw1, Bw2, and 2	Bt1b 7.5 Y	R 4/4. Horizon	s Bwl and Bw	/2 are id	entical, e	xcept	•	1	<u> </u>		
for weak p	arent material	in Bw2.			1				•					
	[				1		1	:						
				Guaje Pine	s Site: GPT2,	6m (soil devel	oped in	unit 20 c	nly)					
Bilb	140-165	-	5YR 4/6	C	3 c abk	Зс/усрг/с	eh	efi	s,p	4 k pf	-	-	-	CS
Bt2b	165-190	-	5YR 4/6	C	2/3 c abk	2c/vcpr	vh	vſi	s,p	4 k pf	-	-	-	cw
Bt3b	190-230	-	5.75YR 6/6	C	1/2 m/c abk	-	h/vh	fi/vfi	s,p	4 k pf	-	-	-	-
Notes: Sta	ige III MnO in	upper 15cm of he	rizon Bt1b, stage	I, nodular l	MnO below 15	cm to base of	horizon	Stage I	MnO in	•		l		
horizons B	t2b and Bt3b.	Soil is gleyed clo	ser to fault.					-						
					G	uaje Pines Sit	e: GPSI	P1				<u> </u>		
Ap	0-65	-	-	L	-	-	-	-	-	•	-	-	-	-
Bt	65-100	7.5YR 7/5	-	L	3 m abk	-	h,vh	-	s,p	2 mk po	-	-	eo	cw
Bwkj	100-150	7.5YR 6.5/5		L	M	-	h	-	ss,ps	l n po	-	ΚI	ve	gs
Bw	150-250	7.5YR 7/4		SiL	M	-	sh	-	so,ps	-	-	-	co	CS
2Cu	250+	-	-	-		-	-	-	-	-	-	-	-	_
Notes: Ho	rizon Bt bound	lary broken by ver	ry thin wedges of	clay into m	nderlying horiz	ons. Spacing of	of clay v	vedges 10	)-20 cm apa	rt.				
		s. Color of clay fi												
terminate h	alf-way throug	gh horizon. Low	ег, арргох. 25 ст	, part of we	dges are lined	with CaCO3 w	ith clay	in center.	Clay in we	edges	I			
up to 2mm	thick.													
					G	uaje Pines Sit	e: GPSI	2						
Ap	0-25	-	-	-	-	-	-	-		•	-	-	-	as
Bwkj	25-60	7.5YR 6/4	•	L	1 m abk	m	h	-	s,ps/p	1 n po	v1npo	ve	-	cw
Bw	60-100	7.5YR 6/4	-	SiL	1 m abk	-	h		ss,ps/p	vl n po	-	co	-	CS
2Cu	100-200	-	•	SL	-	-	-	-	-	-	-	-	-	-
		wkj clay wedges o				n of wedges ar	e carbon	ate-lined	clay septa.					*
Clay wedge	e color, 7.5 YR	4/4 (dry). Horiz	on Bw has one cl	ay wedge de	own to 83 cm.									
-1						1								

Horizon	Depth	Co	olor	Texture Structure			Consistence			Clay Filr	ns	Salts	HCl	Boundary
	(cm)	Dry	Moist		Primary	Secondary	Dry	Moist	Wet	Primary	Secondary		Rxn	
			•		G	uaje Pines Sit	e: GPS	13	<u></u>	· · · · · · · · · · · · · · · · · · ·	•		······	•
Ap	0-27	-	-	-	-	-	T -	_	-	-	· · · · · · · · · · · · · · · · · ·	-		as
Bwl	27-80	7.5YR 5.5/5	-	L,	1/2 m abk	-	h/vh	-	s,ps	1 n pf/po	-	-	-	gw
Bw2	80-100	7.5YR 6/4	-	SiL	1 m abk	•	sh	-	ss.ps	1 n po	-	-	-	CS
2Cu	100+	•	-	-	-	-	1 -	-	-	-	-	-	-	-
Notes: Cla	y films in hor	izon Bw1, 7.5 YR	4/4. Clay films	in horizon B	w2, 7.5 YR 4.:	5/6.	1							
										***				
					Pajar	ito Canyon Si	te: PCT	1, 9m						
Al	0-6	10YR 6/2	10YR 2/2	SiL	m	sg	lo	-	ss,ps	-	-	-	-	aw
A2	6-19	10YR 6/2	10YR 2/2	SiL	m	1msbk	so	-	ss.ps			-	-	aw
AB	19-37	10YR 7/2	10YR 4/7	L	m	lmsbk	h	-	ss,p	1 n pf/po	-	-	-	cs
Bt1	37-66	10YR 7/3	8.25YR 4/4	CL	2/3 f/m abk	-	vh	-	ss,p	2 n pf/po/co	-	-	-	CS
Bt2	66-85	7.5YR 5/4	7.5YR 4/4	C	3 f/m abk	-	ch	-	s,p	2 n/mk pf/co	-		-	cs
Bt3	85-121	7.5YR 4/4	7.5YR 4/6	CL	3 f/m abk	1 fpr	h	-	ss/s,p	2 n pf/po/co	-	-	-	as
2Bt4	121-151	7.5YR 6/4	7.5YR 4/6	CL	m	-	so	-	ss/s.ps/p	2/3 mk br/co	-	-	-	as
3Btb	151-220	7.5YR 5/5	7.5YR 4/6	С	3 m abk	2crpr	h	vfr	s,p	3 mk pf/co		-	-	-
Notes: Cla	y films in hor	zon AB, 7.5 YR 4	1/3. Clay films in	horizon Bt	1, 7.5 YR 4/3.	Horizon Bt3,	clay film	ns 7.5 YF	₹ 4/4 and sta	ge				
I MnO. Ho	orizon 3Btb sta	ige II MnO and M	InO coatings on p	ed faces.								<u> </u>		
											l			
		1	· <del></del>		Water	Canyon Site:		, 4.5m	,			,	,	
A1	0-10	10YR 6/2	10YR 2/2	SiL	m	5g	lo	-	ss.ps	-	-	-	-	aw
A2	10-15	10YR 5/2	10YR 3/2	SiL	m	sg	lo	ı	ss.ps	-	-	-	-	aw
BA	15-25	7.5YR 4/4	7.5YR 4/3	SCL	2 m abk	-	h		ss,ps	2/3 mk pf/co	-	-		cw
Bt1	25-60		7.5YR 4/3	C	3 m abk	lmpr	-	vſi	s,p	3/4 k pf/po/br/co	-			gw
Bt2	60-90	7.5YR 6/4	7.5YR 4.5/5	SCL	m	lmabk	h	vſr	ss,ps	3/4 mk/k co	-	-		dw
Bw	90-150	7.5YR 7/4	7.5YR 5/5	SL	m	L	sh	ſr	so,po	2 n br/co	-	-	-	
Notes: Ho	rizon BA , mo	tling from horizon	n A2. Horizon A	2 is coming	into the upper	part of the hor	izon Bt	along po	d faces and	pores.				
Some pores	s are invertebr	ate burrows. Clay	tilms in horizon	Bt2, 7.5 YF	t 3/4.		ļ					ļi		*****
											]			

Composition   Primary   Secondary   Dry   Moist   West   Primary   Secondary   Rxn	Horizon	Depth	Co	olor	Texture	Stru	cture	T	Consister	nce	Clay Filn	15	Salts	HCl	Boundary
A1		(cm)	Dry	Moist		Primary	Secondary	Dry	Moist	Wct				Rxn	•
A2   S-19   10YR 5/2   10YR 2/2   SiL   m						Wai	ter Canyon S	ite: WC	SP1		· · · · · · · · · · · · · · · · · · ·		•		
A2   S-19   10YR 5/2   10YR 2/2   SiL   m   -   10   -	Al	0-5	10YR 6/2	10YR 2/2	SiL	m	<u>-</u>	lo/so	- 1	ss.ps	-	-	-	-	aw
Bit   19-46   7.5YR 4/4   7.5YR 4.5/5   CL   2 m abk   -	A2	5-19	10YR 5/2	10YR 2/2	SiL	m	-	lo	-		-	-	-	-	aw
B12   46-80   7.5YR 5.5/5   7.5YR 4.5/5   CL   1 m/c abk	Bt1		7.5YR 4/4	7.5YR 4.5/5	CL	2 m abk	-	h	vfi		3 mk/k pf/po/br/co	2npfpo	-	-	cw
Bw   80-162   7.5YR 5/6   7.5YR 4.5/5   L   1 m/c abk   m   -     fr     ss.ps   v1 n po/co   v1npf   -   -   cs   cs   cs.	Bt2	46-80	7.5YR 5.5/5	7.5YR 5/4	CL	1 m/c abk	-		fr			•	-	-	ds
2C   162-192     -   -   -   -   -   -   -   -			7.5YR 5/6	7.5YR 4.5/5	L	1 m/c abk	m	1 -	ſr			vlnpf		-	cs
Acolor of 7.5 YR 4/4. Horizon A2 is coming through horizon B11 through fractures and pores.			-	-	-	_	-	-	-	-	•	-	-	-	
Acolor of 7.5 YR 4/4. Horizon A2 is coming through horizon B11 through fractures and pores.	Notes: In l	horizon Bt1 th	e color changes in	n the lower half to	7.5 YR 6/3	, clay films also	o change in the	e lower l	nalf, 1-2m	of/po with					
A1	a color of 7	7.5 YR 4/4. H	orizon A2 is comi	ing through horizo	on Bt1 throu	igh fractures an	d pores.			•			<u> </u>		
A1	<u> </u>													1	
A2 5-13 10YR 5/2 10YR 3/2 SiL m - lo - ss.ps aw B11 13-30 7.5YR 7/3 7.5YR 3.5/4 CL 3 m abk vh - ss.ps/p 2 n/mk pf/po/co cw B12 30-66 7.5YR 6.3/4 7.5YR 4.5/4 L l m abk sh/h fi - ss.ps 2 n pf/po/co cw 2Bi 36-100 7.5YR 4/6 7.5YR 4/4 SCL m h ss.ps 3 n/mk pr/co cw 2Bw 100-180 10YR 8/4 7.5YR 5/6 S sg - lo lo so.po v1/1 n co cw Notes: Horizon B11 clay films, 7.5 YR 3/4 and pcd interiors 7.5 YR 7/2. Questionable pedogenic orgin for carbonate in horizons  Rendija Canyon Area: TP1 (Qt2)  Ap 0-15 7.5YR 4/6 7.5YR 4/4 SiL 3 m pl - sn - ss.ps	ļ					Wate	r Tanks Site:	WCT1	5.5m						
Bt1 13-30 7.5YR 7/3 7.5YR 3.5/4 CL 3 m abk vh s.sp.s/p 2 n/mk pl/po/co cw Bt2 30-66 7.5YR 6.3/4 7.5YR 4.5/4 L 1 m abk sh/h fi - ss.ps 2 n pl/po/co cw 2Bt3 66-100 7.5YR 4/6 7.5YR 4/4 SCL m h ss.ps 3 n/mk pr/co cw 2Bt3 100-180 10YR 8/4 7.5YR 5/6 S sg - lo lo so.po v1/1 n co cw Notes: Horizon Bt1 clay films, 7.5 YR 3/4 and ped interiors 7.5 YR 7/2. Questionable pedogenic orgin for carbonate in horizons Bt2 and 2Bt3. Horizons Bt3 and 2Bw within El Cajete.  Rendija Canyon Area: TP1 (Qt2)  Ap 0-15 7.5YR 4/6 7.5YR 4/4 SiCL 2 f/m sbk - sn/h - ss.ps						2 f gr	-	lo/so	-	ss,ps	•	-	-	-	aw
B12			•		-	aw									
2Bi3 66-100 7.5YR 4/6 7.5YR 4/4 SCL m h h - ss.ps 3 n/mk pr/co cw 2Bw 100-180 10YR 8/4 7.5YR 5/6 S sg - lo lo so.po v1/1 n co Notes: Horizon Bt1 clay films, 7.5 YR 3/4 and ped interiors 7.5 YR 7/2. Questionable pedogenic orgin for carbonate in horizons  Rendija Canyon Area: TP1 (Qt2)  Rendija Canyon Area: TP1 (Qt2)  Ap 0-15 7.5YR 4/6 7.5YR 4/4 SiL 3 m pl - sn - ss.ps AC 15-24 7.5YR 5/4 7.5YR 4/4 SiCL 2 f/m sbk - sh/h - ss.p 2Bw1b 24-47 7.5YR 4/4 7.5YR 4/4 CL 2 f/m sbk - sh/h - ss.p 2 n pf/po KI 2Bw2b 47-61 7.5YR 4/6 7.5YR 4/4 CL 2 f/m sbk - sh - s.p 1 n pf/po 3Btkb2 - 61-104 5YR 4/6 5YR 4/6 SCL 2 m abk - h - s.p 3 mk pf/po/br/co KI+ - gi 3Coxb2 104-140 7.5YR 4/4 7.5YR 4/4 LS sg - lo - ss.po				-	-	cw									
2Bw   100-180   10YR 8/4   7.5YR 5/6   S   sg   -   10   10   so,po   v1/1 n co   -   -   -   Notes: Horizon Bt1 clay films, 7.5 YR 3/4 and ped interiors 7.5 YR 7/2. Questionable pedogenic orgin for carbonate in horizons   Bt2 and 2Bt3. Horizons Bt3 and 2Bw within El Cajete.   Rendija Canyon Area: TP1 (Qt2)    Ap			-	-	•	cw									
Notes: Horizon Bt1 clay films, 7.5 YR 3/4 and ped interiors 7.5 YR 7/2. Questionable pedogenic orgin for carbonate in horizons    Rendija Canyon Area: TP1 (Qt2)					SCL	m	h	-	-	ss,ps	3 n/mk pr/co		-	-	cw
Bt2 and 2Bt3. Horizons Bt3 and 2Bw within El Cajete.					-		-			so,po	v1/1 n co	-	-	-	-
Rendija Canyon Area: TP1 (Qt2)   Ss,ps   Ss,	Notes: Hor	rizon Bt1 clay	films, 7.5 YR 3/4	and ped interiors	7.5 YR 7/2	2. Questionable	pedogenic or	gin for c	arbonate i	in horizons					_
Ap         0-15         7.5YR 4/6         7.5YR 4/4         SiL         3 m pl         -         sn         -         ss,ps         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -	Bt2 and 2B	t3. Horizons	Bt3 and 2Bw with	in El Cajete.											
Ap         0-15         7.5YR 4/6         7.5YR 4/4         SiL         3 m pl         -         sn         -         ss,ps         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -															
AC 15-24 7.5YR 5/4 7.5YR 4/4 SiCL 2 f/m sbk - sh/h - ss,p					,		a Canyon Ar	ea: TP1	(Qt2)						
2Bw1b							-		-	ss,ps	-	-	-	-	-
2Bw2b	AC	15-24	7.5YR 5/4	7.5YR 4/4	SiCL	2 f/m sbk	-	sh/h		ss,p	-	-	-	-	
2Bw2b         47-61         7.5YR 4/6         7.5YR 4/4         CL         2 f/m sbk         -         sh         -         s.p         1 n pf/po         -         -         -           3Btkb2         - 61-104         5YR 4/6         5YR 4/6         SCL         2 m abk         -         h         -         s,p         3 mk pf/po/br/co         K I+         -         gi           3Coxb2         104-140         7.5YR 4/4         7.5YR 4/6         LS         sg         -         lo         -         ss,po         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -	2Bw1b	. 24-47	7.5YR 4/4	7.5YR 4/4	CL	2 f/m sbk	-	sh	- 1	s,p	2 n pf/po		K I-	-	•
3Btkb2         - 61-104         5YR 4/6         5YR 4/6         SCL         2 m abk         -         h         -         s,p         3 mk pf/po/br/co         K I+         -         gi           3Coxb2         104-140         7.5YR 4/4         7.5YR 4/6         LS         sg         -         lo         -         ss,po         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <t< td=""><td>2Bw2b</td><td>47-61</td><td>7.5YR 4/6</td><td>7.5YR 4/4</td><td>CL</td><td>2 f/m sbk</td><td>-</td><td>sh</td><td>-</td><td></td><td></td><td>_</td><td>-</td><td>-</td><td>-</td></t<>	2Bw2b	47-61	7.5YR 4/6	7.5YR 4/4	CL	2 f/m sbk	-	sh	-			_	-	-	-
3Coxb2 104-140 7.5YR 4/4 7.5YR 4/6 LS sg - lo - ss,po ci 4Coxb2 140-190 7.5YR 5/4 7.5YR 4/4 LS sg - lo - so,po		61-104	5YR 4/6	5YR 4/6	SCL	2 m abk		h	-	s,p			K I+	-	gi
4Coxb2 140-190 7.5YR 5/4 7.5YR 4/4 LS sg - lo - so,po	3Coxb2	104-140	7.5YR 4/4	7.5YR 4/6	LS	sg	-	lo	-		-		-	_	
Notes: Horizon Ap, developed in loess parent material. Platey structure in Ap related to cultural disturbance. Horizon AC developed in loess parent material. Clasts of dacite welded and unwelded Bandelier tuff, clasts up to 23 cm, in horizons 2Bw2b, 3Btkb2, and	40-10 140 100 7 5VD 5U 7 5VD 5U													-	
in loess parent material. Clasts of dacite welded and unwelded Bandelier tuff, clasts up to 23 cm, in horizons 2Bw2b, 3Btkb2, and	Notes: Hor	rizon Ap, deve	loped in loess par	ent material. Plat	ey structure		to cultural dist	urbance	. Horizon		oped				·····
3Coxb2, with carbonate filaments in horizon 3Btkb2. In horizon 2Bw2b clay films in discontinuous zones approx. 30% of horizon.	in loess par	ent material. (	Clasts of dacite we	elded and unweld	cd Bandelie	r tuff, clasts up	to 23 cm, in l	orizons	2Bw2b, 3	Bikb2, and	1	···········			
	3Coxb2, wi	th carbonate f	laments in horizo	m 3Btkb2. In hor	izon 2Bw2l	clay films in c	liscontinuous	zones ar	prox. 309	of horizon	n.				
						<b>1</b>				1				-	

Horizon	Depth	Co	olor	Texture	· Stru	cture	T	Consiste	nce	Clay Filt	ms	Salts	HCl	Boundary
	(cm)	Dry	Moist		Primary	Secondary	Dry	Moist	Wet	Primary	Secondary	1	Rxn	•
			<u> </u>		Rendi	la Canyon Ar	ea: TP2	(Qt1)				<u> </u>		
Α	0-7	10YR 5/4	10YR 3/3	SiL	2 m pr	<u>-</u>	so	-	so,po	-	-		-	cs
Bw	7-34	7.5YR 4/4	7.5YR 4/4	SiCL	2 m sbk	-	sh/h	-	ss,p	vl n pf/po	-	-	-	aw
2Btlb	34-67	5YR 3/4	5YR 4/4	SC	3 m pr	-	h/vh	-	vs,p	3 mk pf/po/co	-	-	-	gs
2Bt2b	67-105	5YR 3/4	5YR 4/4	SC	3 f/m abk	-	h/vh	-	s,p	3 mk pf/po/co	-	-	-	aw
3Coxb	105-119	7.5YR 5/4	7.5YR 4/4	S	m	-	vh	-	so,po	vl n pf		-	-	cw
4Coxb	119-163	7.5YR 6/6	7.5YR 4/4	S	sg	-	lo	-	so,po		-	-	-	
2 cm pine	ncedle mat at s	surface. Clay film	s along permeabi	lity contrast	ts in horizon 30	Coxb. Both ho	rizons 3	Coxb and	4Coxb cor	tain				
discontinue	ous lenses of f	luvial deposits.												
-79.00		<u> </u>												
					Rendi	ja Canyon Ar	ea: TP3	(Qt2)						
AV	0-3	10YR 6/3	10YR 4/4	Si	2 m pl	-	so		so,po	<u>.</u>	-		-	as
AB	3-9	10YR 5/4	7.5YR 4/4	SiC	1 m pl	-	sn		s,p	-	-		-	CS
Bw1	9-43	7.5YR 4/4	7.5YR 4/4	SiC	2 m sbk	-	sn	-	s,p	l n pf/po	-	-	-	CS
Bw2	43-62	7.5YR 4/4	7.5YR 4/4	SiCL	2 f/m sbk	-	sn	-	s,p	1 n pf/po	-	-	-	cw
2Btb	62-106	5YR 4/4	5YR 3/4	SC	2 m abk	-	h	-	s,p	3 mk pf/po/co	_	-		aw
3Bwb	106-127	7.5YR 4/4	7.5YR 4/4	SCL	2 m abk	-	h	-	s,ps	1 mk pf/po	-	-	-	aw
4Coxb	127-190	7.5YR 4/6	7.5 YR 3/4	S	sg	-	lo	-	s,ps	-	-	-	-	-
Notes: AV	horizon appe	ars to engulf horiz	on AB, evidence	of stripping	3. Horizon Bw	2 superimpose	d on 2B	lb.						
ļl		<u> </u>			<u> </u>	<u> </u>								
<u> </u>				, -	,	a Canyon Ar	ea: TP4	(Qt6)						
A	0-10	10YR 4/2	10YR 3/2	SL	1 f sbk	-	so	-	so,po	<u>-</u>	-	-	-	gs
AB	10-36	10YR 5/3	10YR 4/3	ŠĻ	2 m sbk		sh	-	so,po	<u></u>	<u>-</u>	-	-	gs
C	36-80	10.5YR 5/3	- 1	SL	m	-	-	-	so,po	<del>-</del>	-	-	-	-
Notes: AB	horizon defin	ed on slight redde	ning and increase	of structure	C									
					L <u>.</u>			1						
I——		103/70 5/0	101115-040		· · · · · · · · · · · · · · · · · · ·	anyon Area: "	IP5 (Qt	3, eroded	l)		•			
AD	0-6	10YR 5/3	10YR 3/2	SiL	m		so	- [	so,po	-	-	-	-	CS
AB	6-14	10YR 5/4	10YR 3/3	SL	2 f sbk		sh	-	so,po	<del>-</del>	-	-		cs
BC	14-43	7.5YR 4/6	7.5YR 3/4	LS	l f sbk	-	lo	-	so,po	1 mk co	-	- <u>-</u>	-	aw
2Cox	43-59	10YR 6/6	10YR 4/4	S	m	-	so	-	so,po	-	<u> </u>	-	-	-
Notes: 1 -	2 cm pine need	ile mat. Gravel in	horizon 2Cox m	ade up of p	umice.					<u> </u>				

Horizon	Depth	Co	olor	Texture	Stn	ucture		Consiste	ncc	Clay Filn	ns	Salts	HCl	Boundar
	(cm)	Dry	Moist		Primary	Secondary	Dry	Moist	Wet	Primary	Secondary		Rxn	
					Rend	ija Canyon Ar	ea: TP6	(Qt4)				<del></del>	<del>4. • •••</del> •••	
Α	0-10	10YR 5/4	10YR 3/3	Si	2 m pl/slık	1	so	-	so,po	•	-	-	-	cs
AB	10-22	10YR 6/4	10YR 4/4	SiL	2 m sbk	-	sh	-	ss,po	-	-	-	-	CS
Bt	22-49	7.5YR 4/4	7.5YR 4/4	SiL	3 m abk	-	h	-	s,p	2/3 n/mk pf/po/co	-	-	-	cs
Bk	49-63	10YR 6/4	10YR 4/3	L	2 f/m sbk	-	h	-	s,ps	1 n po/co		-	-	gw
2Ck1b	63-78	10YR 6/4	10YR 4/3	SC	l f sbk	-	sh	-	ss,po	-	_	-	-	gw
2Ck2b	78-120	10YR 4/4	10YR 3/4	S	sg	-	lo	•	so,po	-	-	-	-	<del>-</del> -
otes: 1 -	2 cm pine nec	dle mat. RC-1 co	ilected at botton	of horizon	Bt and RC-2 o	collected at con	tact of h	orizon Bk	and 2Ck1.					
arbonate (	coatings on cla	ist bottoms, secon	dary cycle, in ho	rizon 2Ck1t	. In horizon 2	Ck2b prexisting	g carbo	naic, no se	econdary	,				
cle. Coa	tings on bottor	ns of clasts are th	ick and discontin	uous.		1	Ĭ		-	<del></del>		ļ		
LEGEN														
		SiL - Silty I L - Loam SL - Sandy SCL - Sandy Loam S - Sand	Loam 1 - 7 Clay 2- 3 -	- massive - single gr weak moderate strong	ain se si h v	o - loose o - soft h - slightly h - hard h - very hard h - extremely		1 - fev 2 - cc 3 - m 4 - cc	ommon any ontinuous	e - slightl effervescer cs - strong effervescer ev - violer effervescer	nt ly nt ntiy	c - clea g - gra d - diff s - smo w - wa i - irre	idual fuse ooth vy gular	
		SC - Sandy ( CL - Clay L C - Clay	oam vf f- m- c- typ gr pl	- very fine fine - medium coarse	ld v. fr fi v er	noist  - loose  fr - very friat  - friable  - firm  fi - very firm  fi - extremely		thick k - th morp pf - po po - p	in moderatel ick hology ed faces	KI - stage ) y	I carbonate	b - bro	oken	

ss - slightly sticky s - sticky vs - very sticky

plasticity
po - nonplastic
ps - slightly plastic
p - plastic
vp - very plastic

abk - angular blocky sbk - subangular blocky

## APPENDIX I RELOCATED EARTHQUAKES IN THE LANL REGION, 1973-1992

452 Events Selected Searched: 25 OCT 1994 File: bestcmb2.rst By: jdjb

SOURCE DATABASE:

Root name: bestcmb1

Created: 25 OCT 1994 10:43

By: jdjb

# Hypoctr rec: 457

# Comment rec: 0

Time span: 1974 01 17 23:04:20.10 -> 1989 07 26 01:43:10.78

**SEARCH PARAMETERS:** 

Time: 0001 JAN 01 -> 2100 DEC 31 Mag 1: -9.99 -> 9.99 Type: All Lat: 35.000 -> 36.750 Mag 2: -9.99 -> 9.99 Type: None Long: -107.250 -> -105.250 Intensity: 0 -> 12 Mode: 0

Depth: .00 -> 999.00 Search Mode: DATABASE

CENTER FOR DISTANCE CALC: Lat 35.83 Long -106.35

Cat No.	Date year-mo-day	Time (GMT) hr-min-sec	Lat L	-	epth	Mag1	Mag2	Inten				Az	D-min	RMS	Q	Std-Er	
====-	-========	-##########	-=========		km) ====-	-======		(MM)	(km)	Srce	Arr	Gap	(km)	(sec)		Horiz V	
1	1974 JAN 17	23:04:20.10	36.188 -10		1.54	2.07MDLA			42	WC	10	268	17.0	-====-	- = -	-======	
2	1974 APR 02	11:06:53.73	36.215 -10		2.53	1.65MDLA		• • •	45	WC	11	267	20.0	.11 .08	•	.0 .0	.0 .0
3	1975 SEP 06	03:46:49.99	36.187 -10		3.85	2.30MDCN			43	WC	10	268	18.0	.09	•	.0	.0
4	1975 DEC 03	13:41:32.10	35.798 -10	6.176	2.22	1.44MDLA	•••••		16	WC	9	166	5.0	,11	•	.0	.0
5	1976 APR 10	22:39:33.49	36.288 -10	6.148	4.60	1.67MDLA	******		54	WC	1Ś	139	29.0	.05	٠	.0	.0
6	1976 APR 11	07:44:01.96	36.293 -10	6.152	4.05	1.94MDLA			54	WC	15	172	30.0	.05	•	.0	.0
7	1976 APR 11	07:45:31.28	36.286 -10	6.149	5.39	1.35MDLA			54	WC	14	172	29.0	.07	:	.0	.0
8	1976 MAY 02	00:32:35.71	36.402 -10		9.41	2.69MDLA			73	WC	9	201	57.0	.02	:	.ŏ	.0
9	1976 MAY 22	10:50:38.86	36.338 -10		0.01	.89MDLA			76	WC	13	200	53.0	.08		.o	.0
10	1976 MAY 22	14:04:58.64	36.345 -10		2.21	1.04MDLA			77	WC	12	200	54.0	.07		.0	.ŏ
11	1976 JUN 01	16:39:58.73	36.522 -10		6.98	1.12MDLA			78	WC	8	194	42.0	.11		-0	.0
12	1976 JUN 26	12:55:39.04	36.168 -10			2.00 CA			40	WC	11	244	15.0	.09		.0	.0
13	1976 JUN 29	01:31:35.25	36.174 -10		2.53	1.50 CA		- •	39	WC	7	244	15.0	.08		-0	.0
14	1976 JUL 05	12:39:19.42	36.157 -10	_		2.30 CA			38	WC	11	121	13.0	. 10		.0	.0
15	1976 JUL 06	12:48:44.66	36.161 -10		3.11	2.00 CA			38	WC	12	242	14.0	.11		.0	.0
16	1976 DCT 24	07:15:29.69	36.004 -10		9.87	.50 CA			21	WC	6	151	5.0	.02		.0	.0
17	1976 NOV 03	21:05:00.36	35.332 -10		8.54	1.09MDLA		••	97	WC	13	184	35.0	.11		.0	.0
18	1976 NOV 09	13:24:50.32	35.280 -10		1.55	.52MDLA			93	WC	12	200	43.0	. 15		.0	.0
19	1976 NOV 11	10:00:08.82	36.007 -10		5.27	1.00 CA			27	WC	11	104	9.0	.03		.0	.0
20	1976 DEC 10	14:42:08.43	36.709 -100			1.36MDLA			103	WC	20	228	65.0	.24		.0	.0
21	1976 DEC 17	10:41:50.16	36.011 -106			1.40 CA			28	WC	10	108	10.0	.05		.0	.0
22	1976 DEC 31	07:53:58.37	36.674 -106			2.11MDLA		• •	98	WC	13	222	63.0	. 24		.0	.0
23	1977 JAN 20	23:26:47.43	36.272 -106			1.40MDLA			49	WC	12	156	35.0	.12		.0	.0
24	1977 MAR 02	08:54:10.97	36.056 -106		5.95	.30 CA			30	WC	5	138	35.0	-11		.0	.0
25	1977 MAR 03	13:35:46.19	36.009 -100		3.49	• • • • • • •			28	WC	11	123	28.0	.17		.0	.0
26 37	1977 APR 03	19:26:49.25	36.140 -106			2.32MDLA		• •	36	WC	13	75	12.0	.09		.0	.0
27	1977 APR 11	16:45:35.89	35.659 -107		2.24	.80 CA			65	WC	16	190	39.0	. 12		.0	.0
28	1977 APR 26	11:35:05.38	36.127 -106	6.182 7	7.97			••	36	WC	7	156	11.0	.24		.0	.0

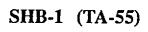
Cat No.	Date year-mo-day	Time (GMT) hr-min-sec	Lat	Long	Depth (km)	Mag1	Mag2		Dist (km)			Az Gap	D-min (km)	RMS (sec)	Q	Std-Ei Horiz V	Vert
29	1977 APR 26	11:59:47.29		-106.220	4.67	.50 CA			37	WC	11	165	12.0	.16	-=-	.0	.0
30	1977 APR 26	12:01:43.79	36.107	-106.253	.66	.86MDLA			32	WC	11	231	8.0	.08	:	.0	.0
31	1977 JUN 03	18:41:25.24	35.738	-106.264	1.21	1.36MDLA	******	•••	13	WC	6	123	9.0	.06	•	.0	.0
32	1977 JUL 02	01:24:41.17	36.231	-107.219	9.16	1.87MDLA			90	WC	13	219	42.0	.10	:	.0	.0
33	1977 JUL 28	07:44:29.92	35.849	-106.185	3.47	1.14MDLA			15	WC	9	147	10.0	.04	•	.0	.0
34	1977 JUL 29	16:42:08.76	35.106	-106.309	2.12	.89MDLA			80	WC	10	232	57.0	-08		.0	.0
35	1977 AUG 11	04:24:53.46	35.834	-106.189	4.87	.68MDLA			15	WÇ	9	143	8.0	.09		.ŏ	.0
36	1977 AUG 20	13:52:07.35	36.708	-106.761	7.00	1.72MDLA			104	WC	11	229	68.0	.12	•	.0	.0
37	1977 AUG 26	21:44:24.88	35.694	-106.250	16.16	.29MDLA			18	WC	8	146	10.0	.06	-	.0	.0
38	1977 AUG 29	07:13:38.43		-107.101	10.16	1.78MDLA			75	WC	12	172	54.0	.06		.0	.0
39	1977 AUG 29	08:31:38.16		-107.105	12.01	.87MDLA			76	WÇ	9	181	24.0	.04	-	.0	.0
40	1977 AUG 29	22:17:08.51		-106.644	17.12	1.23MDLA			64	WC	17	189	51.0	.11		.0	.0
41	1977 SEP 01	22:48:40.21	35.529	-107.088	6.67	1.24MDLA			75	WC	9	175	55.0	-07		.0	.0
42	1977 SEP 02	11:29:22.75		-107.085	10.05	.83MDLA			75	WC	13	154	25.0	.09		.0	.0
43	1977 OCT 02	14:38:35.70		-106.951	8.46	.85MDLA			54	WC	15	159	26.0	. 23		.0	.0
44	1977 OCT 04	20:57:42.24		-106.866	4.14	1.65MDLA			61	WC	14	168	19.0	.06		.0	.0
45	1977 OCT 13	19:28:17.24		-106.956	5.66	.94MDLA			61	WC	16	175	12.0	.10		.0	.0
46	1977 NOV 11	11:26:55.27		-107.167	9.65	.95MDLA			86	WC	14	105	17.0	.07		.0	.0
47	1977 NOV 17	13:02:28.88		-107.085	5.56	.61MDLA			75	WC	8	171	25.0	. 16		.0	.0
48	1977 DEC 02	12:10:07.39		-106.300	2.72	.91MDLA			40	WC	8	245	17.0	.06		.0	.0
49	1978 JAN 30	02:53:01.40		-106.843	8.47	.87MDLA			45	WC	17	166	12.0	.21		.0	-0
50	1978 FEB 13	18:57:38.91		-107.197	10.74	1.51MDLA			77	WC	15	172	44.0	.19	_	.0	.0
51	1978 FEB 14	16:49:04.46		-106.927	10.47	1.35MDLA			73	WC	14	196	20.0	.14		.0	.0
52	1978 MAR 12	00:30:12.13		-106.223	3.16	.54MDLA			29	WC	9	147	5.0	.04		.0	.0
53	1978 MAR 12	02:28:48.16		-106.216	6.05	1.16MDLA		• •	29	WC	11	145	4.0	.04		.0	.0
54	1978 MAR 12	03:04:04.22		-106.230	7.37	.54MDLA			27	WC	6	162	2.0	.08		.0	.0
55	1978 MAR 12	06:04:43.28	36.070		2.53	-80 CA	******	• •	30	WC	9	144	5.0	.11		.0	.0
56 57	1978 MAR 12	06:22:07.13	36.061		6.21		******	• •	28	WC	7	172	4.0	.06		.0	٠0
58	1978 MAR 12	11:41:57.91	36.055		7.22	• • • • • • •	*******		28	WC	5	171	3.0	.10		.0	.0
59	1978 MAR 12	13:19:59.41	36.054		5.12			• •	28	WC	5	187	3.0	.05		.0	.0
60	1978 MAR 14	10:43:22.81	36.065		4.90	1.57MDLA	* * * * * * * * * *	• •	29	WC	14	124	4.0	.07		.0	.0
61	1978 APR 23 1978 APR 23	13:10:59.91	35.663		5.97	.33MDLA		• •	59	WC	15	136	36.0	.14		.0	.0
62	1978 APR 23	17:06:28.66	35.661		8.47	.44MDLA	• • • • • • • •	• •	59	WC	18	134	36.0	. 19		.0	.0
63	1978 APR 23	23:25:35.75 23:59:49.45	35.659		5.41	1.27MDLA			60	WC	16	135	37.0	- 13	-	.0	.0
64	1978 APR 24	00:03:30.25	35.657		8.59	1.18MDLA		••	59	WC	15	134	37.0	.23		.0	.0
65	1978 APR 24	02:09:22.09	35.659 ·		9.18	.67MDLA	******	• •	60	WC	14	135	41.0	- 14		.0	.0
66	1978 APR 24	03:01:24.98	35.663		7.57	.77MDLA	• • • • • • • •	• •	60	WC	17	136	37.0	- 14	•	.0	.0
67	1978 MAY 02	00:03:27.73	35.665 -		4.23	.99MDLA		• •	59	WC	16	136	36.0	.11		.0	.0
68	1978 MAY 28	05:04:06.63	35.870 -		4.38	.56MDLA		• •	44	WC	16	132	15.0	. 15	•	.0	.0
69		13:32:41.40	36.356 -		5.40	.64MDLA		• •	72	WC	9	171	8.0	.09		.0	.0
70		23:08:05.39	35.278 -		12.99	.44MDLA	******	• •	64	WC	7	199	5.0	. 15	•	.0	.0
71		07:33:45.41	35.472 -		3.94	1.97MDLA			42	WC	11	162	15.0	.21		.0	.0
72		18:19:08.63	36.361 -		9.27	1.67MDLA	• • • • • • •	• •	93	MC	7	235	34.0	.11	•	.0	.0
73		20:47:32.48	35.729 -	_	7.60	20MDLA	• • • • • • • •	••	41	WC	12	216	20.0	. 18	•	.0	.0
		22:38:16.23	35.747 -		9.16	23MDLA	*******	• •	39	WC	14	108	17.0	.10	•	.0	.0
75		00:31:49.93	35.741 -		10.23	35MDLA	• • • • • • • • •	••	38	WC	14	105	17.0	. 25		.0	.0
76		00:49:26.22	35.734 -		5.81	-18MDLA		• •	39	WC	15	107	18.0	.12	•	.0	.0
		01:44:31.13	35.777 -			59MDLA		• •	37	WC	9	160	14.0	.18	•	-0	-0
_		01:47:05.16	35.735 -			1.85MDLA		• •	39	MC	16	99	18.0	.16	•	.0	.0
, 0	iniu ser es	01141103.10	35.742 -	100./60	10.28	04MDLA	• • • • • • • •	••	38	WC	11	209	17.0	. 19	•	.0	.0

Cat No.	Date year-mo-day		Lat -======-	Long	Depth (km)	Mag1	Mag2	Inten (MM)	(km)	Srce	Arr	Az Gap	D-min (km)	RMS (sec)	Q	Std-E Horiz	Vert
79	1978 SEP 25	02:07:44.25		-106.778	8.22	04MDLA		••	40	WC	·===- 15	110	18.0	-====- .18	-=-	.0	.0
80	1978 SEP 25	02:11:39.54	35.739	-106.765	8.17	32MDLA	*******	•••	39	WC	14	108	18.0	.17	•	.0	.0
81	1978 SEP 25	02:12:07.37	35.740	-106.758	9.66	26MDLA	*******	• • • • • • • • • • • • • • • • • • • •	38	WC	16	150	17.0	.25	:	.0	.0
82	1978 SEP 25	02:12:30.76	35.744	-106.763	10.16	.02MDLA	******	• • •	39	WC	16	107	17.0	.16	:	.0	.0
83	1978 SEP 25	02:15:47.58	35.731	-106.785	7.04			• • •	41	WC	10	246	19.0	.15	:	.0	-0
84	1978 SEP 25	02:15:56.16	35. <i>7</i> 35	-106.767	10.57	.85MDLA			39	WC	21	108	18.0	.09	:	.0	.0
85	1978 SEP 25	02:17:49.21	<b>35.73</b> 4	-106.767	8.17	.62MDLA			39	WC	25	108	18.0	. 15	:	.ŏ	.0
86	1978 SEP 25	02:28:13.62	35.745	-106.757	10.60	.31MDLA			38	WC	22	106	17.0	.23		.0	.0
87	1978 SEP 25	02:32:47.77	35.747	-106.757	10.09	12MDLA			38	WC	15	106	17.0	.20	:	.0	.ŏ
88	1978 SEP 25	03:11:03.03		-106.745	19.55	33MDLA			36	WC	13	128	9.0	. 25		.0	.0
89	1978 SEP 25	03:44:31.88		-106.791	8.61	76MDLA			41	WC	11	153	20.0	.12		.0	.0
90	1978 SEP 25	03:48:27.90		-106.782	9.27	43MDLA			41	WC	10	110	20.0	.11		.0	.0
91	1978 SEP 25	03:57:32.29		-106.759	8.13	.57MDLA		• •	39	WC	23	106	19.0	.09		.0	-0
92	1978 SEP 25	04:01:17.40		-106.760	6.32	.27MDLA			39	WC	23	106	18.0	.22		.0	.0
93	1978 SEP 25	04:22:27.58		-106.779	10.18	50MDLA			40	WC	14	110	19.0	.24		.0	.0
94	1978 SEP 25	04:39:06.18		-106.759	10.33	.23MDLA			38	WC	19	106	17.0	.24		.0	.0
95	1978 SEP 25	04:51:28.73	35.741		6.51	.31MDLA			37	WC	22	104	17.0	.21		.0	-0
96	1978 SEP 25	06:42:01.25	35.749		9.48	.70 NM	• • • • • • • •	• •	37	WC	16	104	16.0	.22		.0	.0
97	1978 SEP 25	06:42:03.29	35.730		9.52				39	WC	15	113	19.0	.21		.0	.0
98	1978 SEP 25	06:42:16.16	35.794		15.03	.19MDLA			37	WC	13	123	12.0	.24		.0	.0
99	1978 SEP 25	06:55:34.94	35.728		9.29	21MDLA			40	WC	17	108	19.0	.23		.0	.0
100	1978 SEP 25	07:18:43.85	35.730		8.96	12MDLA			39	WC	13	111	18.0	.22		.0	.0
101	1978 SEP 25	08:29:15.01	35.730		6.34	.42MDLA		• •	39	MC	18	107	19.0	.22		.0	.0
102	1978 SEP 25	10:45:33.00	35.731		7.21	.10MDLA			39	WC	17	107	19.0	.20		.0	.0
103	1978 SEP 25	12:30:47.49	35.725		7.96	.12MDLA		• •	39	WC	16	107	19.0	. 25		.0	.0
104	1978 SEP 25	15:07:16.93	35.730 ·	· • ·	9.61	- 16MDLA	• • • • • • •		41	WC	13	216	20.0	. 25		.0	.0
105	1978 SEP 26	20:10:41.70	35.726		9.91	.08MDLA		••	39	WC	10	213	33.0	.21		.0	.0
106 107	1978 SEP 28	09:00:45.40	35.106		7.80	1.69MDLA	• • • • • • • •		90	WC	19	209	58.0	-11		.0	.0
107	1978 SEP 28	12:12:23.24	35.112		7.85	1.34MDLA		• •	90	WC	18	208	58.0	.10		.0	.0
109	1978 SEP 28 1978 SEP 28	16:24:24.87	35.132		9.01	.80MDLA		• •	88	WC	15	204	58.0	. 12		.0	.0
110	1978 SEP 28	22:01:47.86	35.104		8.53	2.08MDLA	• • • • • • • •		91	WC	18	209	58.0	. 13		.0	.0
111	1978 SEP 29	22:10:19.66	35.088		10.47	.33MDLA	• • • • • • • •		92	WC	13	212	58.0	.12	• .	.0	.0
112	1978 SEP 29	02:44:12.94 09:38:39.20	35.111 -		9.18	1.39MDLA		• •	90	WC	20	208	58.0	. 14		.0	.0
113	1978 SEP 29	09:50:39.20	35.110 ·		7.38	2.18MDLA		• •	90	WC	21	208	58.0	. 13	•	.0	.0
114	1978 SEP 29	21:26:34.80	35.056		9.96	.44MDLA	*******	• •	95	WC	9	218	59.0	.13	•	.0	_0
115	1978 SEP 29	22:26:18.40	35.099 -		9.99	.24MDLA	• • • • • • • •	• •	91	WC	12	210	58.0	. 16	•	.0	.0
116	1978 SEP 30	00:36:14.42	35.100 -		8.88	.39MDLA	• • • • • • • •	• •	91	MC	12	210	58.0	.08	•	.0	.0
117		00:38:59.54	35.100 - 35.092 -		9.42	1.25MDLA		• •	91	MC	18	210	58.0	.07	•	.0	.0
118	1978 SEP 30	08:18:52.88	35.114 -		9.72	.41MDLA		• •	92	MC	9	237	59.0	.13	•	.0	.0
119		11:52:46.33	35.124 -		7.84	1.61MDLA	* * * * * * * * *	• •	89	WC	19	208	58.0	-09	•	.0	.0
120		00:16:39.31	35.109 -		10.39	.79MDLA		• •	89	WC	16	206	58.0	.16	•	.0	-0
121		11:46:57.02	35.105 -		10.38 9.22	1.41MDLA	• • • • • • •	••	90	WC	17	208	58.0	-07	•	.0	.0
122		11:57:15.66	35.103 -			.90MDLA		••	90	WC	19	209	58.0	.10	•	.0	.0
123		02:03:44.72	35.103 - 35.124 -		7.06 10.08	13MDLA		• •	90	WC	10	210	58.0	.16	٠	.0	.0
124		03:11:37.00	35.124 -			.42MDLA	• • • • • • • •	• •	89	WC	13	205	58.0	.24	•	.0	.0
125		17:01:24.34	35.118 -		9.45 10.06	.93MDLA .49MDLA	• • • • • • • • • • • • • • • • • • • •	• •	89	WC	18	207	57.0	.13	•	.0	.0
126		23:13:18.76	36.091 -		5.26	88MDLA		••	89 E4	MC	12	207	57.0	-20	•	.0	.0
127		13:43:06.98	36.311 -		10.12	1.18MDLA		••	51	WC	16	151	9.0	-14	•	.0	.0
	1978 OCT 11		36.312 -		12.44	.06MDLA		••	60 47	WC	13	101	13.0	.06	•	.0	.0
			JU.J.L -		16.44	. COMPLA		• •	63	WC	9	117	8.0	.07	•	.0	.0

1979   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970   1970	Cat No.	Date year-mo-day =======		Lat	Long	Depth (km)	Mag1	Mag2		Dist (km)	Srce	Arr	Gap	D-min (km)	RMS (sec)	Q	Std-Ei Horiz \	<b>v</b> ert
1978 DCT 30 03:59:27.72 36:506 -106:549 9.25 1.14WDLA																		_
131 1976 NOV 05 06:40:22.470 35.765 -106.728 9.74 3390LA 37 NC 11 251 15.0 21 0 0 0 131:21 175.00 21 0 0 0 131:21 175.00 21 0 0 0 131:21 175.00 21 0 0 0 131:21 175.00 21 0 0 0 131:21 175.00 21 0 0 0 131:41 175.00 15 0 0 0 0 0 0 0 0 0 131:41 175.00 16 02:11:41.75.35 36.153 -106.190 3.15 .80 NM 39 NC 12 164 14.00 11 0 0 0 131:49.65 36.153 -106.190 3.15 .80 NM 39 NC 12 164 14.00 05 0 0 0 0 0 131:41 175.00 16 02:11:47.53 36.152 -106.190 3.15 .80 NM 39 NC 12 164 14.00 05 0 0 0 0 131:41 175.00 170 170 170 170 170 170 170 170 170 1	130	1978 OCT 30	03:59:27.72	36.506	-106.549													
132 1978 NOV 15 023463-06.87 36-150 -106.192 6.54 1.2640LA 38 MC 16 78 13.0 05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			06:40:24.70	35.765	-106.748	9.74	33MDLA											
1373 1978 NOV 16 02:13:49-65 36:153 -106:190 3.15 80 NM 39 NC 12 164 14.0 11 0 0.0 0.0 135 1978 NOV 16 02:11:57.35 36:153 -106:192 5.54 5.50 NM 38 NC 9 120 14.0 0.5 0.0 0.0 135 1978 NOV 16 09:12:27.08 36:152 -106:194 4.57 .80 NM 38 NC 9 120 14.0 .05 0.0 0.0 137 1978 NOV 17 02:16:25.81 36:152 -106:194 5.31 38 NC 9 120 14.0 .05 0.0 0.0 137 1978 NOV 17 02:16:25.81 36:151 -106:190 5.31 38 NC 8 165 14.0 .25 0.0 0.0 137 1978 NOV 17 02:16:25.81 36:151 -106:190 5.31 38 NC 8 164 14.0 .08 0.0 0.0 139 1978 NOV 17 02:16:25.81 36:151 -106:190 5.31 38 NC 8 164 14.0 .08 0.0 0.0 139 1978 NOV 17 02:16:25.81 36:151 -106:190 5.61 39 NN 38 NC 8 162 13.0 0.0 0.0 141 1978 NOV 17 02:16:25.30 36:153 -106:190 5.61 30 NN 38 NC 8 162 13.0 0.0 0.0 141 1978 NOV 17 02:16:25.30 36:153 -106:186 4.99 .80 NN 39 NC 11 120 14.0 0.8 0.0 0.0 141 1978 NOV 17 02:36:40.80 4.84 36:186 -106:188 4.99 .80 NN 39 NC 11 120 14.0 0.8 0.0 0.0 141 1978 NOV 18 00:30:40.80 4.84 36:186 -106:188 4.99 .80 NN 38 NC 8 162 13.0 0.0 0.0 141 1978 NOV 28 05:25:30:56 35.201 106:80 4.99 .80 NN 38 NC 7 118 13.0 0.0 0.0 141 1978 NOV 28 05:25:30:56 35.201 106:80 14.90 14.0 14.0 0.8 0.0 0.0 141 1978 NOV 28 05:25:30:56 35.201 106:80 14.90 14.0 14.0 0.8 0.0 0.0 141 1978 NOV 28 05:25:30:56 35.201 106:80 14.90 14.0 14.0 0.8 0.0 0.0 141 1978 NOV 28 05:25:30:56 35.201 106:80 14.90 14.0 14.0 0.8 0.0 0.0 141 1978 NOV 28 05:25:30:56 35.201 106:80 14.0 14.0 14.0 0.8 0.0 0.0 14.0 14.0 14.0 14.0 0.8 0.0 0.0 14.0 14.0 14.0 0.0 14.0 14.0 14				36.150	-106.192	6.54	1.26MDLA											
1978 NOV 16 09:12:127.08 36.153 - 106.192 5.54 5.50 NM 39 WC 10 120 29.0 .05 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0				36.153	-106.190	3.15	.80 NM			39	WC							
1978 MOV 10 09716227.08 36.152 -1066.194 4.57 80 MM 36 MC 9 120 14.0 0.5 0 0 0 0 137 1978 MOV 10 09716234, 43 36.156 -106.191 6.24						5.54	.50 NM			39	WC	10	120					
1976 NOV 16 09:160:394-43 36.156 106.191 6.24 33 MC 8 165 14.0 0.25 0.0 0.0 138 1978 NOV 17 02:16:152.81 36.151 106.190 5.31 38 MC 8 164 14.0 0.8 0.0 0.0 138 1978 NOV 17 02:34:26.09 36.197 106.182 20.53 43 MC 8 164 14.0 0.8 0.0 0.0 139 1978 NOV 17 02:34:26.09 36.197 106.182 20.53 43 MC 8 164 14.0 0.8 0.0 0.0 140 1978 NOV 17 02:34:26.09 36.197 106.182 20.53 43 MC 8 162 13.0 0.8 0.0 0.0 140 1978 NOV 17 12:34:31.30 36.146 106.188 6.32 30 NN 33 MC 8 162 13.0 0.8 0.0 0.0 141 1978 NOV 17 13:59:34.76 36.153 106.188 6.32 30 NN 33 MC 7 12 14.0 0.8 0.0 0.0 141 1978 NOV 17 13:59:39.56 35.20 106.709 5.58 1.29MN 38 MC 7 118 13.0 21 1.0 0.0 0.0 142 1978 NOV 18 00:25:39.56 35.20 106.709 5.58 1.29MN 38 MC 7 118 13.0 21 0.0 0.0 144 1978 DEC 03 03:59:23.29 35.637 106.815 6.20 6.2MDLA 47 MC 16 269 47.0 20 0.0 0.0 144 1978 DEC 07 20:27:27:3.38 35.133 -106.818 10.08 1.14MDLA 88 MC 21 20.3 58.0 112 0.0 0.0 146 1978 DEC 07 20:27:27:3.38 35.13 - 106.809 4.01 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0							.80 NM			38	WC	9	120	14.0	.05			
1978 NOV 17 02:34:26.00 36.197 - 106.182 20.53							• • • • • • • •			39	WC	8	165	14.0	.25		.0	.0
1978 NOV 17 05:59:33.76 35.154 - 106.191 5.61									• •			-		14.0	.08		.0	.0
140 1978 NOV 17 12:34:31:30 35.146 - 106.188 6 .32 30 NM 38 NC 8 162 13:0 08 0 0 0 141 1978 NOV 17 13:05:17.45 36 153 - 106.188 6 4.99 80 NM 39 NC 14 120 14.0 08 0 0 0 142 1978 NOV 18 00:30:49.84 36.188 106.185 4.92 30 NM 38 NC 14 120 14.0 08 0 0 0 143 1978 NOV 18 00:30:49.84 36.188 106.185 4.92 30 NM 38 NC 14 120 14.0 08 0 0 0 0 144 1978 NOV 18 00:30:49.84 36.188 106.795 5.58 1.92MDLA 77 NC 16 269 47.0 20 0 0 0 0 144 1978 NOV 28 05:25:39.56 35 201 106.799 5.58 1.92MDLA 77 NC 16 269 47.0 20 0 0 0 0 144 1978 NOV 28 05:25:39.56 35 201 106.799 5.58 1.92MDLA 87 NC 16 269 47.0 20 0 0 0 0 144 1978 NOV 28 05:25:39.56 35 201 106.799 5.58 1.92MDLA 88 NC 21 203 58.0 112 0 0 0 146 1978 NOV 28 05:25:30.31 35.187 - 106.815 10.08 1.14MDLA 88 NC 21 203 58.0 112 0 0 0 147 1978 NOV 28 05:25:30.31 35.107 - 106.809 4.01 6.90MDLA 87 NC 17 200 59.0 25 0 0 0 147 1978 NOV 28 05:24.34 43 53.17 - 106.126 3.78 1.57MDLA 87 NC 17 200 59.0 25 0 0 0 149 1978 NOV 28 05:24.34 43 53.17 - 106.126 3.78 1.57MDLA 87 NC 17 200 59.0 25 0 0 0 149 1978 NOV 28 05:25.34 43 45.317 - 106.126 3.78 1.57MDLA 87 NC 14 144 10.0 111 0 0 0 151 1979 AN 14 01.45:18:28 35.665 107.154 10.57 1.20MDLA 47 NC 14 144 10.0 111 0 0 0 151 1979 AN 14 01.45:18:28 35.665 107.154 10.57 1.20MDLA 74 NC 22 162 30.0 14 0 0 0 151 1979 AN 14 01.45:18:28 35.665 107.154 10.57 1.20MDLA 75 NC 22 162 30.0 14 0 0 0 153 1979 AN 17 01:18:38.86 36.284 106.87 NS 8.00 46MDLA 65 NC 12 18 26.0 15 0 0 0 0 155 1979 AN 18 09:31:35.89 43 6.284 106.89 8.00 46MDLA 65 NC 12 18 26.0 15 0 0 0 0 0 155 1979 AN 19 02:20:30.0 36.296 106.806 8.83 1.72MDLA 66 NC 22 82 16.0 10 0 0 0 155 1979 AN 19 02:20:30.0 36.296 106.806 8.83 1.72MDLA 66 NC 22 188 26.0 15 0 0 0 0 157 1979 AN 26 15:13:40.40 30 18.59 15:00.806 8.33 1.20MDLA 88 NC 12 205 57.0 10 0 0 0 157 1979 AN 26 15:13:40.40 30 18.50 18.50 18.50 18.50 18.50 18.50 18.50 18.50 18.50 18.50 18.50 18.50 18.50 18.50 18.50 18.50 18.50 18.50 18.50 18.50 18.50 18.50 18.50 18.50 18.50 18.50 18.50 18.50 18.50 18.50 18.50 18.50 18.50 18.50 18.50 18.50 18.50 18.50 18.50 18												_		19.0	.08		.0	.0
1978 NOV 17 13:05:17.45 36.153 -106:186 4.99 180 MM 339 WC 16 103:049.84 36.188 -106:186 4.99 180 MM 339 WC 17 118 13:0 .01 .00 .01 .01 .01 .01 .01 .01 .01 .0									• •									.0
142 1978 NOV 18 00:30:49,84 36.148 -106:185 4.92 30 MH 38 WC 7 118 13.0 221 .0 .0 .0 .0 .1 .1 .1 .0 .0 .0 .0 .1 .1 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0																		
143 1978 NOV 28 05:25:39.56 35:201 -106.709 5.58 1.92MDLA 77 WC 16 289 47.0 .20 .0 .0 .0 .144 1978 DEC 03 03:59:23.29 35:637 -106.815 6.20 .62MDLA 47 WC 14 154 30.0 .11 .0 .0 .145 1978 DEC 07 20:27:23.38 35:138 -106.818 10.08 1.14MDLA 88 WC 21 203 58.0 .12 .0 .0 .0 .146 1978 DEC 07 23:25:50.31 35:107 -106.809 4.01 .69MDLA 90 WC 10 232 62.0 .11 .0 .0 .146 1978 DEC 07 23:25:50.31 35:151 -106.815 0.85 10.00 .94MDLA 87 WC 17 200 59.0 .25 .0 .0 .148 1978 DEC 16 23:06:34.44 35:317 -106.126 3.78 1.57MDLA 60 WC 8 209 10.0 .11 .0 .0 .150 1978 DEC 16 23:06:34.44 35:317 -106.126 3.78 1.57MDLA 60 WC 8 209 10.0 .11 .0 .0 .151 1979 JAN 14 01:43:18.28 35:925 -106.855 10.20 .22MDLA 47 WC 14 144 10.0 .11 .0 .0 .0 .151 1979 JAN 14 01:43:18.28 35:695 -107.154 10.57 1.20MDLA 74 WC 22 162 30.0 .14 .0 .0 .0 .152 1979 JAN 17 00:15:38.86 36:295 -106.811 7.08 1.0 .40MDLA 75 WC 22 162 30.0 .14 .0 .0 .0 .153 1979 JAN 18 09:31:35.94 36:295 -106.811 7.08 1.54MDLA .65 WC 22 82 16.0 .10 .0 .0 .154 1979 JAN 18 09:31:35.94 36:295 -106.80 8.32 1.72MDLA .65 WC 22 82 16.0 .10 .0 .0 .155 1979 JAN 19 02:20:30.06 36:296 -106.806 8.35 .20MDLA .65 WC 22 82 188 26.0 .15 .0 .0 .156 1979 JAN 20 15:17:30.63 35:800 -106.870 .22 .13MDLA .65 WC 22 82 16.0 .0 .0 .0 .0 .158 1979 JAN 20 15:17:30.63 35:800 -106.806 .80 .22 .13MDLA .65 WC 21 82 .50 .0 .15 .0 .0 .0 .0 .158 1979 JAN 20 15:17:30.63 35:180 -106.806 .80 .22 .13MDLA .65 WC 21 .82 .50 .0 .15 .0 .0 .0 .0 .154 1979 JAN 20 .51:17:30.63 35:180 -106.806 .70 .22 .13MDLA .65 WC 21 .82 .50 .0 .15 .0 .0 .0 .0 .154 1979 JAN 20 .51:17:30.63 35:180 -106.806 .80 .50 .20 .20 .10 .80 WC 10 .20 .57 .0 .0 .0 .0 .0 .154 1979 JAN 20 .51:17:30.63 35:180 -106.806 .70 .20 .10 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0									• •									
144 1978 DEC 03 03:59:23:29 35:637 -106.815 6.20 6.2MDLA 47 WC 14 154 30.0 1.11 0.0 0 145 1978 DEC 07 20:27:23:38 35:138 -106.818 10.08 1.14MDLA 88 WC 21 203 58.0 1.12 0.0 0 146 1978 DEC 07 20:27:23:38 35:138 -106.818 10.08 1.14MDLA 88 WC 21 203 58.0 1.12 0.0 0 147 1978 DEC 17 23:25:50:31 35:107 -106.809 4.01 6.9MDLA 90 WC 10 232 62.0 1.11 0.0 0 147 1978 DEC 15 18:59:31:33 35:151 -106.825 10.08 9.4MDLA 87 WC 17 200 59-0 .25 0.0 1.40 1978 DEC 16 23:06:34.44 35.317 -106.1626 3.78 1.57MDLA 60 WC 8 209 10.0 1.11 0.0 0 149 1978 DEC 26 03:08:02.92 35:925 -106.855 10.20 .22MDLA 67 WC 14 144 10.0 1.11 0.0 151 1979 JAN 12 00:151 1979 JAN 14 01:43:18:28 35:685 -107.154 10.57 1.20MDLA 77 WC 14 144 10.0 1.11 0.0 0.151 1979 JAN 14 01:43:18:28 35:685 -107.154 10.57 1.20MDLA 77 WC 22 162 30.0 1.4 0.0 0.153 1979 JAN 17 01:53.88 63 62.24 -106.798 8.00 .46MDLA 65 WC 22 162 30.0 1.4 0.0 0.154 1979 JAN 18 09:31:35.94 5.65 106.811 7.08 1.54MDLA 65 WC 22 182 16.0 1.0 0.0 0.0 153 1979 JAN 18 09:31:35.94 5.65 584 -106.53 8.32 1.72MDLA 65 WC 22 182 16.0 1.0 0.0 0.0 155 1979 JAN 19 02:20:30.06 36:294 -106.806 8.63 .20WDLA 66 WC 22 188 16.0 1.0 0.0 0.0 155 1979 JAN 20 15:17.30.63 35.800 -106.870 .22 1.33MDLA 66 WC 22 188 26.0 15 0.0 0.0 0.0 156 1979 JAN 22 20:18:13.42 35.125 -106.806 8.63 .20WDLA 88 WC 12 205 57.0 1.0 0.0 0.0 158 1979 JAN 22 20:18:13.42 35.125 -106.806 8.63 .20WDLA 88 WC 12 205 57.0 1.0 0.0 0.0 158 1979 JAN 22 20:18:13.42 35.125 -106.806 8.63 .20WDLA 88 WC 12 205 57.0 1.5 0.0 0.0 158 1979 JAN 22 20:18:13.42 35.125 -106.806 8.63 .20WDLA 88 WC 22 20:18:13.42 35.125 -106.801 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	_															٠		
145 1978 DEC 07 20:27:23:38 35:138 - 106.818 10.08 1.14MDLA 88 WC 21 203 58.0 12 0 0 0 146 1978 DEC 07 23:25:50.31 35:107 - 106.809 4.01 6.99 Mc 10 232 62.0 11 0 0 0 147 1978 DEC 15 18:59:31:33 35:151 - 106.825 10.08 .94MDLA 87 WC 17 200 59.0 .25 0 0 0 148 1978 DEC 16 23:06:34.44 35:317 - 106.126 3.78 1.57MDLA 60 WC 8 209 10.0 11 0 0 150 1978 DEC 26 03:08:02.92 35.925 - 106.855 10.20 .22MDLA 47 WC 14 144 10.0 11 0 0 150 1978 DEC 31 14:09:53.98 36:112 - 106.167 12.17 1.10 NM 35 WC 7 167 11.0 06 0 0 151 1979 JAN 14 0 11:43:18.28 35:685 - 107.154 10.57 1.20MDLA 65 WC 22 162 30.0 14 0 0 151 1979 JAN 17 00:15:38.86 36:284 - 106.798 8.00 .46MDLA 65 WC 13 159 16.0 10 0 0 0 153 1979 JAN 18 09:31:36:94 36:584 - 106.563 8.32 1.72MDLA 65 WC 22 82 16.0 10 0 0 0 155 1979 JAN 19 02:20:30.06 36:286 - 106.806 8.63 .20MDLA 66 WC 22 138 26.0 15 0 0 0 1579 JAN 20 15:17:30:63 35:800 106.870 .22 13MDLA 66 WC 22 138 26.0 15 0 0 0 157 1979 JAN 20 15:17:30:63 35:800 106.870 .22 13MDLA 66 WC 22 138 26.0 0 15 0 0 0 157 1979 JAN 20 15:17:30:63 35:800 106.870 .22 13MDLA 66 WC 29 185 15.0 0.8 0 0 157 1979 JAN 20 15:17:30:63 35:103 106.870 .22 13MDLA 66 WC 29 185 15.0 0.8 0 0 157 1979 JAN 20 15:17:30:63 35:113 - 106.806 WC 37 1979 JAN 20 15:17:30:63 35:113 - 106.806 WC 37 1979 JAN 20 15:17:30:63 35:113 - 106.806 WC 37 1979 JAN 20 15:17:30:63 35:113 - 106.806 WC 37 1979 JAN 20 15:17:30:63 35:113 - 106.806 WC 37 1979 JAN 20 15:17:30:63 35:113 - 106.806 WC 37 1979 JAN 20 15:17:30:63 35:113 - 106.806 WC 37 1979 JAN 20 15:17:30:63 35:113 - 106.806 WC 37 1979 JAN 20 15:17:30:63 35:113 - 106.806 WC 37 1979 JAN 20 15:17:30:63 35:113 - 106.806 WC 37 1979 JAN 20 15:17:30:63 35:113 - 106.806 WC 37 1979 JAN 20 15:17:30:63 35:113 - 106.806 WC 37 1979 JAN 20 15:17:30:63 35:113 - 106.806 WC 37 1979 JAN 20 10:17:30:30 1979 JAN 20 10:17:30:30 1979 JAN 20 10:17:30:30 1979 JAN 20 10:17:30:30 1979 JAN 20 10:17:30 19																•		
146 1978 DEC 07 23:25:50.31 35:107 -106.809 4.01 .69MDLA 90 WC 10 232 62.0 11 0 0 0 147 1978 DEC 15 18:59:31:33 35:107 -106.825 10.08 .94MDLA 87 WC 17 200 59.0 .25 0 0 148 1978 DEC 16 23:06:34.44 35:317 -106.126 3.78 1.57MDLA 60 WC 8 209 10.0 11 0 0 0 149 1978 DEC 26 03:08:02.92 35:925 -106.855 10.20 .22MDLA 47 WC 14 144 10.0 11 0 0 0 151 1979 JAN 14 01:43:18:28 35:685 107.154 10.57 1.20MDLA 74 WC 14 144 10.0 11 0 0 0 151 1979 JAN 14 01:43:18:28 35:685 107.154 10.57 1.20MDLA 74 WC 22 162 30.0 14 0 0 0 151 1979 JAN 17 01:15:38:86 36:284 -106.798 8.00 .46MDLA 65 WC 22 182 16.0 10 0 0 0 153 1979 JAN 17 01:132:25:41 36:285 106.811 7.08 1.54MDLA 65 WC 22 82 16.0 10 0 0 0 154 1979 JAN 18 09:31:36.94 36:284 106.563 8.32 1.72MDLA 86 WC 22 138 26.0 15 0 0 155 1979 JAN 19 02:20:30.06 36:296 106.806 8.63 20MDLA 66 WC 9 185 15.0 0 8 0 0 156 1979 JAN 22 01:18:13:42 35:125 10.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.804 16.80																•		
147 1978 DEC 15 18:59:31.33 35:151 - 106:825 10:08 94HDLA 87 WC 17 200 59:0 25 .0 .0 .0 .0 .1 .1 .0 .0 .0 .1 .1 .0 .0 .0 .1 .1 .0 .0 .0 .1 .1 .0 .0 .0 .0 .1 .1 .0 .0 .0 .0 .1 .1 .0 .0 .0 .0 .1 .1 .0 .0 .0 .0 .1 .1 .0 .0 .0 .0 .1 .1 .0 .0 .0 .0 .1 .1 .0 .0 .0 .0 .1 .1 .0 .0 .0 .1 .1 .0 .0 .0 .1 .1 .0 .0 .0 .1 .1 .0 .0 .0 .1 .1 .0 .0 .0 .1 .1 .0 .0 .0 .1 .1 .0 .0 .0 .1 .1 .0 .0 .0 .1 .1 .0 .0 .0 .0 .1 .1 .0 .0 .0 .0 .1 .1 .0 .0 .0 .0 .1 .1 .0 .0 .0 .0 .1 .1 .0 .0 .0 .0 .1 .1 .0 .0 .0 .0 .0 .1 .1 .0 .0 .0 .0 .0 .1 .1 .0 .0 .0 .0 .0 .0 .0 .1 .1 .0 .0 .0 .0 .0 .0 .0 .1 .1 .0 .0 .0 .0 .0 .0 .1 .1 .0 .0 .0 .0 .0 .0 .1 .1 .0 .0 .0 .0 .0 .1 .1 .0 .0 .0 .0 .0 .0 .0 .1 .1 .0 .0 .0 .0 .0 .0 .1 .1 .0 .0 .0 .0 .0 .0 .0 .1 .1 .0 .0 .0 .0 .0 .0 .1 .1 .0 .0 .0 .0 .0 .1 .1 .0 .0 .0 .0 .0 .1 .0 .0 .0 .0 .1 .0 .0 .0 .0 .1 .0 .0 .0 .0 .1 .0 .0 .0 .1 .0 .0 .0 .0 .1 .0 .0 .0 .0 .1 .0 .0 .0 .0 .1 .0 .0 .0 .0 .1 .0 .0 .0 .0 .1 .0 .0 .0 .0 .1 .0 .0 .0 .0 .1 .0 .0 .0 .0 .1 .0 .0 .0 .0 .0 .1 .0 .0 .0 .0 .0 .1 .0 .0 .0 .0 .1 .0 .0 .0 .0 .0 .0 .1 .0 .0 .0 .0 .0 .1 .0 .0 .0 .0 .0 .1 .0 .0 .0 .0 .0 .1 .0 .0 .0 .0 .1 .0 .0 .0 .0 .0 .1 .0 .0 .0 .0 .1 .0 .0 .0 .0 .0 .1 .0 .0 .0 .0 .0 .1 .0 .0 .0 .0 .0 .1 .0 .0 .0 .0 .0 .1 .0 .0 .0 .0 .0 .1 .0 .0 .0 .0 .0 .1 .0 .0 .0 .0 .0 .1 .0 .0 .0 .0 .0 .1 .0 .0 .0 .0 .0 .0 .0 .0 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0																-		
148 1978 DEC 16 23:06:33.4.44 35.317 -106.126 3.78 1.57MDLA 60 WC 8 209 10.0 .11 .0 .0 .0 .149 1978 DEC 26 03:08:02.92 35.925 -106.855 10.20 .22MDLA 47 WC 14 144 10.0 .11 .0 .0 .0 .0 .0 .0 .151 1979 JAN 14 01:43:18.28 35.665 -107.154 10.57 1.20MDLA 74 WC 22 162 30.0 .14 .0 .0 .0 .151 1979 JAN 14 01:43:18.28 35.665 -107.154 10.57 1.20MDLA 74 WC 22 162 30.0 .14 .0 .0 .0 .153 1979 JAN 17 11:32:25.41 36.285 -106.811 7.08 1.54MDLA .65 WC 32 82 16.0 .10 .0 .0 .0 .153 1979 JAN 17 11:32:25.41 36.285 -106.811 7.08 1.54MDLA .65 WC 32 82 16.0 .10 .0 .0 .0 .0 .154 1979 JAN 18 09:31:35.94 36.584 -106.686 8.63 2.20MDLA .66 WC 22 82 16.0 .10 .0 .0 .0 .0 .0 .155 1979 JAN 19 02:20:30.06 36.296 -106.806 8.63 .20MDLA .66 WC 22 82 26.0 .15 .0 .08 .0 .0 .0 .0 .0 .156 1979 JAN 20 .15:17:30.63 35.800 -106.870 .22 .13MDLA .66 WC 9 185 15.0 .08 .0 .0 .0 .0 .158 1979 JAN 22 02:18:13.42 .35 .125 -106.804 8.37 .50MDLA .88 WC 12 205 57.0 .10 .0 .0 .158 1979 JAN 22 02:18:13.42 .35 .125 -106.804 8.37 .50MDLA .88 WC 12 205 57.0 .10 .0 .0 .158 1979 JAN 22 02:51:26.18 35.113 -106.801 4.61 .94MDLA .90 WC 19 208 57.0 .15 .0 .0 .158 1979 JAN 22 02:51:26.18 35.115 -106.806 8.50 .82MDLA .89 WC 10 207 58.0 .17 .0 .0 .161 1979 JAN 25 11:15:00.24 35.125 -106.804 8.50 .82MDLA .89 WC 10 207 58.0 .17 .0 .0 .161 1979 JAN 27 00:24:09.47 35.094 -106.805 5.66 .17MDLA .90 WC 19 208 57.0 .15 .0 .0 .161 1979 JAN 27 00:24:09.47 35.094 -106.805 5.66 .17MDLA .90 WC 19 208 57.0 .15 .0 .0 .0 .163 1979 JAN 28 02:45:06.95 35.098 -106.799 7.24 .17MDLA .91 WC 13 211 58.0 .13 .0 .0 .164 1979 JAN 28 02:45:06.95 35.098 -106.799 7.24 .17MDLA .91 WC 13 211 58.0 .13 .0 .0 .164 1979 JAN 31 12:01:35.14 35.115 -106.805 6.69 .15MDLA .89 WC 10 206 57.0 .12 .0 .0 .164 1979 JAN 31 12:01:35.14 35.115 -106.805 6.69 .15MDLA .89 WC 10 206 57.0 .18 .0 .0 .0 .177 1979 FEB 03 12:22:16.64 35.112 -106.808 8.21 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	147															-		
149 1978 DEC 26 03:08:02.92 35.925 -106.855 10.20 .22MDLA	148																	
150 1978 DEC 31 14:09:53.98 36.112 -106.167 12.17 1.10 NM 35 WC 7 167 11.0 .06 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	149	1978 DEC 26														•		
151   1979   JAN 14   01:43:18.28   35.685 - 107.154   10.57   1.20MDLA   74   WC   22   162   30.0   14   0.0   0.0   152   1979   JAN 17   10:132:25.41   36.285 - 106.811   7.08   1.54MDLA   65   WC   13   159   16.0   10   0.0   0.0   154   1979   JAN 17   11:32:25.41   36.285 - 106.811   7.08   1.54MDLA   65   WC   22   82   16.0   10   0.0   0.0   154   1979   JAN 18   09:31:36.94   36.584   -106.563   8.32   1.72MDLA   86   WC   22   138   26.0   15   0.0   0.0   155   1979   JAN 19   09:31:36.94   36.584   -106.563   8.32   1.72MDLA   86   WC   22   138   26.0   15   0.0   0.0   155   1979   JAN 20   15:17:30.63   35.800   -106.870   .22   13MDLA   47   WC   16   138   4.0   0.0   0.0   0.0   157   1979   JAN 22   20:18:13.42   35.125   -106.804   8.37   .50MDLA   88   WC   12   205   57.0   10   0.0   0.0   158   1979   JAN 24   14:14:30.73   35.113   -106.804   8.37   .50MDLA   88   WC   12   205   57.0   10   0.0   0.0   159   1979   JAN 25   02:51:26.18   35.115   -106.806   7.07   .09MDLA   89   WC   10   207   58.0   17   0.0   0.0   162   1979   JAN 27   00:24:09.47   35.094   -106.805   5.66   17MDLA   89   WC   10   207   58.0   17   0.0   0.0   162   1979   JAN 27   00:24:09.47   35.094   -106.805   5.66   17MDLA   91   WC   13   211   58.0   13   0.0   0.0   162   1979   JAN 28   18:37:03.25   35.109   -106.805   5.66   17MDLA   91   WC   13   211   58.0   13   0.0   0.0   164   1979   JAN 28   18:37:03.25   35.109   -106.805   6.69   15MDLA   91   WC   13   211   58.0   12   0.0   0.0   164   1979   JAN 28   18:37:03.25   35.112   -106.803   6.69   7.100   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0	150	1978 DEC 31	14:09:53.98													•		
152 1979 JAN 17 00:15:38.86 36.284 -106.798 8.00 .46MDLA .65 WC 13 159 16.0 .10 .0 .0 .0 .153 1979 JAN 17 11:32:25.41 36.285 -106.811 7.08 1.54MDLA .65 WC 22 82 16.0 .10 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	151	1979 JAN 14	01:43:18.28													•		
153 1979 JAN 17 11:32:25.41 36.285 -106.811 7.08 1.5AmDLA 65 MC 22 82 16.0 .10 .0 .0 .0 .0 .154 1979 JAN 18 09:31:36.94 36.584 -106.563 8.32 1.72MDLA 86 MC 22 138 26.0 .15 .0 .0 .0 .0 .155 1979 JAN 19 02:20:30.06 36.296 -106.806 8.63 .20MDLA 86 MC 22 138 26.0 .15 .0 .0 .0 .0 .0 .156 1979 JAN 20 15:17:30.63 35.800 -106.870 .22 .13MDLA 47 MC 16 138 4.0 .08 .0 .0 .0 .155 1979 JAN 22 02:18:13.42 35.125 -106.804 8.37 .50MDLA 88 MC 12 205 57.0 .10 .0 .0 .0 .158 1979 JAN 24 14:14:30.73 35.113 -106.801 4.61 .94MDLA 90 MC 19 208 57.0 .15 .0 .0 .0 .159 1979 JAN 25 02:51:26.18 35.115 -106.806 7.07 .09MDLA 89 MC 10 207 58.0 .17 .0 .0 .0 .161 1979 JAN 27 00:24:09.47 35.094 -106.805 5.66 .17MDLA 91 MC 13 211 58.0 .13 .0 .0 .0 .161 1979 JAN 27 00:24:09.47 35.094 -106.805 5.66 .17MDLA 91 MC 13 211 58.0 .13 .0 .0 .0 .0 .164 1979 JAN 28 02:45:06.95 35.098 -106.799 7.24 .17MDLA 91 MC 13 211 58.0 .12 .0 .0 .0 .164 1979 JAN 28 18:37:03.25 35.112 -106.802 8.14 .97MDLA 89 MC 22 207 57.0 .12 .0 .0 .164 1979 JAN 28 18:37:03.25 35.112 -106.805 6.69 .15MDLA 89 MC 22 207 57.0 .12 .0 .0 .0 .164 1979 JAN 28 18:37:03.25 35.112 -106.805 6.69 .15MDLA 91 MC 13 211 58.0 .12 .0 .0 .0 .164 1979 JAN 28 18:37:03.25 35.112 -106.805 6.69 .15MDLA 91 MC 13 211 58.0 .12 .0 .0 .0 .164 1979 JAN 28 18:37:03.25 35.112 -106.805 6.69 .15MDLA 91 MC 11 210 58.0 .14 .0 .0 .0 .167 1979 JAN 30 18:15:06.83 35.101 -106.805 6.69 .15MDLA 89 MC 20 207 58.0 .14 .0 .0 .0 .167 1979 JAN 31 12:01:32.14 35.115 -106.805 6.69 .15MDLA 89 MC 20 207 58.0 .14 .0 .0 .0 .0 .167 1979 JAN 31 12:01:32.14 35.115 -106.805 6.69 .15MDLA 89 MC 10 206 57.0 .12 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	152	1979 JAN 17	00:15:38.86													•		
154 1979 JAN 18 09:31:36.94 36.584 -106.563 8.32 1.72MDLA 86 WC 22 138 26.0 15 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	153	1979 JAN 17	11:32:25.41													•		
155 1979 JAN 20 15:17:30.63 36:296 -106.806 8.63 20MDLA 66 WC 9 185 15:0 08 0 0 0 15:6 1979 JAN 22 20:18:13.42 35:125 -106.804 8.37 50MDLA 88 WC 12 205 57.0 10 0 0 0 15:8 1979 JAN 22 20:18:13.42 35:125 -106.804 8.37 50MDLA 88 WC 12 205 57.0 15 0 0 0 15:9 1979 JAN 24 14:14:30.73 35:113 -106.801 4.61 94MDLA 90 WC 19 208 57.0 15 0 0 0 15:9 1979 JAN 25 02:51:26.18 35:115 -106.806 7.07 09MDLA 89 WC 10 207 58.0 17 0 0 0 16:1 1979 JAN 25 02:51:26.18 35:115 -106.806 7.07 09MDLA 89 WC 10 207 58.0 17 0 0 0 16:1 1979 JAN 27 00:24:09.47 35:094 -106.805 5.66 17MDLA 91 WC 13 211 58.0 13 0 0 0 16:2 1979 JAN 27 03:47:44.97 35:109 -106.816 6.84 60MDLA 90 WC 12 208 59.0 19 0 0 16:4 1979 JAN 28 18:29:11.84 35:117 -106.802 8.14 97MDLA 91 WC 13 211 58.0 12 0 0 16:4 1979 JAN 28 18:29:11.84 35:117 -106.802 8.14 97MDLA 91 WC 13 211 58.0 12 0 0 16:4 1979 JAN 28 18:37:03:25 35:112 -106.798 7.21 03MDLA 89 WC 22 207 57.0 12 0 0 16:5 1979 JAN 28 18:37:03:25 35:112 -106.798 7.21 03MDLA 89 WC 22 207 57.0 07 0 0 16:5 1979 JAN 28 18:37:03:25 35:112 -106.805 6.69 15:MDLA 91 WC 13 211 58.0 14 0 0 16:6 1979 JAN 31 12:01:32:14 35:115 -106.805 6.29 -11MDLA 89 WC 20 207 58.0 14 0 0 16:6 1979 JAN 31 12:01:32:14 35:115 -106.805 6.29 -11MDLA 89 WC 20 207 58.0 14 0 0 16:6 1979 JAN 31 16:29:26.42 35:121 106.805 6.29 -11MDLA 89 WC 20 207 58.0 14 0 0 0 16:8 1979 JAN 31 16:29:26.42 35:121 106.805 6.29 -11MDLA 89 WC 10 206 57.0 18 0 0 0 16:9 1979 FEB 03 12:22:16.74 35:119 -106.805 9.23 10.04 10.04 89 WC 10 206 58.0 09 0 0 171 1979 FEB 03 12:22:16.74 35:119 -106.805 8.21 -02MDLA 89 WC 10 206 58.0 09 0 0 0 171 1979 FEB 03 12:22:16.74 35:119 -106.805 8.21 -02MDLA 89 WC 10 206 58.0 09 0 0 0 171 1979 FEB 03 12:23:14:63 35:115 -106.806 8.21 -02MDLA 89 WC 10 206 58.0 09 0 0 0 171 1979 FEB 03 12:23:14:63 35:115 -106.806 8.21 -02MDLA 89 WC 10 206 58.0 09 0 0 0 171 1979 FEB 03 12:22:16.74 35:119 -106.807 9.26 -17MDLA 89 WC 13 206 58.0 09 0 0 0 177 1979 FEB 03 12:22:16.83 35:110 -106.807 9.26 -17MDLA 89 WC 13 206 58.0 09 0 0 0 177 1979 FEB 03 12:23:15:16.83 35:110 -106		1979 JAN 18	09:31:36.94	36.584	-106.563	8.32										•		
156 1979 JAN 20 15:17:30.63 35.800 -106.870 .22 .13MDLA		1979 JAN 19	02:20:30.06			8.63										•		
157 1979 JAN 22 20:18:13.42 35.125 -106.804 8.37 .50MDLA 88 WC 12 205 57.0 .10 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0		1979 JAN 20	15:17:30.63	35.800	-106.870	.22	.13MDLA											
158 1979 JAN 24 14:14:30.73 35.113 -106.801 4.61 .94MDLA 90 WC 19 208 57.0 15 .0 .0 159 1979 JAN 25 02:51:26.18 35.115 -106.806 7.07 .09MDLA 89 WC 10 207 58.0 17 .0 .0 161 1979 JAN 25 11:16:00.24 35.126 -106.810 8.50 .82MDLA 89 WC 15 205 58.0 16 .0 .0 161 1979 JAN 27 00:24:09.47 35.094 -106.805 5.66 .17MDLA 91 WC 13 211 58.0 .13 .0 .0 162 1979 JAN 27 03:47:44.97 35.109 -106.816 6.84 .40MDLA 90 WC 12 208 59.0 .19 .0 .0 163 1979 JAN 28 02:45:06.95 35.098 -106.799 7.24 .17MDLA 91 WC 13 211 58.0 .12 .0 .0 164 1979 JAN 28 18:29:11.84 35.117 -106.802 8.14 .97MDLA 91 WC 13 211 58.0 .12 .0 .0 165 1979 JAN 28 18:37:03.25 35.112 -106.798 7.21 .03MDLA 89 WC 22 207 57.0 .12 .0 .0 166 1979 JAN 30 18:15:06.83 35.101 -106.805 6.69 .15MDLA 89 WC 9 208 57.0 .07 .0 .0 166 1979 JAN 31 12:01:32.14 35.115 -106.805 6.69 .15MDLA 91 WC 11 210 58.0 .14 .0 .0 168 1979 JAN 31 16:29:26.42 35.121 -106.803 6.29 -11MDLA 89 WC 20 207 58.0 .14 .0 .0 169 1979 FEB 02 18:05:35.38 35.132 -106.819 7.11 .35MDLA 89 WC 10 206 57.0 .18 .0 .0 170 1979 FEB 03 12:22:16.74 35.120 -106.807 9.26 -17MDLA 89 WC 12 207 58.0 .10 .0 .0 171 1979 FEB 03 12:22:16.74 35.120 -106.807 9.26 -17MDLA 89 WC 10 206 58.0 .09 .0 .0 172 1979 FEB 03 12:22:16.74 35.120 -106.807 9.26 -17MDLA 89 WC 10 206 58.0 .09 .0 .0 173 1979 FEB 03 12:22:39:51.22 35.104 -106.811 9.23 .30MDLA 91 WC 13 209 59.0 .14 .0 .0 174 1979 FEB 03 12:22:39:51.22 35.104 -106.811 9.23 .30MDLA 91 WC 13 209 59.0 .14 .0 .0 175 1979 FEB 05 23:10:38.51 35.119 -106.807 9.26 -17MDLA 89 WC 10 206 58.0 .09 .0 .0 176 1979 FEB 05 23:10:38.51 35.119 -106.807 9.26 -17MDLA 89 WC 12 207 58.0 .17 .0 .0 175 1979 FEB 05 23:10:38.51 35.119 -106.807 9.26 -17MDLA 86 WC 17 252 60.0 .23 .0 .0 176 1979 FEB 06 23:19:16.81 36.019 -106.264 .00 .50 NM 22 WC 6 222 30 .13 .0 .0 177 1979 FEB 06 23:15:08.98 35.306 -106.110 4.79 9.3MDLA 62 WC 14 201 10.0 .23 .0 .0			20:18:13.42	35.125 -	106.804	8.37	.50MDLA									:		
159 1979 JAN 25 02:51:26.18 35.115 -106.806 7.07 .09Mbla 89 WC 10 207 58.0 17 .00 .0 160 1979 JAN 25 11:16:00.24 35.126 -106.810 8.50 .82Mbla 89 WC 15 205 58.0 16 .0 .0 .0 161 1979 JAN 27 00:24:09.47 35.094 -106.805 5.66 .17Mbla 91 WC 13 211 58.0 .13 .0 .0 162 1979 JAN 27 03:47:44.97 35.109 -106.816 6.84 .40Mbla 90 WC 12 208 59.0 .19 .0 .0 163 1979 JAN 28 02:45:06.95 35.098 -106.799 7.24 .17Mbla 91 WC 13 211 58.0 .12 .0 .0 164 1979 JAN 28 18:29:11.84 35.117 -106.802 8.14 .97Mbla 89 WC 22 207 57.0 .12 .0 .0 165 1979 JAN 28 18:37:03.25 35.112 -106.798 7.21 .03Mbla 89 WC 29 208 57.0 .07 .0 .0 .0 166 1979 JAN 30 18:15:06.83 35.101 -106.805 6.69 .15Mbla 89 WC 29 208 57.0 .07 .0 .0 .0 166 1979 JAN 31 12:01:32.14 35.115 -106.805 10.19 .53Mbla 89 WC 20 207 58.0 .14 .0 .0 .0 169 1979 FEB 02 18:05:35.38 35.132 -106.819 7.11 .35Mbla 89 WC 20 207 58.0 .14 .0 .0 .0 169 1979 FEB 03 10:27:41.63 35.118 -106.810 8.49 .10Mbla 89 WC 12 207 58.0 .10 .0 .0 .0 170 1979 FEB 03 12:22:16.74 35.120 -106.806 8.21 .02Mbla 89 WC 12 207 58.0 .10 .0 .0 .0 171 1979 FEB 03 12:22:16.74 35.119 -106.807 9.26 -17Mbla 89 WC 12 207 58.0 .10 .0 .0 .0 173 1979 FEB 03 12:22:16.74 35.119 -106.807 9.26 -17Mbla 89 WC 12 207 58.0 .10 .0 .0 .0 173 1979 FEB 03 12:22:16.74 35.119 -106.807 9.26 -17Mbla 89 WC 12 207 58.0 .10 .0 .0 .0 174 1979 FEB 03 12:22:16.74 35.119 -106.807 9.26 -17Mbla 89 WC 12 207 58.0 .10 .0 .0 .0 175 1979 FEB 03 12:22:16.74 35.119 -106.807 9.26 -17Mbla 89 WC 13 209 59.0 .14 .0 .0 .0 .0 175 1979 FEB 03 12:39:51.22 35.104 -106.811 9.23 .30Mbla 91 WC 13 209 59.0 .14 .0 .0 .0 .0 175 1979 FEB 06 23:10:38.51 35.119 -106.803 8.82 1.51Mbla 88 WC 13 209 59.0 .14 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0				35.113	-106.801	4.61	.94MDLA			90	WC ·	19						
160 1979 JAN 25 11:16:00.24 35.126 -106.810 8.50 82MDLA 89 WC 15 205 58.0 16 0 0 161 1979 JAN 27 00:24:09.47 35.094 -106.805 5.66 17MDLA 91 WC 13 211 58.0 13 0 0 0 162 1979 JAN 27 03:47:44.97 35.109 -106.816 6.84 40MDLA 90 WC 12 208 59.0 19 0 0 163 1979 JAN 28 02:45:06.95 35.098 -106.799 7.24 17MDLA 91 WC 13 211 58.0 12 0 0 0 164 1979 JAN 28 18:29:11.84 35.117 -106.802 8.14 97MDLA 89 WC 22 207 57.0 12 0 0 165 1979 JAN 28 18:37:03.25 35.112 -106.798 7.21 03MDLA 89 WC 9 208 57.0 07 0 0 166 1979 JAN 30 18:15:06.83 35.101 -106.805 6.69 15MDLA 91 WC 11 210 58.0 14 0 0 167 1979 JAN 31 12:01:32.14 35.115 -106.805 10.19 53MDLA 89 WC 20 207 58.0 14 0 0 168 1979 JAN 31 16:29:26.42 35.121 -106.803 6.29 11MDLA 89 WC 20 207 58.0 14 0 0 168 1979 JAN 31 16:29:26.42 35.121 -106.803 6.29 11MDLA 89 WC 20 207 58.0 14 0 0 169 1979 FEB 02 18:05:35.38 35.132 -106.819 7.11 35MDLA 88 WC 10 206 57.0 18 0 0 171 1979 FEB 03 10:27:41.63 35.118 -106.810 8.49 10MDLA 89 WC 10 206 57.0 18 0 0 171 1979 FEB 03 10:27:41.63 35.119 -106.807 9.26 17MDLA 89 WC 10 206 58.0 09 0 0 172 1979 FEB 03 12:22:16.74 35.120 -106.806 8.21 02MDLA 89 WC 10 206 58.0 09 0 0 173 1979 FEB 03 12:22:16.74 35.119 -106.807 9.26 17MDLA 89 WC 10 206 58.0 09 0 0 173 1979 FEB 03 12:22:16.74 35.119 -106.807 9.26 17MDLA 89 WC 10 206 58.0 09 0 0 174 1979 FEB 05 23:10:43.26 35.119 -106.794 10.04 89 WC 10 206 58.0 09 0 0 175 1979 FEB 05 23:10:43.26 35.119 -106.794 10.04 89 WC 10 206 58.0 17 0 0 175 1979 FEB 06 23:09:46.81 36.019 -106.264 00 50 NM 22 WC 6 222 3.0 13 0 0 177 1979 FEB 06 23:10:43.26 35.306 -106.110 4.79 93MDLA 80 WC 14 201 10.0 23 0 0 177 1979 FEB 06 23:10:43.26 35.						7.07	.09MDLA			89	WC	10	207	58.0				
162 1979 JAN 27 03:47:44.97 35.109 -106.816 6.84 .40MDLA 90 WC 12 208 59.0 19 .0 .0 .0 .0 .163 1979 JAN 28 02:45:06.95 35.098 -106.799 7.24 .17MDLA 91 WC 13 211 58.0 .12 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0						8.50	.82MDLA		••	89	WC	15	205	58.0	.16			
163 1979 JAN 28 02:45:06.95 35.098 -106.799 7.24 .17MDLA							.17MDLA	• • • • • • •		91	WC	13	211	58.0	.13		.0	.0
164 1979 JAN 28 18:29:11.84 35.117 -106.802 8.14 .97MDLA 89 WC 22 207 57.0 .12 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	_									90	WC	12	208	59.0	-19		.0	.0
165 1979 JAN 28 18:37:03.25 35.112 -106.798 7.21 .03MDLA 89 WC 9 208 57.0 .07 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0								• • • • • • •	• •			-				•	.0	.0
166 1979 JAN 30 18:15:06.83 35.101 -106.805 6.69 .15MDLA 91 WC 11 210 58.0 .14 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0									• •							•		
167 1979 JAN 31 12:01:32.14 35.115 -106.805 10.19 .53MDLA 89 WC 20 207 58.0 .14 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0									••			•				•	.0	.0
168 1979 JAN 31 16:29:26.42 35.121 -106.803 6.2911MDLA 89 WC 10 206 57.0 .18 .0 .0 169 1979 FEB 02 18:05:35.38 35.132 -106.819 7.11 .35MDLA 88 WC 13 229 60.0 .13 .0 .0 170 1979 FEB 03 10:27:41.63 35.118 -106.810 8.49 .10MDLA 89 WC 12 207 58.0 .10 .0 .0 171 1979 FEB 03 12:22:16.74 35.120 -106.806 8.2102MDLA 89 WC 10 206 58.0 .09 .0 .0 172 1979 FEB 03 12:27:34.10 35.119 -106.807 9.2617MDLA 89 WC 13 206 58.0 .09 .0 .0 173 1979 FEB 03 12:39:51.22 35.104 -106.811 9.23 .30MDLA 91 WC 13 209 59.0 .14 .0 .0 174 1979 FEB 05 23:10:38.51 35.119 -106.794 10.04 89 WC 14 232 57.0 .16 .0 .0 175 1979 FEB 05 23:10:43.26 35.151 -106.803 8.82 1.51MDLA 86 WC 17 252 60.0 .23 .0 .0 177 1979 FEB 06 23:15:08.98 35.306 -106.110 4.79 .93MDLA 62 WC 14 201 10.0 .23 .0 .0				_					••							•		
169 1979 FEB 02 18:05:35.38 35.132 -106.819 7.11 .35MDLA 88 WC 13 229 60.0 .13 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0									• •							•		
170 1979 FEB 03 10:27:41.63 35.118 -106.810 8.49 .10MDLA 89 WC 12 207 58.0 .10 . 0 .0 .0 .171 1979 FEB 03 12:22:16.74 35.120 -106.806 8.2102MDLA 89 WC 10 206 58.0 .09 . 0 .0 .0 .0 .0 .0 .172 1979 FEB 03 12:27:34.10 35.119 -106.807 9.2617MDLA 89 WC 13 206 58.0 .17 . 0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0									• •							•		
171 1979 FEB 03 12:22:16.74 35.120 -106.806 8.2102MDLA 89 WC 10 206 58.0 .09 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0									• •							•		
172 1979 FEB 03 12:27:34.10 35.119 -106.807 9.26 -17MDLA 89 WC 13 206 58.0 17 . 0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0																•		
173 1979 FEB 03 12:39:51.22 35.104 -106.811 9.23 .30MDLA																•		
174 1979 FEB 05 23:10:38.51 35.119 -106.794 10.04																•		
175 1979 FEB 05 23:10:43.26 35.151 -106.803 8.82 1.51MDLA 86 WC 17 252 60.0 .230 .0 .0 .176 1979 FEB 06 23:09:16.81 36.019 -106.264 .00 .50 MM 22 WC 6 222 3.0 .130 .0 .177 1979 FEB 06 23:15:08.98 35.306 -106.110 4.79 .93MDLA 62 WC 14 201 10.0 .230 .0 .0 .178 1070 FEB 08 23:23:24:08.57 35.306 -106.110 4.79 .93MDLA 62 WC 14 201 10.0 .230 .0							_											
176 1979 FEB 06 23:09:16.81 36.019 -106.264 .00 .50 NM 22 WC 6 222 3.0 .130 .0 .177 1979 FEB 06 23:15:08.98 35.306 -106.110 4.79 .93MDLA 62 WC 14 201 10.0 .230 .0																		
177 1979 FEB 06 23:15:08.98 35.306 -106.110 4.79 .93MDLA 62 WC 14 201 10.0 .230 .0				<b>-</b>												-		
179 1070 FFB 09 17:37:00 F7 7F 740 407 408 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	177															•	_	
	178															•		

Cat No.	Date year-mo-day	Time (GMT) hr-min-sec	Lat	Long	Depth (km)	Mag1	Mag2 ==-======	Inten (MM)	(km)	Srce	Arr	Gap	D-min (km)	RMS (sec)	Q	Std-Er Horiz V	/ert
179	1979 FEB 12			-106.801	6.95	.10MDLA			-====· 91	WC	-===- 10	211	58.0			-====-=	
180	1979 FEB 12	15:17:29.76		-106.810	3.06	.30MDLA			91	WC	13	209	58.0	- 14	•	.0	.0
181	1979 FEB 13	15:21:08.73		-106.798	8.37	1.67MDLA		• •	90	WC	17	209	57.0	- 19	•	.0	.0
182	1979 FEB 17	16:56:02.93		-106.806	6.01	.42MDLA		• •	89	WC	15	206	36.0	-10	•	.0	.0
183	1979 FEB 20	12:53:53.88		-106.807	6.41	.25MDLA		••	90	WC	8	208	36.0	. 13 . 23	•	.0	.0
184	1979 FEB 23	20:33:28.07		-106.129	20.42	1.54MDLA			66	WC	11	243	6.0	.23	•	.0	.0
185	1979 FEB 24	02:25:20.55		-106.816	11.20	1.13MDLA		••	89	WC	21	205	35.0		•	.0	.0
186	1979 FEB 25	07:57:56.71		-106.806	10.61	.56MDLA			89	WC	18	206	36.0	. 16 . 13	•	.0	.0
187	1979 FEB 25	22:10:34.73	35.123	-106.804	4.54	.33MDLA		• • •	89	WC	16	206	36.0	.23	•	.0	.0
188	1979 FEB 25	22:13:36.38		-106.803	7.41				88	WC	16	205	36.0	.12	•	.0	.0
189	1979 FEB 25	22:14:00.50	35.171	-106.843	10.30	.45MDLA		• • •	86	WC	14	235	31.0	-18	•	.0	.0
190	1979 MAR 01	11:15:00.65		-106.174	3.36	.70 NM			39	WC	9	118	14.0	. 18	•	.0 .0	.0
191	1979 MAR 01	16:38:57.74	35.302	-106.099	4.33	1.18MDLA		• • •	63	WC	12	227	10.0	.20	•	.0	.0
192	1979 MAR 05	10:18:20.62		-106.801	3.18	.11MDLA	*******		89	WC	9	207	36.0	.12	•		.0
193	1979 MAR 05	11:33:58.23		-106.802	6.15	.80MDLA		• • •	89	WC	15	206	36.0	.19	٠	.0	-0
194	1979 MAR 05	13:00:05.62		-106.200	5.21	2.66MDLA			55	WC	19	88	26.0	.10	•	.0	.0
195	1979 MAR 06	13:48:05.65		-106.809	4.47	.04MDLA			89	WC	15	206	36.0	.25	•	0	.0
196	1979 MAR 07	10:51:05.87		-106.806	8.39	.76MDLA			88	WC	13	205	35.0	. 17	٠	.0	.0
197	1979 MAR 07	10:54:01.18		-106.808	7.29	.71MDLA			89	WC	12	206	35.0		•	.0	.0
198	1979 MAR 07	11:03:53.21		-106.802	6.16	.07MDLA			90	WC	11	209	37.0	.20 .19	•	.0	.0
199	1979 MAR 07	22:11:35.46		-106.193	7.54	1.94MDLA		••	56	WC	20	88	26.0		•	.0	.0
200	1979 MAR 10	13:53:24.47		-106.800	6.44	2.19MDLA			89	WC	21	207		.09	•	.0	.0
201	1979 MAR 11	23:52:24.23		-106.814	6.34	.31MDLA	• • • • • • • •		89	WC WC	9		37.0	.16	•	.0	.0
202	1979 MAR 12	00:21:38.12		-106.811	6.11	.04MDLA		••	90	WC	12	206 209	35.0	.18	•	.0	.0
203	1979 MAR 12	21:00:45.04		-106.207	9.28	1.50 NM		••	13	WC	15	71	36.0	.22	•	.0	.0
204	1979 MAR 12	22:54:12.00		-106.804	8.98	.44MDLA	• • • • • • • •	••	90				10.0	.18	•	.0	-0
205	1979 MAR 13	23:03:27.68		-106.802	7.43	.48MDLA	• • • • • • • • • • • • • • • • • • • •	••	89	WC WC	13	209	37.0	.13	•	.0	.0
206	1979 MAR 15	00:29:24.08	35.118		6.64	.26MDLA		••			14	206	36.0	.13	•	.0	.0
207	1979 MAR 15	04:48:30.35	35.112		6.42	.49MDLA	• • • • • • • •	••	89 90	WC WC	11	207	36.0	. 14	•	.0	.0
208	1979 MAR 17	11:25:59.48	36.319		7.10	1.69MDLA		••			13	208	35.0	.15	•	.0	.0
209	1979 MAR 17	17:14:34.02	35.116		5.54	.04MDLA		••	56	WC	21	88	26.0	.08	-	.0	.0
210	1979 MAR 18	03:34:51.38	35.128		8.47	1.05MDLA	• • • • • • • • •		89	WC	9	207	36.0	.17	•	.0	.0
211	1979 MAR 19	02:28:50.22	36.547		10.78	1.01MDLA		• •	88	WC	21	205	35.0	. 16	•	.0	.0
212	1979 MAR 19	04:13:54.28	35 128		8.46	.70MDLA	• • • • • • • • •	••	121	WC	16	265	59.0	- 17	•	.0	.0
213	1979 MAR 21	02:27:41.63	35.112		11.86	.65MDLA	• • • • • • •	• •	88	WC	19	205	35.0	. 17	-	-0	.0
214	1979 MAR 22	18:08:55.60	35.139		10.12	.34MDLA			89	WC	22	208	37.0	-14	•	.0	.0
215	1979 MAR 25	20:04:24.89	36.488		6.87	.71MDLA		• •	88	WC	15	228	34.0	.12	•	.0	.0
216	1979 MAR 26	00:28:19.24	35.097		6.90	20MDLA	******	• • •	117	WC	12	262	56.0	. 25	•	.0	.0
217	1979 MAR 26	04:12:55.47	35.567 -		4.73	.33MDLA		• •	91	WC	7	211	38.0	.11	•	.0	.0
218	1979 MAR 27	19:08:42.60	35.123 -		6.89			••	39	WC	13	153	14.0	.14	•	.0	.0
219	1979 MAR 28	18:49:19.18	35.095 -		9.37	07MDLA			89	WC	9	206	36.0	.16	-	-0	.0
220	1979 MAR 30	09:28:02.22	35.119 -		7.68	.28MDLA 2.00MDLA	• • • • • • • •	• •	91	WC	10	211	37.0	.10	•	.0	.0
221	1979 MAR 30	10:41:55.17	35.112 -		7.05				89	WC	20	207	36.0	.09		.0	.0
222	1979 MAR 30	10:46:17.23	35.123 -		7.88	2.58MDLA	• • • • • • •	• •	89	WC	18	208	37.0	. 13		.0	.0
223	1979 APR 02	11:17:12.92	35.138 -			34MDLA		• •	88	WC	9	219	36.0	.17		.0	.0
224	1979 APR 04	12:14:07.26			6.00	.52MDLA		• •	88	WC	14	234	34.0	.18		.0	.0
225	1979 APR 06	21:56:11.69	35.106 -		10.19	.10MDLA	• • • • • • • •	• •	91	WC	12	254	36.0	.23	•	.0	.0
226	1979 APR 07	08:17:06.73	35.141 -		10.43	.04MDLA		• •	88	WC	13	233	33.0	. 12	-	.0	.0
227	1979 APR 07	13:22:03.27	35.680 -		11.17	1.56MDLA		• •	32	WC	20	124	20.0	.07	-	.0	.0
		23:35:39.95	35.839 - 35.148 -		7.53	1 0/40: -		• •	23	WC	13	99	11.0	.08	-	.0	.0
	TOTAL MIN UI		JJ. 140 *	110.017	10.55	1.04MDLA		• •	87	WC	21	227	34.0	.12	•	.0	.0

Cat No.	Date year-mo-day	Time (GMT) hr-min-sec	lat	Long	Depth (km)	Mag1	Mag2	(MM)	(km)	Scre	Arr	Gan	D-min (km)	RMS (sec)		Std-E Horiz	Vart	
229	1979 APR 07	23:40:53.41	35.124	-106.812	10.53	1.35MDLA				WC		230	35.0	-====- .15				
230	1979 APR 11	01:49:54.74		-106.808		1.04MDLA		••		WC	15	228	35.0	.16		.0 .0	.0 .0	
231				-106.821	10.13	.60MDLA		• • • • • • • • • • • • • • • • • • • •	87		15	227	33.0	.09		.0	.ŏ	
	1979 APR 11		35.126	-106.816	9.43	.39MDLA	*******		89		10	250	35.0	.09		.0	.0	•
233	1979 APR 12	03:48:53.99	35.143	-106.812	9.49	.34MDLA	******	•••	87		15	233	34.0	.11		.0	.0	
234		07:38:52.60	35.846	-106.099	4.87	.29MDLA			23		14	97	12.0	.07		.0	.0	
	1979 APR 16			-106.824	8.26	.27MDLA			87		13	231	33.0	.20		.0	.o	
	1979 APR 17			-106.807	8.37	.07MDLA			86	WC	11	201	35.0	. 18		.0	.0	
	1979 APR 17	10:24:25.35		-106.678	8.01	53MDLA			34	WC	9	201	17.0	.02		.0	.0	
	1979 APR 18	03:25:20.31		-106.804	9.02	1.47MDLA			87	WC	22	203	35.0	.16		.0	.0	
239	1979 APR 18	06:55:35.70		-106.816	9.40	.38MDLA			87	WC	20	202	34.0	. 15		.0	.0	
240	1979 APR 18	13:13:36.82		-106.801	8.65	.10MDLA			88		16	204	36.0	.12		.0	-0	
241	1979 APR 22	00:43:53.77		-106.802	10.12	.16MDLA		• •	87	WC	17	203	35.0	.16		.0	.0	
242 243	1979 APR 26	03:21:55.53		-106.801	10.14	.19MDLA			88	WC	13	204	36.0	. 15		.0	.0	
	1979 APR 30	01:41:23.31		-106.750	6.46	.34MDLA	*******		67			153	9.0	.10		.0	.0	
244				-106.741	6.66	.65MDLA		• •	68		8	144	8.0	. 15		.0	.0	
246	1979 APR 30 1979 MAY 01	19:08:04.76		-106.798	10.22	.75MDLA		• •		WC	16	205	36.0	. 15		.0	.0	
	1979 MAY 17	05:37:23.53		-106.822	10.82	.40MDLA			86	WC	14	1. 1	33.0	. 13		.0	.0	
				-106.697	8.78	.98MDLA		• •	73	WC	16	140	7.0	.08		.0	.0	
	1979 JUN 12	05:26:09.40		-106.709		1.25MDLA		• •	74	WC	15	176	48.0	.07		.0	.0	
	1979 JUN 13			-106.452		1.30MDLA	******	• •	54	WC	17		36.0	. 13		.0	.0	
	1979 JUN 28	23:12:39.37		-106.720		43MDLA		• •	34	WC	8	167	11.0	. 15		.0	.0	
				-106.856	6.43	.57MDLA		• •	61	WC	. 8	249	58.0	.07		.0	.0	
253	1979 JUL 21	15:55:04.30		-106.809		1.95MDLA		• •	90	WC	14		36.0	.07		.0	.0	
	1979 JUL 24			-106.805	10.52	.54MDLA	• • • • • • • • •	• •	88	WC	18	205	36.0	.16		.0	.0	
	1979 JUL 30	18:11:13.34 13:38:18.55		-106.799	9.26	.70MDLA	• • • • • • • •	• •		WC	16	207	37.0	.16		.0	.0	
	1979 AUG 14	18:56:54.92		-106.881		1.51MDLA	• • • • • • • •	• •	90		22	202	29.0	- 18		.0	.0	
	1979 AUG 15	04:24:40.18		-106.855	.67	.97MDLA	• • • • • • • • • • • • • • • • • • • •		60	WC	14	179	19.0	.04		.0	.0	
	1979 AUG 18	00:39:07.02		-106.804 -106.585	8.49 6.21	1.21MDLA	• • • • • • •	••	90		20	208	36.0	. 14		.0	.0	
		11:09:33.04		-106.724		.18MDLA	•••••		70	WC	10	197	17.0		•	.0	.0	
	1979 AUG 25	04:35:42.25		-103.724		1.00MDLA	• • • • • • •	• •	84	WC	13	215	12.0	.12		.0	.0	
	1979 AUG 25	04:37:02.36		-107.116	4.76	1.32MDLA .44MDLA	• • • • • • • •	• •	79		17		41.0	.21		.0	.0	
		15:37:15.18		-106.724	6.08	.58MDLA	• • • • • • • •	••	80		14	136	42.0	.14		.0	.0	
		22:53:05.19		-106.752	10.23	1.16MDLA	• • • • • • • •	• •	86	WC	8	220	14.0	.02		.0	.0	
		23:22:17.74		-106.709	6.35	.99MDLA	• • • • • • •		87		10	231	13.0	.06		.0	.0	
		01:19:42.82		-107.117	5.96	.17MDLA	• • • • • • • • •		84 80	WC	12 9	208	13.0	.13		.0	.0	
	1979 AUG 31			-107.101		1.49MDLA	• • • • • • • •	••		WC		142	41.0		•	.0	-0	
	1979 AUG 31			-105.969		1.03MDLA	• • • • • • • •	••	80 49	WC WC	19 13	139 184	22.0	.14		.0	.0	
		21:15:50.70		-106.540	10.72	.90MDLA	*******	• •	76				24.0	.08		.0	.0	
		18:36:12.11	35.481			1.73MDLA	• • • • • • • • • • • • • • • • • • • •	• •	40	WC WC		210 133	58.0 15.0	.21 .10		-0	.0	
	1979 SEP 05		_	-105.514	11.36	.41MDLA		• •	103	WC	11	243	41.0		-	.0	.0	
		02:55:44.80		-106.100	4.56	TINDLA		••	24	WC		108		.16		.0	.0	
	1979 SEP 21			-106.098	3.68			• •	25	WC WC	11 14		7.0 7.0	.09		.0	.0	
	1979 SEP 22		35.947		1.34			••	17	WC WC	14	77		.08		.0	.0	
	1979 OCT 02		35.128			1.06MDLA			89	WC		205	10.0 58.0	.07 .19		.0	.0	
		08:22:34.35	35.916 -		7.26	.62MDLA		• •	41	WC		110	12.0	.06		.0	.0	
276	1979 OCT 29	04:05:49.89	36.444 -			1.33MDLA			70	WC	17	137	24.0			.0 n	.0	
	1979 NOV 03	01:11:10.53	36.571 -			1.74MDLA		• • •	90	WC	17	142	16.0		:	.0 .0	.0 .0	
278	1979 NOV 03	18:24:41.77	35.530			1.87MDLA		•••	35	WC		241	9.0		:	.0	.0	
								••	3,		, _	-71	7.0	.00	•	.0	. 0	
Dogo	4																	


Cat No. ====	Date year-mo-day =======	Time (GMT) hr-min-sec	Lat	Long =======	Depth (km)	Mag1	Mag2		Dist (km)			Az Gap	D-min (km)	RMS (sec)	Q	Std-Er Horiz V	ert
279	1979 NOV 06	02:15:35.51		-106.879	8.01	1.63MDLA			55	WC	20	158	8.0	.09	-=-	.0	
280	1979 NOV 13	21:31:27.64	36.304	-106.792	10.71	1.10MDLA			66	WC	20	154	14.0	-07		.0	.0 .0
281	1979 NOV 13	21:58:33.45	36.305	-106.784	9.81	1.17MDLA		• • • • • • • • • • • • • • • • • • • •	66	WC	19	151	13.0	.07	•	.0	.0
282	1979 NOV 14	08:43:31.08	35.781	-106.937	.33	1.18MDLA		• • •	53	WC	20	152	9.0	.09	:	.0	.0
283	1979 NOV 15	21:40:43.49	36.082	-106.692	3.82	.55MDLA		• • •	42	WC	12	108	14.0	.08	•	.0	.0
284	1979 NOV 19	02:56:38.09	36.087	-106.700	8.38	.60MDLA			43	WC	10	112	15.0	.09	:	.0	.0
285	1979 NOV 24	15:28:13.53	36.464	-106.739	5.38	.91MDLA	******		79	WC	14	197	5.0	.08	•	.0	.0
286	1979 NOV 26	10:11:03.29	36.331	-106.862	7.66	.98MDLA		• • •	72	WC	9	218	13.0	.04	•	.0	.0
287	1979 DEC 18	16:39:24.90	35.757	-106.673	3.85	.89MDLA	•••••	••	30	WC	12	186	15.0	.06	•	.0	.0
288	1979 DEC 20	00:29:22.57	35.756	-106.678	3.84	.74MDLA		••	31	WC	14	187	15.0	.10	:	.0	.0
289	1979 DEC 20	06:18:51.61	35.929	-106.755	4.98	.09MDLA	******	••	38	WC	8	116	12.0	.08	•	.0	.0
290	1979 DEC 22	17:34:35.86	35.766	-106.690	13.28	31MDLA		••	32	WC	5	181	14.0	.07	•	.0	.0
291	1979 DEC 23	23:50:47.02	35.127	106.822	5.19	.40MDLA	******	••	89	WC	9	205	59.0	.22	:	.0	.0
292	1979 DEC 24	13:54:41.19	35.134	-106.802	6.37	1.17MDLA		••	87	WC	18	204	57.0	.20	•	.0	.0
293	1979 DEC 24	14:07:01.23	35.132 -	106.802	6.56	.55MDLA			88	WC	15	204	57.0	.18	:	.0	.0
294	1979 DEC 28	04:49:02.04	36.306 ·	105.854	12.13	.40MDLA			69	WC	19	187	6.0	.11	•	.0	.0
295	1980 JAN 08	00:22:44.22	35.709 -	106.824	8.28	.49MDLA			45	WC	15	216	7.0	.12	•	.0	.0
296	1980 FEB 07	21:21:53.08	35.553	106.819	4.68	1.13MDLA		• •	52	WC	12	161	24.0	.05	•	.0	.0
297	1980 FEB 10	21:06:23.53	36.447 -	106.903	3.24	1.32MDLA			85	WC	16	256	12.0	.15	•	.0	.0
298	1980 FEB 15	11:30:37.11	35.942 -	106.919	7.05	.19MDLA			53	WC	10	241	10.0	.08	•	.0	.0
299	1980 FEB 19	15:04:13.20	35.715 -	106.431	8.15				15	WC	7	160	7.0	.03	•	.0	.0
300	1980 FEB 27	00:16:57.72	35.711 -		9.68	26MDLA		••	39	WC	14	209	10.0	.11	•	.0	.0
301	1980 FEB 28	11:14:56.84	36.451 -	106.381	6.26	.32MDLA			69	WC	12	129	36.0	.08	:	.0	-0
302	1980 MAR 15	17:53:17.84	<b>35.</b> 601 -	106.952	8.69	.79MDLA			60	WC	19	148	21.0	.11	•	.0	.0
303	1980 MAR 16	14:46:01.42	35.620 -	106.965	10.26	.04MDŁA			60	WC	11	151	20.0	. 25	•	.0	.0
304	1980 MAR 19	03:36:31.65	35.670 -	106.459	4.48	.30 NM			20	WC	7	182	13.0	.07	•	.0	.0
305	1980 APR 01	02:23:03.81	36.110 -	106.218	7.08	.40 NM			33	WC	8	156	8.0	.07	•	.0	.0
306	1980 APR 09	10:19:05.69	36.294 -		9.46	.40 NM			67	WC	9	250	3.0	.12	•	.0	.0
307	1980 APR 18	15:53:23.79	35.880 -	106.777	5.13	.19MDLA			39	WC	14	133	13.0	.04	:	.0	.0
308	1980 APR 21	03:13:04.78	<b>35.</b> 770 -	105.685	13.67	1.02MDLA			61	WC	16	263	9.0	.21		.0	.0
309	1980 APR 24	05:12:28.44	35.786 -	106.721	-04	.03MDLA			34	WC	11	148	11.0	.17	-	.0	.0
310	1980 APR 24	19:11:57.97	<b>35.87</b> 6 -	106,777	7.13			• •	39	WC	12	132	13.0	.08	:	.0	.0
311	1980 APR 24	19:12:33.48	35.874 -	106.783	7.03	1.90MDLA			39	WC	12	135	13.0	.09		.0	.0
312	1980 APR 24	22:30:33.13	35.874 -	106.778	6.65	.02MDLA			39	WC	12	133	13.0	.04		.ŏ	.0
313	1980 APR 27	08:49:14.72	35.877 -		3.63	.55MDLA		• •	38	WC	15	129	13.0	.07		.0	.ŏ
314	1980 APR 28	07:26:01.42	<b>35.</b> 876 -	106.785	6.73	.28MDLA			40	WC	11	137	13.0	.04		.0	.0
315	1980 MAY 06	03:04:03.98	35.667 -		17.25	.34MDLA			60	WC	12	148	17.0	.18		.0	.0
316	1980 MAY 16	08:09:27.67	<b>35.98</b> 7 -	106.133	5.09	1.05MDLA			26	WC	10	94	11.0	.04		.ŏ	.ŏ
317	1980 MAY 16	09:11:18.76	35.600 -	106.823	10.43	.48MDLA			50	WC	16	269	38.0	.25	-	.0	.0
318	1980 MAY 25	17:39:37.38	36.252 -	106.223	7.70	.58MDLA			48	WC	9	151	24.0	.13		.0	.0
319	1980 JUN 08	07:04:01.66	36.014 -	106.135	4.14	.61MDLA			28	WC	9	94	10.0	.10		.õ	.0
320	1980 JUN 15	19:58:04.72	<b>35.98</b> 6 -		8.28	.80 NM			25	WC	7	183	9.0	.09		.0	.0
321	1980 JUN 20	08:14:16.80	36.000 -	106.152	7.55	.40 NM			26	WC	7	98	9.0	. 11		.0	.0
322	1980 JUN 23	17:44:11.58	35.730 -		8.10	.11MDLA			30	WC	12	200	17.0	. 14		.0	.0
323		08:11:42.79	35.751 -	_	.66	1.29MDLA			54	WC	18	144	9.0	.06		.0	.0
324	1980 JUN 25	20:07:15.47	35.940 -		8.37	1.59MDLA			36	WC	15	127	24.0	.09		.ŏ	.0
325		01:44:29.85	35.945 -		6.74	.54MDLA			44	WC	15	179	18.0	.08		.0	.0
326		23:04:10.30	35.980 -		7.89	.10 NM			25	WC	5	90	10.0	.10		.0	.0
327		10:24:06.12	36.305		5.89	.40 NM			59	WC	9	96	14.0	.09		.0	.0
328	1980 JUL 14	12:45:20.44	36.456 -	106.562	10.16	.51MDLA			72	WC	18	146	19.0	.09		.0	.0

2397 1980 AUG 08 10:05:18.43 35:65:106.622 9.41 .25MDLA 34 UC 14 233 26.0 08 0 .0 0 .30 330 1980 AUG 13 18:33:27.69 83.008 106.774 4.33 1.09MDLA 43 UC 12 84 6.0 08 0 .0 0 .30 32 1980 SEP 20 22:25:20.49 83 5.90 106.127 2.92 5.00 MM 27 UC 11 1.95 11.0 0.4 0 .0 .0 .332 1980 SEP 11 02:07:10.22 35:755 106.914 7.70 7.70 1.00 1.00 1.00 1.00 1.00 1.00	Cat No.	Date year-mo-day		Lat	Long	Depth (km)	Mag1	Mag2	Inten (MM)	(km)	Srce	Агг	Az Gap	D-min (km)	RMS (sec)	Q	Std-Er Horiz V	/ert
1988 AUG 13   18133:29.69   36.008   106.177   4.33   1.09MDLA																		
331 1980 SEP 02 22:32:04.98 35.990 -106.127 2.99 .50 NM	330	1980 AUG 13		36.008	-106.774													
332 1980 SEP 06 12:55:37.79 36,282 -106.999 7.53 333 1980 SEP 11 02:07:10.22 35,735 -106.914 08 .57HDLA 52 W. 17 142 8.0 13: 0 .0 0 334 1980 SEP 18 10:42:52.20 36.013 -106.681 7.52 22MDLA 52 W. 17 142 8.0 13: 0 .0 0 335 1980 SEP 23 03:57:57:56.02 36.013 -106.681 7.52 22MDLA 50 W. 12: 252 1.0 12: 0 .0 336 1980 SEP 24 18:14:45.05 35.549 -106.6821 4.58 1.03HDLA 53 W. 15: 171 25.0 07 0 .0 336 1980 SEP 24 18:14:45.06 35.549 -106.6821 4.58 1.03HDLA 53 W. 15: 171 25.0 07 0 .0 337 1980 CCT 19 17:24:74.73 03.6.467 -105.814 9.06 8.89HDLA 86 W. 15: 201 23.0 05: 0 .0 338 1980 CCT 19 06:18:00.42 47 36.153 -106.170 4.52 339 1980 CCT 19 07:24:24:24 73 50.153 -106.170 4.52 339 1980 CCT 19 07:24:28.24 73 50.153 -106.172 5.74 .20 NM 39 W. 12: 119 14.0 0.6 0 .0 .0 341 1980 CCT 19 37:42:25.29 35.540 -107.171 7.23 33MDLA 81 M. 20 153 19.0 15: 0 .0 342 1980 CCT 19 07:24:28.47 36.153 -106.172 6.03 .60 NM 15 W. 7 231 8.0 .06 0 .0 .0 343 1980 CCT 19 07:24:27.27 33.58 -106.342 .03 .60 NM 15 W. 7 231 8.0 .06 0 .0 .0 344 1980 CCT 29 00.00 17 74:25.25 15 .60 -107.35 1.0 .03 .60 NM 15 W. 7 231 8.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .	331	1980 SEP 02	22:32:04.98															
331 1980 SEP 11 10:207:10:22 35.755 - 106.914	332	1980 SEP 06	12:55:37.79	36.282	-106.499													
334 1980 SEP 18 15:42:22:20 36.013 -106.851 7.52 26MDLA 50 WC 12 252 1.0 .12 0 0.0 335 1980 SEP 24 015:75:50.02 36.013 -106.847 7.38 7.780LA 59 WC 14 251 11 0 0.0 336 1980 SEP 24 18:14:45:05 35.549 -106.821 4.58 1.03MDLA 53 WC 15 171 25.0 .07 0 0.0 338 1980 OCT 19 07:24:27.47 36.133 -106.172 4.52 38 MC 15 171 25.0 .07 0 0.0 338 1980 OCT 19 07:24:22-47 36.133 -106.172 4.52 38 MC 15 171 25.0 .07 0 0.0 338 1980 OCT 19 07:24:22-47 36.133 -106.172 5.74 20 NM 39 WC 11 119 14.0 .06 0 0.0 0.0 340 1980 OCT 25 19:42:52.29 35.540 -107.171 7.23 33MDLA 81 WC 20 153 19.0 .15 0 0.0 341 1980 NOV 13 19:49:05.51 35.687 -106.342 .03 .60 NM 16 WC 7 231 8.0 .06 0 0.0 342 1980 NOV 17 21:06:49.60 35.659 -106.333 1.47 7.50 NM 19 WC 7 236 11.0 .06 0 0.0 344 1980 NOV 18 14:20:52.49 35.61 -106.671 3.85 5.3MDLA 30 WC 8 129 11.0 .20 0.0 344 1980 NOV 27 07:2217.58 36.420 -105.468 10.12 1.08MDLA 77 WC 19 207 15.0 .10 .0 .0 344 1980 NOV 27 07:2217.58 36.420 -105.468 10.12 1.08MDLA 77 WC 19 207 15.0 .10 .0 .0 346 1980 NOV 27 09:2217.58 36.420 -105.468 10.12 1.08MDLA 98 WC 17 240 38.0 .10 .0 .0 348 1980 DEC 18 17:11:12.60 36.324 -106.649 15.22 88MDLA 83 WC 21 195 17.0 .10 .0 .0 348 1980 DEC 18 17:11:12.60 36.324 -106.649 15.22 88MDLA 83 WC 21 195 17.0 .10 .0 .0 349 1980 DEC 23 02:02:57.1 43 57.42 -107.153 8.0 .66 240 LA 73 WC 8 192 20 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36	333	1980 SEP 11	02:07:10.22	<b>35.735</b>	-106.914	.08												
335 1980 SEP 24 1814:46-50 53-56-99 106-821 4-58 1.03MDLA 53 WC 14 251 11 0 0 0 0 1337 1980 OCT 08 19:56-47-30 36-476 105-814 9.06 83MDLA 86 WC 13 201 23.0 .05 .0 .0 .0 338 1980 OCT 19 06:18:00.42 36:152 106.170 4.52 39 WC 11 119 14.0 .06 .0 .0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	334	1980 SEP 18	15:42:22.20	36.013	-106.851	7.52										-		
337 1980 SEP 24 18:14:45:05 35:549 106.821 4.58 1.03MDLA 53 UC 15 171 25:0 .0 .07 .0 .0 .0 .37 1980 OCT 08 19:56:47.30 36.47 - 105.81 4.9.06 .83MDLA 88 UC 13 201 23:0 .05 .0 .0 .0 .0 .0 .38 1980 OCT 19 07:24:29.47 36.153 106.172 5.74 .20 NM 39 UC 12 1119 14.0 .06 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	335	1980 SEP 23	05:57:56.02	36.013	-106.847	7.38						. –				•		
337 1980 OCT 08 19:56:47.30 36.476 -105.814 9.06 BSMOLA 86 UC 13 201 23:0 055 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	336	1980 SEP 24	18:14:45.05	35.549	-106.821	4.58	1.03MDLA									•		
338 1980 OCT 19 06:18:00.42 36:152 -106.170 4.52 39 MC 11 119 14.0 06 0 0 0 0 0 3	337	1980 OCT 08	19:56:47.30	36.476	-105.814											•		
1980 OCT 19 07:24:29.47 36.153 -106.172 5.74 20 MM 39 MC 12 119 14.0 06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	338	1980 OCT 19	06:18:00.42	36.152	-106.170	4.52										•		
340 1980 OCT 25 19:42:52:29 35.540 -107.171 7, 23 339DLA 81 WC 20 153 19.0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	339	1980 OCT 19	07:24:29.47	<b>36.</b> 153 ·	-106.172		.20 NM									_		
341 1980 NOV 17 21:06:49:00 5.51 35.687 -106.342 .03 .60 NN	340	1980 OCT 25	19:42:52.29	35.540 ·	-107.171	7.23										•		
342 1980 NOV 17 21:06:49-60 35.659 -106.333 1.47 50 NN 19 NC 7 236 11.0 06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	341	1980 NOV 13	19:49:05.51	35.687	-106.342	.03										•	_	
343 1980 NOV 18 14;20:52,49 35.851 -106.677 3.85 53MDLA 30 MC 8 129 11:0 20 0 0 0 345 1980 NOV 22 00:16;27.97 36.351 -106.677 3.85 1.47NDLA 77 MC 19 207 15.0 1.0 0 0 0 345 1980 NOV 27 09:28:17,58 36.402 -105.468 10.12 1.08NDLA 103 MC 14 247 43.0 .08 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	342	1980 NOV 17	21:06:49.60	35.659	-106.333											•		
344 1980 NOV 22 00:16:27,97 36.351 -106.916 12.42 1.47PULA 77 WG 19 207 15:0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	343	1980 NOV 18	14:20:52.49	35.851	-106.677											•		
345 1980 NOV 27 09-28-17-58 36-420 -105-648 10.12 1.08WDLA 103 UC 14 227 43.0 0.8 .0 0.8 .0 0.8 .0 0.8 .0 0.0 0.0 0	344	1980 NOV 22														•		
364 1980 NOV 20 08:19:48,97 36.407 -105.519 14.85 1.70NDLA 98 NC 17 240 38.0 10 0 0 0 347 1980 NOV 30 07:20:30.52 36.541 -106.649 15.22 88NDLA 83 NC 21 195 17.0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	345	1980 NOV 27	09:28:17.58	36.420	-105.468											•		
347 1980 NOV 30 07:20:30.52 36.541 -106.649 15.22 .88MDLA 83 WC 21 195 17:0 .10 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	346	1980 NOV 29	08:19:48.97													•		
348 1980 DEC 18 17:11:12:60 36.324 -106.144 8.55 .10 MM 58 MC 8 93 21.0 .09 .0 .0 349 1980 DEC 23 02:02:57.14 35.742 -107.153 8.06 .26MDLA 73 MC 8 194 28.0 .20 .07 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	347	1980 NOV 30	07:20:30.52	_												•		
349 1980 DEC 23 02:02:57.14 35.742 -107.153 8.06 .26MDLA 73 MC 8 194 28.0 20 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	348	1980 DEC 18														•		
350 1981 JAN 11 17:24:00.56 36.314 - 106.573 7.59 .27MDLA 57 WC 15 149 22.0 .07 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	349	1980 DEC 23										-				•		
351 1981 FEB 23 13:41:38.12 36.037 -106.876 11.10 .25MDLA 53 WC 15 198 4.0 .10 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	350											-				•		
352 1981 FEB 28 08:49:46.74 36.240 -106.221 21.31 .20 NM	351			_												•		
353 1981 MAR 06 07:41:33.39 35.558 -107.006 8.80 .52MDLA 67 MC 11 164 28.0 .07 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	352		_													-		
354 1981 MAR 08 02:21:21.70 36.335 -106.217 6.05																•		
355 1981 MAR 15 12:44:35.56 35.907 -106.493 7.10 .10 NM 15 WC 7 266 20.0 .05 .0 .00 .05 .00 .05 .00 .05 .00 .05 .00 .05 .00 .05 .00 .05 .00 .05 .00 .05 .00 .05 .00 .05 .00 .05 .00 .05 .00 .00				_												•		
356 1981 MAR 20 13:57:40.26 36.285 106.544 5.68																•		
357 1981 MAR 24 21:48:51.05 35.548 -106.835 8.18 .79MDLA 54 WC 11 184 25.0 .17 .0 .0 .0 .358 1981 MAR 05 04:14:14.78 35.872 -106.779 7.41 .48MDLA 39 WC 19 111 13.0 .13 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0						_										•		
358 1981 APR 05 04:14:14.78 35.872 -106.779 7.41 48MDLA 39 WC 19 111 13.0 13 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0																•		
359 1981 MAY 03 10:36:39.93 35.539 -106.239 7.33 .86MDLA 34 WC 10 239 25.0 .08 .0 .0 .0 .360 1981 AUG 03 05:11:42.81 35.693 -106.122 8.06 .57MDLA 26 WC 8 148 12.0 .06 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0																•		
360 1981 AUG 03 05:11:42.81 35.693 -106.122 8.06 .57MDLA 26 WC 8 14.8 12.0 .06 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0																•		
361 1981 AUG 18 00:16:27.48 36.677 -106.716 6.05 1.18MDLA 100 WC 13 224 28.0 .11 .0 .0 .0 .362 1981 SEP 21 04:19:04.12 36.519 -106.647 13.86 .86MDLA 81 WC 23 187 15.0 .10 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0																•		
362 1981 SEP 21 04:19:04.12 36.519 -106.647 13.86 .86MDLA			and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s									_				•		
363 1981 SEP 26 02:15:59.46 36.514 -106.499 10.45 .40MDLA .77 WC 15 159 27.0 .21 .0 .0 .0 .364 1981 OCT 01 07:40:22.82 35.527 -106.443 7.69 .87MDLA .35 WC 19 187 23.0 .11 .0 .0 .0 .365 1981 OCT 21 08:41:48.69 36.465 -106.668 10.61 1.72MDLA .76 WC 22 166 11.0 .11 .0 .0 .366 1981 NOV 02 06:22:41.21 35.454 -106.121 11.47 .62MDLA .47 WC 19 221 19.0 .11 .0 .0 .367 1981 NOV 24 06:51:19.38 35.764 -106.760 10.52 1.29MDLA .38 WC 16 125 7.0 .12 .0 .0 .368 1982 JAN 11 04:13:23.14 35.631 -106.627 9.43 .07MDLA .33 WC 12 215 25.0 .08 .0 .0 .369 1982 FEB 26 20:22:50.58 35.175 -106.767 7.91 .72MDLA .82 WC 10 230 66.0 .24 .0 .0 .370 1982 APR 06 11:53:21.87 36.293 -106.761 9.42 .30MDLA .82 WC 10 230 66.0 .24 .0 .0 .0 .371 1982 APR 19 07:34:46.75 36.316 -105.821 11.85 1.03MDLA .72 WC 11 193 9.0 .13 .0 .0 .372 1982 APR 24 04:12:07.24 35.723 -106.708 9.94 .30MDLA .34 WC 13 188 13.0 .21 .0 .0 .373 1982 MAY 26 20:39:44.68 36.515 -106.723 4.58 1.77MDLA .83 WC 10 125 57.0 .10 .0 .0 .374 1982 MAY 27 03:32:41.78 36.646 -106.728 .0697 WC 11 172 58.0 .23 .0 .0 .0 .375 1982 MAY 28 02:41:09.72 35.689 -107.036 16.3397 WC 11 172 58.0 .23 .0 .0 .0 .376 1982 MAY 28 02:41:09.72 35.689 -107.036 16.3390 WC 11 172 58.0 .23 .0 .0 .0 .377 1982 MAY 28 02:41:09.72 35.689 -107.036 16.33				_												•		
364 1981 OCT 01 07:40:22.82 35.527 -106.443 7.69 .87MDLA				_												•		
365 1981 OCT 21 08:41:48.69 36.465 -106.668 10.61 1.72MDLA 76 WC 22 166 11.0 11 .0 .0 366 1981 NOV 02 06:22:41.21 35.454 -106.121 11.47 .62MDLA 47 WC 19 221 19.0 11 .0 .0 367 1981 NOV 24 06:51:19.38 35.764 -106.760 10.52 1.29MDLA 38 WC 16 125 7.0 .12 .0 .0 368 1982 JAN 11 04:13:23.14 35.631 -106.627 9.43 .07MDLA 33 WC 12 215 25.0 .08 .0 .0 369 1982 FEB 26 20:22:50.58 35.175 -106.767 7.91 .72MDLA 82 WC 10 230 66.0 .24 .0 .0 370 1982 APR 06 11:53:21.87 36.293 -106.761 9.42 .30MDLA 82 WC 10 230 66.0 .24 .0 .0 371 1982 APR 19 07:34:46.75 36.316 -105.821 11.85 1.03MDLA 72 WC 11 193 9.0 .13 .0 .0 372 1982 APR 24 04:12:07.24 35.723 -106.708 9.94 .30MDLA 72 WC 11 193 9.0 .13 .0 .0 373 1982 MAY 26 20:39:44.68 36.515 -106.723 4.58 1.77MDLA 83 WC 10 125 57.0 .10 .0 .0 374 1982 MAY 27 03:32:41.78 36.646 -106.728 .06																•		
366 1981 NOV 02 06:22:41.21 35.454 -106.121 11.47 .62MDLA 47 WC 19 221 19.0 .11 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0								•••••	• •							•		
367 1981 NOV 24 06:51:19.38 35.764 -106.760 10.52 1.29MDLA 38 WC 16 125 7.0 .12 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0								• • • • • • •	• •							•		
368 1982 JAN 11 04:13:23.14 35.631 -106.627 9.43 .07MDLA 33 WC 12 215 25.0 .08 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0									• •							•		
369 1982 FEB 26 20:22:50.58 35.175 -106.767 7.91 .72MDLA 82 WC 10 230 66.0 .24 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0									• •								.0	.0
370 1982 APR 06 11:53:21.87 36.293 -106.761 9.42 .30MDLA 63 WC 9 257 32.0 .08 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0									• •								.0	.0
371 1982 APR 19 07:34:46.75 36.316 -105.821 11.85 1.03MDLA 72 WC 11 193 9.0 .13 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0								• • • • • • • •							.24		.0	.0
372 1982 APR 24 04:12:07.24 35.723 -106.708 9.94 30MDLA 34 WC 13 188 13.0 .21 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0									• -								.0	.0
373 1982 MAY 26 20:39:44.68 36.515 -106.723 4.58 1.77MDLA 83 WC 10 125 57.0 10 0 0 374 1982 MAY 27 03:32:41.78 36.646 -106.728 .06 97 WC 11 172 58.0 .23 .0 0 375 1982 MAY 27 16:26:09.62 36.494 -106.741 10.01 1.23MDLA 82 WC 8 129 54.0 .04 .0 0 376 1982 MAY 28 02:41:09.72 35.689 -107.036 16.33 64 WC 9 202 40.0 .25 .0 0 377 1982 JUN 26 13:32:40.52 35.611 -106.798 9.05 .71MDLA 47 WC 9 270 18.0 .19 .0 .0									• •				193	9.0	. 13		.0	.0
374 1982 MAY 27 03:32:41.78 36.646 -106.728 .06										34	WC	13	188	13.0	.21		.0	.0
375 1982 MAY 27 16:26:09.62 36.494 -106.741 10.01 1.23MDLA							1.77MDLA			83	WC	10	125	57.0	.10		.0	.0
375 1982 MAY 27 16:26:09.62 36.494 -106.741 10.01 1.23MDLA 82 WC 8 129 54.0 .040 .0 .0 .376 1982 MAY 28 02:41:09.72 35.689 -107.036 16.33 64 WC 9 202 40.0 .250 .0 .377 1982 JUN 26 13:32:40.52 35.611 -106.798 9.05 .71MDLA 47 WC 9 270 18.0 .190 .0										97	WC	11	172	58.0	.23		.0	.0
376 1982 MAY 28 02:41:09.72 35.689 -107.036 16.33 64 WC 9 202 40.0 .250 .0 67 WC 9 270 18.0 .190 .0							1.23MDLA		• •	82	WC	8	129	54.0	.04		.0	
377 1982 JUN 26 13:32:40.52 35.611 -106.798 9.05 .71MDLA 47 WC 9 270 18.0 .190 .0						16.33		• • • • • • •		64	WC	9	202	40.0				
779 1093 HW 30 11.67-37 01 37 767 467 344 3 65 4 55 65 6							.71MDLA			47	WC	9	270	18.0	. 19			
	5/8	1982 JUN 29	11:57:23.91	36.657 -	106.711	7.08	1.53MDLA		• •	97	WC	10	124	59.0	. 13		.0	.0

Cat No.	Date year-mo-day		Lat -=======	Long	Depth (km)	Mag1	Mag2	Inten (MM)	(km)	Srce	Arr	Gap	D-min (km)	RMS (sec)	Q	Std-Er Horiz V	/ert
379		16:37:07.91		-107.120	8.27				- 75	WC	8	157	33.0	-==== .11	- = -	-=====- .0	.0
380	1982 JUL 22	11:23:29.11	35.695	-106.941	.23	1.22MDLA			56	WC	14	146	12.0			.0	.0
381	19 <b>82</b> JUL 22	12:46:23.99	35.695	-106.949	3.35	1.70MDLA	******	•••	56	WC	24	146	13.0	. 19	:	.0	.0
382	1982 JUL 22	20:51:01.22		-107.082	1.14	1.74MDLA		••	78	WC	6	205	41.0	.10	:	.0	.0
383	1982 AUG 07	04:48:01.08	36.703	-106.688	12.23	2.93MDLA	•••••	••	102	WC	5	133	58.0	.00	:	-0	.0
384	1982 AUG 08	17:08:40.33	36.729	-106.672	8.90	2.52MDLA			104	WC	5	139	58.0	.09	:	.ŏ	.0
385	1982 AUG 09	02:22:25.13	36.687	-106.689	7.87	1.83MDLA		••	100	WC	7	130	59.0	4	:	.0	.0
386	1982 AUG 10	08:11:03.56	36.677	-106.697	.75	1.50MDLA			99	WC	6	128	59.0	.04	:	.ŏ	.0
387	1982 DEC 15	14:54:59.58	36.026	-106.852	8.13	.93MDLA		•••	50	WC	10	191	2.0	.11	:	.0	.ŏ
388	1982 DEC 16	04:08:03.68	35.691	-106.918	.51	.82MDLA			54	WC	16	148	11.0	.07	•	.0	.0
389	1982 DEC 24	19:08:45.28	35.214	-106.936	9.26	1.79MDLA			87	WC	11	216	60.0	.09	:	.0	.0
390	1982 DEC 30	02:24:12.99	36.506	-106.651	4.89	1.54MDLA			80	WC	7	217	57.0		:	-0	.ŏ
391	1983 FEB 04	18:14:38.80	35.916	-106.167	7.21	1.52MDLA			19	WC	8	219	25.0	.08	:	-0	.0
392	1983 FEB 11	04:19:20.18	35.930	-106.764	4.41	.49MDLA			39	WC	11	147	7.0	.10		.0	.0
393	1983 FEB 28	04:52:20.25	36.090	-106.227	.00	1.14MDLA			31	WC	8	134	6.0	.21		.0	.0
394	1983 MAR 15	04:28:43.86	36.077	-106.225	3.38	.99MDLA			30	WC	13	181	38.0	.10		.ŏ	.ŏ
395	1983 APR 06	10:39:44.74	36.078	-106.225	2.45	1.11MDLA			30	WC	15	117	38.0	.10		.0	.ŏ
396	1983 JUN 24	06:28:50.28	36.463	-106.670	10.49				76	WC	13	214	52.0	. 16		.0	.ŏ
397	1983 JUN 27	01:51:05.36	<b>36.</b> 196 ·	-106.875	.97	.51MDLA			62	WC	11	267	20.0	.06	-	.0	.0
398	1983 JUL 08	09:49:14.43	35.919	106.872	11.56	.35MDLA			48	WC	12	110	11.0		ì	.0	.ŏ
399	1983 JUL 19	17:12:43.15	<b>36.17</b> 5 ·	-106.848	5.62	.75MDLA			59	WC	9	262	18.0	.12		.0	.0
400	1983 JUL 20	10:11:53.36	36.347	-105.810	1.24	1.62MDLA			75	WC	15	196	52.0			.0	.0
401	1983 AUG 03	09:17:29.81	36.088	-106.903	8.15	1.49MDLA			58	WC	17	222	10.0	.12		.0	.0
402	1983 AUG 11	15:09:22.2 <del>9</del>	36.343	105.779	12.13	1.75MDLA			77	WC	12	200	14.0	.08		.0	.õ
403	1983 AUG 14	14:45:02.45	35.813	106.471	.12	1.79MDLA			11	WC	8	138	11.0			.0	,õ
404	1983 SEP 19	05:07:56.61	35.748		5.26	1.08MDLA			25	WC	6	191	29.0	.05		.0	.ŏ
405	1983 OCT 09	22:47:05.38	36.093	106.536	1.85	1.73MDLA			34	WC	9	118	27.0	.02		.0	.o
406	1983 OCT 29	03:57:07.34	35.159 -		2.54	1.40 NM			76	WC	12	232	73.0	.09		.0	.0
407	1983 NOV 28	17:31:12.61	<b>36.512</b> -		13.95		******		83	WC	9	175	26.0			.0	.0
408	1983 DEC 02	22:10:00.33	35.257 -		-48	.88MDLA			69	WC ·	5	286	59.0			.0	.0
409	1983 DEC 02	22:44:08.57	35.312 -		11.59	2.70MDLA			58	WC	6	217	61.0			.0	.0
410	1984 JAN 28	20:45:45.41	35.498 -	106.233	8.89	2.14MDLA			38	WC	6	240	56.0	.06		.0	.0
411	1984 FEB 05	09:05:24.37	36.006 -	106.736	9.68	1.48MDLA			40	WC	12	204	15.0	.16		-0	.0
412	1984 APR 18	19:44:03.88	35.964 -	106.273	8.93	1.80 NM			16	WC	7	155	48.0	.04		.0	.0
413	1984 JUN 30	12:02:52.80	36.545 -		5.64	1.75MDLA			80	WC	11	134	40.0	4.2		.0	.0
414	1984 JUL 19	16:50:20.52	36.058 -	106.159	3.39	.83MDLA			31	WC	6	136	34.0			.0	.0
415	1984 AUG 19	11:32:34.23	<b>3</b> 5.619 -	106.868	7. <del>9</del> 4	1.11MDLA			52	WC	9	171	48.0			.0	.0
416		04:05:27.23	36.168 -		3.26	1.82MDLA			61	WC	8	236	18.0	.08		.0	.0
417	1984 NOV 07	03:21:45.81	36.144 -	106.268	11.22	.09MDLA			36	WC	6	170	36.0			.0	.0
418	1984 NOV 18	14:14:13.11	35.793 -	106.413	3.12	.90 NM			7	WC	9	240	46.0	.09		.0	.0
419	1984 NOV 20	00:48:23.97	<b>35.783</b> -		1.27				8	WC	7	242	46.0	.11		.0	.0
420	1984 NOV 20	01:21:42.46	35.792 -	-	3.41	.69MDLA			7	WC	12	240	18.0	.11		.0	.0
421		16:31:24.70	35.809 -	106.960	7.67	1.34MDLA			55	WC	6	162	25.0	.12		.0	.0
422		21:02:30.93	35.842 -		7.48	2.51MDLA	*****		35	WC	5	125	21.0	4.0		.0	.0
423		19:39:12.82	36.438 -	106.826	10.11	1.07MDLA			80	WC	6	208	74.0			.0	.0
424		17:06:43.52	35.584 -		5.03	1.34MDLA			75	WC	8	158	54.0	.11		.0	.0
425		19:01:46.87	36.122 -		13.63				53	WC	11	184	84.0	0.7		.0	.0
426		16:53:43.39	35.499 -		8.12	.83MDLA			58	WC	9	192	52.0	4.0		.0	.0
427		18:46:47.10	36.017 -		4.05	.93MDLA			21	WC	9	147	15.0			.0	.0
428	1985 MAY 15	25:11:51.56	35.329 -	105.979	7.62	1.90MDLA			65	WC	7	254	59.0	.14		.0	.0

Cat No.	Date year-mo-day	Time (GMT) hr-min-sec	Lat -======	Long	Depth (km)	Mag1	Mag2	Inten (MM)	Dist (km)		Arr	Az Gap	D-min (km)	RMS (sec)	Q	Std-Er Horiz \	-
429	1985 MAY 30	18:46:30.81		-106.556	25.86	1.46MDLA			-====· 28	WC	-===· 8	189	21.0	-====-		-======	:====
430	1985 JUN 19	21:05:09.85		-106.235	14.31	1.74MDLA			50	WC	8	184	29.0	.23	•	.0	.0
431	1985 JUL 01	05:27:19.77		-106.242	4.46			• • •	82	WC	7	170	39.0	.03	•	.0	.0
432	1985 JUL 13	16:15:30.70		-106.436	5.63	.90MDLA			47	WC	12	154	38.0		•	.0	.0
433	1986 APR 02	16:58:13.97		-106.400	1.39	1.90MDLA		••	27	WC	9	247	19.0	.10	•	.0	-0
434	1986 MAY 17	15:25:00.03		-106.147	.00	.92MDLA		• •	22	WC	5	242	11.0	.16	٠	.0	.0
435	1986 JUN 07	11:09:09.38		-105.786	10.97	.58MDLA		• •	77	WC	7	259	13.0	.04	•	.0	.0
436	1986 JUL 04	05:49:25.72		-106.167	10.00	.46MDLA		••	38	WC	8	207	26.0		•	.0	.0
437	1986 JUL 16	17:35:09.61		-105.786	9.28	1.30MDLA		••	75	WC	8	243	12.0	.04 .03	•	.0	-0
438	1987 JAN 28	13:11:49.18		-106.276	9.47	.13MDLA		••	24	WC	8	208	13.0	.05	•	.0	.0
439	1987 MAR 11	06:08:43.40	35.942	-106.263	8.99	.15MDLA		• • •	15	WC	6	194	4.0	.08	•	-0	-0
440	1987 APR 18	07:50:12.33	36.343		12.24	1.37MDLA			76	WC	7	254	12.0	.18	•	.0	.0
441	1987 SEP 03	17:48:59.17	36.470		7.87	.72MDLA		• •	72	WC	ģ	217	34.0	.08	•	.0	.0
442	1987 SEP 22	19:29:06.65	35.997		36.88	2.10MDLA		••	29	WC	7	240	34.0	.20	•	.0	-0
443	1987 OCT 11	13:02:51.48	36.589		8.72	.69MDLA		- •	86	WC	ģ	246	30.0		•	.0	.0
444	1987 OCT 14	07:22:15.31	36.386 -	-106.795	10.34	.63MDLA		• •	74	WC	8	261	63.0	.23	•	.0	.0
445	1987 OCT 31	04:33:23.40	36.583 -		9.34	.29MDLA		••	84	WC	7	236	26.0	. 12 . 23	•	. 0	.0
446	1987 DEC 19	09:18:14.52	36.283 -		12.41	.22MDLA		••	51	WC	6	261			•	.0	.0
447	1988 FEB 24	17:20:50.63	36.347 -		8.48	1.14MDLA		••	77	WC	16	177	32.0 13.0	-19	•	.0	-0
448	1988 JUL 21	12:53:49.20	35.712 -		15.11	.87MDLA		• •	30	WC	10	269		.07	•	.0	.0
449	1988 DEC 07	22:08:45.88	36.122 -		10.21	.83MDLA	• • • • • • • •	••	48	WC WC			19.0	.07	•	.0	.0
450	1989 MAR 01	08:26:59.68	36.133 -		6.95	.13MDLA		••	46 45	WC WC	8	253	45.0	. 15	•	.0	.0
451	1989 MAR 22	04:20:07.29	36.332 -		15.10	.17MDLA	••••••	• •	76		8	244	42.0	.05	•	.0	.0
452	1989 JUL 26	01:43:10.78	36.153 -		27.31	.21MDLA		••	70 37	WC	- (	177	14.0	.05	-	.0	.0
			22.123	.00.250	41.31	. Z INDLA	•••••	••	37	WC	6	228	30.0	.13	•	.0	.0

# APPENDIX J CORE HOLE FIELD LOGS





														,				
Project N	Vame	LANL Seisi	mic Haza	rds Studies	Task 2	Boring N	lo. She	1(1	À-5	55)					``.			Sheet 1 of 4
Project N	Vo.	91C0509A				Task		00			Ek	evatio	n and	i Dan	т			
Boring Lo	ocation	West of	TA-55	Securi	ly aacta						Da	ite St	arted	10 -	18-	-91		Date Finished 11-8-91
Drilling C	<b>Co.</b>	PC Explora			Utah	Driller 7	Pan l	Jalt	w v	7	Co	mplet pth	ion	70	0			Rock Depth
Drilling E	qpt.	Ingersoll-	<del></del>		,	Dame	Bow	en a	nd To	ie	No	o. of Imples		ľ	)ist.		•	Undist. Core
Drilling N				11 40							$\neg$	ater	_	i,	irst	_		Compi 24 hrs
Core Ba		Pill Ilain			1	Blt				1		gged	by:	<u>.</u>				Checked by :
Casing 5		HX/HØ	Туре	5 feet		Depth	וט	amo	no •		┥		SAN	/ ц.	A LVC			,
Casing	312.6		1300		i	Ocpu.					<u>_</u>	- 70	,740					
DEPTH (feet)			DESCRI	PTION		Sketch	Lithology	Run No.	Recov. (ft)	ROD S	Fractures / ft	Weathering	Strength		Type eqyT	Blow Count	Recovery	REMARKS  10-18-91 START 9:55a.m.
5	m	13331	e, fine avel and ty, dry REGE	-to mediv	um-graine ow- BEIR		(SH)		91 = , 21, 8:0									Loose & dry blown away by air  9:57 hole staying open- 10:30
10	R/	mpolite tuff	- 50ft	-in sho€		+++++++++++++++++++++++++++++++++++++++	(SM)	HX-3	0. 3.2'/5'= 64%									10:34 time speat 15:10 dracing wr HE Safety Inspections Now switching to HX coring Start 130  Drillers not using a face discharge bit as requestd— bits being flown in Today.
<u> </u>	41,		<del>_</del>			<u> </u>												WCC Geolech CL-91 September 199

4	
1	

Project i	Name LANL Seismic Hazards Studies Task 2 Borin	g No.	Sı	13-	١				•					Sheet Z of 44
					OCK	COF	₹E			sc	HL SA	MPL	ES	
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Strength	No.	Туре	Blow Count	Recovery	REMARKS
5	BANDILIER TUFF TSHIREGE MEMBER, PINKTSH GRAY BROWN LARGELY TRIARCE	<u>s</u>	-	HQ-3	ó %***									Soft material being blown away. Switch back to punch core 1:35 - fixing unterpling wireline Asked ciriller to use less an pressure to loop from blowing away sample 2:15-2:40 adjusting winch for
20	Ash-white, fine, loose gray {			PC-4	2.2'/5'= 4	%0								air to Foot-pedal  Start 2:50  2:52
25 -	Rhyolite tuff- gray, soft to medium hard, fine grained, dry, w/fine to med grained glassy inclusions, slightly weathered  3 awdicter, Gent appears  Bawded, Low Strength			Hand Imed)	5//5'=100%	= ,5/	2							STOP FOR 10-18-91  DRILLES GONG TO  PICKUP BITS, SAFETY  SUPPLIES  10-19-91  START 7:54  USING "STRATIPAK"  CARBIDE BIT  7:55 & fixing core  8:30 Special
<i>30-</i>	- moderately welded, pumice clasts somewhat flattened,	* F. F. F. F. F. F. F. F. F. F. F. F. F.		10.6	4.71/5' = 94%	7,01 = /2/.9								many pumice clasts eroded by au coring, leaving pits  8:30  Servel head



Project I	Name LANL Seismic Hazards Studies Task 2 Borli	ıg No.	S	4B-	١									Sheet: 3 of 44
						COF	Œ			sc	HL SA	MPL	ES	
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Srength	No.	Туре	Blow Count	Recovery	REMARKS
	Same as above  BANDELIER TUFF  TSHIREGE MEMBER	NP.												8:45
	(Unit 3 of V}M,1990)		•	40-7	7.95 = 51,8.2	1,/2:,5/,1				4				
35	۷۵۱۵۶	AIR.		8-04	471/51=94%	2.8/5' = 56%								9:46 - 8:56 - - - - - - - - - - - - - - - - - - -
40 -														- 8:57 - 9:08 - 10" in liner, - Liner became
45	Beomes pink, medium hard, highly fractuad, will med grained glassy inclusions, thin clay-filled fracture	WR		WB- & ( Lined)										"blocked by core.  - Hire Only retrieved  - From 10" in lines.  - Remainder of sample  - in shoc and sticking  - out of shoe. See  - core box  - 9:09 - 9:16



Project	Name LANL Seismic Hazards Studies Task 2	Boring N	o. 51											Sheet 4 of 44
آ چ ا				Ī	ROCK	COF	RE .		,	sc	)IL S/	MPL	ES	
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Strength	Żo.	Type	Blow Count	Recovery	REMARKS
	Pinke thyolike tuff as above, subrounded fragments	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 300	110-10	3/5' = 26%	×								- Soft makrial - blown away by ain
50 -	Tuff - Dk brown/pink, medium hardness, slightly fractured and weathered, w/med grained glassy inclusions, moderately to densely welded, pumice clasts somewhat flattened	A CORPORATION OF STREET	200	*	7	0								9:17 9:28  driller wants to try drilling faster- see if receiving will improve
	Fe-stained fracture _		, ,	11 - 8#	4.81/5' = 98%	3.6/5' = 72%								- - - - - - - - - - - - - - - - - - -
55		****	R ,		%0%									- 9:29 - 9:35 - - - - - - -
60	moderadelyu clay fillin in fractad	wide + N	8	110-12	41/5' =									
1 1 1 1 1 1	Gray, medium hardness, Fe & Un stains on some fracture fues, fine grained wisome med grained glassy inclusion	25 00	<b>®</b> (a)	110-13										- - - - -



riojecti		IRodo	n No	<b>~</b> .											Sheet 5 of 44
	Name LANL Seismic Hazards Studies Task 2	Borin	y 140.	-)t	1 <u>87-</u>	SOCK	COF	NE.		-	sc	OIL SA	MPL	ES	5,661 5 5 77
DEPTH (feet)	DESCRIPTION		Sketch	Lithology	Run No.	/. (ft)	ROD	Fractures / ft	Weathering	Strength	No.		Blow Count	Recovery	REMARKS
63	TSHIREGE MEMBER (UNIT 3)				HQ-13	3.21/5'= 64%	1/2/2/1/2/	ي							
65 -	- becomes moderately welded  Pink w/coarse glassy inclusions		80 808 8 80 899 1 3 1		(AM)#1-84	0.912 = 18%	%0								9:51 10:04  Catcher on core barrel caught in liner. Prevented Core from going in
70 - 75 -	Same as above  Fine pink ash in cultings		₹ X		114-16 HQ-15	0,12/=17%	1								10:20



		_												
Project	Name LANL Seismic Hazards Studies Task 2 Borin	g No.	21	<del>/8-</del>	)	COF	)E			97	M 84	MPL	FS	Sheet 6 of 44
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Strength	No.	Type	Blow Count	Recovery	REMARKS
26	TSHIREGE MEMBER (UNIT 3)	NR.		HQ-16	0	%0								- - - - - - - - - - - - - - - - - - -
B	probable surge deposit (?) few sandstone-like clasts	NR.											,	try drilling whair on occasionally
	Ash-white, Loose, dry			40-17	0	Q								- - - - - - - - - -
85	- Acomo white, wood you													- 11:00 - 11:05 - 1:05 - try drilling - W/very little air - (150 psi)
	Ash in cultings	NR		B1-0H	0	o								- last foot - core barrel pushed into formation by
90 -	(UNIT 36) NON WELDED UNIT OF VANIMAN & WOHLETZ, 1990'	MR		460-19	٥	٥								core barrel falling in hole



Project I	Name LANL Seismic Hazards Studies Task 2	Borin	g No.		142	3 -1									Sheet 7 of 44
(					F	юск	COF	E			SC	HL S/	MPL	ES	
DEPTH (feet)	DESCRIPTION		Sketch	Lithology	Run No.	Recov. (11)	ROID	Fractures / ft	Weathering	Strength	No.	Type	Blow Count	<b>Песо</b> мелу	REMARKS
95	Ash, white, loose		-WR		419-19									<b>,</b>	H:20  11:50 -12:50  barrel stuck  in hole - too  much slongh
			NR		HQ-20	Ô	0%								— around outside - of rods -
100	Ash, light gray, loose	- - - - - -	<del></del>												didn't turn rods took bag sample
105		-	NR		18-21	o'	oh.								- 12:52 - 12:18
	- same ar above	-	NR		( Care C.	0.875 = 16%	ol.								
110 -															



Project	Name LANŁ Seismic Hazards Studies Task 2	Boring	No.	1	( -	TA -	55	)							Sheet 8 of 44
C						ROCK					sc	DIL S/	MPL	ES	
DEPTH (feet)	DESCRIPTION		Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Strength	No.	Туре	Blow Count	Recovery	REMARKS
			· · · · · · · · · · · · · · · · · · ·			%									1:45
115	Light gray ash as above				HQ-23	1,72, = 50%	%0								1:47 2:0b
	as above	**************************************	NR		MQ-24	0									cultings in bag
120		<del></del>	we.		40-25	٥				-					- 2:11 - 2:25 - - - -
125	Ę	+++++++++++++++++++++++++++++++++++++++			114										2:27 2:30 Drillers Reft to Coll Larry Flerring 10: necovery



Project	Name LANL Seismic Hazards Studies Task 2   Borin	g No.	2	HB-	<del>-</del>									Sheet Q of L/4
٠					ROCK	COF	3E			sc	IL S/	MPL	ES	
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Strength	No.	ed∧⊥∻	Blow Count	<b>Весо</b> чегу	REMARKS
130		NR		40-26	ó	0%								Back at 3:30
		NR.		14-27	Ó	oj.								
140-	Mhyolite 14th - Vark pink, moderately welded, w/med grained pumice fragments, and volcanicalass, low-strength highly fractured  (UNIT 2) UNIT 2 1990  lithic resicular basalt fragments w/coarse grained pumice, flattened, moderate strength, moderately welded  becoming lighter pink  Rhapite tulk- gran w/light pink	JR 0000		HQ-28	2.1'/5' = 42%	4"/5" = 7.								3:45 3:52 
-	. compressed med to coasse pumice	W.R.		40-29	3.4 1/5: 68%	4"/5" = 7%		,						4:05



Project	Name LANL Seismic Hazards Studies Task 2	Boring	No.	SH	18-	٠)				-					Sheet	10	of	чч	٦
							( COI	RE	,		sc	DIL SA	AMPL	.ES				•	7
DEPTH (feet)	DESCRIPTION		Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Strength	Š	Туре	Blow Count	Recovery		REM	IARK:	S	
	strongly welded, high strength				62-04											:08 `	÷		
145	Strongty welded, high strength  Gray, moderate strength, moderately welded to welded fewer purice fragments  mechanical ineaks		(A)		, 110-30 (lines)	21/5 = 100%	3.2 1/5 = 64%												
150	mechanish break 3 cm lithic clast o dacite(?)	f }	DOTT HORSELL . I. D		HQ-31	7.001 = ,5/,5	2.6/5' = 56%									25			
	Highly fractured, gray, moderately here growth moderately welded highly plastic orange clay scam, 2cm wide w/coarse round sand Size	d was	OWNER THE DESCRIPTION OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PA		HQ-32	3.3/5'= 66%	%0												



Project	Name LANL Seismic Hazards Studies Task 2 Borin	g No.	1	(TA										Sheet // of 44
<u></u>		<u> </u>		F	OCK	COF	₹E			sc	NL SA	MPL	ES	
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Strength	No.	edk⊥	Blow Count	Recovery	REMARKS
160 -	Gray, moderately mechanical ( welded, moderate breaks Strength, w/coarse breaks Volcanic glass, banidine and purice fragments	8		HQ-32										- - - - - 4:50 - 4:57
165	mechanical fragments  mechanical forests  (occ barrel overfull			HQ-33	7.001=,5/,5	1.6 /5' 023'								- - - - - - - - - - - - - - - - - - -
	mechanical basake hicklasslantis propos class spame			H8-34	4.21/5' = 90%	3.91/5' = 78%								
170 -	highly plastic orange clay seam	Rogo 88 15 18		HQ-35	3.1.75 = 62%	1.01 = ,5/,5.0	i i							START 8:16 on  10-19-91  START 8:16 on  10-20-91  400 pri pressure  maddition to rod weight



Project I	Name LANL Se	ismic Hazards Stud	lies Task 2	Borin	g No.	l	(	TA	- 15	55)	)						Sheet 12 of 44
			<u>.</u>					ЮСК					sc	XL SA	MPL	ES	
DEPTH (feet)		DESCRIPTION			Sketch	Uthology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Strength	No.	Туре	Blow Count	Recovery	REMARKS
175				1.1.1.1.1.1			#0-35										8:18 8:29
180		@ +# \$1	70°, 2mm ick orange Hyclay		R COURSES STORY		HQ-36	2.8'/5' = 56%	%0								0:30 9:43
185							HQ-37	2.9'/5' = 58%	0.4/5' = 8%								8.44
190							F. 28,	22' 3'8'/5'=76%	2.2. 15:44%								Asked dulles to  go shower to thy  to improve necovery



Project	Name LANL Seismic Hazards Studies Task 2	Boring N	o.		<u>ገ</u>									Sheet 13 of 44
t)	```				ROCK	COF	Œ			sc	)iL S/	AMPL	ES	
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. (ft)	PCO	Fractures / ft	Weathering	Strength	Š.	Type	Blow Count	<b>Весо</b> чегу	REMARKS
195	Light pink and aray , moderately		THE THE PROPERTY NO. 10	HQ-39	4.5'/5'=90%	1.5'/5' = 30"/								9:04 
	Light pink and gray, moderately  Welded, moderate strength;  wilcoarse purnice and lithic fragments, with med. to coarse grained Sanidine, quartz, glass tragments	N. T. D. T.	A CALIFORN CHILDRIA.	% HQ-40	4.1'/5' = 82%	1.71/5-34%	7	and the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contra						Still 400psi addilproseure
205	Same as above			HQ-4-	3.8/5′=76%	<b>%</b> 0	8							-9:22 -9:32 
***	same as above		3				7							9:34 Asked drilla. 9:43 to slow penetration nate



Project I	tame LANL Seismic Hazards Studies Task 2 Borin	g No.	1.	CT	<u>ا</u> - ک	55	)							Sheet 14 of 44	
₽ l				F	OCK	COR	E			SC	IL SA	MPL	ES		
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Strength	No.	Type	Blow Count	Recovery	REMARKS	
2.0	BANDILIER TUFF, LIGHT FINKSH GRAY, MODERATE PETTUG OF SURFACE DUE TO ALR CORING			HG-42	5.0/50 = 100 %	4.0/50 = .80	0	, μ	ራ						
2,0-	Strongly Fitted Law Steenight Moderatelywelded more fines  Unit 2			HQ-43	1.7/5.0= 34.6	# 20	0 0 0 2 4	U	LS					9:55	
215-	Light pinkish gray unconsolidated unwelded tuff			HQ-44	0									10:07  100 soft for  coring  collected  cuttings-unweld  tuff  10:15	ded
220	same as above	+		HQ-45	٥									drilled fast	



Project I	Name LANL Seismic Hazards Studies Task 2	Borin	g No.	1			55								Sheet 15 of 44
ء ا					F	ROCK	COF	Æ			SC	HL S/	MPL	ES	
DEPTH (feet)	DESCRIPTION		Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Strength	No.	Туре	Blow Count	Recovery	REMARKS
225			N		H0-45	0									Using 350 psi an -cant lower it on hole will plug up  Luttings in  core box  drilled 4' slowly  pushed 1'  10:30  10:35
	as above				410-46 ( lined)	٥									cuttings in core box
230 -	ous above		J. J.		HQ-47(lined)	O									-10:55 -11:04 
235 -	as above	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	NR		HQ-48 (lined)	0									11:05



Project N	Name LANL Seismic Hazards Studies Task 2	Borin	g No.	l	(T)										Sheet	16	अ प्प
٦			<u> </u>		F	ЮСК	COF	E			SC	IL S/	MPLI	ES			
DEPTH (feet)	DESCRIPTION		Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Strength	No.	Туре	Blow Count	Recovery		REMAF	RKS
240		-	NR		40.48							•				:56	
245			NR		HQ-49( Rined)	0									<u> </u>	1:56	
250	Unwelded tuff as above pink, dry, w/ lithic clasts (dark)	-			410-50 ( lived)	8 75/= 13%	1%									Fru & ldd 1/2. REP 2000 jallens Start in foam@	recitation 1:50  gallon to 300 ofwater. ecting 245, blowing
255-	Vapor phase tuff (?)				HQ-5/	1.2'/5'=24%	%									Drillians	



Project i	Name LANL Seismic Hazards Studies Task 2 Borln	g No.			TA-									Sheet (7 of 44
٥				P	ЮСК	COF	E	, -		SC	IL SA	MPL.	ES	
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Svength	No.	Туре	Blow Count	Recovery	REMARKS
	Unwelded tuff as above Vapor phase tuff?	-			200									- 2:52 - - - -
-	What while con that - low strongth	M	c	HQ-52	0.6 1/5 = 12	2%								- - - - - - - - -
260	hight pink gray tuff - Low strength, mod melter we med - coarse pumice fragments, sandine & quartz, light (weight), vapor phase	000				•								- 7:52 - 3:08 - - -
**		NR OFF		Q-5 <b>3</b>	.6'/5' = 32%	%							7	- - - - - - - -
<b>245</b> -	Bottom of Tshuego (?)  hight pink gray unwelded triff	22		MH	0.1	%0	aras vi aspirav	and to the quity						- - - 3:09 - 3:25
		I NR								:				- - - - - - - - -
		+++++++++++++++++++++++++++++++++++++++		HQ-54	0									
270-	Ceno Toledo Ashand Pumice (?)	NR												3:26 3:45



Project	Name LANL Seismic Hazards Studies Task 2	Boring	No.	,	SHE										Sheet 18 of 44
(eet)	nconing (	-	$\neg$		F	TOCK	COF				sc	DIL SA	AMPL	ES	REMARKS
DEPTH (feet)	DESCRIPTION		Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Strength	No.	Туре	Blow Count	Recovery	NEWIANNO
275	Unwelded Duff as above for but gray, few basaltic lithing	+	MR.		HQ-55	A 1.6 //5 - 32%		L.			Z				Drilling ~ 4' Drilling ~ 1' w/o dir 3:46
- مود			P		HQ-56	0							The same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the sa		4:01
285 -	Gray unwelded toll		Section 1		(tined)	1.2.15'=24%	%0							ara yan da ara ara ara ara ara ara ara ara ara	4:15
_			NR	_	#8-58										₩ W W W W W W W W W W W W W W W W W W W



Project i	Name LA	NL Seismic Hazards (	Studies Task 2	Boring	g No.	SI	HB.	- (									Sheet 19 of 44
								ЮСК	COF	E			SC	IL SA	MPLI	ES	
DEPTH (feet)		DESCRIPTI	ON		Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Strength	No.	€ Ape	Blow Count	Recovery	REMARKS
290	3.46	13 to 4 cm pumi	Grey Pumico fragments a fragments		\$ 18 P. 19 19 19		110-58	1.5 1/5:30%	%								Drilling ~ 4'  Wach  Drilling ~ 1'  W/o air
							HQ-59	0									- 4,45
295				1	*		HQ-60	0									- 4:45 - 5:05 - Dailled 3½ w/an - Dailled 142' w/a ain - STOPPED FOR
300 -							HQ-61										7.45 DAY AT 5:30 10-20-91 10-21-91 Slow rate of rotation



Project	Name LANL Seismic Hazards Studies Task 2 Borin	g No.	Ţ	(1	Α-	55	)							Sheet 20 of 44	
<u>چ</u> ا					ROCK	COI	RE		,	sc	SIL SA	MPL	ES		
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Strength	No.	Туре	Blow Count	Recovery	REMARKS Drilling dry	
305	Gray unnelded tuff  W/2 "intact" pieces  fallout ash  TSANKAWI PLINICE	N. I		40-61	1,92:5/181	900								Drilling Crotating Slowly Wain + 1' Wa ain	
	Punice - tan to light brown, lowstrength	000		HQ-62-	23,15 = 46%	%0					,				
310	Cerro Tolodo Rhyolite  EPICLOSTIC, REWOCKED  RROCLASTICS   reddish torown low  strength, unwelded  plightly moist, wi  med-coarse gray  pumile fragments  (Imm to Icm)	-NR		( Quia )	1.6./51:32%	0%							•		
315	same as above			HQ-64	2.2/5 = 44%	2%		,							-



Project	Name LANL Seismic Hazards Studies Task 2 Bori	ng No.		SHE	3-1									Sheet 21 of 44
Ω.	·			F	ROCK	COF	Æ			sc	)IL S/	MPL	ES	
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Strength	No.	Туре	Blow Count	Re <b>covery</b>	REMARKS
320	Numerous Small (<1cm) Printice clasts the a moist Obange Brn, Fine Grained Matrix, Low Strength, Doubting The Sample Repreds appearance OF INSTILL LITOLOGY - TO SOFT TO CORE WITHOUT SEPARATION MATRIX FROM PLINTICE E, LITHIC			HQ-65 HQ-64	1.36%	20%								Drilling of elow stoteston what for 4', who air for 1'
325	CONTINUATION HS ABOUTE LAST IS' (329.5-335') PUMICE CLASTO DECREVASE IN NUMBER LITHICS THOREMSE, LOOKS LIKE CHONNEL STAND.  Sand of fluvial origin (?) Lithic content high, moderately well sorted  light brown Sand (fluvial?) high			#Q-66	1,95'=38%	/. C								9:00 9:14 ADDING FERM LOSS OF CIRCULA- TION 9:25 9:25
335-	lithic content, moderately well soctod	++++++++++++++++++++++++++++++++++++++		118-67	٥									



Project i	Name LANL Seismic Hazards Studies Task 2 Borin	ıg No.	21	18-	1									Sheet 22 of 44
ş				F	ROCK	COF	₹E	,		SC	IL S/	MPL	ES	
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Strength	No.	Type	Blow Count	Recovery	REMARKS
-	as above	†												lost anculation chill nod stuck
_	NO RECOVERY	+- - - - - - - - - - - - - - - - - - -		-68	0									Changel to Surface Step-face discharge bit (dismond)
340 -				HA					<b>——</b> —…					I 10' OF HOLE CAUED TO WHILE PULLTOCY ROD TO CHANGE FIT
1	NO RECOURELY	**************************************		HQ-69	0							many sense of the deleteration of the sense of the sense of the sense of the sense of the sense of the sense of		
345 3 <b>5</b> 0	light brown fine sand w/quarty, foldspan, punice, trace of lithics (authings sample)	AR.		40-20	O									1:07 - 1:21 - ADDING FORM - AND HZO - LOSS OF - CTECHATION - 1:30 - RIG - DOWN FORM - INJECTION HOSE - RUPTURED - 2:10
350-		† 												- z:ia



Project	Name LANL Seismic Hazards Studies Task 2 Born	ng No.	. /	(1	A - 0	55)	)	• • •						Sheet 23 of 44
Ω						COF				SC	OIL SA	MPL	ES	
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Strength	No.	Туре	Blow Count	Recovery	REMARKS
] ]				144-71	0									Blowing out hole, fixing foam injection hore Tulection
355														2 cups REP200  +1 cup FluidRIL  IN 300 gallons of water to stop  Caving of hole  3'05
360	Dacite Gravel  Sand Lize to 11/2" Life Dieces,  black W/ Fe Staining or  Face: , por phyritic - W/ phenocrists	\$ 1000 \$		HQ-72	0.7/5'=14%	0%							2000	3:25
	Dacite gravel as above,	£ 6.0 €		HQ-73	1.6/5'=32%	%0								
365	black	8		HQ-74										- 4:30  adding foam  to get circulation  back



Project	Name LANL Seismic Hazards Studies Task 2 Borin	a No.	1/	TA	- E-1	<u> </u>								Sheet 24 of 44
10,500	LANCE OBSINE PRESIDE COSES FACE		1 (		ROCK		XE.			SC	HL SA	MPL	ES	
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	'. (ft)	ROD	Fractures / ft	Weathering	Srength	No.	Туре	Blow Count	Recovery	REMARKS
- סף ב	Dacite gravel as above, very kandy tan  Rumsce/PGH FAU  Band.	1000 PH 000 PM		HQ-74	1.875'= 36%	%0								4:45
3		NR		11(2) 7(5)	Ð									- hard drilling
375		W.R.		HB-76 (lined)	0									hard dilling POOR RETURN OF ATR. 8.37 RIG DOWN STRIPED ROD COURLE DOWN HOLE WHILE ROTATING ESTROBUN HOLE TO RECOURE ATR RETURN ANOTHER ROD STRIPED AT
380		W.		HB.77	0									7:40   END 10-21-91   START 10-22-91   drilling w/ air only



Project I	Name LANL Seismic Hazards Studies Task 2 Borin	g No.	1	(1/	ء - ل	55	2							Sheet 25 of 44
				Я	IOCK	COF	Œ.			sc	IL SA	MPU	ES	
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Strength	No.	Туре	Blow Count	<b>Р</b> всоvелу	REMARKS
385-		<u> </u>		(Apr.77(Ined)	,0									hard
				HQ-78 (lined)	۵,									hand drilling  lines was deformed, prevented core from going up.
390-		W.		HO-79 (lined)	0									10;55  drilling w/ water & no air. About 75 psi  hand drilling
395	Sandy Gravel, silty, gray w/black and enange, subangular to subscurded  Lt. brown Sand  Silt S  Gray, med. dense, Silt S  fine to inclining grained said Silt S  Punice-gray  Lt. Brown	<del> </del> ∷		HQ-60	2.6'/3'=87%	7.0								(Some of it went into filling up rate)  II - 1155 - water Swivel broken,  Used v 50 gallons — 120 water, All
	fine to coaise gand grained, low strongth			HQ-81	0									1:10 water lost in hole 12-1 fixing water swivel



Project	Name LANL Seismic Hazards Studies Task 2	Borin	g No.	- 1	(1/	1-5	5)								Sheet 26 of 44
					F	OCK	COF	E			so	IL SA	MPU	ES	
DEPTH (feet)	DESCRIPTION		Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Strength	No.	Туре	Blow Count	<b>Весо</b> иелу	REMARKS
400-	Pumice Sand - gray,  medium dense, med to coarse grained, fluvialorigin, trace of lithics	-	× 13:33:33:33:33:33:33:33:33:33:33:33:33:3		HQ-82 HB-81	2.5//3/=83%									Drillers forgot to put core tube: down hole before coring.  1:15 Pulled up 5: Had 1' slough at bottom of hole.  HQ-BZ is a 3'run-tube is blocked off.
405 -	Sand-black, white and  tam subangular, well-  sorted, medium danse,  who as above but sand  granty sitten  Aldren, dacite (?)  Lt be mend	Ólan, -			H.Q83	,			-						2:20 core take retrieved not working properly
		-	NR		HQ-84										water pressure went up - core blocked?
415 -			N.C.		HQ-85										4:35 -4:40 END 10-22-91



		<u> </u>															7
Project !	Name LANL Seismic Hazards Studies Task 2 Borin	g No.	. L		1-5									Sheet 2	∏ of	44	4
				F	ROCK	COF	₹E			SO	IL SA	MPL	ES				
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Srength	No.	Туре	Blow Count	Recovery	STEPT	10-23 up 23		eet I
420		1.3		H 28-0H 78-0H 78-9H	2.0'/4' = 65% OB'/1' B	4 %O %O			5					TO SI SI SI SI SI SI SI SI SI SI SI SI SI	thicken wide the thicken wide the PRE TO THE	SSUPIUS SSUPIUS SSUPIUS SSUPIUS SSUPIUS TEE SCALL FEE BLOCK 191 b. cracked b. cracked b. cracked pred source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source source so	
-		<u> </u>												- usto	G THO	ck Mus	



Prolare	Name LANL Seismic Hazards Studies Task 2 Borin	n No	-		١									Sheet 28 of 44
riged	PAIAE OBBIHIE LIGERIA OTOGICS LEGIT E	1			ЮСК	COR	E			sc	IL SA	MPL	ES	
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Strength	No.	Туре	Blow Count	Recovery	REMARKS
		WR		146-50										- Decreased Tabection - Volume , Detree - Rebets Haed Bock? Ilies
- 196	EPICLASTIC  BEDWINGERY SICH, PLINIER & LITHIC, SILTY SAND, LOUSE TO MEDIUM DEUSE, FINE TO COORSE GRAINED, TRACE OF LOW  PLASHICITY CLOY			16-01	25/3'=83 %	0/3/=0								HEO PRESENCE UP,  OFFICE HOLDING GLO PSI  DOWN FEED SOO PSI  DETULEIZ THINKS WE  ARE IN SONOY UNIT.  ARE THE SONOY UNIT.  ARE THE SONOY UNIT.  ARE THE SONOY UNIT.  ARE THE SONOY UNIT.  ARE THE SONOY UNIT.  ARE THE SONOY UNIT.  ARE THE SONOY UNIT.  ARE THE SONOY UNIT.  ARE THE SONOY UNIT.  ARE THE SONOY UNIT.
435 - -	FRICLASTIC - REWORKED RATICE & LITHIC SAWS & GRAVEL, TRACE OF LOW PLASTICITY CLAY TRECTION DEUSE, 380WL) GRAY	00000		40-52	2/5 = 40%	9/5=0								12:20 THEOLIGH GENERALS  OF PREVIOUS BIT  3:15-4:00 DETLERS  LEFT TO COLL BOSS.  CAME BACK & PUT  MORETO GET OU -  HOISPEST.  5:00 TRIPPED TU.  POD SEPORATED DOWN  THE HOLE  5:30 DETLERS ATTEMPTLY  TO RETEXEUE ROOS  WILL - 7:10 - 9:30 TRIPPED  CUT, FINE SOND PLUGGED  BIT - NEW BIT BONK WORN  10:15-11:00 - FETERPET TILL  10:15-11:00 -
440 - -	HEADTH GOAL INEE ; ELICURITY;	0.70		49-93										Stephara K. BLT, 80 OF SLUTE TEXTRED OUT. STEATLAGE BLT WORN OUT. 12:25 RECONERED  12:35 RECONERED  CIRCULAR PIECE OF PREN. DIAMOND IMPREC, BLT  O - WEAKFHED ? WHEN ROD PIU AND BOX SEPAR. ATED DEOTRING REMAINING ROD WITH SITT TO BOTTOM 1:05 - 2:00 TEXTRING OUT 1:05 - 2:00 TEXTRING OUT 1:05 - 2:00 TEXTRING
park.	"FLOW" SAUD (SAUD ENTERING (HQ-94) CORE THEE BETORE BUT REMOTES ROHOM) ABOVE HQ.Q4 ± 2"RMU	<del>                                     </del>		40-8-	NR		,							10/30 - 7:15-10:40, ICE IN CONTROL LIDE 10:40 - 12:00 RE-ENTERED HOLE WI HABSTLITE BIT (CARBIDE CHIPS BRAZED TO SHORT PRICE OF 4Q ROO) TO "AWAN THROUGH SLAFF CANDALIA OBBRIS FROM OTHER BITS -12:55 RECONDERED BEORS 2:30 RE-ENTERING HOLE WI SEPTACED, SURFACE- SET BIT
445 -		+ + + + + + + +		**			(2)			0-1				3:55-4:40 Reg 6  10/30 Toke Detue Samp  10/31 D-1  - 8:00 AM - 10:15 DE -  TOTUM ATO LIVES  BEGAN CORING 10:20  - HOLE BECOMES TIGHT



Project	Name LANL Seismic Hazards Studies Task 2 Borin	g No.	S	18-	1									Sheet 29 of 44
				_		COF	Æ			sc	AL SA	MPL	ES	
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Strength	No.	Туре	Blow Count	Recovery	REMARKS
148	THE ! SOMPLE DEOPPED FROM THEE OF SHEFFICE POWDERY THEF  THEF , SOLMOU COLORED, TRIBULE  OTOWI MEMBER OF BONDILIER  THEF			110-97 110-92	1.3/3 = 43 %	1.3/3 = 43%								SHORT RWY-BOR ATR CTECHIATION - WILL USE AIR, WATER & FORM NEXT  10:25 RWY  11:50  BLOCKED OFF
451		LP		83 - PH						9				IZ:30  COMPRESSOR ATR  TOTOGO UP 1/20  CORE TROPE STUCK  1/30 FREE; BIT ATR WAYS  PRICED, 1/30 REJUSELY  CORE TROPE Z/20 ADDED  TOAM & POUMMER, RESIST  TROPE Z/35" STELL PRICED  REMOVE ODER TROPE  REMOVE ODER TROPE  REGISTING - NO  RECOVERY OF CORE
455		120		HQ-95			-	=						3:30 BEGAN DELLING - WITH FOLTMER MUD - OULY - 3:55
458		NR		16-100										- 4:30 10/31



Project	Name LANL Seismic Hazards Studies Task 2 Borto	g No.	Į	(1										Sheet 30 of 44
္အ		Ĺ.,		F	HOCK	COF	₹E			sc	IL S/	MPL	ES	
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Svength	No	Type	Blow Count	Яесоvеry	REMARKS
465 -		NR		(465)										<u>n/i/ai</u>
भाव				#8-103 HQ-102										70,10
475 -	Tuff-breyish brown, lithic (daids) rich, soft, gravel size fragments up to 1-inch, non-stained purious fragments, richin quarte q sanieline crystals, nonwelcled pame as above	\$ 1000 D		401-8	5' 0.413									1:05 using "Green" boit  1:10  1:30  water pressure  ~ 200psi
		7		901-84										water pressure.



Project	Name LANL Seismic Hazards Studies Task 2 Borin	ng No.	2	+B-	- {									Sheet 31 of 44
(				F	ЗОСК	COF	1E			sc	DHL S/	MPL	ES	·
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Strength	No.	Туре	Blow Count	Recovery	REMARKS
480		- R		70-19C										- - - - - - -
		+ WR		40-107										
485	same as above lithic rick, norswelded, weathered toff purice fragments				% 85 =									
490		0		801 - 011	151.67	4.9 1/5 =						ere man er er er er er er er er er er er er er		- - - - - - - - - - - - - - - - - - -
ት ት		+ + + + we		(HQ-109 ( Ened)									*	after run



		<u> </u>	16	_		. ``								la:
Project I	Name LANL Seismic Hazards Studies Task 2 Borin	ig No.	10											Sheet 32 of 44
DEPTH (feet)	DESCRIPTION	ich	Lithology	Run No.	Recov. (ft)		Fractures / ft	Weathering	Strength		•	Blow Count	Recovery	REMARKS
30	TUFF, GROW, BROWN, FRIAGUE, WITH LARGE (3-41 CM) PLINICE & ONE LARGE DACTE LITTIC (6-7 CM)	Sketch	רווא	+(Q-110 Run	Rec = 4 % Rec	0/5.0 ROX	Frac	39M	ens	No.	dλ	Sig	Rec	11-2-91 - 9.00 - APPEARS TO BE - GOOD RUW, HOU - PRESSURE BELOW - 200 FST
	Tuff as above w/smallerlithics,  Soft Banded dacite, hard—~{	R CHAR		HQ - 111										- bottom of sample - may be are dopped - tack in hole
510	Triff-gray brown, low strength- willinge purice clasts and dacite lithics	8 0: 60 9 . 6 . 9	<b>*</b>	HO-113 48-112	Kc/5'=82%	46, = 22%					£	*		lass soft duction 11:20



Project	Name LANL Seismic Hazards Studies Task 2 Borin	g No.	S	HB										Sheet 33 of 44
÷.		Ĺ <u></u>		F	ROCK	COF	NE.			SC	NL SA	MPL	ES	
DEPTH (feet)	DESCRIPTION	Sketch	Пітоюду	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	цвиелс	No.	Туре	Blow Count	Recovery	REMARKS
, , , , , , , , , , , , , , , , , , ,		JR.		418-113										- drilling slowly
95	-luff as above large lithius & pumine fragments, pumine is weathered (ordings), soft			1000	\o				٠					12:20
	(orange), sof			, 48 -VICE.	2.6/5 = 82%	2.6 = 52%							•	- - - - - - - - - -
<i>ξ20</i> -	Tuff-pumiers gray, gray brown tuff, low strongs lighthomoderately welded,	0 0			% 28	%								- - - - - - - - - -
		0		10-115	15/	Į.								
516-	cloude attic ? unwelded?	000		He	14	1:1								2:00 - 2:00
		000		HQ-116	\$1						,			



Project I	Name LANL Seismic Hazards Studies Task 2 Borin	ıg No.	S	48-										Sheet 34 of 44
ا ۾		L.		F	ROCK	COF	₹E		r	sc	XL S/	MPL	ES	
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Strength	No.	Туре	Blow Count	Recovery	REMARKS
530	THEF, GRAY-BROWN, PLIMICE & LITHIC RICH, LIGHTLY WELDED, NO VISIBLE - SORHEUG OR BEDDEUG	200000000000000000000000000000000000000		911-0#	2/15, 100%	)   		u	LS					- - - - - - - - - - 3:00
				HQ —//7										PRESSURIDG, UP TO 400 PSI NOTE, HIGH MUD PRESSURE MAY BE DES MOGRIGA- TING SAMPLE
<b>535</b>		* + + + + + +												
100	Tube Sample			-Alema			0							HZO PEESSUEF  100-200  PULL NOWN FEED  HIGH-STOPPED RW  O 4' SAMPLE IN  PLASTIC TUBE
539	TUFF, GRAY BROWN, PUMICE & LITHIC RICH. PUMICE ASIE			6/-6#	51/6' = 83%	1	0	u	LS					- 4:15 



Project	Name LANL Seismic Hazards Studies Task 2 Borin	g No.	۲,	виε	-1									Sheet 35 of 44
				F	юск	COF	E			sc	IL SA	MPL.	ES	•
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. (ft)	RCD	Fractures / ft	Weathering	Strength	No.	Туре	Blow Count	Recovery	REMARKS
545	LARGE LITHTO - DACITE 5-7 CM	. C. 200 . C. C. C.		40-11¢										- 4:30 - 11/2/91 - 8 11/3/91
		0000000000		118-120	8,001 = 1-5	,"								Water pressore  (1380 psi
950	beauty brown som whered to tan	- I		118-121										- 8;10 - 8:45 - - - - - - - -
565-	7 7 7	0		HQ-122	5'= 10%	31=10%								- 8:50 - w/light - downprasme



Project I	tame LANL Seismic Hazards Studies Task 2 Borte	g No.	1 (	TA	1-5	5)								Sheet 36 of 44
					ЮСК		E			sc	il S/	MPL.	ES	]
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Svength	No.	Турв	Blow Count	Recovery	REMARKS
500	tuff as above - brown gray	0 0		K9-15										10:00
-	soft, unwelded, few lithis, .  pumice is weathered to yellow and rust, fine to wedium grained			HQ-123	5- = 100%	5 - = 100%								- - - - - - - -
95				HA										10:40
	same as above			14 to-84	= 42	5' = 100%								
570 -		MP												- 11:15 - 11:35
	jame as above			42-125	4' = 80%	11								
575-		<u>;</u>												4:45



Project I	Name LANL Seismic Hazards Studies Task 2 Borin	g No.	2	HB-							<u>-</u>			Sheet	37	of	44	4
اء				P	ОСК	COF	E		T	SC	IL SA	MPLE	ES					
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. (ft)	Rab	Fractures / ft	Weathering	Strength	No.	Туре	Blow Count	Recovery			1ARK	:S	
580	Same as above	0 0 0 0 0 0 0 0		4B-126	4.6 = 72%	11									12:1			
585-	lightly welded, lithic rich, (low strength, pumice weathered) to yellow  to yellow  soft, gray brown, fine to  med grained, some lithics  unwelded			118-127	3.2' = 64%										1:05			
	soft, unwelded as above			40-128	% = 100 %		<b>X</b>						The same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the sa					
570 -				PS1-QH										2	:15			



Project i	tame LANL Seismic Hazards Studies Task 2	Borin	g No.	١	CTA	5	5)	)							Sheet 38 of 44
1							COF				sc	HL S/	MPL	ES	
DEPTH (feet)	DESCRIPTION		Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Strength	No.	Туре	Blow Count	Recovery	REMARKS
					40-129										2:25 END 11/3/41
595				-/30											_ 2:25 ENTO 11/3/91 - START 11/4/91 - 7:45 -
600				14Q											8 4 m 10:30
	Pase of Otomi		NR	#0~13/				•							
605			NR	AQ=132											- 11:20 - Rotation & Bo - Rotation & Bo - Rull Down = 0 - Must Ressure = 0-50 - Detiled Reports - Saud Way BE



Oralost	Name LANL Seismic Hazards Studies Task 2	Borin	a Nia								er -				Sheet 39 of 44
Piojec	LANL Seismic Hazards Studies Task 2	TBO###	y 140.	<u> </u>	HB	ROCK	COF	 }E			sc	OIL SA	MPL	ES	54 54
DEPTH (feet)	DESCRIPTION		Sketch	Lithology	Run No.	v. (f0)	ROD	Fractures / ft	Weathering	Strength			Blow Count	Recovery	REMARKS
			J.R		HQ-132										- SEPARIOTELY, CORE TUBE HOWES? - TRY THICKENTURY - TRUMBE MUS FOR - NOT ZW.
618	Teapped IN CORE COTCHER WAS  CONSIDER SAND SIZE, PLINITUE.  CONSIDER ELITHICS  90% crystalline quarts, landere  pand my light gray, airfall  punice, plinian  (Guaje Punice?)		NP		110-133	2.7/5' = 54%	h								- 11:25  :30  - PUMPED IN 150 I  - GAL OF THEIR PLEMER  - WITHOUT ODE TUBE - ID, TOOK MUD AT  - BEAN MAR FLAMP - BATE WITHUT - PRESSURTAGE UP,  - CORE TUBE NOT  - LATCHING - FINES - GOING UD 200? - FLOW - SAND? PUMPED 750  - GAL OF THUO. 1  - SLUFF, BEAN AT 15 I  - GAL MIN
620-	light brown to ff whate graypum fragments, pome coarse dalite  Pumice, gray, airfall (?), whost quarty & sanidine, wh	iu Ç	NR O		40-13%	` इ.उ	0.6' = 12%								TETPPING ROW - 2:00  CORTE TIMBE RETRIENDE  CAGLE SUMPPERO. HOLE  SANTING TO:  3150 getting sample pict  Putting on  Longuear Series 2  Diagnord impres  Green bit was  Still qc.  Start 11/5/91
	pame as about	-	MR		460-135	33' = 66%	3,3, = 66%								



Project	Name LANL Seismic Hazards Studies Task 2 Bortr	ng No.	1 (	TA	-55	5)								Sheet 40 of 44
t)				ı	ROCH	COF	3E			sc	NL S/	MPL	ES	
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Strength	No.	Туре	Blow Count	Recovery	REMARKS
Les .			-	140-135	3,3,					alan-ayata sa		- 1944 - 1944		10:10
	punice as above			HO-136	5 = 100 %	• ~								50 psi water pressure
38	Canos dal Rio) wheath basalt moderate to high plasticity brown sitty clays shell is moderate to shell is moderate to shell is moderate to shell is moderate to shell is moderate to shell is moderate to shell is moderate to shell is moderate to shell is moderate to shell is moderate to shell is moderate to shell is moderate to shell is moderate to shell is moderate to shell is moderate to shell is moderate to shell is moderate to shell is moderate to shell it is moderate to shell it is moderate to shell it is moderate to shell it is moderate to shell it is moderate to shell it is moderate to shell it is moderate to shell it is moderate to shell it is moderate to shell it is moderate to shell it is moderate to shell it is moderate to shell it is moderate to shell it is moderate to shell it is moderate to shell it is moderate to shell it is moderate to shell it is moderate to shell it is moderate to shell it is moderate to shell it is moderate to shell it is moderate to shell it is moderate to shell it is moderate to shell it is moderate to shell it is moderate to shell it is moderate to shell it is moderate to shell it is moderate to shell it is moderate to shell it is moderate to shell it is moderate to shell it is moderate to shell it is moderate to shell it is moderate to shell it is moderate to shell it is moderate to shell it is moderate to shell it is moderate to shell it is moderate to shell it is moderate to shell it is moderate to shell it is moderate to shell it is moderate to shell it is moderate to shell it is moderate to shell it is moderate to shell it is moderate to shell it is moderate to shell it is moderate to shell it is moderate to shell it is moderate to shell it is moderate to shell it is moderate to shell it is moderate to shell it is moderate to shell it is moderate to shell it is moderate to shell it is moderate to shell it is moderate to shell it is moderate.	00g - \$		HO-137 (2,191)	% E= .5.0.	9/							3	10:20 10:42  Stopped & Zz  Branche out 10:50 & Lines
CS.	shele is mod hard of fractures easily, sure is soft tan of brown silt, clay, sandy Mabun Kopa as above in the table and and the increasing tabable and and			HO-138 /				*						11:16 11:35
	Silty clay, sandy, medium			40-139	1/60 00/=/				-					12:15-stopped Clay blocking but water
	Stiff, red brown, w/coarse red and black basact fragmonts Some basact is weathered to tan			HD-11-11 HQ-14/0	2/5/2			,						Presidence par Presidence par STMRT tube struck 8:20 11-6-91 trying to f 9:05 8:10



Project i	Name LANL Seismic Hazards Studies Task 2 Borin	g No.	S	ΗВ	-1	-								Sheet 41 of 44
<b>-</b>					ROCK	COF	Œ			sc	IL S/	MPL	ES	
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Svength	No.	Туре	Blow Count	<b>Весо</b> челу	REMARKS
640	Stiff to v. stiff Silty clay, sandy, ned brown whight brown, wharge basaft cobbles, black  Conglomerate cobble, hard, ned-brown, fine grained			140-141	2.2/3/=13%									
645		* (386) · ·		HB-142	2.21/41 = 55%	0.0' = 12%								9:45
	practure faces, clay is similar to a bove material	\$ 1 Post of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the		HB-143 (lined)	1.41/5' = 28%	0.4 = 8%								- 10:30  - basalt  - fragments  - distorted dens  - & prevented full  - recovery.
655	Basalt as aligned mechan book?  Thin zones formen sity clay	The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon		1-10-144	11/5' <8%	0,8, = 16%								11:20



Project I	Name LANL Seismic Hazards Studies Task 2 Borlin	g No.	10	TA	-5	5)								Sheet 42 of 44
					юск		E			SO	IL SA	MPL	ES	·
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Strength	No.	Туре	Blow Count	Recovery	REMARKS
660	Basalta above share {  Basalta above share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  share {  sh	F 11 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		140-145	3,4,15' =68 %	%02 = ,1								- 11:45
	Balal as a touch muchan break of when the will as the will as the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the will be the	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		HQ-146	4'/5' = 80%	0.9' = 18 %								12:30
	Black basalt, trace of clayin some fracture hard wifine crystals of batter(2)			THI - OH	5/5' = 100%	95 = ,								nan out of water, waited for truck
670-	hard, brittle basalt	NA PARTIES		14 - A.R.R.	) 									2:15



Project Nam	no I ANII Saiamia Harrarda Studias Task C. Inda	2 1/2		,		<b></b>		· · · ·						Obert 1/2 -4 1/41
r roject real	ne LANL Seismic Hazards Studies Task 2 Borin	y NO.	L		-5 30CK					- sc	OIL S/	MP	FS.	Sheet 43 of 44
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Strength	02	Туре	Blow Count	Recovery	REMARKS
176	red-oxidized as above () britle  britle  black basalt clayar() hand as afroze shand ()			HQ-14B	3.91/5'= 78%	0.4' = 8%								in house
675++++++++++++++++++++++++++++++++++++	Basalt as a book daying, block }  Pre frogments red, clayers?	\$ 00000. □ S		6#1-04	2.4/4 = 60%	%0.						,		3:20  Sand on sample  from sitting in the from sitting in the source from 5-91  START 11-7-91  Can't pull cut  Can't pull cut  Can't pull cut  Latch Helper  Says it's ranged by vibrations
680	Basalt, black, hard as above mechanical Beromes highly fractured chapy?	NR O MAN GOODS		H&#- 150</td><td>3, 141 = 57 %</td><td>6.4' =8%</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>changed to  changed to  changed to  some one  we used before  the longyear  series 2</td></tr><tr><td>(6)</td><td>mod hard brittle, red {  blacks hard {  modhard, brittle, dk brown, elayery }</td><td>COOLEGE PROPERTY OF THE PERSON</td><td></td><td>121-BH G</td><td>3.2//3.5' = 9.%</td><td>%.0</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td>(ore blocking up.</td></tr></tbody></table>										

4	2
•	

		=	<u> </u>											•
Project	Name LANL Seismic Hazards Studies Task 2 Borin	ıg No	Sı	18-	1									Sheet 44 of 44
						COF	RE			sc	DIL S/	AMPL	ES	
DEPTH (feet)	DESCRIPTION													DELLADICO
E	DESCRIPTION				2		s/ft	<u> 2</u>				Ę		REMARKS
FP	· · · · · · · · · · · · · · · · · · ·	듈	Lithology	Run No.	Recov. (ft)		Fractures /	Weathering	Strength		_	Blow Count	Recovery	~
	```	Sketch	흔.	굡	Rec	δ.	Frac	Wea	Stre	ş	Туре	₽	Red	
,	Bugalt as above	90		14		٠ <u>٠</u>	-				-	_		
	trace of chay & woonse -			\$12	_	5			ļ	<u> </u>		<u> </u>		4:55 water wanted
<u> </u>	GUESTA	Ł			,									-5:05 10 min forward
• 1	fracture faces, Engstade	-			4									truck
<u></u> ,	highly froctured and	Λ		m	Ŋ									F
	highly froctured . ad	50		51-	1	1/0				٠.				-
l Ŧ	trau)	3		$\frac{1}{\alpha}$		0								- war u 1-al
1 ۾ ا	Black, hard, basalt of	\mathcal{A}		Ş	3									END 11-7-91
(90 t	· lau	-		<u> </u>										5:35
. ‡	fragmentsane angulante suborgular	-												1-8-91
1	- tradicanto.	E 6"]										; el		Lord / alors
	augustan	, Ao	,	M		3		٠ 🕶			+	· 8		before dilling
1	1 01	אים	_ , 1	5			** ×							40-154
1	Basalt payments		, ,	7	-		ľ							- pulled rod.
1	frag.		7	148	۳.	*		.						[her 3' I'alongh]
, <u>I</u>	,]]				'		4					Ò	pin hole
7	-	NR		<u>43</u>	720	~	<u> </u>			一				- <i>9117</i>
‡		H		32	ব	30	<u> </u>							going thru gravel
‡	Black basalt as above, hard, to of day on fraction face			`	2%						ļ			- gravel
1	hard, to of day on	K			Ş	ļ		ı						- 9:15
` <u> </u>	fractine face	600	.		_"		ı		- 1	İ			Ì	-
95 t	ا / المحتد	1	ŀ	اه	3							,		hard
l` H	Basald - no clay, "Ked		l	n							i		ļ	- dulling
I	Broad - no clay,	H		HQ7156	m	4	Ī	- 1	-		Ì			
7		M	.	¥							ľ		ŀ	
‡	30° ±	- 4			_		\dashv		\dashv			_		= 10;00
‡		NR					İ			ļ			F	-
‡			\dashv		%	ı	ł	- 1	İ	1				_
l t	Basalt	1		ŀ	8	l	j						ļ	1.
1	- highly fractured -	N	•	7			-	ĺ	ļ			-	ļ	- -
1	highly fractured along plane at 30 30 trace of clay, mod weathered hard, brittle, black		Į	10	N			1		.	ľ			<u>-</u>
Ŧ	true of the med months of				ω			- 1	İ	- 1			ļ	<u> </u>
Ŧ	cray, mod wratheren		- 1	정 물	\$	İ				ı			Ŀ	
I	nava, butte, black	1	i	_	Q)			ı			- 1		ŀ	<u>-</u>
700 I		7	_	_										10:30
	<u> </u>	:											7	
‡	±			1	i				İ				<u> </u>	.
	·	-				- 1	- 1	1		ł			F	<u>.</u>
‡	Ţ.,				4.5			Į					þ	<u>:</u>
上	.			I									þ	
F	‡	-			- [-				Ł	-
	‡			- 1			-	-					E	
<u> </u>	<u> </u>	.		Ì								-	F	M. W.
			- / 1											

SHB-2 (TA-3)

	<u> </u>									$\overline{}$						I	. 12
Project I		c Hazards Studies Task 2	Boring	No.			-2	\subseteq								Sheet 1	of 13
Project I			Task		.09	00			4		n and					D-1- F1-2-1	11-1-1
Boring L	ocation TA-3 PARK	INCLEST.								te Sta mpleti		_	20/	91		Date Finished /	1 21 91
Drilling (on - Salt Lake City, Utah	Driller	DEC	ווג	DA	u		De	pth	IUFI	20				Depth 41,3	
Drilling I	apt J. R. CYCLONE								No Sa	. of mples	. 5	r	ist.			Undist.	Care
Drilling	Wethod PULICH SORE	TO THEN FOR ?	بجمل	wl	Boir	· •	5124		Wa	ater		F	irst			Compl.	24 hrs.
Core Ba	nel HX	Length 5 feet	Bit			amo		7	Lo	gged	by:					Checked by :	
-,	11//	Time	Depth			211101			+-	CO.	.Ka	هند	=_				
Сазиц	Size OPEN HOLE	like NP	122521		<u> </u>		юск	CO0					IL SA	ADN			
æ			-					- CON		1		-	IL SA	NOIL F		-	
ej)	יחי	ESCRIPTION						-	=							REMA	RKS
Ξ	D1	LOOM TION		· [≥		£	1	98 /	Ē	_			onu	₹	Ì	
DEPTH (feet)			l	Sketch	Lithology	Run No.	Recov. (ft)	ا م	Fractures / ft	Weathering	Strength		史	Blow Count	Recovery	1	***
Ö	•			Sk	E E	P.	Ä	<u>8</u>	Fra	\$	Str	Š	Туре	윮	Æ	1	
$\vdash \vdash \vdash$			<u></u> }			\vdash		\dashv		\vdash		\vdash			 	9:45 AM	
1	•		1	.												- Startes +	touz wa
1 1	-		1	-			į						•			FCARREDE	TIPRED
-	<u>-</u>		<u>†</u>	-	:							l				[Strator	ACK BIT
- 7			7	-												- (structure	1K5)
1			1	:		١. ا									ŀ	F 1 March	CYPE
-	<u>-</u>		1	18								l				F - 2	200
]	Ţ T .		1	μ']													
:	•		1	[•						l	F	
	t		1	<u> </u>												CARREDE	Two
	•		7	-												====================================	Chisel Sitared
			1						i					ĺ	1	F	
-	-			-	l .									ŀ	27		
			7			<u> </u>	- 34	.		<u> </u>		<u></u>				£ 11.5=	
	LOOSE REDOXS	sh beauth Soul	1				8				_					11:30	
5 -				اخا		2	111:40			£	L					- SMETCH	ED TO PUNCH
	KANDTEET	WEE, BUKISH BOOM			L	Ĺ	"						<u> </u>		_	FORE MET	doh
36	NOD WELDED,	LITHICS ARE SMALL FREQUENTLY ROHEN	1		-	_	_									Fi	,
* -	-(K.3-TWCHES);	FREQUENTLY ROHEN		$H^*.I$	<u> </u>						l				[,		1 1
	- WITH TE STATU	ED RIND PUME	ARE	F) 1	ر ً	1		ŀ								F (1-1	1 1
:	LARGE (15 to 1	·Ivall) OFFENI RIDER .	= 1	10	اً								1			F 15-4	
<u> </u>	TU COLOR FR	TABLE LIGHT, VAROR		H.H	J		_									- Hz	CARRETOE
	PHASE ALTER	Atron?	- 1		v		90	18%								F	
	Joint	A Section of the second	1		-		18	8						1		L ' \	~~' * >
-	600, mw, c-	5d, F.P.S	-	K)	٧,	3	1	ù		(1	•		ł		•	- PUNCH T	iuge 🔾
:			7	FII			الما	مل		E	١.	1				F	in the second
:	•			[[را		ズ	5			Į Ų	Ī	1		1	F	*******
-	 -		_	H.I	l		۱΄,				1	1 .				<u> </u>	
	F		1	H'.	٧								1		1	F .	
1			4	11	~	ĺ		ŀ							1	E	
10 -	 		. 4	#1	١.٢	1									1		
	.	•	7	Z			L		L	L		L			L	F	
	ţ		1		ų.				12							E	
,			4	- W	۳		96						-			<u></u> .	\$-
			.]	3	٧,	l	18				l		l			F	·
* .	<u>.</u>	SA 0		12	l, '	1	1,2	•		'				1	1	E	
-		SAMPLE	4	-W	ر ً		11									H	
1 :		#1		4	٧	u	b		l		ļ.			1		F	
1	<u>t</u>	4		3	١. ۲	1.1	12	ļ				ŀ				E	
-	F			FZ	ľν	Ī	13		l · ·		1		1			F 11	
1 :	‡			13	ردا		1			[E	
	ŧ			ŀŘ	آيرا				l · ·		Ļ					E	
	<u> </u>		g* 1.	<u>'</u>	<u> </u>	1			L	<u> </u>		<u> </u>	<u> </u>	<u> </u>		<u> </u>	
	•	and the same of the		*					100					**		WCC Geo	olech CL 91 September 1994

Project I	Name LANL Seismic Hazards Studies Task 2 Borin	g No.				48								Sheet	2	. 0	1 13	
ا ۾		<u> </u>		F	ROCK	COF	Œ			sc)il. S/	MPL	ES					
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Strength	Š.	Туре	Blow Count	Recovery		REM	//AR	KS	
کا			3 3 3 3 3	4														
20			כנ בנבו בני בני בני בני בני	3	3.3/5 = 66 %			E	F									
25-	THE BECOMES STEADGER AND GRAVER AT ABOUT 22 FEET - STILL CORE COMES OUT AS DISKLIKE (NAFFERS TO SHORT (± 3.5-INCH) SEGMENTS CONTINUES TO BE NON WELDED AND FRIGHTE LITHICS CONTINUE TO BE ROHEN AND FR STATUED		رد الا جار در در در در در در در در در در در در در	6	4.5/4.5-110 %	0/4.5-0	Multipue	m	又 57					- 12:	40			
20	FE STATUTUS DECREOSES. ROCK BECOMES MORE GRAVISH. FUNDE STULL FLARRE IN COOR AND ROHEN.	Des essant	על ענינן פיני ען פין ניי	,	28/8-	2/5			57 12 12					F92€	use: UNF	æ	WEB! THRO	ED

Project	Name LANL Seismic Hazards Studies Task 2 Borin	g No.	SI	18	-z									Sheet 3 of 13
				F	ROCK	COF	E			SC	IL SA	MPLI	ES	
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Strength	No.	Туре	Blow Count	Recovery	REMARKS
30	TUFF BECOMES LIGHTLY WELDED LESS BOOWNISH, NOW FINXISH GRAY PRINTICE ARE SOFT, SOMEWHAT FRAHWED, SMALL tO LARGE (X.S. INCH tO 1.5-INCH) SAMPLE # 8 LIGHTLY WELDED LOW STRENGTH			8	3/5 = 100 %	3.2/5= 6+%	3 5 2 0 2	· 3	r.					-CHADGED FROM -TO STRATOPACK BIT
3	ROX CONTIDUES to BE OF LOW STRENGTH (GONGED DEERLY WITH KUTE) But JUCKEASTLY, IN STRENGTH OUBR- REDIOUS RUS. FLUTTEE TUCKEASTLY FLATTELED AND GRAVER			9	5/5 = 100 %	% hs = 511.2	1 2 4 3	3	শ্ৰ					
48	GRADATIONAL FROM LIGHT TO NOW MODERATE WELDING, LOW TO MODERATE STRENGTH (READILY STRATCHED WITH KNITE BLADE.	Lŀ	しっしつ し マント マントマ	10	4/5 = 80 %	% h1 = 5/1.	W MULT. W ON	u	L'S MS					
			ر با ر با						. 5					<u>-</u>

Project I	Name LANL Seismic Hazards Studies Task 2	Borin	g No.			გ-									Sheet	4	of	13	
آ ۾ ا					F	OCK	COF	E			SC	IL SA	MPL	ES					
DEPTH (feet)	DESCRIPTION	. ;	Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Strength	No.	Type	Blow Count	Recovery		REM	MARK	:s	
50 -				جردر در در در درودر		5/5=100%	4/5= 80%	1 0 0	u	ms									
55 -	Sample #3 MODERATELY WELDED AND OF MODERATE STRENGTH			יני ביני ניני	2	st = 100 %	3,5/5= 70%	Mult. 0 0 0 0	u	m									
3	THE IS DECREASING IN STRENGTH AT 1 57' PHINTLE CLASS BECOME LESS TRATTENED TO NON FLATTINED.			ונכ ב כב כב בב כב	13	2/2= 100%	3.5/5= 70 %		u	MS LS									
	H ± 60' ROCK BECOMES PINK, C LOW STRENGTH GRATING TO FRIABLE)F	- - -	, , , , , , ,	(4					72									

Project	Name LANL Seismic Hazards Studies Task 2 Borln	g No.			18-		,							Sheet	5	of 13	3
٦				F	ROCK	COF	Æ			SC	IL SA	MPL	ES				
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Srength	No.	Туре	Blow Count	Recovery		REMA	ARKS	
65 -	NON MELDED MULT? OXIDISED		עני לעלעלע לעלע או	14	B.3/5- ± 46 % R	0 = 5/0	MUCTERE		15 LS	2	£-	8					
1	WOIT? COUND BE TOP OF COOLENING		6,000,000	15	-3/E·	0/5=0	שמנו.		F								
70 -			LV LV LV V V V V V V V V V V V V V V V	6													
75 -		N	レソレンソレンシ											- Pas	ANCTE STATE OF THE	sitoe at e t Fa	. TO KTENOS DE

Project I	Name LANL Seismic Hazards Studies Task 2 Borin	g No.			5	HB.	-ک							Sheet 6 of 13
اي				F	ЮСК	COR	Ε			SC	IL SA	MPL	ES	
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / It	Weathering	Strength	No.	₽dk⊥	Blow Count	Recovery	REMARKS
80		NP.	ר, ני יי	11										-
	THE IS NOW DISTENCTY GRAY WITH NO FINX HUE. COMESE GRAINED, COLLETEL RICH. LIGHT TO MODERATE WELDING. LITHICS ARE SMALL (<.2. IUCH) AND SOME APPEAR OXIDIZED? RUMICE ARE FEW AND SOMEWHAT FLATENED ROCK IS STRONGLY PITTED. PITTING IS DUE TO DIFFERENTIA		CA CA CA CA CA CA CA CA CA CA CA CA CA C	18	1/5=20%			u	LS					CORE DROPIED CORE DROPIED OUT OF TUBE, WENT BACK DOWN AND RECOUERED
90	EROSION OF SOFTER MATRIX MATERIAL DURING ALR BOTORY CORING. THE DEGREE OF PLITTING, STOULT, THEREFORE, BE AN INDICATOR OF ROCK STRENGTH.	‡		19	1/5= 20%	υ υ	MULT	u	LS					
	Steensth Increases to moderate light to moderate welding fook continues to be pitted.		2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	20	5/5=100%	2.1/5= 42%			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					

Project I	Name LANL Seismic Hazards Studies Task 2 Bor	ng No.			S	HB	<u>-</u> Z					٠.		Sheet 7 of \3
				F	ROCK	COF	IE.			S	HL SA	MPL	ES	
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Strength	No.	Туре	Blow Count	Ресо мелу	REMARKS
9 5-		100 100 100 100	ر ر ر											- CHANGED BACK to RESULAR CORE TUBE SHOR - DOES NOT
49-	STREDGIH INCREASING, MODERATE WELDING, LITHICS ARE BANGUL, ANGULAR, AND OPHEN HAVE FR SHAINED RIM, ROOK IS LESS		,,,				S							BERDE BET. (CORREDE STRANGROCK)
	PATTED. PUNICIE ARE DISTINCTLY FRATTENED	Selection of the select	, u		9/0	l .	3							- - - -
		品品	200	श	15=100	15= 72	3	u	W					
	BECOMES MODERATE TO DEUSELY	問				3.6/	0							- - - - -
100-	MELDED	1	L											- - - -
el cataloca		propopop	666		88	c 22 %	4 5	•						
. [, , , , ,], , , ,			2 2 2 2 2 2	22	4.4/5	1.1/5-	2	U	M					- - - - - - - - - - - - - - - - - - -
105	TUFF BECOMES DEUSELY WELDED. AND TOKES OU A MORE PRUXISH CAST. ROCK IS NOT PRITED AND OF HICH STRENGTH (SCRATHED WITH	chitch	50000		96	96	4		£					
	DIFFICULTY) PUMICE ARE OFFEN FLAHNED TO NARROW STREAKS		L V	23	5/5-=100	5/5=50	3 2	u						
			, , , , , , , , , , , , , , , , , , ,			2	3		↓ HS					
110-		To	L,				4							

Project I	Name LANL Seismic Hazards Studies Task 2 Borin	g No.			31	18-	2_						<u></u>	Sheet	2/ to 8
				F	ЮСК	COR	E			sc	IL SA	MPL	ES		
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. (ft)	800	Fractures / ft	Weathering	Strength	No.	Type	Blow Count	Recovery		REMARKS
2	BURFACE PETTUG TUCREUSES STRENGTH DECREUSENCY AT ABOUT 113-FEET. WITH MODERATE TO PROLUCIED FLATTENTUG OF PLANTICE		ל בנינבב ונינינים	24	800=5/5	2.8/5= 56%	3 3 1 6	u	HS E						
115	BITTLUG INCREASING. SHENGHI STU MODERATE WITH MODERATE WELDTLUG PUNTUE LESS FLATTENED, OUCR STUL PINKTSH GRAY SAMPLE # 4 MODERATELY WELDED			જ	56-100%	8	٦	Ų	M						
125	Decreasing structh		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	26	3/5-=100 %	8.5/5= 53%	3	u	ή						
		四四	-	21			Ч				L			E	***

Project I	Name LANL Seismic Hazards Studies Task 2	Borin	g No.			8	348	-Z							Sheet	9	of \3	
			!		F	ROCK	COF	E			SC	IL SA	MPL.	ES				
DEPTH (feet)	DESCRIPTION		Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Strength	No.	Туре	Blow Count	Recovery		REMA	RKS	
			0000	ר כינ ל בי ל כי ל כי ל כי ל כי ל	21	2/2-100%	31/5=62%	५ ० ० ।	· 以 · · ·	M								
130	CONTINUES TO BE CENSTAL RICH (LIKE COARSE SANDSHOWE— SURGE DEPOSITS?)			والأوافق والمارين	28	8	252	2	V	W								
	DECREASING TO LOW STRENG PITTED, LIGHT TO MODERATE WELDING	. h7			29	38/5 = 76%	5 = 36	6 s 9 muct	u	ĻS								
146		-	48	و ا ال	36													

Project	Name LANL Seismic Hazards Studies Task 2 Bortr	ng No.			SH	В.	2_							Sheet 10 of 13
					ROCK					sc	HL S/	MPL	ES	
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Srength	No.	Type	Blow Count	Recovery	REMARKS
145-	COOLING UNIT BREAK?	UE	רר בי כ כיי	30										
	MU WELDED?	dp.	در در در در در در در	31										
(50 - - - 55 -	BECOMES LIGHT GRAY, CAUSTIAL BICH, STRONGLY FITTED AND OF LOW STRENGTH LIGHTLY WELDED SAMPLE # 5 LIGHTLY WELDED		و د د د. د د د د	32	% 26 = -5/9.4	34/5= 68%	- 0 0 - m	3	ĽS					REPLACED REGUAR ODRETUBIE SHOE NATH EXTENDED "PUNCH" SHOE
		42	י בייניים	33										

Project	Name LANL Seismic Hazards Studies Task 2 Bork	ng No.	1			BH	в-8	2_						Sheet () of \3
(1				ş	ROCK	COF	RE .			sc	IL S/	MPL	ES	
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Strength	No.	Type	Blow Count	Recovery	REMARKS
	-xere.e	THE STATE OF THE S	, 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	33										
		†	ا ما داد											LOST CIRCULATION
		thr	ر ر ر	34										
165		+	وا در دو											
-	Continues, Low Strength, Light Crat, Censtal Rich. Lightly -WELDED	data	اد در در	<i>3</i> 5	% % =	% 24 =	3							
		Coopean	د د د د د		3,5/5	511/5	l	3	LS					
170			د د _د د د				។							
		NR	י כ כ כ כ	34										
			L						·					

Project I	Name LANL Seismic Hazards Studies Task 2	Borin	g No.				HB.								Sheet [2 of 3
٦					F	ROCK	COF	E	,		SC	HL S/	MPL	ES	
DEPTH (feet)	DESCRIPTION							#					ایا		REMARKS
[≝			_	ò	Ö.	(t)		1.88 /	ering	Æ			5	, ery	
Eb			Sketch	Lithology	Run No.	Recov. (ft)	8	Fractures / ft	Weathering	Strength	ġ	<u>8</u>	Blow Count	Recovery	
			s	7	E.	E	Н.	4	>	S	2	<u>-</u> -	- B	<u>ar</u>	
1			I.R		260			-							[· [
-1		-	2	V	יעני									_	<u>- · </u>
175		-		v											
Jaie.		-	-												
* 7		-	-												-
1		•	-	£.		9/4	90								-
-		_	F	<u>ر</u>		2	8								
			[*		4	_ ¿								
	Tucezastug tu steencti,	-		U	37	7	1		u	M			ĺ	l	_
1	STILL PETTED, LIGHT TO MODERATE	E -	2 3	•		2.3	1.3/5	١							
-	WELTENS, BECOMES PINKISH,	_ :	34	u			`	4							
	REMAJUS ORISHUL RICH	-		ند						•	ĺ				-
]	·	-		E,		ŀ		Ч							
180-		_	0				_	_	\vdash		-		\vdash		- HAED CORE SEGMENT
			-	2											BLOCKED TUBE AND
4	<u>-</u>	-		1.		l			ŀ						- MAY HAVE PLUSEDED
		•	<u> </u>	`.		0/0									- Remaining Core
1			+	_		20				1					- (40)
		-	F		صر	h		İ							
]				·	38	lہ	١.		(A	m					-
,-	<u>_</u>	-	-	·		5	8								
1		•	<u> </u>	Ł		•	١٧					İ			-
1		-	-	L											
1				V											-
185 -	<u>[</u>			V					L			L			
100		-	-	L				,							- CHANGED BACK
	CONTINUES AS ABOVE	•	Ü	v			l	must			Į .	ŀ	l		TO SHANDARD LORE-TUBE SHOE
1		-	門	~									l		TOBE-10BE SHOE
1			Ö	v		%	90	Ч							
-		-	30	U		80	B	'							<u>-</u>
]		•	H	"	39	100	l li	2		_					
]	_	-	B /	U	٦٦	<u> </u>	12	-	u	M.					
-			Ų			7	12								
-		:	\mathbb{Q}	Į.				ટ		ŀ					
-		-	五	l											_
]			إلىا	v				S							
190-			<u> </u>		<u> </u>	<u> </u>			L_						

4	
Ť	

Project	Name LANL Seismic Hazards Studies Task 2	Borin	g No.					<u>ح-</u>							Sheet	13	of	13
(t					F	ROCK	COF	Æ			sc	HL SA	MPL	ES				
DEPTH (feet)	DESCRIPTION	-	Sketch	Lithology	Run No.	Recov. (ft)	٥	Fractures / ft	Weathering	Strength		•	Blow Count	Recovery		REM	ARK	S
ă			Ske	Ę	Han	Rec	Ā	Fra(We	Stre	ġ	Туре	Blo	Нес				
	Steenshy Increases, light to moderate welding, Pinting Decreasing, Puntice Thorras Fiamened, Remains Obstal fio	NYIY		د در د د	40	% 00 =		o mult.		15					, , , , , , , , , , , , , , , , , , , ,			
克		11		רב רני		= -\$/\$	3.6/5=	0		ms					التنبالينا			
200-	TUCKENSTUR TU STEELY WELDE MODERATE TO DEUSELY WELDE PRINTING ARE FLATTENED NO PATTING	2		وحر حر دوان در د د	41	5/5 = 100	٠٤//٢٠	Muctiple	Ų	Hs					nulmalmalmalmal	30 T	ж.	11/21
, , , , 1 , , , , 1 , , , , , , , , , ,															1			mrete s to

To REC 1245

SHB-3 (TA-16)

Project	Name I ANI Cajamia Habarda Chidica Tasti O	Borin	a Nin		~	нB	_ =	2		in the	# W.			~	Sheet 1 of 573
Project	21112 0001111 111211 00 0110110 110112	Task	y 17U.			nυ			evetir	on and		ım			Sheet 1 of 53
	. 010000A	· aun		บ9	00					arted			10.		Date Finished 01/22/92
Drilling (Drille	~رت	· A - ·	/>	<u> </u>		C	mplet		12.	16/	7/		Rock
		Drille	₩Ĕ	<u>fW</u>	1 D	4 <u>7</u>		No	oth of		<u>ع</u> ا:	Dist.			Depth 3 Undist. Core
Delling	Egpt. IR. CYCLONE TH-60	1		-				Se	mple: ater	5	-	irst.			
Core Ba	Wethod Purch Core / ATR POTORY CHETAS					<u> 28 Y</u>			ater	έw·	<u>:</u> r	1131		-	Compl. 24 hrs.
		Bit() Dept								,	as If a	L	1)	_	· ·
Casing	Size 7" diam. Type Steel	Debi	•	6.	fee				у <i>ос</i> Д	U CH	1		rKo		
윤						ROCK		HE.			SC	иL S/	MPL	E 5	
(feet)	DESCRIPTION							=	_						REMARKS
DEPTH			_	6	o i	3		ractures / ft	Weathering	£			Blow Count	ᇫ	
			Sketch	Lithology	Run No.	Recov. (ft)	Ş	actri	aath	Strength		Type	ĕ.	Recovery	START
			Ś	5	Œ	č	ĕ	ŭ	₹	ន	ģ	Ļ	菌	ď	12-6-91
1	: SILTY CLAY TOPEDIL - DK brown,	-	<u> </u>												7:48
 		_	-												<u> </u>
[]	damp, v. stiff, low plasticity,	_	-		l									1	fault breaks the
7	Wroots of grace	-	NR									ļ		l	= sril
	101 - 4	1	Y' y			20									F
7	T becomes red borrow w/ fine - to med grained band, cataclasti	, 7	» 			8%		Ì							F
	breecia, white mineralization of Fe	۔ ا	·			18				ŀ	ĺ				Ė
‡	- staining in Fault gouge		<u> </u>			11									-
	Bandelier Tuff-Encioce Nember 1?)]	1		1	,5									<u> </u>
[1	Gray brown low strength Owlfine to me				5	1									E '
 	- ground guartz & counting constalk	-	<u> </u>	-	7	7.4								•	
 	ruvenze	-C-l				S			,						F
_	moderate	n						ĺ							F
5 -		7				90									- 7:50
	Low strength wined-brown low plasticity silty clay	\	45			800									2 8:56 drillers left site
	- Porsitivity string clay	-{:	- ź-			:12						Ī			Com idented off
	e ja kiran ja ja ja ja ja ja ja ja ja ja ja ja ja	Į,				JI,									- toucke TASS
)	coarse primite clasts and	(\cdot)	ر ص		١.	3									face didcharage
1	- numerous fine quartz & saniding	\-	8		N	1									- carbide but
} {	slightly pitted surface	$\exists \exists$	ø		Œ	3.7									0.7' from prev.
]		17	9/			•)									9:00
1 7	I Moderate strength to strong,	_ `-													9:06
1	v gray, with occasional coarse	7	,												-
	dacite Oithics	_	_,^			20									<u>-</u>
		‡				00,						:			<u> </u>
		†				2						i			-
10.		4	-0			!'									Englis
‡	thin clau	1	رثون			1									
l İ	thin clay seam	→ }	<u> </u>		M	3	1,00,								-
l		7	00		¥	೯೮	2								-
· · · Ŧ		7	0						.						- -
		- 1												.	-
‡		+	0								l				
‡		. ‡													
	w/ brown purice class and sor	ne l	릐	-		$\vdash \vdash \vdash$								-	4:10
‡	coanse Lithics Livery in		اق.		4						}				
Lf			<u>;</u>		ρŻ										
			,												WCC Geolech CL-91 September 1991

4	
₹	

Project I	tame LANL Seismic Hazards Studies Task 2 Borin	g No.	<u>S</u> ,	1B:	3									Sheet 2 of 53
æ					ROCK	COF	RE			SC	HL SA	MPL	ES	
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Strength	No	Туре	Blow Count	Recovery	REMARKS
15	Bandelier Tuff as above (Tshirege Member)				2/00/=	%90 = ,s/			-					
-	Trea-brown low plasticity soilty clay sam, sandy	0		R-4	, N	3,3%								= Silty clay is
-	Sitty clay, red brown, damp, vistiff, (CL) FAULT GOUGE	I N	403	-	14%									Silty clay is probable fault souge
20	Eandelier Tuff, gray, Strong, few brown pumice clasts, w/medium grained quartz; plightly pitted burface			R-5	3.7'/5'=7									
25 -		No.			4%									
-	Fault gouge - {- Clay seam as a bove - {- Moderately strong to strong, gray, highly fractured, numerous quartzz sarictine crystals Fault gouge as above - 10°	Service Control		R-6	2,2/5' - 44	, 0								prob. fault gouge
30 -	fine brown purice clasts, coanse quartz crystals, moderately fractured	0 0		R-7	5/5'=100%	375'= 75%								prob fault gonge

Project	Name LANL Seismic Hazards Studies Task 2 Borin	g No.	SHE	-3										Sheet	3	o1 53
					ROCK	COF	RE .			SC	IL S/	MPL	ES			
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Strength	No.	Туре	Blow Count	Recovery		REN	IARKS
	Bandclier tuff as above			R-7	8/15 = 100%	3.75' = 75%):20	
35	Gray, mod strength to strong, some fine brown pumice, some gray med. Grained pumice, some fine quartz & ganidine Red brown sitty clay on surface &			X-3	N	10" = 16%										
40-	Tuff-highly weathered, brown-orange, Suff.	NR		R-9	0.21/5' = 4%	%0									;30	
45-	W/ Silty clay as above (v.stiff, red- brown)	NR		8-10	0//5										Ove Love 11:15 Bar post had t tube	of punch on end of tube core ned pushed and of bot of 15h for put on never

Project	Name LANL Seismic Hazards Studies Task 2 Borin	g No.	51	B-3	3			•						Sheet 4 of 53
8				F	ROCK	COF	E			SC	IL SA	MPL	ES	
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. (II)	ROD	Fractures / ft	Weathering	Strength	No.	Туре	Blow Count	Recovery	REMARKS
		K.		R-10										- using punch - shoe pushod - down w/no - necessary - 12:15
50-				/	5'=5%						-			using punch Ahor
-	moderately strong, analy, fractures tassity, rumenous fine to man quartz & savidine, few fine brown pumus class			F-1	0.25%									drillers left for ~1/2 how to raft boss.
55 -	becomes strong, with med to codize gray punice class, numerous quartz & Sanidine			872	1/5-= 20%	18/5 = 16%								using punch shock
ω-	very strong, with thin flat punice,	NR		ج/-۶	601/5/11/08	0%								

		_												
Project I	Name LANL Seismic Hazards Studies Task 2 Borin	g No.	<u>3</u>							Γ				Sheet 5 of 53
_				F	OCK	COR	E		برتي	SC	HL S/	MPL	ES	
DEPTH (feet)	DESCRIPTION							34		1				REMARKS
Ĕ	DESCRIPTION		_		(€	ļ	Fractures / ft	Weathering	-			Ę	<u>~</u>	ricars no
TT.		듈	Lithology	Run No.	Recov. (ft)		ž.	athe	Strength			Blow Count	Recovery	1
🛎		Sketch	Ē	ž	Rec	8	Fra(We	Stre	£	τ. Φ	윮	æ	
-1				~	\dashv	_				1		 		
, I				13										_
¥ T	Sand Meaning organ strainer			à						-				L145
. 1	- very hard, w/coarse gray purnice -	罂		140	1/0	0								- carride but
	very hard, w/flatened gray purice, {			2	3/						-	-	\vdash	- won't cut it.
<u> </u>	torê sûrfacê smooth			51-8	19	104,			_			L		to change but.
1		(-)												[] Carbide Years
	very hard, densely welded, gray numerous fine to coarse knowice, w/quartz & saniding	-												E worm completely
65	unmeroustine to coarse knowice -													away 2:45 Putting on
‡	wighter & Danidung										-		1	Christiansen Surface Set but
		#º]			96	20								
-	-	#-)	·		8	96			1				l	- ENDIS-6-91
1		此									<i>?</i>			19.8-91
					-	11								9:00
7		 		92	`						}			_
1				7	$ \mathcal{A}\rangle$	\ 0					İ			[Mad Rotary (woder anly)
1	• •			2		4.8						İ	ŀ	E (undo cont)
	ree & Mn Stams)	tis.			ارت						1			F (malex will)
	Constant	T							l	[1	1		E
	lots of quartz & sancting, dense x welded of of freet. love, FRMn stains on freet. highly wearn & Fractured	ES.		<u> </u>	_	<u> </u>	<u> </u>	-	-	-	├	-	├	[
	in boards strang to ctol					·						-		F
_	densely welded as	1/0/	1	ĺ					-					F
70 -	I dove 1-98Mn store in the I	# *			20			•						F
. "	1. Li al al al al al al al al al al al al al	#°_/			%	26					1			<u> </u>
]	nighty wearn & Ractured	1			\$	ઢ			1					<u>-</u>
		0 / 0:			ų.	ı,			1					-
1	brown-red, N/white of Fe cobred	1 /				"		,						E I
1	we only the day and the contract of the contra	#3		_	, N	l			1					
	buma fragments	اه 🖠		-	Ľ	5	ş							<u> </u>
*,	1	ᄔ	1	1	5	45	[_		-				1	E
) J	<u> </u>	∄~ /		6	1	1							1	<u> </u>
1	20	14											}	F
1	* **	[[]								'				F
	-						Ī. —	T		1	1	1	1	F 1
1	densely welded when	‡ ^			'				ŀ					<u> </u>
75 -	test bonwieb, my drauts.	#-			1	10		1. 100						<u>L</u> .
/~]		<u> </u> -		l	2/4	10%								t 1
1	used dr.	-			Į Ž	88%								-
1					1									F 1
	missing & may blast so lty		1	0	ļ "	l "				1		[<u> </u>
	6197	ţ		1	-					1				<u> </u>
-		# <u>.</u>		Q_	5	1								F
}		· ·		`		12			1					E I
}							1	١.				1		F
		#	L	<u>. </u>	<u>—</u>	<u> </u>	<u> — </u>		<u> </u>	1		<u> </u>	1	

Project	Name LANL Seismic Hazards Studies Task 2	Borin	g No.	3											Sheet	6	of 5.	3
ا ۾ ا	——————————————————————————————————————				j	HOCK	COF	ŧΕ			SC	IL S/	MPL	ES				
DEPTH (feet)	DESCRIPTION	4 .	Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Strength	No.	Туре	Blow Count	Recovery		REM	IARKS	
-			0 0 0												- ÷3	0		
80	mlasarze drahbnuge cra cyenzejh malgaj	515	71911			20									- - - -			
			0 111		-19	%001 = /										ı		
	sardy w/sometan =)	000		R-,	5	55											:
85	pumice 13sts	, 	00			100%	% 0%								300 			
			0 4 0			- 15/	9/=								<u> </u>			
			0000		R-20	51	72)								- - - - - -		·	
90	as above	-	601)			%	20								= 31 = = =	Ż		
	-	-	v) 0 / 0			= 100	23 =								- - - - - -			
			0-1001		R-2	, 7Z	18,4								- - - - - - -			
			<u> </u>	: <u>S</u>											335			

Project I	tame LANL Seismic Hazards Studies Task 2 Borln	g No.	3											Sheet 7 of <u>53</u>
				F	юск	COF	Œ			SC	IL SA	MPL	ES	
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Strength	No.	Туре	Blow Count	Recovery	REMARKS
95	witan-unange mod plastics	H I		-	100 %	88%								
-	densely welded as obove, w/coarse gray pumice w/clay as dove) (c		R-22	, ,	53" = 1								
-	ton orange day ->	0 6 0 0		1										- - - 400
/8D	densely welded as acone	0 0 0			100%	_								
1				R-23	5′=	- 11 bh								
		0 0 0												- - - - - - - -
105	alensely welded as above, some tan coarse pumice along	0 0 0 0 0		R-24	5, = 100%	n	1							- Catadastic
110 -	mad plast or anger illy clay &													brecia 420 Suesse 420 Deossele?

Project I	Name LANL Seismic Hazards Studies Task 2 Borin	g No.	251	<i>\B</i> ∹	3									Sheet 용 에 53
					ROCK	COF	}E			SC	IL S/	MPL	ES	
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Strength	No.	Туре	Blow Count	Recovery	REMARKS
	clensely welded as above platy, actived mighly fract of weath, wipink and. plastic sitty they pinkish gray, moderately strength of fractured, wifine mad g. lithics,	[CES. WORK INTERNAL		R-25	% oo/ = /5//5	%2h = 45%								losing water vil3
115	densely welded, gray iron stained fracture, trace of brange softy clay in fracture, within flatered purice, pone coaise of ay purice, some quarte & sanidne, sm orth surface, for fine surfaced lithics			R-26	n ,	88 = "p2								START 12-10-91 7:50 Using watermly motead of bentonite plumy
120	as above but no Must colored lithics, slightly banded wifew nust colored streaks	RO 1 0 10 2 0		R-27	58"/5" = 97%	56" = 96%								8:05 - - -
/25	Stightly banded w/few prok Stracks, densely wolded, Fe Stams on fracture faces, lithe may round pumice, w/some rust colored lithics			R-2P	51/5/400	50" = 83%								

Project	Name LANL Seismic Hazards Studies Task 2	No.	No. 5HB-3										Sheet 9 of 53		
				ROCK CORE							SOIL SAMPLES				
DEPTH (feet)	DESCRIPTION		Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Strength	No.	Туре	Blow Count	Recovery	REMARKS
-	onange silty clay in fracture.		0 0		R-28										a added ~ lays
/30 -	FAULT EXCES highly fract. greath_ moderately plastic orange sitty day sears, ~ 1/2 cm with	\$C		8	R-29	α) = ,	33" = 55%								- added ~ lays - 9:00 polymer (Allomer 12015). - Rodsvibrating Against hold. - Fault
/35 - -				88	R-30	5/5' = 100%									Fault
140-	clayey, sandy sam	{			R-31	51/5'=10%	55" = 92%								

roject î	tame LANL Seismic Hazards Studies Task 2	Boring No	·5+	B -	 3									Sheet /성 이 소3
. 1					ROCK	COF	E			SC	IL SA	MPL	ES	
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Svength	No.	Туре	Blow Count	Recovery	REMARKS
	hard FAULT Som fracture days face		2 6°	R-81									:	Fault 9.50
45	w/orange solly clay —		W.	F-32	3/15' = 100%	41" = 68%								
150 -	becomes lighten gray, highly fract. Wiquantz & sanidino, some rust colored time lithics, moderately hand: becomes _ becomes _ soft		ALL THE STATE OF T	R-33	4'3"/45' = 97%	03=								platy jointing, very densely welded
155 -	highly fract, becomes -	A CONTRACTOR OF THE PROPERTY O	A STATE OF THE PROPERTY OF THE	6-34	%00/2	100/								10.25

Project	Name LANL Seismic Hazards Studies Task 2 B	oring No). S#	หลาง	3									Sheet // of 33
					OCK	COR	E			so	IL SA	MPL	ES	
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Srength	No.	Type	Blow Count	Recovery	REMARKS
160	moderate strength to soft as above, w/ med go guarty	STOCKE SECTION OF THE PROPERTY		K-35										platy conting
165-	some as above	STORY TO SERVICE THE SERVICE STORY S	A VANDARANTA CONTRACTOR OF THE PROPERTY OF THE	A-36	38" = 97%	%0								
170	w/numerous quarte of sandine, moderately fractioned soft, w/pinke mod plastic sitty clay moderate strength to soft w/trace of pink sitty clay, moderate strength to hard Fe staining on fractive faces			R-37	5.6. 11/8 %	272 "01								11:45

•	

Project I	Name LANL Seismic Hazards Studies Task 2 Borin	g No.	8	HВ	جہ									Sheet	12	of వ ె 3
				F	ЮСК	COF	E			sc	IL SA	MPL	ES			·
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Srength	No.	Туре	Blow Count	Recovery		REM	IARKS
[75	pink brown, moderate strength, numerous med to coarse quarty grandine fine ned gray purice, trojeoarse Cithics W/pink siltyday(Cr)				1 = 100 %	= 77 %										·
-	Cithics Whenk silyday (Cr)	<i>6</i>		98-0X	12/2	= ,,9%										
	•	#												E		
														E		
180	pink brown, densely welded Who ofcourse gray purmice and subst, course quante samiding modio moderate strength highly fract, some med on lithius Loft w/ some pink, selfy clay, sandy orange highly starte siffy clay, stiff			人者为	5 15= 100%								*		:36	
185	highly fractured. Incheste strength for for rumerous med to coarse for soft to soft for soft to soft for soft			8-40	5/5-1=10%	1/82 = "#1										mother one of oftense stense Spinning
190	far potted primile densely welded		^	14-8												

4	
4	

Project i	Name LANL Seismic Hazards Studies Task 2 Borin	g No.	8	HВ	-3									Sheet /3 of 53
					YOCK		RE			sc	IL SA	MPL	ES	
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Strength	No.	Туре	Blow Count	Recovery	REMARKS
	moderate strength to soft, highly factured, a gray med og. lithis, loss of med. g. quarty & sanidine, the of gray pumice, angular particles penk brown as above			R-41	5/8'=10%	%1=15H								ROD 11
195	as above				%%	18%								- 1.05
				R-42	1)	16								
200	brown-pink (CL) brown-pink densely welded, ned to coarel athics, four med pumiceclass, lots of guardy & saidie	00101000000000		-43	/s = 8%	1" = 78%								
	densely welded, w/coerse lithies, few jurile dets,			Ý	10 %	7/1 //2								- /:50 -2:01
205	Al weakers, face of to stains on sides of one	000		12-44	5/15/=/	21" =								

Project i	Name LANL Seismic Hazards Studies Task 2 Borin	o No.	SH	12-	.3			<u> </u>						Sheet	14	of 53
	EVIE ORIGINA MATERIA O CIOCIO MANTE		<u> </u>		ROCK	COF	ξE			so	IL SA	MPL	ES			
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Strength	No.	Туре	Blow Count	Recovery	F	REM	ARKS
	moderate strength, highly fractured, whot of guarty of banding pilty, sardy, med wolded to	《红江)因為		R-44										2:05		platy gond
210	highly fract, sandy			6-25	% = no%	0.0										
215	pink brown coarse grained, coarse grained, coarse grained, coarse lay throughout infrating of throughout infrational and strength	Signature of the community of the commun		6-46	351/51 = 92%	18" = 38%									manusare and manuser and the first of the first of the first and designations of the second of the second and the second of the	
220	gray John watherdand fractived Juff, some pinh med grained Prime, mod hard to soft	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		P.47	3//5'=60%	7,0									A STATE OF THE PARTY OF THE PAR	

roject l	Name LANL Seismic Hazards Studies Task 2 Borin	g No.	KZ.	B-;	3									Sheet	15 o 53	
				F	OCK	COF	E			sc	IL SA	MPL	ES			١
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Strength	No.	Туре	Blow Count	Recovery		REMARKS	
	gray, f-m. grained sand, fr. of coarse lithics, looks med. { donse			R-47												
225	no recovery - sand zone (?)			R-48											Sol Br	
2 3 0-				49	= 37 %	j								<u> </u>	:20	
•	becomes red-brown, highly — weathered, few fragments are moderately hard, remaining is band w/quartz & sanidine, becomes clayey @ bottom			1 € €	22 "/5"	O								3	:35	
73 .5	becomes clayey @ bottom	A CHARLES OF THE STATE OF THE S		€2												

WOODWARD-CLYDE CONSULTANTS of 53 Sheet rojed Name LANL Seismic Hazards Studies Task 2 Boring No. 5HB-3 ROCK CORE SOIL SAMPLES DEPTH (feet) REMARKS DESCRIPTION Fractures / ft Weathering Strength Blow Count Recov. (ft) Run No. 8 No. 40 densein pamis, sold grants & panjeline

Project I	tame LANL Seismic Hazards Studies Task 2 Borin	g No.	 SI	нß	-3					. :	*			Sheet 17 of 53
					ROCK	COF	E			so	IL SA	MPL	ES	
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Strength	No.	Туре	Blow Count	Recovery	REMARKS
<i>15</i> 5	densely welded	0 0 0		R-5%										Som fauet
280	dense ly welded as above, moderately fractuod			57	\$ 00 H & VI	1)								1-12-12-12-12-12-12-12-12-12-12-12-12-12
265	same as above NRt	00000		No.	1/3,5'= 33%	% 28 =								8:45 5 fact 12/12/91 8:20 rods tripped in Hocked off
1	soft highly plastic orange sitty clay in this seam (?) TROBARSIE FAUNT (?) densely welded as above w/ coarse lithics to 11/2" 34"	19	80,	8-8 C2-0	1/4/1/4/2/10/4	Ъ.,								Fault 9:50 9:15 addtli from prev. coro run
270		$\frac{\mathbf{I}_{c}}{\mathbf{I}_{c}}$							<u></u>	1				

4	2	•
1		Ü

Project	Name LANL Seismic Hazards Studies Task 2 Borin	g No.	SI	18-	-3									Sheet	18 of 53
				F	ЮСК	COR	E			SC	IL SA	MPL	ES .		
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	/ Recov. (ft)	ROD	Fractures / ft	Weathering	Strength	No.	Туре	Blow Count	Recovery	·	REMARKS
	2''-1	1001		15-2	17/									E 9	120
	pame as above	\$ 0110		R-58	28" = 108	8982									1;45
278	densely welded as above welded lithics	THE DO THAT MANNEY			% 00/ =	% H = 14%									slaty zone
		M 6 10 1 6 10		6-59	5//5/	h									0;10
280				7	1/2/=10%										
				R	-	张,看									0;20
285		449 1 19 119		R-61	5.14.=1008	Ž									

roject I	Name LANL Seismic Hazards Studies Task 2 Borle	g No.	S	HB.	-3									Sheet	19	of 53
				F	ROCK	COF	E			sc	IL SA	MPLI	ES			
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Svength	ON	Туре	Blow Count	Recovery		REM	IARKS
	densely welded as	01080		· R-61												
290	as above but w/ fewer coarse lithes				70											
~ · · · · · · · · · · · · · · · · · · ·				R-102	100	11										
295	T brown or angle		.9		40%	. 63%	2)								:05	
•	thin orange		92	R-63	51/4	ון										
30 0	thin orange — clay scan	10 1 (S) 10 C		17/3	% - 15	20 mm	9) 22								1:20	
		100	3												i .	

Project	Name LANL Seismic Hazards Studies Task 2 Borin	g No.	8											Sheet 20	of 53
					юск		E			SC	IL SA	MPL	ES		
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Srength	No.	Туре	Blow Count	Recovery	REM	ARKS
				R-64										- 11:30 - 11:30	
305	dently welded as above, be coming or angle-brown				% 00/ =	% 99 =								- platy	zone
	orange-brown			R-65	5	, 80 K	i i								
#3					70										
310-		0		70	S. = 180 %	% ~ I %									
•				~~		M'									
35	becomes moderate Thength to soft, sandy,	1000 VX		٨	% 00/=	= 27%						:		- - - - - - - -	
-	frable, orange-bran			19-V	くら	16:									

WOODWARD-CLYDE CONSULTANTS Sheet 21 of 53 Project Name LANL Seismic Hazards Studies Task 2 Boring No. 5H3-3 SOIL SAMPLES ROCK CORE DEPTH (feet) REMARKS DESCRIPTION Weathering Strength No. Type Blow Count Recov. (ft) Lithology BOTTOM OF TSHIREGE as about M/som The Toledo Sequence Andesite? Dacite?

Gray, hard, w/ brown

Orange & black lithit!

Little sandy clay on no accorem. aura Rist 330

Project N	ame LANL Seismic Hazards Studies Task 2 Borin	g No.	3	13	-3									Sheet 22 of 53
					юск		Ε			sc	IL S/	MPL	ES	
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Strength	No.	Туре	Blow Count	Recovery	REMARKS
335		7/1		R-7/	92114 249	0%								- - - - - - - -
	likes mod hand soft	N		A-72	3" 2 =R%	7000								- - - - - - - 2810
	Bliff brown, highly plastic clay in bit waterways	N.K		R-73	110	**								= 2:30 = 3:204 legolog
外0 - - - - - -	Hend, de brown w/cley as above	N		P. 74	2.6/5/= 50%	98								Sect. Tell starged
345	Gray, hard, highly Fract & weath, or and fracture faces, w/clayey med or sand Gend & Boulders (?) Stately comented forcess read of bourn & wange. E			R-75	مه ا	¥ 1								- 4:40 EMORPHON -7:55 12/3/4
350-	sand, dk bown & varge. E fr. of city pays than E Eschere, weath freet. faces			火-ツ										8:05

Dunlant N	Name LANL Seismic Hazards Studies Task 2 Borin	a No.		HE	ì _ ·	2								Sheet 23 of 53
Project	MAINE LAME SHISHIIC HAZAIUS STUDIES TAGRE	<u> </u>			OCK		Œ			SC	IL SA	MPL	ES	
DEPTH (feet)	DESCRIPTION	Sketch	Lithology		'. (ft)			Weathering	Strength	No.	Туре	Blow Count	Recovery	REMARKS
	sund, gravel & boulders as a bove 340-353	W. 22		22-y	0.5'= 10%	\circ								
355		╏╏┇		1	0/9/=									- wipolymen - weeked
	oranse sandy clay, medium steff, more ale plasticity, numerous med. of white quarks crystals	W		R->	7.5.2	0								9:15
360-	transforence no recovery, little clargey pand in cartcher	+ 												
-	353-368 Resert Muostone	<u> </u>		R-78										
365			2	A-75	19.16.	22								- 9:40 - - - - -

Project I	Name LANL Seismic Hazards Studies Task 2 Borin	g No.	5	HR										Sheet	24	o 53
آي				P	OCK	COF	E			SO	IL SA	MPL	ES			
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Svength	No.	Type	Blow Count	Recovery		REM	ARKS
	clayey sand w/sseme econst fravel, low plasticity, orange, w/white med gr. quarty.	NR BOND		R-79(Unad)	1.97/51									11111111111111111111111111111111111111	: 10	
370	trace of sand in catcher			A-80	,0											
3 7 5-	sithy sand, fun at liack and quart, crystals, mod. dense, to of clay (CL), no lementation			R. El Canad	%82 = , <i>4</i> 7										30	
38 0 -				R-52											7 L	

Prolect (Name LANL Seismic Hazards Studies Task 2 Borin	g No.	3	HB	3									Sheet 25 of 53
,	Line Colonia includes the colo					COF	RE			SC	IL SA	MPL	ES	
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Strength	No.	Туре	Blow Count	Recovery	REMARKS
	in the catcher	NR NR	•	83 (144) R-82	0.2	Q								- II:UD
305	grading from orange to			ω,	4									0.5' sand slough on top of 0.7' sample
-	Cyay pumice sand w/ light to stains trace of clay(CL), some fine to med, dark lithics. measure dense fall deposit, obsidian fragments Rappet not Test (?)		3	\$8-8	3/200	0								0.7'sample
390-	tracerizing sound in catches			8-85	27.5								The state of the s	
		+++++++++++++++++++++++++++++++++++++++		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \										- - - - - - - - - - - - - - - - - - -
395	no recovery	 		RETER	シンシン									

_	

		<u> </u>	_	. 1.4										Sheet	26	or 53
Project I	Name LANL Seismic Hazards Studies Task 2 Borlin	ig No.	2		ROCK					80	IL SA	MPI	FS	Giber	20	
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. (ft)		Fractures / ft	Weathering	Strength			Blow Count	Recovery		REM	ARKS
400-	fluvial sand - f-coarse	NF		-87(Dungel)	5/5/=30%	0								- 17:	45	
405-				•	/ %#=										<i>30</i>	
	fluvial sand orange w/tan rotted pumi de tragments, fine to medium grained, mod. grained quarty & f-m. dk. lithics, liose to medichenae			8. 8.8		0									45	
410-	as above, lightly waded, darke voinge, w/	*****		A-93	12 / 2/	7								يتشابين والمتنين والمتنابية		

Duniont A	tame LANL Seismic Hazards Studies Task 2 Borin	n No.	5	1/2	. 2									Sheet	27	of 53	\neg
riojeci	LANE Sesmic nazarus Studies Task Z		<u> </u>		ОСК	COR	<u> </u>			sc	HL SA	MPL	ES		<u> </u>		7
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	, (ft)	ROD	Fractures / ft	Weathering	Strength	No.	Type	Blow Count	Recovery		REMA	RKS	
<i>†</i> 15-	orange, moderately welded, bome ned gr. lithics, little brown punice to 14", W/ med to coarse quartz	2		R-20	0,3" =6%	, 0											A STATE OF THE PERSON NAMED IN COLUMN TO STATE OF THE STA
+/20	ar above			2-91	0.4.15' = 8%	,0								سانيندانيين المعارية			
†25 -	Ofour W/ day afteration to 448 ALL OF OFOUR MEMBER (TO ± 570 FORT) APPENDED TO BE LETHIFFED, BUT NOW WELDED. OBSERVATIONS OF 1. GARDINGS AND T. KOLOSE. PINK MOONT, MOCKERSTER Strength Lighty fractured, med. to coarse atthics becomes Lift, woulded fine - IM. Plumice & quarts	W S		7-92	2,5 //5' = 36%	,0								بىلىيىرىيىلىيىلىيىلىيىلىيىلى <u>ن</u> خ	50		
430	post as above w/scc. mod. weided gones.			R-93	2%/	จ											*

_	
_	
•	_

Project i	Name LANL Seismic Hazards Studies Task 2 Borin	g No.	SI	13	- 3									Sheet	<i>2</i> 8	ol 53	
1					ROCK	COF	RE			sc	IL S/	MPL	ES				
DEPTH (feet)	DESCRIPTION	Sketch	Lithology		Recov. (ft)	ROD	Fractures / ft	Weathering	Strength	No.	Туре	Blow Count	Recovery		REM	ARKS	
	pink brown, moderate strength punice, med gr. lithics, with	R		R-34 6-3	0.6'/3'=20%	0.6' =										2/12/01	
135	norrediren													1	8:3	2/13/91 T 12/14/9 Water Coring	
		NR NR		R-85	0.75												
440-	pinte-brown, lightly welded to unwelded, soft little gray purmice to "/4", w/donte fine littles, fine-med quarter's Sandine tr. of clay (CCL)			96-	%00/ = /5/	10								├ ' ⋅	core t	ube ed in	
445	becomes more clayey, Whed govel size - Cithics becomes red brown and clayey	***************************************		A-97	100/2/2/2018									و المسالية المسالية المسالية	.15 c	Packad of	F

Project i	Name LANL Seismic Hazards Studies Task 2 Borin	g No.	Sh	IA-	- 3									Sheet	29 of 53
		Γ			ЮСК	COF	ιE			SC	IL SA	MPL	ES		
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. (ft)	20	Fractures / ft	Weathering	Strength	No.	Туре	Blow Count	Recovery		REMARKS
	- grading to bission pink-brown whitened clay alteration	\$ 25 C S S S S S S S S S S S S S S S S S S		R-97										٥	:20
/5 0	Rubble pink-brown moderately welded, maron frace of brown pilly day (CL) on fraction faces, abrundant med an quarted somiders, fear withing, no apparent pumices		80	86-8	1/15 = 34%	0									
455-	moderately (welded to soft			R-99	11/1 %										elocked off
	Alternating hard of soft zones. Soft mail being wacked away.			R-100	0.1./4 = 2	0									
H.O-	moderately welded as above			R-11/	0.5'/5'= 16%	4' = 8								<u> </u>	;00

Project P	Name LANL Seismic Hazards Studies Task 2 Borin	g No.	5	НB	-3									Sheet 30 of 53	
				F	ROCK	COF	ŧΕ			SC	IL SA	MPL	ES		
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Strength	Q	Туре	Blow Count	Recovery	REMARKS	
	moderately welded, brown as above, to of gray pumies to ~ 1/4"size the of orange sitty day on fracture face	NR OS		R-101	:5/50.									-	l l
165		NR			2, = 59%	% 8/ =		3							4,
	as about - mod welded to soft		*	R-102.		6.0		*						- - - - - - - -	
476			*		34%	%00									
			*	Rings	0.33//51	11 44					1			V	
	moderately welled to dancely welled, with fine mad lithius, little brown pumine													End 11/14/91 ST 11/5/91	
475	nonwelded prominent less welded tapes			104	% % = ,5,			* ****	- William					So-drill rodo Atack in whole 2:20 HR rod became uncoupled 10' above diest table	
-	as above, to of clay or fractions foces, friable	SKARI	3	S.	/ 13/4	0								Sico node notating but still can't pull out Trying to his to unt; an.	

Project	Name LANL Seismic Hazards Studies Task 2 Borin	g No.	S	18	-3									Sheet 3/ of 53
					ROCK	COF	E			sc	IL SA	MPL.	ES	
DEPTH (feet)	DESCRIPTION	Sketch	Linalogy	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Strength	No.	Туре	Blow Count	Recovery	REMARKS
180	fiable moderately moderately moderately moderately soft, unwelded wife. n. quartz, banidined lithics little brown & fan pumice up to 1/4" sing	5 S S S S S S S S S S S S S S S S S S S		R-105	31/5' = 60%	9								7-900-rodson 3:15 too tight (from trying to get them westuck yesterday). 930-tripping act- core tube stock 11:00 Left to call L. Fleming regarding getting me the not Dillici afraid HQ nod will get stock in hole 12:30 Returned. Fleming said to go as fant so possible w/wheat they have. Changing but to "Encert" Weeded out 500 of load 3:20 HQ-rod - Flared and
485-	soft, lightly to unwelded, as above			80-8	2.81/5' = 56%	ò								2:45-trippeding flushingouthole
490	as about	13		R-107 (ma)	1,5/1/,5/	0								4:10
				8-108	0.475 = 8%	0								- 4:30

4	A
=	3

110	DWAILD-OLIDE COMOCETATION													9-1-62
Project i	Name LANL Seismic Hazards Studies Task 2 Bortr	g No.	<u> </u>		<u>-3</u> lock	COR	F			so	IL SA	MPL	ES	Sheet 32 of 53
DEPTH (leet)	DESCRIPTION	Sketch	Lithology		£ (3)			Weathering	Strength	No.		Blow Count	Recovery	REMARKS
45	soft to moderately welded, friable	NR.		R-108										- 4:40 - END 12/15/91 - CTARTIZ/16/91
	non welded				× = 54%									
	non welded whether welded, flu tan & dk known purice clasts, friable, few moderately welded pieces, w/quadz & sanidine, some lithics			R-109	2.7.75	0								- 498 prominent - vapor phase - alteration of - purvice - 8:00
500 -	throughout, Oithic rich nonwelded, purice not.	Ŧ			9/ 9/2 ==									
- -	lightly to moderately welded, which brown pumice clasts to 1 ", time-med quartz, samilies & airties , pumice is "rotted" med gr. dark.			P-110	2.3//2	ł								8:45-dallers Left site to call in their
305	lightly welded, friedle, lithics & pumice as above, trace of sitty clay(c) between factures				2,001 =	11								call in their time. Back ~9:25
510.		· · · · · · · · · · · · · · · · · · ·		111 - X - 111	5/4	-6/5	1							

4	2
4	

					1 -	<u></u>		$\overline{}$						Shoot 22 014-3
Project I	Name LANL Seismic Hazards Studies Task 2 Bori	ng No.	SIB-		(7			2)				1401	-6	Sheet 33 of 53
				R	OCK	COR	E			SO	IL SA	MPL	-9	
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Srength	No.	Туре	Blow Count	Recovery	REMARKS
-	lightly to moderately welded breaks apart w/ some effort, light to stapins on some facture faces, pumie, lithics as above	R 80000111000000000000000000000000000000		R-112	4/5' = 80%	/2 = /1								9:35
SIS- SID-	lightly to moderately welded as about			R-113	5/5' = 100 %	2.7' = 54%								10:15
525	as about			4-11-8	2.5'/5'=8%									10:20
.160	† - - -	N N N	9											

Project I	Name LANL Seismic Hazards Studies Task 2 Borin	g No.	3	C	12	-10	<u>,)</u>							Sheet 34 of 53
				F	ЮСК	COR	E			SC	IL S/	MPL	ES	·
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Strength	No.	Туре	Blow Count	Recovery	REMARKS
	moderately welded, pumice & Dithics as above slightly pitted cou surface		30°	R-115	4.51/51 = 90%	2' = 40%								- -
530	moderately walded & fractured				% 8% =									11:00
535	moderately woldes & fractured, large (coarse) lithic 5, the stains on fracture faces	S DIN SAN	00000	<i>11-</i>	2,47/5	,0			Y					- 11:10 - 11:20 blocked off & pulled up
	soityclay as above	Sar Triandoring	38	P-117	%25 = ,5/,9%	1,2' = 24%								pulled up 2 / from prebious num 11:50
5 1 0 -	moderately welded as about	A CONTROL	1003 1003	F-118	17.1	0								- blaked off

4	2
- V	

DESCRIPTION DESCR	roject	Name	LANL Seismic Hazards Studies Task 2	Borin	g No.	SI											Sheet	35	여 5 ૩
moderately welded as above Recensed Frank Aithy clay (CH); many, soft Moderately welded as allow	£						F	ROCK	COR	IE .			SC	IL SA	MPL	ES			
moderately welded as above Rosance Fount All 105 As above All 105 As above All 105 As above All 105 As above All 105 As above All 105 As above All 105 As above All 105 As above All 105 As above All 105 As above All 105 As above All 105 As above As ab	DEPTH (fee		DESCRIPTION		Sketch	Lithology	Run No.	Recov. (ft)	Rad	Fractures / ft	Weathering	Svength	No.	Туре	Blow Count	Recovery		REM	ARKS
as above Recorded Frank Silty clay (CH); orange, soft Moderately welded as Alpon Albore Al	545		moderately welded as	-	19:10:10:10:10:10:19:18 %		R-119	4 ' = 48										05	
moderately welded as above whin seam of orange with light clay (CH) with clay (CH)	-	-	as above	-	R SURFIN		1	1											
thin seam of orange with clay (CH)	30-	-	sity clay (CH); orange, soft		37	80°		ŋ										:30	
shin seam of orange - the silty clay (CH)	•	** 	moderately welded as		MAN STATE OF THE S	100		136 I	S			The state of the s							
as above	555	 			TO THE WAY IN THE PARTY OF THE	w		90	4								2	:00	

	DWARD-CLIDE CONSOLIANTO	_												Sheet of C3
Project N	teme LANL Seismic Hazards Studies Task 2 Borin	g No.	SH	_			-					MPL		Sheet 36 of 53
DEPTH (feet)	DESCRIPTION	Sketch	Ithology	Run No.	Jecov. (ft)		Fractures / ft	Weathering	Strength	No.	Type	Blow Count	Recovery	REMARKS
۵		σ̈	j	Œ.	ď	Ě	Ē.	3	Σ	Ž	F	8	н	
520	Becomes tan moderately welded, provide pumice fragments	0,0000000		R-122										several pieces if bit in core 2:15
1	to "4", bl. weathered, numerous lithics (dacite?) to 3/4" 17.01 orange so lty clay (CL) BASE OF VAROR PHASER - MATTERED RUNTUE many	NR			% 85 =									2:30 tupping but End 12/10/91 Start 12/17/91 Finished tryping out, change
	w/dark Fe stained lithics to 3", becomes tan-gray, lightly to moderately welded, trust-pronon purnice tunwelded to moderately welded,	0400	න් ප ්	R-123	2.91/5	, 0				,				to green Bit & thip in by 10115
565-	clayer, orange onthy clay (CH), Doft, tan tuff, few Lethics to 1", rumerous of m lithics, highly weathered dank				1	%								-
	slightly weath pumice fragments are rust-colored	000		24 22	8=7,5/	95 = 1								
570 -	6-m quarty seaudine lightly moderate to lightly welded		50°	1-8	* *	1								
	moderate to lightly welded, pust colored pumice to 1" suge, dark				% = 84%	1 1 64%	2							
-	pumice to 1" sage, darks; slithics to 1", frable (sterooth Decreases at ± 573)	0 0		R-125	47.14	24, 2.7								

Project N	lame LANL Seismic Hazards Studies Task 2 Borin	g No.	Sı	lB-	3							· -		Sheet	37	of <u>ර</u> ිපි	
				F	ROCK	COF	Ε			sc	al. ŠA	MPL	ES				
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Strength	No.	Type	Blow Count	Recovery		REM	IARKS	
575				R-125	%									- - - - - - -	25		
		L I			= 54	2 20 %									•		
	lightly welded to nonwelded. wherest colored punice to l'é dank lithies to l' trace of orange silty clay	1000000		R-126	24/15	` -											
580 -	Steensth														:50		
	•	 		27	120%										اده بلر ه جها	aling the trightening on our of	
-	non welded as above (CH) - soft, orange	+ + + + + + + + + + + + + + + + + + + +		R-1.											nod to fer ail work work	Trying who out by water, Not ing Left @ call bots Dat	
585 - -	gray, thered, wifew fine, dark lithius, Fo stain on faces				(2)	120%									Rod Ada to a	Attached to popods to freed @3. 2 bags bertond rates & put in	
_	12:30 JAN 6 1992 REENTERING HOLE WITH LONGHEAM SEP-FACED, SUPFACE SET BEN. JAN 7			R128	3613	\$198								F	get s flust or a hole	. Need to return to rout cutting least keep open.	
e i	THE LETHIC & PUMICE RICH, THATCE ORE FE STONED, LITHER ARE DACTER! BROWNISH ORDER. FRIABLE LIN WELDED			R129 a										E	Rods rota becan	benomite lung purped lown hole started ting, there stick again,	
270_	DECUTOR OF BENJOYEUE	11.	1	<u> </u>	_	<u> </u>	<u> </u>			+-		 	上	_	,00 186	ing to use this	ٍ ل

_	_
4	4
=	
•	_

)	OBTAILD-OLI DE CONCOLITAITO	$\underline{}$												
Project	Name LANL Seismic Hazards Studies Task 2 Borin	g No.	ᅫ		3 ROCK		· · · · · · · · · · · · · · · · · · ·		-	90	IL SA	LIDI	FG	Sheet 3B of 53
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	v. (ft)	ROD	Fractures / ft R	Weathering	Strength		Туре	Blow Count	Recovery	REMARKS
	THEF, CONTINUES BROWNIS OBAUGE LITHER RECH, LITHERS ARE DACTED ALCHMAR AND MATO 4 OM IN DEALMSTER, THATCE ARE NUMEROUS, OFTEN ROHEN AND THOU STATUES. ROOK IB OF LOW STRENGTH - FRIARLE			R129	3.1/5 = 74%	3.7/5 = 74%								HI/18. robs still stut. Added 3gal. foam (8:30). BEGAN DETUTION, WITH MUD AT SBS', MIX IS 2 SACKS OF BENTONITE. 300 GAL OF WATER FOR EACH 5'RUN.
595-	Controuss			P 150	% B1 = 5/5.	18/		والمستعدد والمستعد والمستعدد والمستعدد والمستعدد والمستعدد والمستعدد والمستعدد والمستعدد والمستعدد والمستعدد والمستعدد والمستعدد والمستعدد والمستع						Some viscositiee To also added No diechaege To surface Cordy without Reoblem
600-	Continues as above, but less tembre — Low strength, can be broken arroad Easily by Hour			RIZI	5/5' 100%	00/								
605-	THE CONTINUES, BOWNES - ORANGE LITHIO & PHYNICE RICH, LOW STEERS TO FRIABLE, RUNDOE ARE ROHEN AND TO SHAINED			8132	1/5 = 20%	0/5 = 0								

	DDWARD-CLIDE CONSOLIANIS	ing No. SHB-3															
Project	Project Name LANL Seismic Hazards Studies Task 2 Borlr				3_									Sheet	.39	of 53	
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. (ft)	COF	Fractures / ft	Weathering	Strength	SC.		Blow Count	Recovery S		REM	ARKS	
	LITHICS (up to 8 cm) WITH BEOWNTSH - COM	<u>C0008</u>												-	•		
(AID -	BEOWNESH - GRANCE, CLAY-ETAH MAHRIX MATERIAL	+++++++++++++++++++++++++++++++++++++++		R-133	15/5 10%	0/5										in Juli	
-	Pastrue Faut?	0000															
615 -		┤ ┤┤┤┤┤		NR R134													
620 -		**************************************		NR R135	1												

Project I	Name LANL Seismic Hazards Studies Task 2 Borin	g No.	21	R -										Sheet 40 of 53
1	LARL Solding Head Solding Have	ROCK CORE									XL S/	MPL	ES	
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Strength	No.	Туре	Blow Count	Recovery	REMARKS
625	Tuff Beownton Obascie, Lethic & Fluntce Ratch (Lathics Que Basaltic , Pumice Arte Rollev E, Iron Statued. Rock Is Trivale	00000		R 136	2.5/3	2.2/3			4					- JAU 8 9:30 - EASY DETUTING
<i>13</i> 0	AS AGOUE BUT BEDWES MORE RED - BETWEEN UT BEDWEISH GRAY to BEDWEISH BROWN SAMPLE		V	RI37	2/2 = 100 %	' 00/ =								
<i>B5</i> -	As above with streamth Increasing strath at ± 633 Lithics decrease.			R/38	5/5=100%	5/5=100%	l .							
-	AS ABOUTE, BUT LOW FRINGLE			78/39	3.3/3 = 110%	^			*					

	the ANIC Control of Challes Took C. Book	240	٠,١											Sheet	Ü)	of 53	\neg
Project	Name LANL Seismic Hazards Studies Task 2 Born	1 140.	JH		2 lock	COR	Œ			sc	IL SA	MPLI	ES	<u> </u>	7'	<u> </u>	
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. (ft)	ROD	Fractures / ft	Weathering	Strength	No.	Туре	Blow Count	Recovery		REM	ARKS	
GO-	CHURCEDED TWEE DARK CREDERN BROWN to BROWNISH GRAY THEICE RICH, FEW LITHES, TRANSPORT ARE BONEN OND FR STATUED, ROCK TO TRIOGRA			R-140	3.8/4 = 55%	3/4 = 75%			F								
G45	AS ABOUTE PUNICE INCREPAINS			R-141	9,001 = 5/5	5/5 = 100°/b								عبيا بينيا بيينا بييا بيباري			
650	AS 480UE			RI42	4.8/5 = %%	þ											
_		1							,								

4	

Project I	Name LANL Seismic Hazards Studies Task 2 Borin	g No.	5	IB-	.7									Sheet 42 of 53
,	CHILL COOLING PARTIES		<u> </u>		OCK	COR	Ε			sc	IL S/	MPLI	ES	,
DEPTH (feet)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. (ft)	- AOD	Fractures / ft	Weathering	Strength	No.	Туре	Blow Count	Recovery	REMARKS
<i>655</i>	Continues as uncerded there. Brownshipe are dumerous byten. And thou shaded, stedicht Thosenses below cost feet.			R143	5/5=100 %	5/5= 100 %			F					- Alo Paoblems
3	Steenshy Incepasing Beautish Gery			RING	% % = 5/8%	7								
(des-	SHELIGHH DECREASES CORE IS FETABLE, W. OF RUMICE DECREASE. LY OXIDIZED & ROHELD PRINTINE BELOW 665 TEXTURE IS THAT OF ALLIUMA SOND? POSSIBLE SURGE? TO GOOD			R/45	4.7/5= 94%	88								
610	Strength Increases, Punice Thoreases Oxidized & Bohen Reduch Brown.			8146	5/5-=100%	5/5=10%			4					

Proje	ct Name LANL SEISMIC HAZDEDS	Field	d Log of Boring No. 548-3												Sheet 43 of 53
							COR				SOI	L SA	MP	LES	
DEPTH (FEET)	DESCRIPTION		Sketch	Lithology	Run No.	Recov. ft.	ROD	Fractures/ft.	Weathering	Strength	No.	1ype	Blow Count	Drilling Rate/ Time	REMARKS
		-	44 4 4 4 4 4		RING					¥					
675 -	CHUMELDED THE COM STEEDS BUT NOT FEILAND, ETHIES THURESEE (I ICM) PHINTONE NUMBEROUS AND IROU STAINED	##				4.4/5 = 88%	%8 = <i>5/h</i>	*							-Jau 9
690-	CONTINUES LOW STREWARTH, BOSON TO REBOIGH BROWN. PLANTOR CONTINUE TO BE OXIDIZED. LERGE DECITE LETHIC	5	@@@@< !		R 148	%08 =s/h	3.5/5 = 70%								·
685	LARGE DAGITE WITHER				8149	4.4/5 = 88%	3.5/5 = 70%			\					

Proje	ct Name Laur SETSMIC HAZARDS	Field	Log	of I	Bor	ring	No.	3	3 (-	TA -	- IE))			Sheet 44 of 53
			- T		RO	CK (COR	E			SOI	L SA	MPI	LES	
DEPTH (FEET)	DESCRIPTION		Sketch	Lithology	Run No.	Recov. ft.	ROD	Fractures/ft.	Weathering	Strength	No.	Type	Blow Count	Drilling Rete/ Time	REMARKS
	large dacete lethic	۰ ۲۰								4					
690 -	LARGE DACITE LITHTCS THEFE, BROWN to REDDISH BRU. PRIMITIZE CONTINUE to BR TRO STATUED ROCK TO LOW STRENGE BUT AND FRIABLE, ROCK TO EASIE BROKEN BY HOND BUT HOLDS A "STI	ы ;	16.500 () () () () () () ()	and the second s	R150	4.7/5 = 54%	4.5/5 = 20%								
	CONTINUES AS ABOUTE		3(.)			\ 0	70								
GS -		-	4 - 4 - 4	,	K 151	5/5 = 100 %	5/5-= 100 %			organi (samery anglematana) ang anglawaha ang ang ang ang ang ang ang ang ang an					
700 -	AS ABOUE BUT LOWER STREEDGITH		-		2.5	24%	%01=								
			9000		K 152	1.2/5	15/5								
										P					

Projec	CT NameLANC SETSMEC HAZIBRIS FIR	ld Lo	na of	Bo	rina	No.	_	12	. 3					Sheet 45 of 53				
1	CONTRACTOR SETS WILL HAVING TO		, g		CK			70		SOI	L SA	MPI	LES.	0.10	 43	<u> </u>	ㅓ	
DEPTH (FEET)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. ft.	нар	Fractures/ft.	Weathering	Strength	No.	Туре	Blow Count	Drilling Rete/ Time		REMAR	RKS		
705	Luwelded Thef, Low Steelight Light Beowlish Gray, Some Plantche Pollew & Iron Statued Others Fresh, Lithics Small (Clom) and Few Sawre	1000000		R 153	% % =	3.4/5 = 68%			4					_	Peoere	ns		
710	LIGHT BROWNISH GRAY, STRENGT DECREASES FOU IRON STATUED RUNTOE, LITHIUS ARE NUMEROUS AND SMALL (< 10m)	†		2154	3.3/5 = 66 %	3,3/5 = 66%												
715	LITHIC RICH, LIGHT BROWNISH GRAY, MOST PUMICE FREE OF TROW STAINING			R155	× 8	35/5- = 10%												
720	AS ABOUE But BECOMES TROW Statue & more Growing at 722.			R156	3.1/5 = 62%	2.8K5 = 56 %			1									

Proje	CT Name LANL SETEMIC HAZAGOS	Field	i Lo	g of	Во	ring	No.	51	HB-	.3			 	Shee	t 46	of ජු	3
DEPTH (FEET)	DESCRIPTION	-	Sketch	Lithology	Run No.	Recov. ft.	GOB GOB	Fractures/ft.	Weathering	Strength	SOI .ov	Type Type	Drilling Rete/ m Time		REM	ARKS	
-	HOLLOW ALTERNATION SOMIE CLAH WITH SCICKENSFOES? PROBABLE FAMED 123		(3000		R156												
725	CLAY-RICH CLOOS LIGHT BROWNISH GRAY LIGHT BROWNISH GRAY LIGHT BROWNISH GRAY RECOME TROW STATUED		000		R157	5/5 = 40%	1.5/5 = 30%										
730	Pumicie Broome Less Iroc Stained Lititics are Numer And Small (<10m)	ous.			R158	3.4/5 = 68 %	2.9/5 = 58%										
735-	MUNICIPED THE BECOMES MORE PLUKTSH, Most Pumicia ARE IRON STATUED LITHICS CONTINUE TO BE NUMEROUS AND SMALL ROCK IS LOW STRENGT	_ ‡			1.59	7.25 - 5/9.4	4.4/5 = 22%										

Proje	ct Name LANL SEISMIC HAZARDS	Field	Log					<u>g-</u>	3					Sheet 47 of 53
		-	i	- 	T	COF	ì€ I			SOI	LSA	MP	LES	
DEPTH (FEET)	DESCRIPTION		Sketch	Lithology Bud No	Becov ft	ROD	Fractures/ft.	Weathering	Strength	No.	Туре	Blow Count	Drilling Rate/ Time	REMARKS
740	FINE FOOT STICK - UNWELDED THEF LIGHT BROWNISH GRAY TO BOOKISH GRAY, LITHIC AND PLUMICE RICH, LOW STRENGTH, PUMIC HAVE A TINT OF IRON ONTO COLORING			3.0	76 - W 67	# 00/=			4					
-														
745	Continues as about	}		1118	8	%85 = 5/5'h			and the state of t					Jau 10
150	NO CHAUCHE		(6718	10 50 - 1758	1 1								
			00000	01/2	09/ (*					

Projec	T Name LANK SEISMIC HAZARDS Fie	ld Lo	og o	f Bo	ring	No.	SH	16-	3				Sheet 48 of 53
DEPTH (FEET)	DESCRIPTION	Sketch	Lithology		Recov. ft.	ROD	Fractures/ft.	Weathering	Strength	No.	Type ady	 Drilling Rate/ m Time	REMARKS
1 1	Chumelded Ther, light Brownesh Gray, lithic Rich (20m) number e Size of Punice December Low Steength - Ferague	60		R163	5/5=100	5/5-= 100			1				
760,	Number of Pumice Increase At 761 Trace to no Iron Statutury Lature Content Daggers			RIGY	3.2/5 = G4%	3.215 = 64%							
765-	BECOMES LIGHTER to LIGHT GRAY, DECREASED NUMBER OF LIGHTES. ALL FRAMES? GRADATICHOL CHANGE TO LIGHTER GRAY, PUMICE ARE MELLOWISH TO WHITE			RIGS	4.8/5 = 56%	2 = 56							
770	Tumber Bon Tax			R 166	1.9/5 = 38 %	1,915 = 38%							

Proje	T NameLACK SEISMIC HAZARDS Fiel	d Lo	g o					B-:						Sheet 49 of 53
		_		PO I	CK	ORI	E	1		SOI	L SA	MPL	E\$	
ДЕРТН (РЕЕТ)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. ft.	ROD	Fractures/ft.	Weathering	Strength	No.	Туре	Blaw Count	Drilling Rate/ Time	REMARKS
715	REDDISH-BROWN, CLAY-RICH SOIL? SANDY CLAY? FRACTURE THING? SEDIMENT? GOVER? FRANT? ONE SOULD STICK UNIVERSED THEF LIGHT BROWN GRAY, PRINTICE RICH, SOMIE SMALL LITHICS (LICH) ROCK IS ENSILT GOUGED WITH KNITE AND CAU SE BROKEN BY HOUD PRINTER CONTENT THOSEMEDOG			R167	4,3/5 = 86%	4.315 = 86%			.4					No PROBLEMS
780-	Continues as About. Strength Tucreases Slightly Below 780 Feet.			8168	4.4/5 = 88 %	4.4/5 = 88%								
785-	Lithic Content Taxerases Slightly, Strength Decreases	100000000000000000000000000000000000000		R 169	4.5/5 = 20%	4.2/5 = 84%	•							
														,

Projec	T Name Lank SEISMIC HAZAROS	Field	Log	of	Bor	ring	No.	SH	B-	<u>z</u>					Sheet 50 of 53
1 i			1			CK (SOI	L SA	MP	LES	
ОЕРТН (РЕЕТ)	DESCRIPTION	1	Sketch	Lithology	Run No.	Recov. ft.	ROD	Fractures/ft.	Weathering	Strength	No.	Type	Blow Count	Orilling Rate/ Time	REMARKS
	Strength tucreases susable of end of Run,	7				%	%								
190 -					R/7a	8	2/5 = 40 %								
795 -	LNEGE LITHIC		0000000		R171	4.7/5 = 54%	4.7/5 = 54%	, , , , , , , , , , , , , , , , , , , ,							
800-	LIGHT BROWNESH GRAY, RUMENTADO LITHIC PICH, LOW STRENE	CE	0.00000000		R172	3/5 = 60%	28/5 = 8 %								
දීගර	AS ABOUTE COUNTINUES		0 6/20		R173	4.4/5 = 88%	42/5 = 84%								

Proje	CT Name LOUR SETSMIC HAZARIS F	ield Lo	og o1					lB.	- 3			Sheet	51	of	<u>53</u>
DEPTH (FEET)	DESCRIPTION	Sketch	Lithology		Recov. ft.	ROD	Fractures/ft.	Weathering	Strength	L SA advL	Drilling Rate/ m Time		REMA	ARKS	
		00000		213					f					- 112	
8 10	LARGE DACTTE LEMICS CORE WIOTH TO STZE			R174	2.215 = 44 %	,= _S									
815	ZOUE OF LARGE PUNICE LITHICS DECREASE, PUNICE INCRE # 818 Almost Totaly Flunice AIR FILL? COLOR CHANGES FROM LIGHT BROWNISH GROY to LIGHT GRAY GUALE PUNICE BED!	Πo		R175	20/=	5/5 = 100%									
820 -	CILLWELDED TUFF, LIGHT BROWNES GRAY. LITHIC CONTENT DUCETOSES AT 820 FEET, STEENGTH DECETOSES FRETABLE, STELL PURICE RICH	W(3000000000000000000000000000000000000		R176	4.9/5	4.7/5						7			

Proje	ct Name LAUL SESMIC	HAZAROS	Field	l Lo	g of					B	3					Sheet 52 of 53
		•		T				COR				SOI	L SA	MP	ES	
DEPTH (FEET)	DESCRIPTIO	ON		Sketch	Lithology	Run No.	Recov. ft.	ROD	Fractures/ft.	Weathering	Strength	No.	Туре	Blow Count	Drilling Rate/ Time	REMARKS
8 25	CONTENUES, UNDER CLEARLY BROWNESH C RECH, FEW LETHICS,	JEAN Flux	. 0 €	(0.00-0.0)			9/2 2/2	2,2/5 = 44%								
8 30-	Continues AS A	NBOW FE.		0 4 6 4 0 0 0 0 0 0 0 0		R 178	= 84	4.26 = 84%								
63 5	Continues Pource Fau?) warm number At 838 FEET	- Sech (4sh 2005 Lethecs	>	@ 63		R179	1/5 = 20 %	90 61 = 5/2"								Detuce Reports Water Resser 1800 And Rotation Brown Thurtusting
	LIGHT GRAY ASH FOR FEW LITHIUS ? PLYE FANGLAMERY RENDISH-BROWN, SAUDY	HE? COCHITY	-	0000		R 180	11/5 = 94%	115-=20%								

	CT Name AV SETSMIT HAZARDS	Field I	Log					نها						Sheet <u>63</u> of <u>53</u>
ET		-	1	R(OCK T	COR	E	1		SOI	L SA	MP	LES	
DEPTH (FEET)	DESCRIPTION	7.	Sketch	Run No.	Recov. ft.	яар	Fractures/ft.	Weathering	Strength	No.	Туре	Blow Count	Orilling Rate/ Time	REMARKS
840	REDUCH-BROWN, SAND GRAVEL ECLAY DACITE COBBLES WITH CLAY FILLING INTERSTITAL SPACES ROUNDED GRAVEL & CLAY			R180										
3 4≲	PUTE? DOCTTE FOUGLOMERENTE BOBLES, GROVEL, CLAY DACT COBBLES & GROVEL				3,4/5 = 68 %	16/5 = 12 %								LOSSE SAND AND GRAVEL BULGILY COSE TUBE - GOOD TIME TO CALL IT A COMPLETED HOW
	Hole Complete 848'												•	12:30 PM Janil PUC Dawn to 860 FEET_ VOID BLOW OUT ??
		+++++++++++++++++++++++++++++++++++++++												

Woodward-Clyde Consultants

SHB-4 (TA-18)

CORE LOG

Projec	t Name LAUL SE	-su-sa Jaras	Fi	eld Lo	og of	Bor	rina	No.	,CI	N -	u					Sheet	of 12
Project	t No. 91 LO 509 #	ISMIC HAZOR		sk O						vation		d Da	tu m				
	Location TA -18								Dat	e Sta	rted	01	123	19	Z	Date Finished	101/25/92
Drilling	Agency PC EXAC	PATTOLI	Ī p	iller Di	50. >	10-	71-1-	_	Cor	nplet	on	20	•			E and	cot
Drilling	g Equipment INGS	a tau Days /				/ UK	I	-	No.	of		- 1	ist.			Undist.	Core
Drilling	Method Are Polo	A PRINCE	ACCONTA		<u> </u>				Wa		-	lF;	rst			Compi.	124 hrs.
Core B		Length 5	Bi	CARCO		10	TAM	OND.	Log	ged t	Ŋ					Checked by:	
Casing		Type NA		oth		•	me	ee.		R		<u>_</u>	<u> </u>	_			
	Size MA	1700 1014		1		A	OCK (COB				SOII			FS		
DEPTH (FEET)	٥	ESCRIPTION	•	Sketch	Lithology	Run No.		Rop		Weathering	Strength	No.	Туре		Drilling Rate/ Time	REN	1ARKS
	ROSO BASE			000					·						·	12:30 USTUG L STEP-FOO DISCHARGE	01/23/92 Oughear Ded Sede- He Corre
	BROWNESH. GO RETURNED (to boethy the months of the color. The boethy to book. The boethy the color. The boethy the color. The boethy the color.), LEGHT	***	μţ											MISCHAGE E	Cacalos
5	Remote											-				1	
10	Cutterie des	= Ture			J.	2										Decrea	ED AXE
SF-108	large 6 3 cm	VLETHEC _		1		3										SHOE_ 1	EXTENDISO "LONGIAR - PUNCH SHO

Projec	T Name LANL SETSME HAZARDS	Field	i Lo	g of	Вог	ring	No.	S	40	-4				\neg	Sheet	2		of	12
	DANC SEISMIC IMANEUS					CK		_				L SA	MPL	.ES					
ОЕРТН (FEET)	DESCRIPTION		Sketch	Lithology	Run No.		ROD	Fractures/ft.	Weathering	Strength	No.	Туре	Blow Count	Drilling Acte/ Time		ЯE	MAF	RKS	
15	THE LIBOURDED, LIGHT BROWNED FRAY, GRAY TO LIGHT PLOUTEN GRAY, RUMICE ARE IRON STAINED AND ROHEN, LITHICS ARE UPEROBLE I SIZE From 2mm - 6/8 cm, mo ARE SMALL AND ANGULAR, LOW ST) 347 →	() SOSOS		3	2.2/5=41°6	0/5			ß									
20	THE AS DOWE - SLIGHLY HE Steength	4HE2	05020		4	3/5 = 60%				នេ						IMP E -	Doe ∪≅,	340 8 L	
as:					5														
35	Tuff, as about) (A	6	% cm = 2/h/8	19			ļs									÷

Proje	et Name LANC SETEME HAZARDS Fiel	d Lo	g of	Во	ring	No.	.51	1 N.	_ 4					Sheet	3	of	12
4	CAN'T GEISWITE HACEREDS				CK					SOI	L SA	MPL	.ES	,,			1-
ОЕРТН (FEET)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. ft.	ROD	Fractures/ft.	Weathering	Strength	No.	Type	Blow Count	Orilling Rate/ Time		AEM.	ARKS	
35	THE WUNDERDED, LIGHT PLANTSH GRANGS (SOLMON) PUNICE ARE IRON SHEDIED AN ROHEN, LITHIUS ARE SMOLL (< 10m) SUIGHTLY MOTST:	t 1		7	3/5 = 60%	3/5 = 60%			LS								
40	THEF, CHUTTHES MOIST, WITH JUCKERSTUR TEAD OXIDATION BELOW 38 FEET. COLOR IS DISTRICTLY REDDISH-ORDINGE. PLINICE BECOME GROWER, But Stru TRIABLE, LITHICS ARE Common	200000000000000000000000000000000000000		8	%08 = S/h	31/5 = 74%			દિ								
45	Continues Reddish-Graine, Strenth Thereses, Phintce are want brown Own of Low Strenth.			9	1.6/5 = 32%	1/5 = 20%			ıs								
Cat no		† - - - - - - -	,	10													

Projec	t Name LANC SEISMER HAZMENS Field	d Lo	g of				_	10.	4,					Sheet 4 of 12
1		1	1	RÇ	CK	COR	E			SOI	L SA			
DEPTH (FEET)	DESCRIPTION						/ft.	5				υŢ	tate/	REMARKS
TH.	DESCRIPTION	5	ology	Run No.	Recov. ft.		Fractures/ft.	Weathering	Strength			Count	ing F	REMARKS
) DE		Sketch	Lithology	Run	Весс	Rab	Frac	Wea	Strei	Š.	٦ ۲	Blow	Drilling Rate/ Time	
		E												CORE DID NOT
Ī	Cooling with Beenk	‡												Catcul May BE 1 Foot
†	-	اها												Or more to tube. World make 4' ew
1		NR		Ю					,			i		
50	-													
1		Εl												
-	<u>-</u>	1		-	-					-	_			•
1		ŧ I				ξ.								
	-	+												
,										•				
]		W		H										
		† 1												
-	-	-												
		+												
55	· · · · · · · · · · · · · · · · · · ·	 		-	<u> </u>	-	┡	-	<u> </u>	_	┝		\vdash	
	PETLL CUHTUGS ARE A MEDIUM	Ī												METH DETU ROD OPEN
] -	Sour Composed of Courtous & Rouded	‡									,			AND STORED IN THE TORMATION DURING
-		Ī												Detiling) MECHARGES
-	<u>.</u>	‡												A SOWDSLIKE WATER
		ŧar		12										PUTERINTHE DETLE PLO CON BE HEARD.
	<u>.</u>	Ī												HOWEVER, NO WATER IS BLOWN TO THE
		ŧ								·				RIPHAE DURING
0-		Ī												CORDAY, AND THE SAND SIZE CHELKS
ľ		‡										ĺ		HEE OLLY GOLLMICH
		<u>ŧ</u>												moest
60-		‡			Γ									,
:		‡												
		Ŧ												
-		ţ												
] -	-	ŧ.,												
1		Inv		13										
] -		‡			1									1
		İ												
-		[
	• •	‡												
(90	t	t.	1	ŀ	1	1	1	1	1	1	1	1	ŀ	1

Projec	T Name LALL SELEMET HAZARDS FIR	ld Lo	g of	Во	ring	No.	Sı	AD	۲	+				Sheet 5 of R
ET.				AC	CK	COR	E			SOI	LSA	MP	LES	
ОЕРТН (FEET)	DESC RIPTION .	Sketch	Lithology	Run No.	Recov. ft.	нар	Fractures/ft.	Weathering	Strength	No.	Type	Blow Count	Drilling Rate/ Time	REMARKS
76	TUTE, UNWELDED, Rust COLDRED, FREGREE. LOS AS ORANGE - LESS CHODIZED	0000		<u> </u> 4	1.3/5 = 26%	.4/5 = 8%			ıs					OI/24/91 NO AIR IS DISCHARGENCY FROM THE OPEN DETLE ROD. POEDE TO COMMENCE MENT OF DETLETING HOLE IS DRY AND NO SOUND OF WHER CAN BE HEND. SWITCHED TO PANCH CORE SHOE. DRIVITICA BECOME HARDER AT ± 69 FEET.
75				15	18/2 = 16%	9/5-			LS.					
	COOUTO UNET PREERY? +0 97			16										SWETCHED BOCK TO RESULTER CORE TUBE SHOE PAUL DOWN PRESSURE AT 1000 WITH PLUCH SHOE ARE CONTINUES TO DESCRIBELE FROM OPEN ROD. CHTICKS ONLY SUIGHTLY MOEST:
80		NR.		ก										

Project Name LAUL	SEISMIC HAZARDS	Field	d Lo	g of					HD .	-4					Sheet 6 of 12
DEPTH (FEET)	DESC RIPTION		Sketch	Lithology	Run No.	Recov. ft.	ROD	Fractures/ft. m	Weathering	Strength	SOI ON	Type SY		Drilling Rete/ m	REMARKS
85					Π			-							SWETCHED BACK TO PUNCH-CORE
† † † † † † †					18								-		SITOE
90 +			T + + + + + + + + + + + + + + + + + + +		h										
95					20										Sustanted Back To Handred Sitore 1000 The down Pressure on Princh Shoe & I would not Go No ote Dischared From Open Rod
Cultings Beautursh	are From Light Gray Tuff		M		21										Put 2 GAL OF Tolam Drewn Hole

rojec	t Nameur Sersmen Hazaros Fi	eld Lo	og of			No.		HD	4	SOI	L SA	MP	Fe	Sheet 7 of 12
DEPTH (FEET)	DESC RIPTION		<u>~</u>			COP		ing		301	L 3A			REMARKS
DEPTH		Sketch	Lithology	Run No.	Recov. ft.	ROD	Fractures/ft.	Weathering	Strength	No.	Туре	Blow Count	Drilling Rate/ Time	
 		+ + + + + + + + + + + + + + + + + + +												HAUENA TRUBLE MAINTATUTA CERCULATION.
Ø 		Į»		21										CECULOASON.
		<u> </u>												
+		‡ ‡ ‡												·
‡		‡												
65 1	· · · ·	‡uf		U							Ė			
		† †												
	: - -	+	<u> </u>										'	tor Tay O
1	: : : :	‡h*		23										WILL TEY PRINCH- COLE SHOE MAAT DED NOT WOOK -
		-												Comb Not a Duany Ruxot Past 2'
10	Cultures Indicate, light Beownesh-Gray, unnersed Tuff	† † † †												WILL TRY SUPFACE SET DIAMOND INF Bash TREPPENGE O OF HOLE
	<u> </u>	Į,	2	2										·
1		‡												
1		-										-	_	
16		Ī												
]		Ī												

Pŗoje	ct Name Lane Setsmin Hazaes Fiel	d Lo	Log of Boring No. SHD-4										Sheet 8 of 12		
					CK						L SA	MPI	ES	·	
DEPTH (FEET)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. ft.	Rab	Fractures/ft.	Weathering	Strength	No.	Type	Blow Count	Drilling Rate/ Time	REMARKS	
	THE WOULDED, LIGHT BROWLLISH GROW, VICEY WEAK, CRISHAL RICH WITH- FEW LITHICS. PRINTER ARE LIGHT BROWD, SOFT & WINDERTHERED ALL PRINTER FRAGMENTS THERE TOWN, BAJE OF TSHIREGE?	ENGINE		25	1.9/5 - 38%	1/5 = 20%			1 1					Detution LAST Bot Without ATR	
120 -		NR		26										Continued method Of Coreuc, wort Took wethown mer	
125-	unuelded taff as about				4%									ATE DISCHARGITURE, FROM OPEN ADD WITH SOUND OF HOD ENTERDIX, EDD, BINT CHITICH MOTET. SUTTILY MOTET. SAMPLE WAS WELT, COER TUBE WAS WEST, BUT CHITINGS	
-		0		27	·= \$/2·	45			រ					State-Hur moist.	
1 3 0 -	LOOSE, LIGHT BEOWNISH-GERY THEF FERSMENTS, MOTH AND HERY WEAK - CAN BE EASTLY CONSHED BETWEEN FINGERS SOME CLAY -			ટલ	1/5 = 20%	-9/9-									

Projec	T Name LAN SEISMIC HADARDS Field	d Lo	g of	Во	ring	No.	S	G H	-4	<u> </u>				Sheet 9 of 12
į į			_T		CK						L SA	MPI	LES	
DEPTH (FEET)	DESCRIPTION	Sketch	Lithology	Aun No.	Recov. ft.	ROD	Fractures/ft.	Weathering	Strength	No.	Type	Blow Count	Drilling Rate/ Time	REMARKS
													_	>
135				:										ustug Powch-wee Shoe with Daim, Impres bit
		NR -		29					٠.			-		
; L. 10	SAMPLEZ	\$ 10°		<u>^</u>	80%	% 02								Godus Sack To Shandows Suce
-	COOLANG BREVAK ?	10.00		30	= 5/h	3,5/5 =			ÌS					
145-														Core Tube Comes up wet. Ate Discharges Steden From Open Core Roo
-		UR		31			§ -30					-		·
150														

roje	ct Name LANL SETSWITC HAZMEDS Field	d Lo	g of		ring ICK (H0		f sou	SA	MPI	Fe	Sheet /0 of /2
DEPTH (PEET)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. ft.	ROD	Fractures/ft.	Weathering	Strength	No.	Type		Drilling Rete/ in	REMARKS
		DR.		32										RODE CTECULATION ATE DISCLARGETUR STEADILY FROM OPEN CORE ROD
3 5	ATE FOU PUNICE? SOMPLE IS ALMOST EXCLUSIONELY GOOD UP RUNTCE AND PUNICE TRAGMENTS	6008 800 800 800 800 800 800 800 800 800		33	%% = S/h	3/2								TUJECTION 4 GIAL OF FORM TO CLEAN HOLE
20	Culture pre light gent to light beownstat great, cerstal RIGH-LOOKS LIKE ODNESE SAUD			34										
کھ		NR.		35										Describin last foot weintout ass To Tet mod Fooce The LOCKE mater Up the Tube

	Et Name LANL SETEMEN HAZIERS Fie	ld Lo	g o		ring OCK			ΗD	-4		L SA	MP	FS	Sheet // of /2
DEPTH (FEET)	DESC RIPTION	Sketch	Lithology	Run No.		ВОБ	Fractures/ft.	Weathering	Strength	No.	Type		Drilling Rate/	REMARKS
1.00		+ + + + + + + + + + + + + + + + + + + +		35										,
170	MOTH, DEET LOW STRENGTH.	 			%6=		,							Swelchtur, to Prunch core shoe
		T + + + + + + + + + + + + + + + + + + +		36	= _5/2.	0/5								·
∏ 5−									ی				*.	
1.1.2.2.2.2.1.1.1.1				31										
		++++++												Switching Back
180-	~	++++++++								ış.				To Staudard Core side
				38										Dezuzue Last
		‡												Foot warnfood Max

Proje	T Name LAN SETSMIN HAZARDS Fie	ld Lo	g at					HD	-4	•		~		Sheet /2 of /2
E		\vdash		RC	CK	COR	E			SOI	L SA	MPI	LES	-
ОЕРТН (FEET)	DESCRIPTION	Sketch	Lithology	Run No.	Recov. ft.	вар	Fractures/ft.	Weathering	Strength	No.	Type	Blow Count	Drilling Rate/ Time	REMARKS
186	Culturys ORE Census Rech, Light Gray													Flore Corrections Assertables From Offen Corre ROO
				34						•			:	
190-		 			% 1/ =	%11=								Departur Hard at Bottom, stopped work 4.5 Foot Aw
	Basautic Andesite? Dark Gray, Uer High Strentiff. May be large Lithic?			\$	-8/4	-5/2-			94%					· .
195		 		ч										East Detutury
200		+												Puc Down to 1192'. Open How In Conceste to 195'
Cat so														10:40 Am

APPENDIX K SUBSURFACE GEOLOGICAL AND GEOTECHNICAL DATA IN THE LANL REGION

TECHNICAL AREAS (TA-2)

No geotechnical, foundation, or soil reports were found for any of the facilities at TA-2. However, according to M. Dean Keller, co-author of a seismic investigation of Omega West reactor (ENG-1-4242, October 10, 1970) at TA-2, the Omega reactor site is located on tuff bedrock on the north side of Los Alamos Canyon. TA-41 is located just to the west of TA-2 and on the same side of the canyon. Thus subsurface investigations at TA-41 should be a reasonable analog for the TA-2 Omega site.

TECHNICAL AREAS (TA-3)

SHB AGRA, INC.

YEAR:

1994

TITLE:

NMR Spectroscopy Laboratory, Bldg. 562

TYPE:

Geotechnical Investigation Report

REPORT No:

Lab Job 12013; SHB AGRA Job No. E94-1065

PAGES:

14

NOTES:

This report includes results of four test borings (21 to 31 feet), laboratory analyses, and recommended criteria for foundation design and slab support. Standard Penetration testing was performed and the soils encountered were continuously examined and visually classified. Moisture content determinations, grain-size analysis and Atterberg, Limits tests were performed. At the time of the investigation, the site consisted of native vegetal cover. The subsoils underlying the site consist of 0 to 4 feet of nonplastic and firm silty sands. This surficial soil is underlain by Bandelier Tuff which is hard from an engineering standpoint. Unconfined Compressive Strengths determined from other projects at LANL have yielded strengths from 290 to 2,100 psi.

AUTHOR:

SHB AGRA, INC.

YEAR:

1993

TITLE:

Conceptual Design CMR Building Upgrades, Bldg. SM-29

TYPE: REPORT No: Geotechnical Investigation Report SHB AGRA Job No. E93-1230

PAGES:

78

NOTES:

This report includes results of 13 test borings (20 to 50 feet), laboratory analyses, and recommended criteria for foundation design and slab support. Evaluation of engineering properties of the subsurface soils include moisture content determinations, dry densities, grain-size analysis and Atterberg Limits tests, standard penetration tests and unconfined compression tests. In addition, a Dynamic Materials Properties Investigation was conducted which included analysis of previous work and refraction seismic testing. At the time of the field investigation the site was occupied by the existing 2-story CMR Building.

AUTHOR:

SHB AGRA, INC.

YEAR:

1993

TITLE: TYPE: Industrial Partnership Center, Bldg. 561 Geotechnical Investigation Report

REPORT No:

Lab Job 12956; SHB AGRA Job No. E93-1212

PAGES:

10

NOTES:

This report includes results of three test borings (8 to 26 feet), laboratory analyses, and recommended criteria for foundation design slab support and paving. Evaluation of engineering properties of the subsurface soils include moisture content determinations, dry densities, grain-size analysis, Atterberg Limits, and standard penetration tests.

Sergent, Hauskins & Beckwith

YEAR:

1990

TITLE:

Advanced Computer Laboratory TA-3

TYPE: REPORT No: Geotechnical Investigation Report

PAGES:

Lab Job 10187 (reel 528, location 3); SHB Job No. E89-1252

NOTES:

This report includes results of four test borings (19.9 to 29.6 feet), laboratory analyses, and recommended criteria for foundation design and slab support and paving. Evaluation of engineering properties of the subsurface soils include moisture content determinations, dry densities, grain-size analysis, Atterberg Limits, and standard penetration tests. At the time of the investigation, the site was an asphalt covered parking area. The subsurface consisted of a 1.0 to 1.5 feet layer of silty sands and sandy gravel overlying tuff. This tuff is hard from an engineering standpoint and unconfined compression Tests determined from other projects have yielded strengths from 290 to 2,100 psi.

AUTHOR:

Professional Service Industries, Inc.

YEAR:

1989

TITLE: TYPE: OS Storage Facility Soils exploration

REPORT No:

Lab Job 10453; PSI File Number 535-95011

PAGES:

15

NOTES:

This report includes results of four 20 foot test borings, laboratory testing and engineering analysis and evaluation of the foundation materials. Evaluation of engineering properties of the subsurface soils include moisture content determinations, grain-size analysis, Atterberg Limits, and standard penetration tests.

AUTHOR:

Sergent, Hauskins and Beckwith

YEAR:

1989

TITLE: TYPE: Materials Science laboratory
Geotechnical Investigation Report

REPORT No:

Lab Job 6917; SHB Job No. E89-1097

PAGES:

31

NOTES:

This report includes results of 14 test borings (10 to 41 feet), laboratory analyses, and recommended criteria for foundation design and slab support and paving. Evaluation of engineering properties of the subsurface soils include moisture content determinations, dry densities, grain-size analysis, Atterberg Limits, standard penetration, and consolidation tests. At the time of the field study the site was a parking lot and storage area. The subsoils underlying the site consist of low to high plasticity clay and silt and silty sand. The clays range in thickness from several inches to 13 feet. Some of the surface soils are very soft to very firm. This surficial soil is underlain by Bandelier Tuff which is hard from an engineering standpoint. Unconfined compression strengths determined from other projects have yielded strengths from 290 to 2,100 psi.

AUTHOR:

Uhl & Lopez, Inc.

YEAR:

1988

TITLE:

13.2KV Switchgear Replacement Project, Bldg. SM-1682

TYPE:

Soil and Foundation Investigation Report

REPORT No:

Lab Job 8031 (reel 0665, location 2); U & L Job No. 1-80101

PAGES:

12

NOTES:

This report includes results of five test borings (12.5 to 22.5 feet), laboratory analyses, and recommended criteria for foundation design. Evaluation of engineering properties of the subsurface soils include moisture content determinations, dry densities, grain-size analysis, Atterberg Limits, and standard penetration tests. At the time of the field investigation, the site consisted of a previously-graded site which had been cut and filled in some areas. Soils overlying the site consist of man-made moderately firm fill of silty sands, silty clays, and clayey sands.

Professional Services Industries, Inc.

YEAR:

1987

TITLE:

CNLS Office Building SM 1690

TYPE:

Soils exploration

REPORT No:

Lab Job 8547; PSI No. 532-75017

PAGES:

23

NOTES: This report includes results of three 15.3 feet deep test borings, laboratory analyses, and recommended criteria for foundation design. Evaluation of engineering properties of the

recommended criteria for foundation design. Evaluation of engineering properties of the subsurface soils include moisture content determinations, moisture-density relationships, grain-size analysis, and standard penetration tests. At the time of this investigation the site was covered by asphaltic concrete pavement. An idealized soil profile at this site consisted of

approximately 1.0 foot of clayey sand overlying a very dense tuff.

AUTHOR:

Pan Am World Services, Inc.

YEAR:

1987

TITLE:

Shop Addition to SM-66

TYPE:

Geotechnical Investigation Report

REPORT No:

Lab Job 7910; Pan Am work order No. 5-84-0001

PAGES:

7

NOTES:

This report includes results of three test borings (20.2 to 25 feet). Evaluation of engineering properties of the subsurface consisted of standard penetration tests. At the time of this investigation the site was covered by native grasses. The subsurface soil at this site consisted of

13 to 20 feet of sandy clay and clayey sand.

AUTHOR:

Sergent, Hauskins and Beckwith

YEAR:

1986

TITLE: TYPE: Experimental Metals Science Facility Geotechnical Investigation Report Lab Job 7999; SHB Job No. E86-1201

REPORT No:

ES: 17

PAGES: NOTES:

This report includes results of three test borings (24.6 to 24.7 feet), laboratory analyses, and recommended criteria for foundation design and slab support. Evaluation of engineering properties of the subsurface consisted of **standard penetration** tests, **moisture content** determinations, **grain-size analysis**, and **Atterberg Limits** tests. At the time of the field study the majority of the site was covered by asphalt pavement. The subsoils underlying the site consist of approximately three feet of sandy clay in boring No. 3. Relatively sound tuff was encountered in all borings. The tuff is hard from an engineering standpoint, and **unconfined compression** strengths determined from other areas at LANL have yielded strengths which range from 290 to as high as 1,150 psi.

AUTHOR:

Professional Service Industries, Inc.

YEAR:

1986

TITLE:

T-Division Third Party Financed Building, Bldg. SM-475 Soils Exploration and Foundation Evaluation Report

TYPE: REPORT No:

Lab Job 7378 (reel 9976, location 1335); PSI File No. 532-65108

PAGES:

17

NOTES:

This report includes results of six test borings (20.2 to 20.4 feet), laboratory analyses, and recommended criteria for foundation design and slab support. Evaluation of engineering properties of the subsurface consisted of **standard penetration** tests, **moisture content** determinations, **grain-size analysis**, and **moisture-density relationships**. At the time of the field study the site was covered by asphalt pavement. The idealized subsoil profile underlying the site consists of an upper layer of fill, which is approximately 2.5 to 5.0 feet of dense to very dense medium grained sand with silt and clay. Very dense tuff with low compressibility was encountered in all borings.

The ZIA Company

YEAR:

1985

TITLE:

Technical Area 3, Building SM-170 Renovation Project

TYPE:

Soils Engineering Investigation

REPORT No:

Lab Job 7344 (reel 9995, location 255) W.O. #5-62-0016

PAGES:

g

NOTES:

This report includes results of one trench excavation (10 feet deep), laboratory analyses, and recommended criteria for foundation design and slab support. Evaluation of engineering properties of the subsurface consisted of **grain-size analysis** and **pocket penetrometer** measurements. At the time of the field study the site was covered by asphalt pavement. In general, 7 feet of wet clay overlays a 1.5 feet layer of fluid silt which rests on welded tuff.

AUTHOR:

Western Technologies, Inc.

YEAR:

1986

TITLE:

Laboratory Data Communications Center (Bldg. 1498)

TYPE:

Geotechnical Engineering Evaluation Lab Job 7050; WT Job No. 3226J067

REPORT No: PAGES:

27

NOTES:

This report includes results of eight test borings (20 to 40 feet), laboratory analyses, and recommended criteria for foundation design and slab support. Evaluation of engineering properties of the subsurface consisted of **standard penetration** tests, **liquid limit, plasticity index**, and **gradation**. At the time of the field study the site was undeveloped, except for some trailer facilities at the southwest corner and covered with trees and grasses. The idealized subsoil profile underlying the site consist of 1 to 12 feet of sandy clays and silty sands with varying amounts of gravel.

AUTHOR:

The Zia Company

YEAR:

1983

TITLE:

Test Fabrication Facility, Phase 1 (Sigma Mesa)

TYPE:

Soil and Foundation Investigation Lab Job 7026 (reel 9349, location 805)

REPORT No:

10

PAGES: NOTES:

This report includes results of seven test borings (9 to 108 feet), two test pits, laboratory analyses, and recommended criteria for foundation design and slab support. Evaluation of engineering properties of the subsurface consisted of **standard penetration** tests, **moisture content** determinations, **grain-size analysis**, **Atterberg Limits**, and **unconfined compression** tests. At the time of the field study the site was covered by native vegetation. The idealized subsoil profile underlying the site consists of between 3 to 6 feet of moderately firm to firm silty sands with some clay. These soils directly overlie moderately welded, firm-to-hard tuff.

AUTHOR:

FOX Consulting Engineers and Geologists

YEAR:

1982

TITLE:

Health Research Laboratory Subsoil Investigation

TYPE:

Lab Job 6397 (reel 9328, location 1341)

REPORT No: PAGES:

12

NOTES:

This report includes results of two test borings (23 and 24 feet deep), laboratory analyses, and recommended criteria for foundation design and slab support. Evaluation of engineering properties of the subsurface consisted of standard penetration tests, moisture content determinations, grain-size analysis, Atterberg Limits, and confined compression tests. At the time of the field study the site was covered by native vegetation. The idealized subsoil profile underlying the site consist of between 3 to 6 feet of moderately firm to firm silty sands with some clay. These soils directly overlie moderately welded, firm-to-hard tuff.

ATL Engineering Services

YEAR:

1980

TITLE:

Neutron Calibration Facility, TA-53 General Laboratory Building & WNR Bldg.

TYPE:

Geotechnical Investigation

REPORT No:

Lab Job 6596 (reel 7168, location 0955); ATL Job No. 8081b

PAGES:

21

NOTES:

This report includes results of two test borings (23 and 24 feet deep), laboratory analyses, and recommended criteria for foundation design and slab support. Evaluation of engineering properties of the subsurface consisted of standard penetration tests, moisture content determinations, grain-size analysis, Atterberg Limits, and confined compression tests. At the time of the field study the site was covered by native vegetation. The idealized subsoil profile underlying the site consist of between 3 to 6 feet of moderately firm to firm silty sands with some clay. These soils directly overlie moderately welded, firm-to-hard tuff.

AUTHOR:

Sergent, Hauskins & Beckwith

YEAR:

1979

TITLE: TYPE: Laboratory Support Complex Phase one Soil and Foundation Investigation Report Lab Job 5481 (reel 7151, location 1344)

REPORT No: PAGES:

20

NOTES:

This report includes results of eight test borings (25 and 40 feet deep), laboratory analyses, and recommended criteria for foundation design and slab support. Evaluation of engineering properties of the subsurface consisted of standard penetration tests, moisture content determinations, grain-size analysis, and Atterberg Limits tests. At the time of the field study the site was covered by lawn-type grasses. The idealized subsoil profile underlying the site consist of between 9.5 to 24.5 feet of low to medium plasticity, moderately firm to hard interbedded sandy clays, clayey sands, sandy and clayey silts. These soils directly overlie relatively weathered tuff that becomes firm to hard with depth.

AUTHOR:

Sergent, Hauskins & Beckwith

YEAR:

1978

TITLE:

High Energy Laboratory Facility

TYPE:

Soil and Foundation Investigation Report

REPORT No:

Lab Job 5449 (reel 6940, location 2039); SHB Job No. E78-1083

PAGES:

15

NOTES:

This report includes results of eight test borings (25 and 40 feet deep), laboratory analyses, and recommended criteria for foundation design and slab support. Evaluation of engineering properties of the subsurface consisted of standard penetration tests, moisture content determinations, grain-size analysis, and Atterberg Limits tests. At the time of the field study the site was covered by lawn-type grasses. The idealized subsoil profile underlying the site consist of between 3.5 to 6 feet of, nonplastic to low plasticity, very firm silty sands and silty clays. These soils directly overlie very firm to hard tuff.

Albuquerque Testing Laboratory

YEAR:

1977

TITLE:

University House

TYPE:

Foundation Investigation Report

REPORT No:

Lab Job 5090 (reel 4159 location 848); ATL No. 3823s

PAGES:

NOTES:

This report includes results of eight test borings (25 and 40 feet deep), laboratory analyses, and recommended criteria for foundation design and slab support. Evaluation of engineering properties of the subsurface consisted of standard penetration tests, moisture content determinations, grain-size analysis, and Atterberg Limits tests. At the time of the field study the site was covered by lawn-type grasses. The idealized subsoil profile underlying the site consist of between 3.5 to 6 feet of, nonplastic to low plasticity, very firm silty sands and silty clays. These soils

directly overlie very firm to hard tuff.

AUTHOR:

Albuquerque Testing Laboratory

YEAR:

TITLE:

Proposed General Office Building (Bldg. 422)

TYPE:

Foundation Investigation Report

REPORT No:

ATL No. 3513s; Los Alamos P.). # LY6-32301-1

PAGES:

NOTES:

This report includes results of four 15 feet deep test borings, laboratory analyses, and recommended criteria for foundation design and slab support. Evaluation of engineering properties of the subsurface consisted of standard penetration tests, moisture content determinations, dry densities, grain-size analysis, unconfined compression, and Atterberg Limits tests. The idealized subsoil profile underlying the site consisted of approximately 4.5 feet of medium dense, silty, sandy clays and clayey, silty sands. This soil directly overlies tuff which is relatively weathered near the surface and becomes less weathered with depth.

AUTHOR:

Sergent, Hauskins & Beckwith

YEAR:

TITLE: TYPE:

Proposed Technical Support Relocation Soil and Foundation Investigation Report

REPORT No:

Lab Job 6925 (reel 6925, location 1348); SHB Job No. E75-1091

PAGES:

23

NOTES:

This report includes results of 12 test borings (14.9 to 21 feet deep), laboratory analyses, and recommended criteria for foundation design and slab support. Evaluation of engineering properties of the subsurface consisted of standard penetration tests, moisture content determinations, grain-size analysis, Atterberg Limits tests, dry densities, and expansion tests. At the time of the field study the site was covered by native vegetation. The idealized subsoil profile underlying the site consist of approximately 1 to 9 feet of soft to moderately firm silty and clayey sands and sandy clays. This soil directly overlies tuff which is relatively weathered in some locations, but generally very firm to hard with depth. From an engineering standpoint the tuff is very firm to hard.

Sergent, Hauskins & Beckwith

YEAR:

1975

TITLE: TYPE: ZIA Office Building Addition (Bldg. 38) Soil and Foundation Investigation Report

REPORT No:

Lab Job 4577 (reel 6925 location 1348); SHB Job No. E75-1042

PAGES:

19

NOTES:

This report includes results of 3 test borings (29.9 to 41 feet deep), laboratory analyses, and recommended criteria for foundation design and slab support. Evaluation of engineering properties of the subsurface consisted of standard penetration tests, moisture content determinations, grain-size analysis, and Atterberg Limits tests. At the time of the field study the site was covered by asphalt parking. The idealized subsoil profile underlying the site consist of approximately 1 to 2 feet of sandy clays which overlie silty sands with small amounts of broken tuff that extend to between 1 and 10.5 feet below existing grade. This soil directly overlies welded highly weathered tuff.

AUTHOR:

Sergent, Hauskins & Beckwith

YEAR:

1974

TITLE:

National Security and Resources Study Center (Bldg. 207)

TYPE:

Soil and Foundation Investigation Report

REPORT No:

Lab Job 3186 (reel 5212, location 1026) SHB Job No. E74-1086

PAGES:

29

NOTES:

This report includes results of six 60 feet deep test borings, laboratory analyses, and recommended criteria for foundation design and slab support. Evaluation of engineering properties of the subsurface consisted of standard penetration tests, moisture content determinations, grain-size analysis, Atterberg Limits tests, consolidation, expansion and direct shear tests. At the time of the field study the site was covered by asphalt paving. The idealized subsoil profile underlying the site consists of soft to moderately firm silty and clayey sands with lesser amounts of sandy clays between 7 and 14 feet below existing grade. This soil directly overlies relatively weathered tuff that becomes firm to hard with depth.

AUTHOR:

McMillan & Associates, Inc.

YEAR:

1970

TITLE:

Central Computing Facility Expansion

TYPE:

Soil Investigation

REPORT No:

Lab Job 3594 (reel 6910, location 746

PAGES:

NOTES:

This report includes results of three test borings (18.6 to 18.8 feet deep), laboratory analyses, and recommended criteria for foundation design and slab support. Evaluation of engineering properties of the subsurface consisted of **standard penetration** tests. At the time of the field study the site was covered by asphalt paving. The idealized subsoil profile underlying the site consist of 1 to 8.5 feet of silty, clayey sand. This soil directly overlies tuff.

AUTHOR:

Albuquerque Testing Laboratory

YEAR:

1069

TITLE:

Proposed Southeast Addition to Central Computing Facilities, Bldg. 132

TYPE:

Soil Investigation

REPORT No:

Lab Job 3768 (reel 3745, location 761)

PAGES:

5

NOTES:

This report includes results of four test borings (20 to 25 feet deep), laboratory analyses, and recommended criteria for foundation design and slab support. Evaluation of engineering properties of the subsurface consisted of standard penetration tests, moisture contents, grain-size analysis, and dry density values. The idealized subsoil profile underlying the site consists of 1 to 3.5 feet of loose, sandy and clayey silt. This soil directly overlies tuff.

(?)

YEAR:

(?)

TITLE:

Proposed Addition to the Physics Building, SM 40

TYPE:

Soil Investigation Report

REPORT No:

Lab Job 3071 (reel 898, location 4384)

PAGES:

NOTES: This report includes results of four test borings (15 to 30 feet deep). Evaluation of engineering properties of the subsurface consisted of standard penetration tests and moisture contents. The

idealized subsoil profile underlying the site consists of 0 to 12 feet of sandy, silty clay of low to

medium plasticity. This soil directly overlies tuff.

AUTHOR:

(?)

YEAR:

1964

TITLE:

Addition to Administration and Computer Buildings (SM-43 and 132)

TYPE:

Boring log graph of test holes

REPORT No:

Lab Job 2740 (reel 922, location 672)

PAGES:

NOTES:

This report includes results of eight test borings (10 to 15 feet deep). Evaluation of engineering properties of the subsurface consisted of standard penetration tests and moisture contents. The

idealized subsoil profile underlying the site consists of 1 to 4.5 feet of sandy, clayey silt. This soil

directly overlies tuff.

TECHNICAL AREAS (TA-16)

SHB AGRA, INC.

YEAR:

1993

TITLE:

WETF Shipping & Receiving Addition Geotechnical Investigation Report

TYPE: REPORT No:

Lab Job 12012; SHB AGRA Job No. E92-1230

PAGES:

27

NOTES:

This report includes results of three test borings (19.5 to 24.9 feet), laboratory analyses, and recommended criteria for foundation design and slab support. Evaluation of engineering properties of the subsurface soils include standard penetration testing, moisture content and dry density determinations, grain-size analysis, and Atterberg Limits tests. At the time of the investigation, the site consisted of asphalt paving. The subsoils underlying the site consist of 2.5 to 7.5 feet of very soft to very firm, low plasticity, silty sand man-made fill. This surficial soil is underlain by Bandelier Tuff which is hard from an engineering standpoint.

AUTHOR:

Pan Am World Services, Inc.

YEAR:

1989

TITLE:

W-X 4 Office Building

TYPE:

Foundation Investigation Report

REPORT No:

Lab Job 9641; SHB AGRA Job No. E92-1230

PAGES:

27

NOTES:

This report includes results of five test borings (21 to 41 feet), laboratory analyses, and recommended criteria for foundation design and slab support. Evaluation of engineering properties of the subsurface soils include standard penetration testing, moisture content, dry density and specific gravities determinations, grain-size analysis, Atterberg Limits, direct shear, consolidation tests, and California Bearing Ratio tests. At the time of the investigation, the site consisted of asphalt paving. The subsoils underlying the site consist of up to 39.5 feet of sandy clays, clayey silts, sandy silts and silty sands. Tuff was only encountered at a depth of 39.5 feet in Borehole No. 3.

AUTHOR:

Pan Am World Services, Inc.

YEAR:

1986

TITLE: TYPE: Solid Waste Fired Boiler Facility Foundation Investigation Report Lab Job 7415; W.O. #5-55-0125

REPORT No:

(2)

PAGES: NOTES:

This report is apparently available from the contract administrator, however, it could not be located.

AUTHOR:

FOX Consulting Engineers and Geologists.

YEAR: TITLE: 1981

TYPE:

Tritium Processing Facility Subsoil Investigation

REPORT No:

Lab Job 6785 and 6919 (reel 9976, location 14); FOX Job No. 312310803000

PAGES:

18

NOTES:

This report includes results of four test borings (17 to 23.5 feet), laboratory analyses, and recommended criteria for foundation design and slab support. Evaluation of engineering properties of the subsurface soils include standard penetration testing, swell-consolidation tests, moisture content, dry density, grain-size analysis, and Atterberg Limits tests. At the time of the investigation, the site consisted of natural vegetation. The subsoils underlying the site consist of between 0.7 to 2 feet of sandy organic topsoils and some sand and clay. This surficial soil is underlain by Bandelier Tuff which is weathered near the surface, but becomes harder with depth.

ATL Engineering Services

YEAR:

1980

TITLE:

Proposed D.O.E. Program Support Facility

TYPE:

Geotechnical Investigation

REPORT No:

Lab Job 6825, 6657, 5823 & 8425 (reel 8898, location 1639); ATL Job No. 3081a

PAGES:

17

NOTES:

This report includes results of three 15 foot deep test borings, laboratory analyses, and recommended criteria for foundation design and slab support. Evaluation of engineering properties of the subsurface soils include standard penetration testing, moisture content, dry density, grain-size analysis, and Atterberg Limits tests. At the time of the investigation, approximately 3 to 4 feet man-made fill soils exist in the proposed building area. The man-made and natural soils underlying the site consist of between 7 to 9 feet of man-made and natural, very soft to moderately firm, silty, sandy clay, sandy silt, and silty, clayey sand. This surficial soil is underlain by Bandelier Tuff. Beneath the tuff layer is a moderately firm, silty, clayey sand to sandy clay.

AUTHOR:

Kistner, Curtis & Wright

YEAR:

1951

TITLE:

Service Area-Project "N", TA-16 Phase A Structural Building 16-200 Administration Foundation

Plar

TYPE:

Architects foundation drawing which includes boring logs and location

REPORT No:

Job No. 509 Drawing No. SFA-JR3/11.1, sheet 66 of 144

PAGES:

1 drawing

NOTES:

This drawing includes logs of five test borings (50 to 55 feet deep) and foundation plan with

boring locations. The boring logs contain lithologic and stratigraphic information only, no

geotechnical information is given.

TECHNICAL AREAS (TA-18)

Sergent, Hauskins & Beckwith, INC.

YEAR: TITLE: 1988

Accelerator Development Laboratory TA-18

TYPE:

Geotechnical Investigation Report

REPORT No:

SHB Job No. E88-1071

PAGES:

25

NOTES:

This report includes results of two test borings (41 to 41.8 feet), laboratory analyses, and recommended criteria for foundation design and slab support. Evaluation of engineering properties of the subsurface soils include standard penetration testing, moisture content and dry density determinations, grain-size analysis and Atterberg Limits tests. At the time of the investigation, the site consisted of an equipment storage yard. The subsoils underlying the site consist of 5 to 5.5 feet of very soft to soft, nonplastic silty sand that could represent man-made fill. This strata is underlain by a silty to clean sand and gravel to a depth of 15 feet. The surficial soil is underlain by Bandelier Tuff which is hard from an engineering standpoint and in other areas of LANL have yielded strengths from 290 to 2,100 psi. Perched groundwater was encountered at 13.5 to 14 feet.

TECHNICAL AREAS (TA-21)

FOX Consulting Engineers and Geologists

YEAR:

1982

TITLE:

Steam Plant and Parking area, Bldg. 357

TYPE:

Subsoil Investigation Report

REPORT No:

Lab Job 7060 (reel 9337 location 459); FOX Job No. 0109370

PAGES:

10

NOTES:

This report includes results of five test borings (24 to 25 feet), laboratory analyses, and recommended criteria for foundation design and slab support. Evaluation of engineering properties of the subsurface soils include standard penetration testing, moisture content and dry density determinations, grain-size analysis, Atterberg Limits, and consolidation tests. At the time of the investigation, the site consisted of an equipment storage yard. The subsoils underlying the site consist of 1 to 2 feet of loose silty sand. Hole No. 1 encountered 4 feet of sandy clay. These

surficial soils are underlain by Bandelier Tuff.

AUTHOR:

Albuquerque Testing Laboratory

YEAR:

1969

TITLE:

Dry Box Facility

TYPE:

Soil Investigation Report

REPORT No:

Lab Job 3973 (reel 2461 location 1193); ATL Job No. 9900

PAGES:

10

NOTES:

This report includes results of five test borings (20.3 to 21 feet), laboratory analyses, and recommended criteria for foundation design and slab support. Evaluation of engineering properties of the subsurface soils include standard penetration testing, moisture content, dry density, grain-size analysis, and Atterberg Limits tests. At the time of the investigation, the site consisted of an asphalt-covered lot. The subsoils underlying the site consist of 1.5 to 3.5 feet of silty, clayey sand and sandy, clayey silts with broken and weathered pieces of tuff loose silty sand. These surficial soils are underlain by Bandelier Tuff.

AUTHOR:

Purtymun, W.D.

YEAR:

1969

TITLE:

Geology at disposal area near Bldg. 257, TA-21

TYPE:

REPORT No:

Memo to C.W. Christenson: ER Record I.D. #0001978

PAGES:

NOTES:

This report includes one pit cross-section and a brief discussion of the near-surface geology of the

site.

TECHNICAL AREAS (TA-35)

Pan AM World Services Inc.

YEAR:

1987

TITLE:

CPRF Generator at TA-35 Geotechnical Report

TYPE: REPORT No:

W.O. #6-5509-44

PAGES:

78

NOTES:

This report includes results of four test borings (20 to 22 feet), laboratory analyses, and recommended criteria for foundation design and slab support. Evaluation of engineering properties of the subsurface soils included standard penetration testing, moisture content and dry density determinations, grain-size analysis, Atterberg Limits, tri-axial shear tests, and ground motion

and vibration studies.

AUTHOR:

Sergent, Hauskins & Beckwith

YEAR:

1976

TITLE:

High Energy Gas Laser Facility

TYPE:

Soil and Foundation Investigation Report

REPORT No:

SHB Job No. E76-1042

PAGES:

55

NOTES:

This report includes results of 15 test borings (20 to 46 feet), laboratory analyses, and recommended criteria for foundation design and slab support. Evaluation of engineering properties of the subsurface soils include standard penetration testing, moisture content and dry density determinations, grain-size analysis, Atterberg Limits and direct shear tests.

AUTHOR:

Leroy Crandall and Associates

YEAR:

1973

TITLE: TYPE:

Proposed Laser Fusion Laboratory Report of Foundation Investigation Lab Job 4640 (reel 5361, location 141)

REPORT No:

PAGES: NOTES:

This report includes results of 21 test pits (4 to 46 10), laboratory analyses, and recommended criteria for foundation design and slab support. Evaluation of engineering properties of the subsurface soils include moisture content and dry density determinations, grain-size analysis, Atterberg Limits, confined consolidation, and direct shear tests.

TECHNICAL AREAS (TA-41)

Pan AM World Services, Inc.

YEAR:

1988

TITLE:

Replacing Ventilation Systems at TA-41

TYPE:

Geotechnical Investigation

REPORT No:

W.O. # 6-8403-08

PAGES:

12

NOTES:

This report includes results of one 6.5 foot deep test pit. Four different stratum were encountered. The first consists of silty sand with some traces of gravel and extended to a depth of about 1.6 feet. The second consists of clayey silt with some tuff fragments and low plasticity and extended to a depth of 4 feet. A soils penetrometer measurement recorded an approximate bearing capacity of 1500 lbs/sq. ft. At 5.5 feet, the third layer consisted of non-plastic to low plasticity clayey sand with traces of gravel, cobbles and tuff fragments. A soils penetrometer measurement recorded an approximate bearing capacity of 2000 lbs/sq. ft. At 6.5 feet hard digging was encountered. Large chunks of welded tuff were found. A soils penetrometer measurement recorded an approximate bearing capacity of 8000 lbs/sq. ft.

AUTHOR:

ATL Engineering Services

YEAR:

1977

TITLE: TYPE: Proposed New Tritium Facility Geotechnical Investigation

REPORT No:

Lab Job 5783 (reel 7024, location 1977); ATL Job No. 6010

PAGES:

12

NOTES:

This report includes results of three test borings (20 to 30 feet), laboratory analyses, and recommended criteria for foundation design and slab support. Evaluation of engineering properties of the subsurface soils include **standard penetration** testing, **moisture content**, **dry density**, and **grain-size analysis**. The site is located in the bottom of a steep, narrow canyon which contains a small, intermittently flowing stream. The subsoils underlying the site consist of between 3 to 6 feet of talus slope deposits. This surficial soil is underlain by non-welded pumice and ash. Primarily an air-fall deposit, this material is very easy to drill although standard penetration tests show it to be very dense.

AUTHOR:

Albuquerque Testing Laboratory

YEAR:

1957

TITLE:

Engineering and Laboratory Building, TA-41 Buildings W30 and W4-Annex

TYPE:

Soil Analysis

REPORT No:

Lab Job 1849 (reel 856, location 831); ATL Job No. 4220

PAGES:

7

NOTES: This report includes results of four test borings (30 to 32 feet), laboratory analyses, and recommended criteria for foundation design and slab support. Evaluation of engineering properties of the subsurface soils include standard penetration testing, moisture content, and grain-size analysis. The site is located in the bottom of a steep, narrow canyon which contains a small, intermittently flowing stream. The subsoils underlying the site consist for the most part of about 8 feet of surface fill deposits underlain by water-deposited silty gravelly sands of volcanic origin.

TECHNICAL AREAS (TA-46)

Sergent, Hauskins & Beckwith

YEAR:

1990

TITLE:

Technical Support Facility

TYPE:

Geotechnical Investigation Report

REPORT No:

Lab Job 10575; SHB Job No. E90-5707

PAGES:

NOTES:

This report is apparently available from the Contract Administrator, however, it could not be

AUTHOR:

Sergent, Hauskins & Beckwith

YEAR:

1990

TITLE:

Advanced Chemical Diagnostics Facility Bldg. 250

TYPE:

Geotechnical Investigation Report Lab Job 9079; SHB Job No. E89-1250

REPORT No: PAGES:

NOTES:

This report includes results of five test borings (3 to 26 feet), laboratory analyses, and recommended criteria for foundation design and slab support. Evaluation of engineering properties of the subsurface soil include standard penetration tests, moisture content determinations, grain-size analysis, and Atterberg Limits tests. At the time of the investigation, the site consisted of unpaved parking with native vegetation. The subsoils underlying the site consists of 2 to 3 feet of fine grain, moderately firm, silty sand, clayey sand and clay. This surficial soil is underlain by Bandelier Tuff which is hard from an engineering standpoint. compressive strengths determined from other areas within the lab yielded strengths from 290 to 2,100 psi.

AUTHOR:

ATL Engineering Services

YEAR:

1982

TITLE: TYPE:

Isotopes Research & Development Lab. Geotechnical Investigation Report

REPORT No:

Lab Job 5243; ATL Job No. 1289-82

PAGES:

NOTES:

This report includes results of two 25 feet deep test borings, laboratory analyses, and recommended criteria for foundation design and slab support. Evaluation of engineering properties of the subsurface soil include standard penetration tests, moisture content determinations, grain-size analysis, and Atterberg Limits tests. The subsoils underlying the site consists of .5 to 1 feet of silty sand with considerable tuff particles. This surficial soil is underlain by fairly competent Bandelier Tuff.

AUTHOR:

ATL Engineering Services

YEAR:

1981

TITLE:

Isotope Facility

TYPE:

Geotechnical Investigation Report Lab Job 5243 (reel 6931, location 1225); ATL Job No. 3291

REPORT No:

29

PAGES: NOTES:

This report includes results of 11 test borings (10 to 40 feet deep), laboratory analyses, and recommended criteria for foundation design and slab support. Evaluation of engineering properties of the subsurface soil include standard penetration tests, moisture content determinations, dry densities, grain-size analysis, and Atterberg Limits tests. At the time of the investigation, the site consisted of native vegetation. The subsoils underlying the site consists of 1 to 4 feet of loose to medium dense silty, clayey sand and moderately firm to firm sandy clay. This surficial soil is underlain by hard Bandelier Tuff.

H:\CONTRACT\LANLFIN9\24

ATL Engineering Services

YEAR:

1979

TITLE:

Compressor-LIS Building and the Proposed Laser Isotope Enrichment Facility

TYPE:

Geotechnical Investigation Report

REPORT No:

Lab Job 6507 and 5926 (reel 5499, location 562); ATL Job No. 5069

PAGES:

11

NOTES: This report includes results of three 15 feet deep test borings, laboratory analyses, and

recommended criteria for foundation design and slab support. Evaluation of engineering properties of the subsurface soil include standard penetration tests, moisture content determinations, dry densities, grain-size analysis, Atterberg Limits tests, and modified proctor compaction tests. At the time of the investigation, the site consisted of native vegetation. The subsoils underlying the site consists of 0 to 2 feet of man-made silty, clayey, gravelly sand fill. This surficial soil is

underlain by weathered Bandelier Tuff.

AUTHOR:

ZIA Company

YEAR:

1967

TITLE:

Proposed New Building WA-89

TYPE:

Foundation Investigation

REPORT No:

Lab Job 3092 (reel 899, location 3321); ATL Job No. 5069

PAGES:

2

NOTES:

This report includes results of three 36 inch diameter test borings. The subsoils underlying the site

consists of 3 to 5 feet of man-made fill. This surficial soil is underlain by 2 feet of weathered

Bandelier Tuff followed by unweathered tuff.

TECHNICAL AREAS (TA-55)

Sergent, Hauskins & Beckwith

YEAR:

1989

TITLE:

Nuclear Safeguards Technology Laboratory

TYPE:

Geotechnical Investigation Report

REPORT No:

Lab Job. 5814; SHB Job No. E89-1138

PAGES:

(2)

NOTES:

This report is apparently available from the Contract Administrator, however, it could not be

located.

AUTHOR:

Geo-Test Inc.

YEAR:

1989

TITLE:

Special Nuclear Materials R&D Laboratory

TYPE:

Geotechnical Investigation Report

REPORT No:

Lab Job. 7264 (reel 937 location 1018); Geo-Test Job No. 1-80908

PAGES:

94

NOTES:

This report includes results of three 10 borings (28 to 41.5 feet), 16 test pits (6.9 to 10.3 feet), laboratory analyses, and recommended criteria for foundation design and slab support. Evaluation of engineering properties of the subsurface soils include seismic refraction surveys, Standard Penetration testing, moisture content and dry density determinations, grain-size analysis, Atterberg Limits, consolidation, and unconsolidated-undrained triaxial tests. At the time of the investigation, some earthwork had been done over the northern portion of the site and the southeastern portion was covered with native vegetation. The subsoils underlying the site consist of up to 8 feet of man-made fill consisting of fine grained silty sand to clayey sandy silt with varying amounts of tuff cobbles and gravel. This fill material overlies 2 to 9 feet of native soil consisting of sandy clay to sandy silt and silty sand. These surficial soils are underlain by moderately welded, and soft to moderately hard Bandelier Tuff and intercalated sandstone.

AUTHOR:

Pan AM World Services, Inc.

YEAR:

1987

TITLE: TYPE: Addition to PF-4 at TA-55
Foundation Investigation Report

REPORT No:

Lab Job 82 79 (reel 9695 location 2004) W.O. # 5-55-0142

PAGES:

1

NOTES:

This report includes results of four test borings (20.2 to 22 feet), laboratory analyses, and recommended criteria for foundation design and slab support. Evaluation of engineering properties of the subsurface soils include standard penetration testing, RQD determinations, and unconfined compression tests. At the time of the investigation, the site was partially paved. The subsoils underlying the site consist of 5.5 to 19 feet of soil and man-made fill. This surficial soil is underlain by Bandelier Tuff.

Sergent, Hauskins & Beckwith

YEAR:

1986

TITLE:

Additions to PF-5, TA-55

TYPE:

Geotechnical Investigation Report

REPORT No:

SHB Job No. E86-1050

PAGES:

32

NOTES:

This report includes results of three test borings (29.8 to 31 feet), laboratory analyses, and recommended criteria for foundation design and slab support. Evaluation of engineering properties of the subsurface soils include standard penetration testing, moisture content and dry density determinations, grain-size analysis, Atterberg Limits, and consolidation tests. At the time of the investigation, the site consisted of irrigated lawn on the north and grass and weeds elsewhere. The subsoils underlying the site consist of 9 to 13 feet of silty sand man-made fill which overlies non plastic to low plasticity silty sand to 17 to 18 feet. These surficial soils are underlain by weathered Bandelier Tuff which becomes less weathered and more competent with depth. Tuff cores from other areas at the lab have yielded strengths from 290 to 1,500 psi.

AUTHOR:

Zia Company

YEAR:

1986

TITLE:

Building PF 5 Expansion at TA-55; MST Training Center

TYPE:

Geotechnical Testing Report

REPORT No:

Lab Job. 7330 (reel 9990, location 814; also used for Lab Jobs 8185 and 8885)

PAGES:

23

NOTES:

This report includes results of eight test borings (20.2 to 31 feet), laboratory analyses, and recommended criteria for foundation design and slab support. Evaluation of engineering properties of the subsurface soils include standard penetration testing, moisture content and dry density determinations, and unconfined compression tests. At the time of the investigation, the site was covered with grasses. The subsoils underlying the site consist of 5 to 17.5 feet man-made fill and natural soil. These surficial soils are underlain by weathered Bandelier Tuff.

AUTHOR:

Sergent, Hauskins & Beckwith

YEAR:

1984

TITLE: TYPE: Nuclear Materials Storage Facility Sub-surface Exploration Data

REPORT No:

Lab Job. 6481; SHB Job No. E84-1044

PAGES:

26

NOTES:

This partial report includes results of 24 test borings (4.9 to 39.6 feet). Engineering properties of the subsurface soils include standard penetration testing, and moisture content determinations. The subsoils underlying the site consist of 0 to 7 feet of low plasticity clayey sand. This surficial soil is underlain by weathered Bandelier Tuff.

AUTHOR:

Albuquerque Testing Laboratory

YEAR:

1980

TITLE:

Proposed Nuclear Materials Building PF-28

TYPE:

Sub-surface Exploration Data

REPORT No:

Lab Job. 5983 (reel 7641, location 1869)

PAGES:

6

NOTES:

This partial report includes results of two test borings (29.8 to 31 feet), laboratory analyses, and recommended criteria for foundation design and slab support. Evaluation of engineering properties of the subsurface soils include standard penetration testing, moisture content and dry density determinations, grain-size analysis, and Atterberg Limits tests. The subsoils underlying the site consist of 6 to 11.5 feet of clay, sand, and silt with tuff fragments. Possibly man-made fill to about 3 feet in depth. These surficial soils are underlain by weathered Bandelier Tuff which becomes less weathered and more competent with depth.

Albuquerque Testing Laboratory

YEAR:

1974

TITLE:

Transuranic Treatment Development Facility

TYPE:

Foundation Investigation Report

REPORT No:

ATL Job No. 6214

PAGES: NOTES: 7

This report includes results of two test borings (25 to 30 feet), laboratory analyses, and recommended criteria for foundation design and slab support. Evaluation of engineering properties of the subsurface soils include standard penetration testing, moisture content and dry density determinations, grain-size analysis, and Atterberg Limits tests. At the time of the investigation, the site consisted of asphalt paving. The subsoils underlying the site consist of 10 to 13.5 feet of relatively loose sandy, clayey silts; clayey, silty sands and weathered, broken tuff rock. This surficial soil is underlain by porous welded Bandelier Tuff which is hard from an engineering

standpoint.

TEST HOLES, CORE HOLES, AND WATER WELLS

TEST HOLES, CORE HOLES, WATER WELLS

AUTHOR:

Broxton et al.

YEAR:

1993

TITLE:

Preliminary drilling results for boreholes LADP-3 and LADP-4 at Technical Area 21, Los Alamos

National Laboratory, New Mexico

TYPE:

Unpublished LANL report

REPORT No:

PAGES:

17

NOTES:

This report discusses the subsurface geology of TA-21 resulting from two boreholes drilled to identify potential transport pathways in the vadose zone and to characterize vertical and lateral

variations in the geohydrologic properties.

AUTHOR:

Broxton et al.

YEAR:

1993

TITLE:

Stratigraphy, petrography, and mineralogy of tuffs at Technical Area 21, Los Alamos National

Laboratory, New Mexico

TYPE:

In preparation for inclusion in LA-MS report

REPORT No:

LAUR93-2029 (in press)

PAGES:

31

NOTES:

This report discusses the development of conceptual models for the hydrogeology of TA-21, evaluation of potential transport pathways and processes, and provides bounds on parameters used

in models to evaluate the migration of water and contaminants.

AUTHOR:

Budding, A. J. and Beers, C. A.

YEAR:

1973

14

TITLE:

Faults in the Los Alamos area and their relation to seismicity

TYPE:

REPORT No:

ER Record I.D.# 0008421

PAGES:

NOTES:

This report discusses how fault lengths and displacement were determined from areal photographs

and then used to estimate the seismicity of LANL area.

AUTHOR:

Cooper, J.B., Purtymun, W.D. and John, E.C.

YEAR:

TITLE: TYPE:

Records of water-supply wells Guaje Canyon 6, Pajarito Mesa 1 and 2

Basic Data Report ER Record I.D. # 0008582

REPORT No: PAGES:

NOTES:

This Appendix includes descriptive logs of drill cuttings for wells Guaje Canyon 6 and Pajarito

Mesa 1 and 2.

AUTHOR:

Gardner, J. N., et al.

YEAR:

TITLE:

Geology, Drilling, and some Hydrologic Aspects of Seismic Hazards Program Core Holes, Los

Alamos National Laboratory, New Mexico

TYPE: REPORT No:

Lab Report LA-12460-MS

PAGES:

19

NOTES:

This report contains lithologies, general aspects of drilling, and some hydrologic implications of

the core holes advanced as part of the on going seismic evaluation of LANL. Locations include

TA-16, TA-3, TA-18, and TA-55.

Gordon Herkenoff & Associates, Inc.

YEAR:

1982

TITLE:

Control System Methodology Phase V of Water System Upgrading Project

TYPE:

Title II Report

REPORT No:

Lab Job 5785 (reel 8676, location 1502)

PAGES:

NOTES:

This report includes a description and map of the LANL water systems including the Guaje Canyon, Los Alamos Canyon, Pajarito Mesa well fields.

AUTHOR:

John, E.C., Enyart, E., and Purtymun, W.D.

YEAR:

TITLE:

Records of wells, test holes, springs and surface-water stations in the Los Alamos area New

Mexico

TYPE:

U.S.G.S. Open File Report

REPORT No:

Lab Job 3274 (reel 8964, location 537)

PAGES:

NOTES:

This report is a compilation and summarization of the geologic and hydrologic data on all wells, test holes, springs, and surface-water sampling points collected to date in the Los Alamos area.

AUTHOR:

Krier, D.

YEAR:

1990

TITLE:

TA-55 Seismic Hazards Study: Geologic Cross Sections

TYPE:

Memo to Jamie Gardner

REPORT No:

Document No. EES1-SH 90-15; ER Record I.D.# 0021543

PAGES: NOTES:

This memo includes three new geologic cross sections through the Pajarito Plateau showing significant subsurface stratigraphic separation along the Rendija Canyon and Guaje Mountain faults based on subsurface information provided by logs from Test holes TW-4, TW-8, TW-2, H-19, PM-

2 and HH (EGH-LA-1).

AUTHOR:

Purtymun, W.D.

YEAR:

TITLE:

Records of Observation Wells, Test Holes, Test Wells, Supply Wells, Springs, and Surface Water Stations at Los Alamos; with Reference to the Geology and Hydrology

Draft Manuscript

TYPE:

REPORT No:

PAGES:

378

NOTES:

This manuscript summarizes a substantial body of work on the geology and hydrology of the Los Alamos area. It includes the location and logs of test holes, wells, observation wells, core holes

and moisture access holes.

AUTHOR:

Purtymun, W. D.

YEAR:

1987

TITLE: TYPE:

Geologic Data, TA-21

REPORT No:

Memo to Thomas C. Gunderson ER Record I.D.# 0001790

PAGES:

NOTES:

This report includes a discussion and cross section of the subsurface geology at TA-21 based on

boring data from test well TW-3.

Purtymun, W. D., and Kennedy, W. R.

YEAR:

TITLE:

Geology and Hydrology of Mesita del Buey

TYPE:

Lab Report

REPORT No:

LA-4660

PAGES:

8

NOTES:

This report includes a discussion of subsurface geology including geologic cross sections based

on boring data from well PM-2 and test wells T-6 and T-5.

AUTHOR:

Weir, J. E., Jr., and Purtymun, W.D.

YEAR:

1962

TITLE:

Geology and hydrology of Technical Area 49, Frijoles Mesa, Los Alamos County, New Mexico

TYPE:

Draft Manuscript

REPORT No:

For administration release only to the Atomic Energy Commission

PAGES:

225

NOTES:

This manuscript summarizes a study of the possible contamination of ground water by radioactive wastes. It includes a discussion of the local geologic and hydrologic setting as well as drill logs and related discussion from deep test holes DT 5, 5A, 5P, 9, 10, and core holes CH 1,2,3, and 4.

AUTHOR:

YEAR:

1955 and 1963

TITLE:

Geology and Pumping Tests of Guaje Canyon Wells

TYPE:

Lab Report

REPORT No:

ER Record I.D. 0011891

PAGES:

6 and 39

NOTES:

These two reports includes a description of drill cuttings from Guaje Canyon supply wells G-1A,

G-1, G-2, G-3, G-4 and G-5.

AUTHOR:

YEAR:

1963

TITLE: TYPE:

Geology and Pumping Tests of Los Alamos Canyon Wells

Lab Report

REPORT No:

Reel 8676, location 1405

PAGES:

11

NOTES:

This report includes a description of drill cuttings from Los Alamos Canyon supply wells LA-1

through LA-6.

AUTHOR:

YEAR:

1963

TITLE:

Logs, Casing Schedules and Initial Pumping Tests, Guaje Valley Wells

TYPE:

Appendix E

REPORT No:

(reel 8676, location 1430)

PAGES:

40

NOTES:

This appendix includes geologist's logs for Guaje Mountain Wells G1-G5.

AUTHOR:

YEAR:

1963

TITLE:

Logs, Casing Schedules and Initial Pumping Tests, LA Canyon Well Field

TYPE:

Appendix C

REPORT No:

(reel 8676, location 1405)

PAGES:

NOTES:

This appendix includes geologist's logs for LA Canyon Wells LA-1-LA-6.

YEAR:

TITLE:

Los Alamos Alternate Energy Hole Sigma Mesa

TYPE:

REPORT No:

PAGES:

5

NOTES:

These pages contain no text, however, one figure contains a simplified log of the Sigma Mesa

(HH) hole.

GEOPHYSICAL

GEOPHYSICAL

AUTHOR:

Begay, S.K.

YEAR:

1990

TITLE:

Omega West Reactor Seismic Analysis Report

TYPE:

Engineering Report

REPORT No:

Lab Job 10820

PAGES:

120

NOTES:

This report is a synopsis of the seismic analysis study of the Omega West Reactor using a finite element computer program. This report also includes a previous seismic investigation conducted by Donham and Keller dated October 10, 1970.

AUTHOR:

Budding, A. J.

YEAR:

1978

TITLE:

Gravity Survey of the Pajarito Plateau Los Alamos and Santa Fe Counties, New Mexico

TYPE:

LA Report

REPORT No:

LA-7419-MS; ER Record I.D. # 0011657

PAGES:

38

NOTES:

This report merges seismic reflection, gravity data and computer modeling to profile subsurface stratigraphy beneath the Pajarito Plateau.

AUTHOR:

Newton, C. A., et al.

YEAR:

1978

TITLE:

LASL Seismic Programs in the Vicinity of Los Alamos, New Mexico

TYPE:

LA Report

REPORT No:

UC-11; ER Record I.D. # 0005563

PAGES:

42

NOTES:

This report discusses contemporary tectonic activity near the Valles Caldera and the Rio Grande Rift by monitoring a network of 12 short period seismic stations within 150 km of LA.

AUTHOR:

Keller, M. D., et al.

YEAR:

1969

TITLE:

Ground Vibration Characteristics of Mesita de Los Alamos

TYPE:

Engineering Report

REPORT No:

ER Record I.D. # 0005793

PAGES:

12

NOTES:

This report discusses the results of a gravity survey which suggests a NNE-trending graben may exist beneath the Pajarito Plateau. This investigation combines gravity and borehole data to develop geologic cross sections beneath the Pajarito Plateau. Boring data included wells PM-2, PM-3, G-1, LA4, and test hole H-19.

AUTHOR:

Keller, M. D.

YEAR:

1968

TITLE:

Geologic Studies and Material Properties Investigations of Mesita de Los Alamos

TYPE:

LANL Report

REPORT No: PAGES:

LA-3728 49

NOTES:

This report discusses investigations conducted to verify the competence of foundation material for the Meson Physics Facility at TA-53. These investigation included geologic history, seismic

probability, physical characteristics, and deformation characteristics.

Keller, M. D.

YEAR:

1968

TITLE:

Deformation Characteristics of the Bandelier Tuff

TYPE:

LANL Engineering Report

REPORT No:

ENG-1-Rp-2

PAGES:

NOTES:

This report discusses investigations conducted to quantify the load bearing qualities of the Bandelier tuff beneath the proposed Meson Physics Facility at TA-53. These investigations included a determination of the relationship of deformation to stress and to distance from a loaded area and the change in deformation through time.

AUTHOR:

Reynolds C. B.

YEAR:

TITLE: TYPE:

Experimental Shallow Seismic Reflection Survey Los Alamos Area, New Mexico

LA Report

REPORT No:

ER Record I.D. # 0011852

PAGES:

23

NOTES:

This report discusses the results from an experimental seismic reflection survey from four seismic lines located at TA-49, TA-44, Los Alamos Canyon, and State Road 4 near TA-16.

AUTHOR:

Williams, L.M.

YEAR:

1979

TITLE:

Gravity Survey of the Los Alamos Area, New Mexico

TYPE:

LA Report

REPORT No:

LA-8154-MS; ER Record I.D. # 0005959

PAGES:

16

NOTES:

This report discusses investigations conducted to evaluate physical properties.

AUTHOR:

YEAR:

TITLE:

Seismic and Geological Reports on Mesita de Los Alamos

TYPE:

Lab Report Lab Job. 3274

REPORT No:

PAGES: NOTES: 180

This report consists of five reports: 1) Study of the Possibility of Seismic Hazards in the Vicinity of Los Alamos, New Mexico by Willden, R. and Cariley E.E., 2) Ground Vibration Characteristics of Mesita de Los Alamos by Keller, M. D. et al., 3) Deformation Characteristics of the Bandelier Tuff by Keller, M. D., 4) Geology and Physical Properties of the Near Surface Rocks at Mesita de Los Alamos by Purtymun, W. D., and 5) Response of the Mesita de Los Alamos to the Gasbuggy Experiment and Induced Vibrations by Mickey, W.V. et al. The Gasbuggy experiment involved the detonation of a 26 kt device 123.5 km northwest of Los Alamos at the bottom of a 4,250 deep gas well to test the feasibility of stimulating gas production from formations of low permeability. The objective of the Coast Survey at the Mesita de Los Alamos was to measure ground motions from the experiment.

\mathbf{SOILS}

SOILS

AUTHOR:

Abeele, W. V.

YEAR:

1984

TITLE:

Geotechnical Aspects of Hackroy Sandy Loam and Crushed Tuff

TYPE:

LANL Report LA-9916-MS

REPORT No: PAGES:

20

NOTES:

This Report concentrates on consolidation and shear stress of the Hackroy Sandy Loam, the soil

that is mapped as mantling most of the mesa tops within LANL.

AUTHOR:

Nyhan, J. W. et al.

YEAR:

1978

TITLE:

Soil Survey of Los Alamos County, New Mexico

TYPE: REPORT No: LANL Report LA-6779-MS

PAGES:

113

NOTES:

This report covers an intensive soil survey of about 79% of Los Alamos County. It contains maps and general information about soils and their formation as well as detailed descriptions and

classification of soils of the area according to the current system of soil classification.

APPENDIX L EMPIRICAL ATTENUATION RELATIONSHIPS

In this appendix, the empirical attenuation relationships used in both the deterministic and probabilistic ground motion estimates are described and the equations are presented.

Joyner and Boore (1988)

Joyner and Boore developed attenuation relationships for peak acceleration (1981) and response spectral values (1982) based on the available data at that time. Subsequently, Joyner and Fumal (1985) developed modified factors for soil sites based on the measured shear wave velocities. Joyner and Boore (1988) summarized these and other relationships. The equation is of the form:

$$\log y = a + b(M-6) + c(M-6)^{2} + d \log r + k r + s$$

$$5.0 \le M \le 7.7$$

$$r = (r_{0}^{2} + h^{2})^{1/2}$$

where y is the peak acceleration (g) or pseudo-velocity response (cm/sec), M is M_w , r_0 is the shortest distance (km) from the recording site to the vertical projection of the earthquake rupture plane on the earth's surface, and a, b, c, d, k, s, and h are coefficients given in the table below for the randomly oriented horizontal component. The s factor represents the soil conditions and is multiplied by 0 for rock and 1 for deep soil. An alternative s factor can be found based on the shear wave velocity profile of the site. For peak acceleration, s is equal to 0 because Joyner and Boore found no statistically significant differences between rock and soil sites.

In this study, we are using the relationships for the randomly oriented horizontal component. They have also developed relationships for the larger of the two horizontal components. For the sites classified as soil sites, we used the standard soil factors, s, to calculate response spectra instead of the Joyner and Fumal (1985) factors based on the shear wave velocities.

Period (sec)	а	b	c	h (km)	d	k	S	σ
Peak Acceleration	0.43	0.23	0.00	8.0	-1.0	-0.0027	0.0	0.28
0.10	2.16	0.25	-0.06	11.3	-1.0	-0.0073	-0.02	0.28
0.15	2.40	0.30	-0.08	10.8	-1.0	-0.0067	-0.02	0.28
0.20	2.46	0.35	-0.09	9.6	-1.0	-0.0063	-0.01	0.28
0.30	2.47	0.42	-0.11	6.9	-1.0	-0.0058	0.04	0.28
0.40	2.44	0.47	-0.13	5.7	-1.0	-0.0054	0.10	0.31
0.50	2.41	0.52	-0.14	5.1	-1.0	-0.0051	0.14	0.33
0.75	2.34	0.60	-0.16	4.8	-1.0	-0.0045	0.23	0.33
1.00	2.28	0.67	-0.17	4.7	-1.0	-0.0039	0.27	0.33
1.50	2.19	0.74	-0.19	4.7	-1.0	-0.0026	0.31	0.33
2.00	2.12	0.79	-0.20	4.7	-1.0	-0.0015	0.32	0.33
3.00	2.02	0.85	-0.22	4.7	-0.98	0	0.32	0.33
4.00	1.96	0.88	-0.24	4.7	-0.95	O _j	0.29	0.33

Sadigh et al. (1987)

Sadigh et al. (1987) developed attenuation relationships for soil and rock sites. These relationships are presented in Youngs et al. (1987) and in Joyner and Boore (1988). For this study, we are using the soil relationships which have the following form of equation.

$$\ln y = a + 1.1 \text{ M} + c_1 (8.5 - \text{M})^{2.5} - 1.75 \ln[\text{R} + \text{h}_1 \exp(\text{h}_2 \text{ M})]$$

where y is the peak acceleration or response spectral accelerations in g's, M is M_w , R is the closest distance (km) to the rupture surface, and a, c_1 , h_1 , h_2 , and σ_{lny} are coefficients given in the following table. The values of σ_{lny} are taken from Sadigh et al. (1991) generally referred to as the CALTRANS relationship.

L-2

Period (sec)	а	c ₁ .	M <	: 6.5	M >	6.5	
			h ₁	h ₂	h ₁	h ₂	$\sigma_{ ext{lny}}$
Peak Acceleration	-2.611	0	0.8217	0.4814	0.3157	0.6286	1.39-0.14*M; 0.38 for M≥7.25
0.1	-2.024	0.007	0.8217	0.4814	0.3157	0.6286	1.41-0.14*M; 0.40 for M≥7.25
0.2	-1.696	0	0.8217	0.4814	0.3157	0.6286	1.43-0.14*M; 0.42 for M≥7.25
0.3	-1.638	-0.008	0.8217	0.4814	0.3157	0.6286	1.45-0.14*M; 0.44 for M≥7.25
0.5	-1.659	-0.025	0.8217	0.4814	0.3157	0.6286	1.50-0.14*M; 0.49 for M≥7.25
1.0	-1.975	-0.060	0.8217	0.4814	0.3157	0.6286	1.53-0.14*M; 0.52 for M≥7.25
2.0	-2.414	-0.105	0.8217	0.4814	0.3157	0.6286	1.53-0.14*M; 0.52 for M≥7.25
4.0	-3.068	-0.160	0.8217	0.4814	0.3157	0.6286	1.53-0.14*M; 0.52 for M≥7.25

Campbell (1993)

Campbell has produced a number of attenuation relationships over the last 10 to 15 years, continually updating his relationships as more recorded data becomes available. To compute response spectra, Campbell (EQE, personal communication, 1994) recommends the use of the peak acceleration relationship found in Campbell and Bozorgnia (1994) and the spectral acceleration relationship in Campbell (1989) for alluvium and soft rock sites. The former is given by the expression:

$$\ln(PGA) = -3.512 + 0.904M - 1.328 \ln \sqrt{R_s}^2 + [0.149 \exp(0.647M)]^2 + [1.125 - 0.112 \ln(R_s) - 0.0957M]F + [0.440 - 0.171 \ln(R_s)]S_{sr} + [0.405 - 0.222 \ln(R_s)]S_{hr} + \epsilon$$

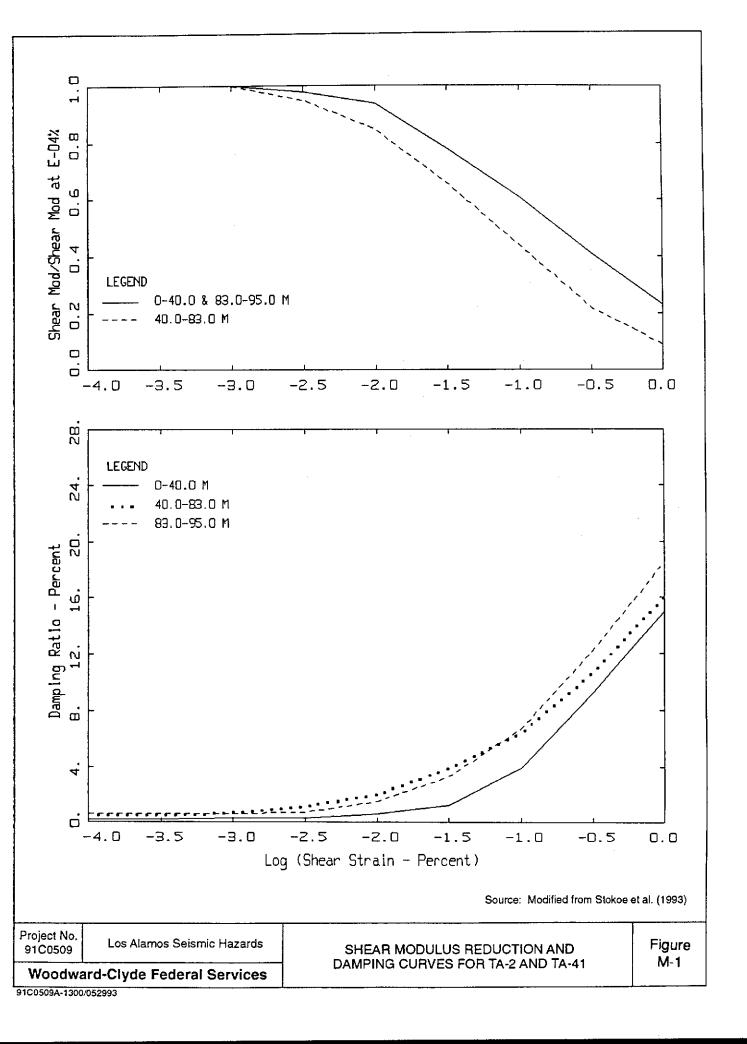
where PGA is the geometric mean of the two horizontal components of peak ground acceleration (g); M is M_w ; R_s is the closest distance to seismogenic rupture on the fault (km); F = 0 for strike-slip and normal faulting earthquakes and 1 for reverse, reverse-oblique, and thrust faulting earthquakes; $S_{sr} = 1$ for soft-rock sites, $S_{hr} = 1$ for hard-rock sites, and $S_{sr} = S_{hr} = 0$ for alluvial sites; and ε is a random error term with zero mean and standard deviation equal to $\sigma_{ln(PGA)}$, the standard error of estimate of ln(PGA).

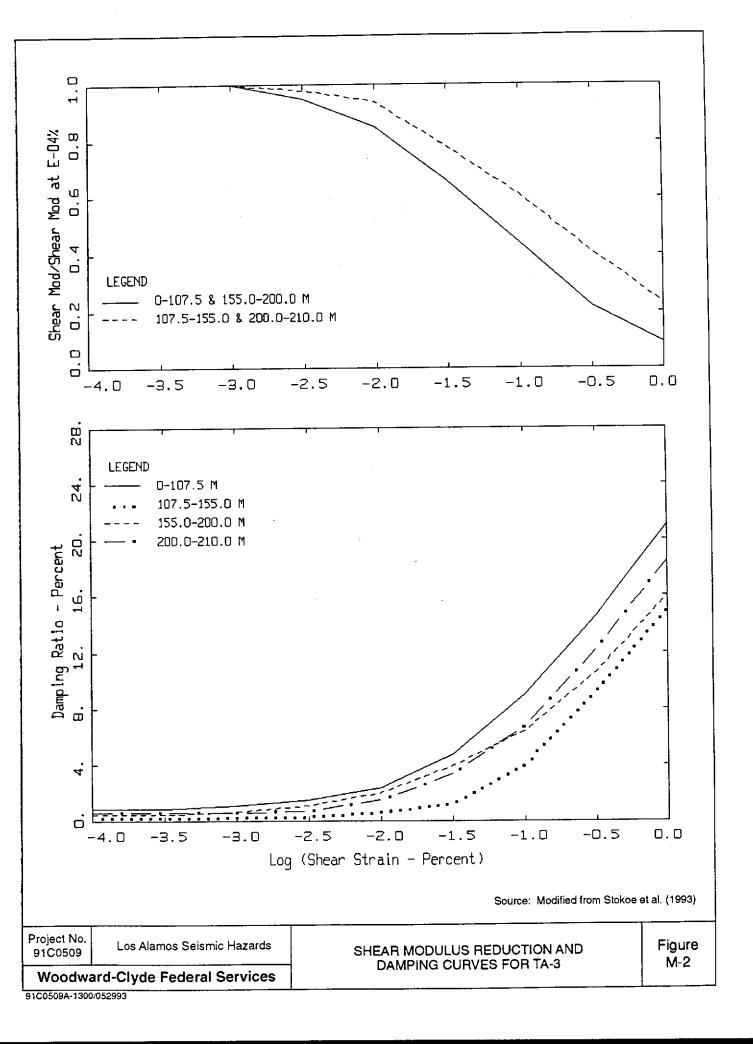
The relationship for the spectral ordinates:

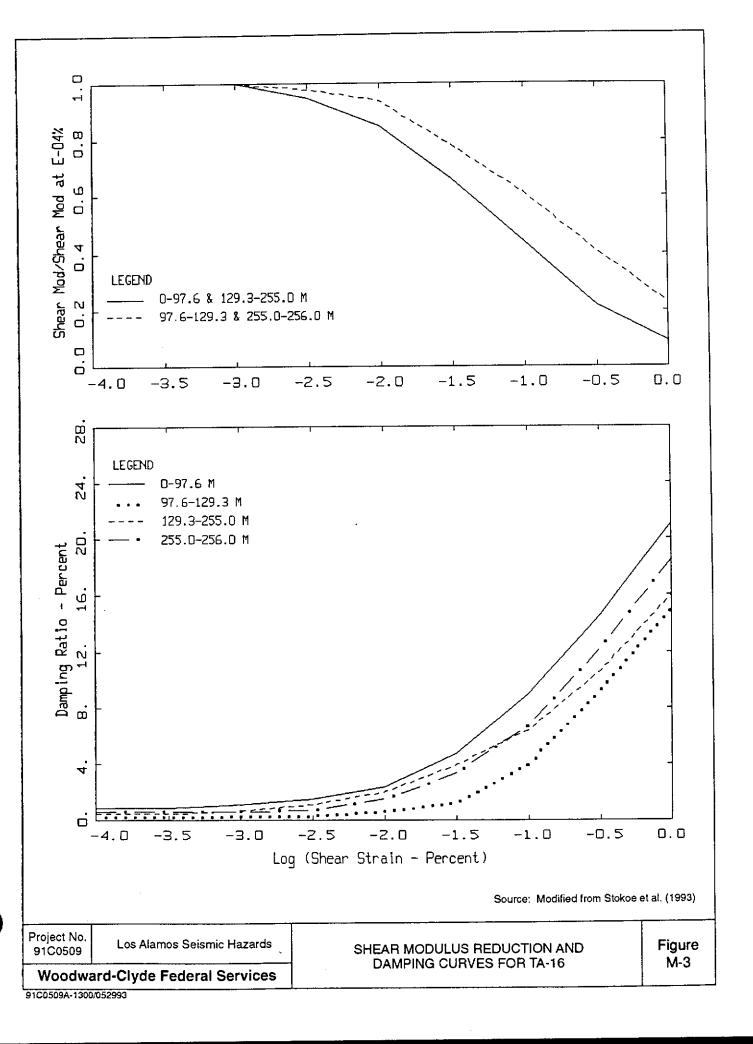
$$\ln Y = a + bM + d\ln [R + c_1 \exp (c_2 M)] + eF$$

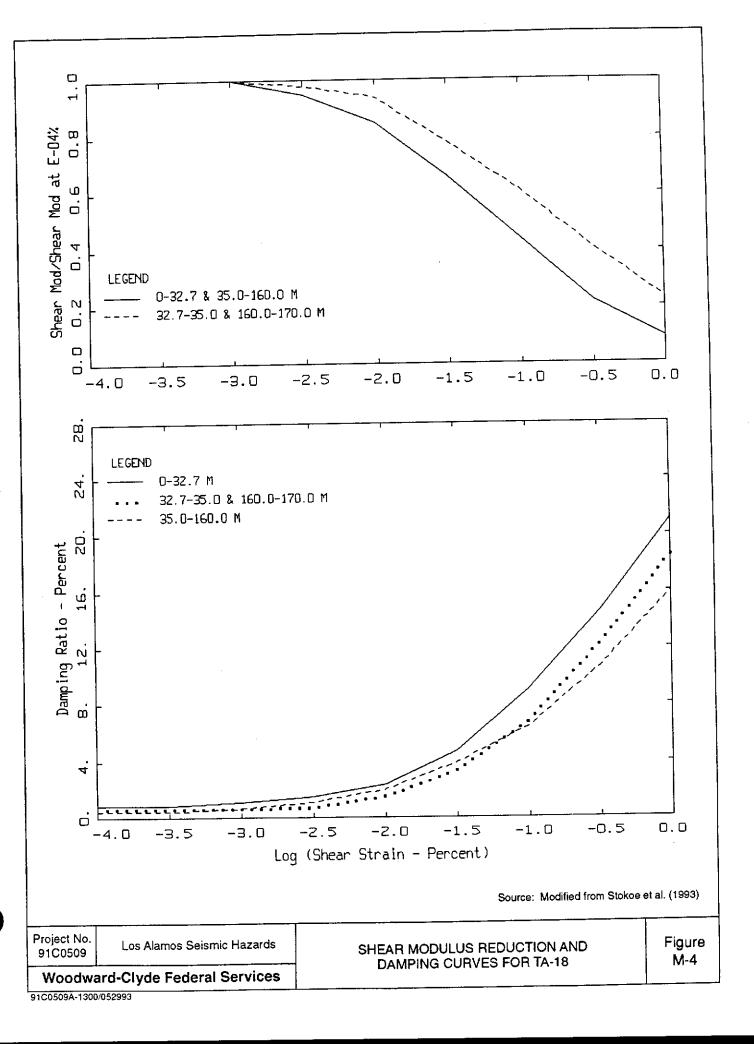
$$+ f_1 \tanh [f_2 (M + f_3)] + g_1 \tanh (g_2 D) + \sum_{i=1}^{3} h_i K_i + \varepsilon$$

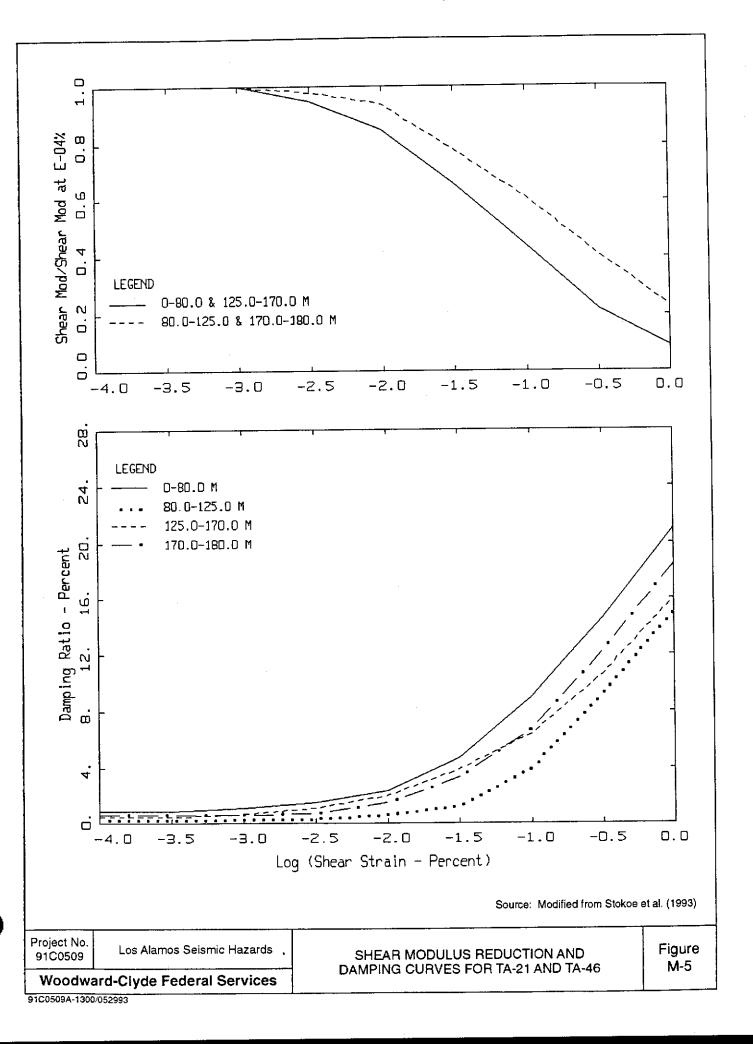
where M is M_L for M < 6.0 and M_s for $M \ge 6.0$; R is distance to seismogenic rupture in km; F is a parameter representing the style of faulting [F = 0] for strike-slip faults, F = 1 for reverse, reverse-oblique, thrust, and thrust-oblique faults]; D is depth to basement rock (sediment depth) in km; K_i is a parameter representing building effects ($K_1 = 1$ for embedded buildings 3-11 stories in height, $K_2 = 1$ for embedded buildings greater than 11 stories in height, $K_3 = 1$ for nonembedded buildings greater than 2 stories in height, $K_1 = K_2 = K_3 = 0$ for all other recording sites); ε is a random error term with a mean of zero and a standard deviation of σ , the standard error of regression; tanh (*) is the hyperbolic tangent function; and a, b, ..., h_i are the regression coefficients. The following coefficients are for pseudorelative spectral velocity (PRV). Pseudo-spectral accelerations (PSA) can be obtained using the equation PSA = 2π PRV/981T where PSA is in g's, PRV is in cm/sec, and T is period.

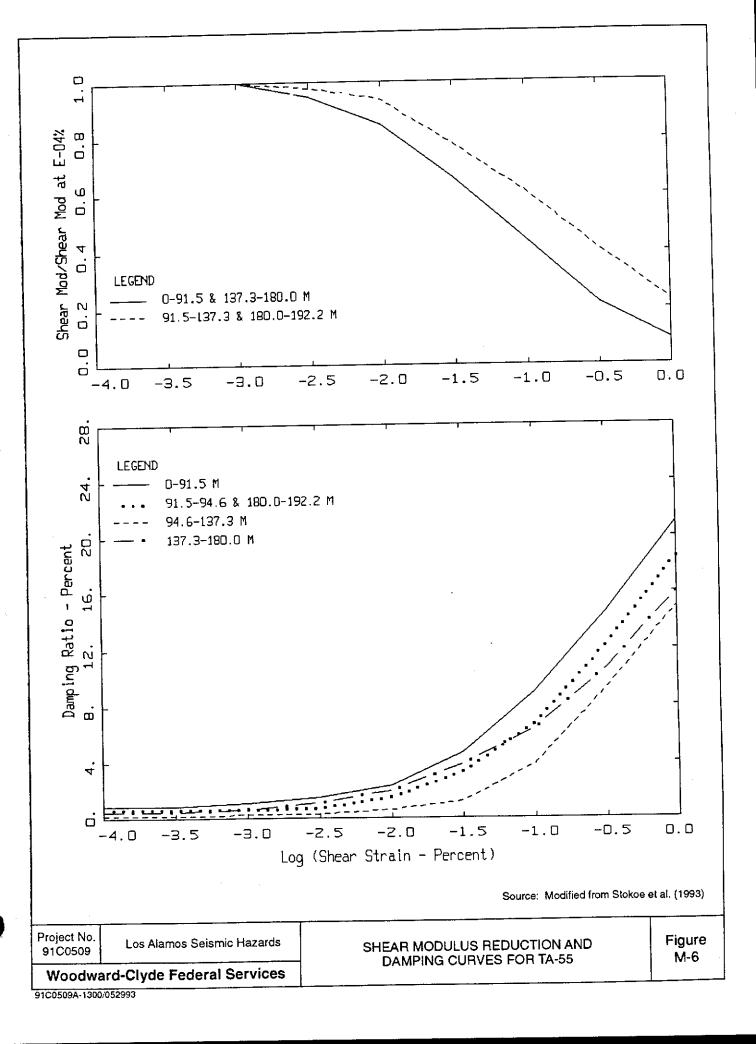

Period (sec)	а	b	c_1	<i>c</i> ₂	d	е	f_1	f_2	f_3	<i>g</i> ₁	82	σ
0.04	-0.648	1.08	0.311	0.597	-1.81	0.382		·				0.42
0.05	-0.379	1.08	0.311	0.597	-1.81	0.382						0.44
0.075	0.251	1.08	0.311	0.597	-1.81	0.382						0.46
0.10	0.754	1.08	0.311	0.597	-1.81	0.382						0.48
0.15	1.424	1.08	0.311	0.597	-1.81	0.382						0.50

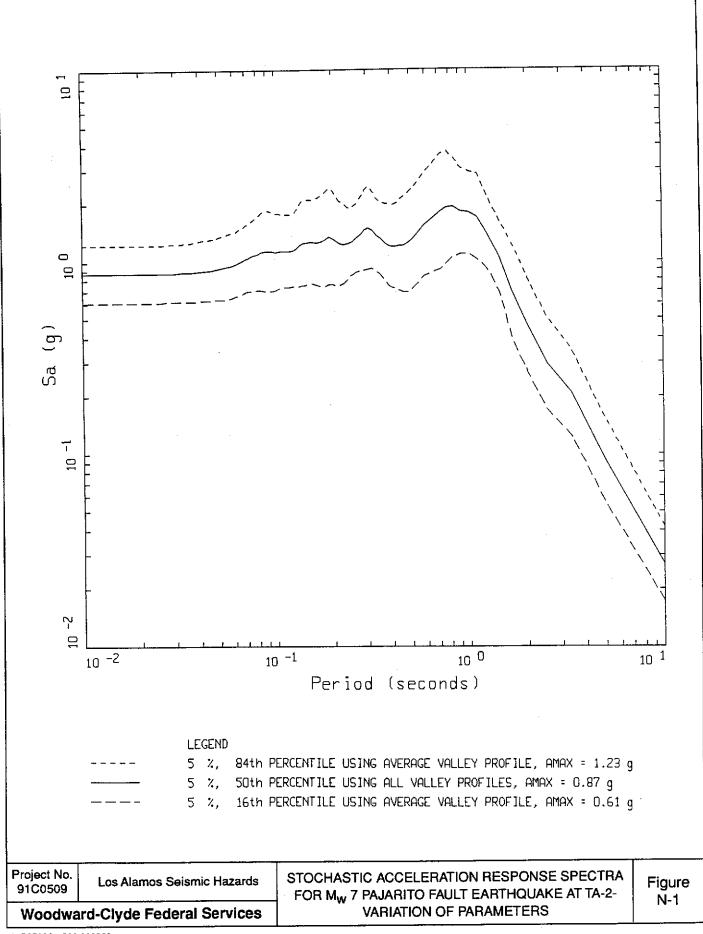

Period (sec)	а	b	c_1	<i>c</i> ₂	d	e	f_1	f_2	f_3	g 1	82	σ
0.20	1.788	1.08	0.311	0.597	-1.81	0.382		_				0.50
0.30	2.170	1.08	0.311	0.597	-1.81	0.382						0.50
0.40	2.009	1.08	0.311	0.597	-1.81	0.382	0.425	0.570	-4.7			0.50
0.50	1.930	1.08	0.311	0.597	-1.81	0.382	0.685	0.570	-4.7			0.50
0.75	1.612	1.08	0.311	0.597	-1.81	0.382	1.27	0.570	-4.7			0.50
1.0	1.268	1.08	0.311	0.597	-1.81	0.382	1.74	0.570	-4.7			0.50
1.5	0.487	1.08	0.311	0.597	-1.81	0.382	2.43	0.570	-4.7	0.344	0.553	0.50
2.0	0.040	1.08	0.311	0.597	-1.81	0.382	2.83	0.570	-4.7	0.469	0.553	0.50
3.0	-0.576	1.08	0.311	0.597	-1.81	0.382	3.17	0.570	-4.7	0.623	0.553	0.50
4.0	-0.766	1.08	0.311	0.597	-1.81	0.382	3.08	0.570	-4.7	0.857	0.553	0.50

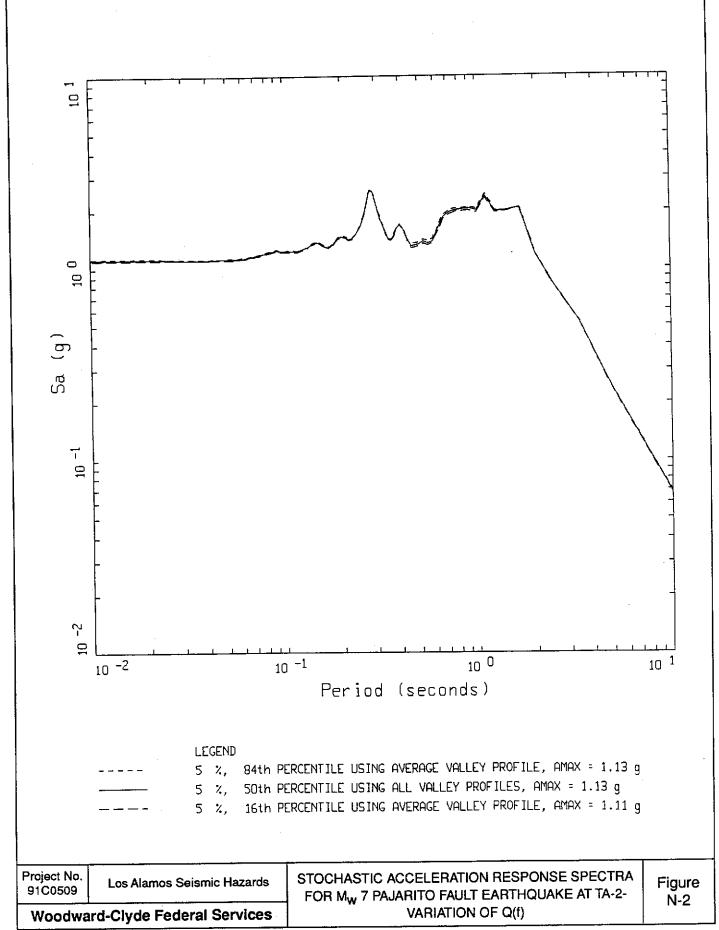

For the normal faults in the LANL region, we set the F parameter equal to the strike-slip value of zero. Campbell (1993) recommends "for normal faults and faults whose style of faulting is unknown, F can be assumed to be 0.5, intermediate between strike-slip and reverse faulting." However, we believe that the motions from normal faults are more likely to be similar or even lower than strike-slip faults than reverse faults due to the smaller stress drops, and thus are using F equal to zero for our analyses.

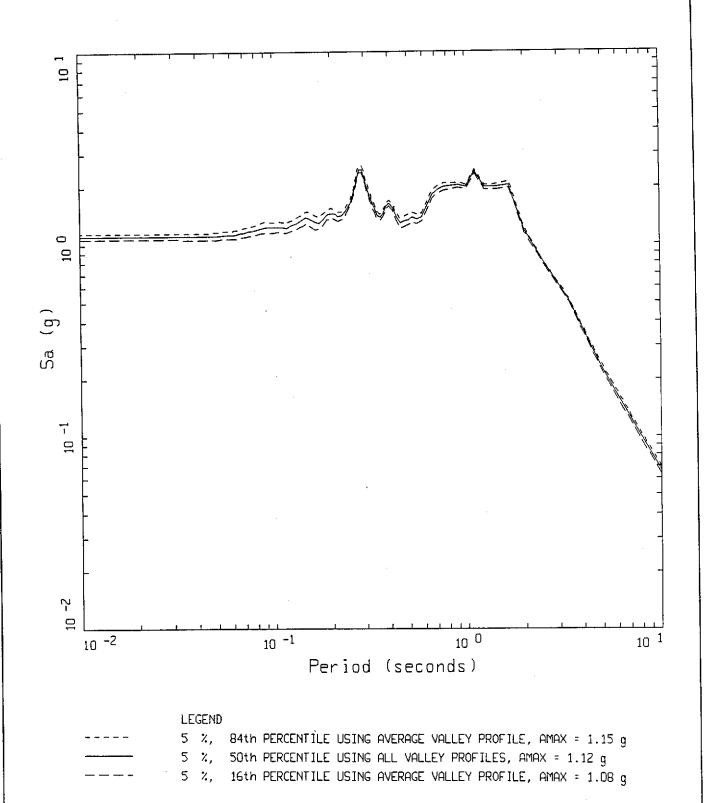

The depth to the bottom of the Guaje Pumice layer is used as the depth of sediments. As discussed in Section 6, the shear wave velocities are substantially higher for the materials below this depth. A seismogenic depth of 2 km is used for evaluating the distance to the seismogenic rupture.

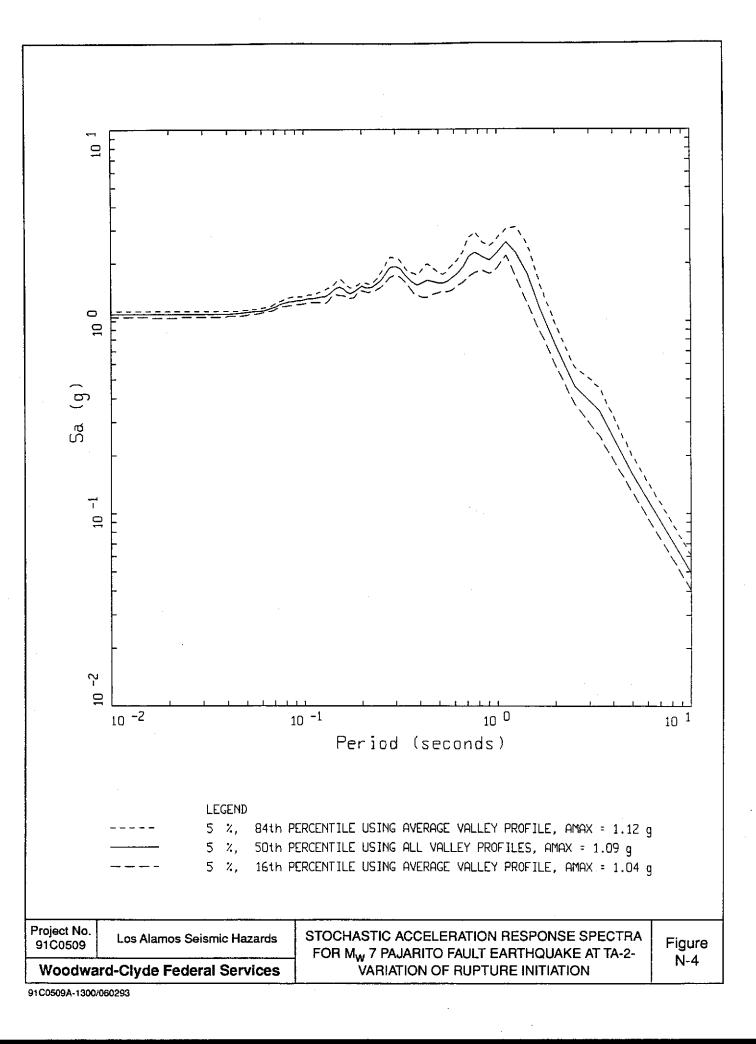

APPENDIX M SHEAR MODULUS REDUCTION AND DAMPING CURVES

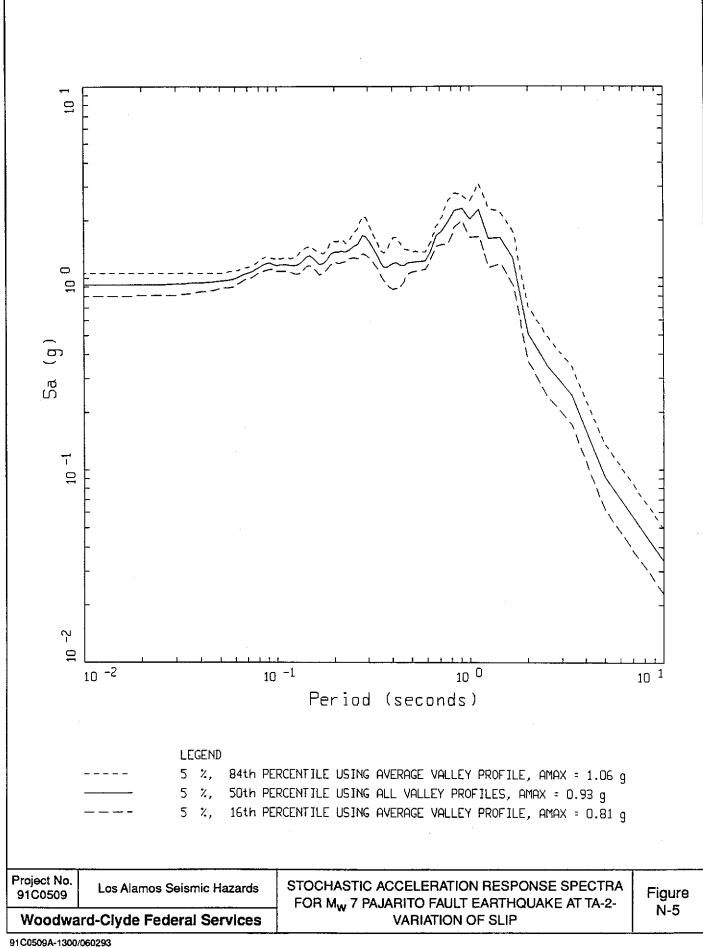


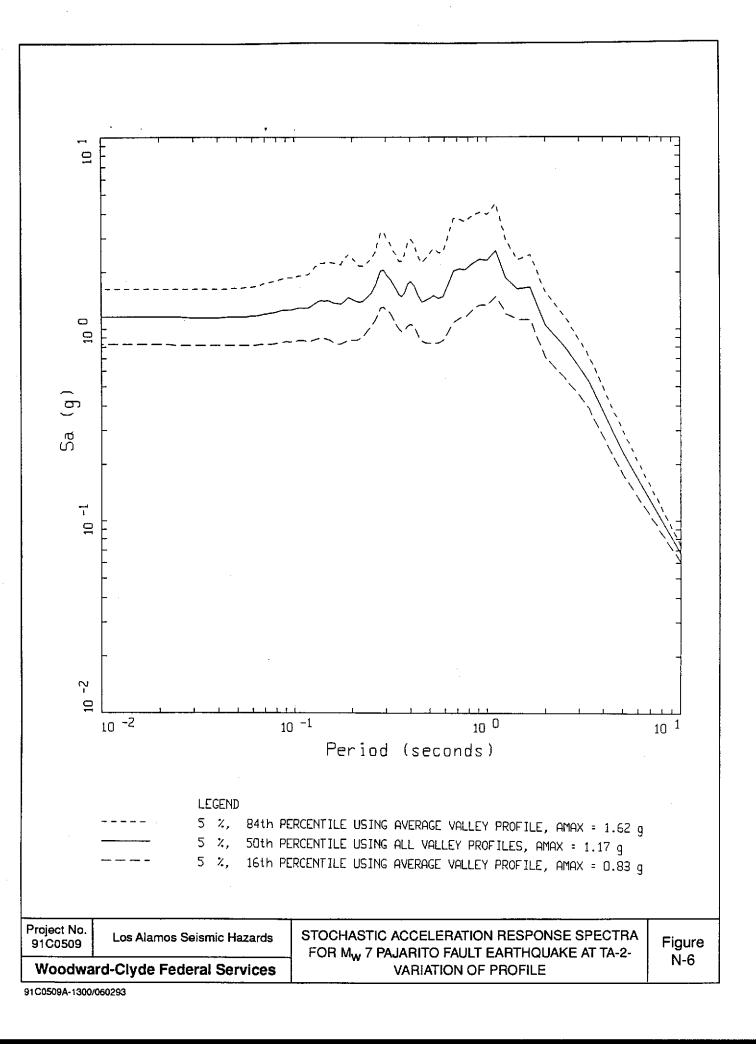


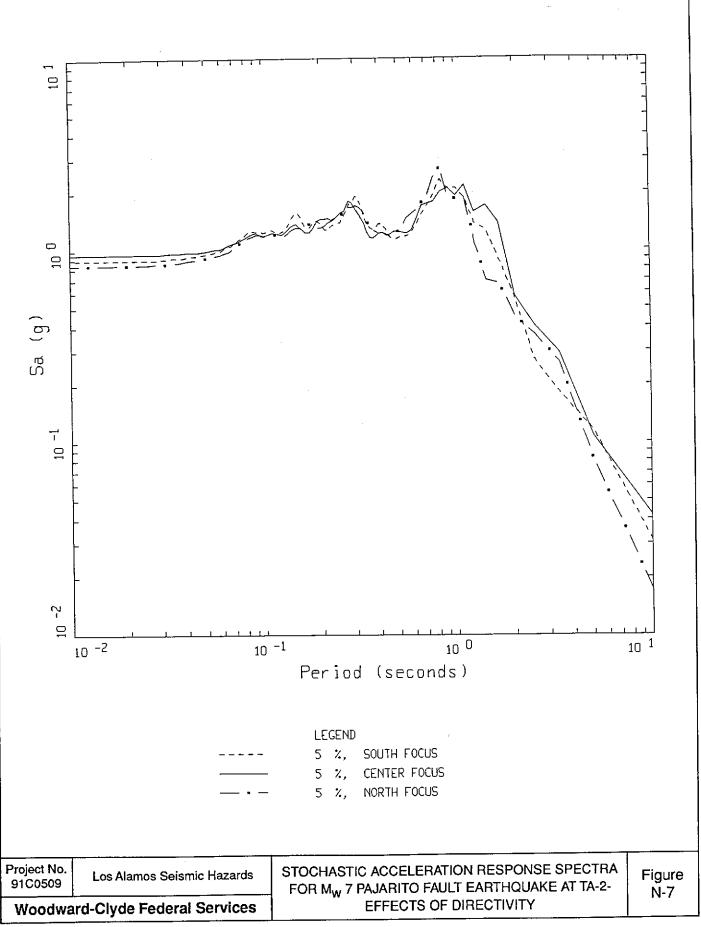


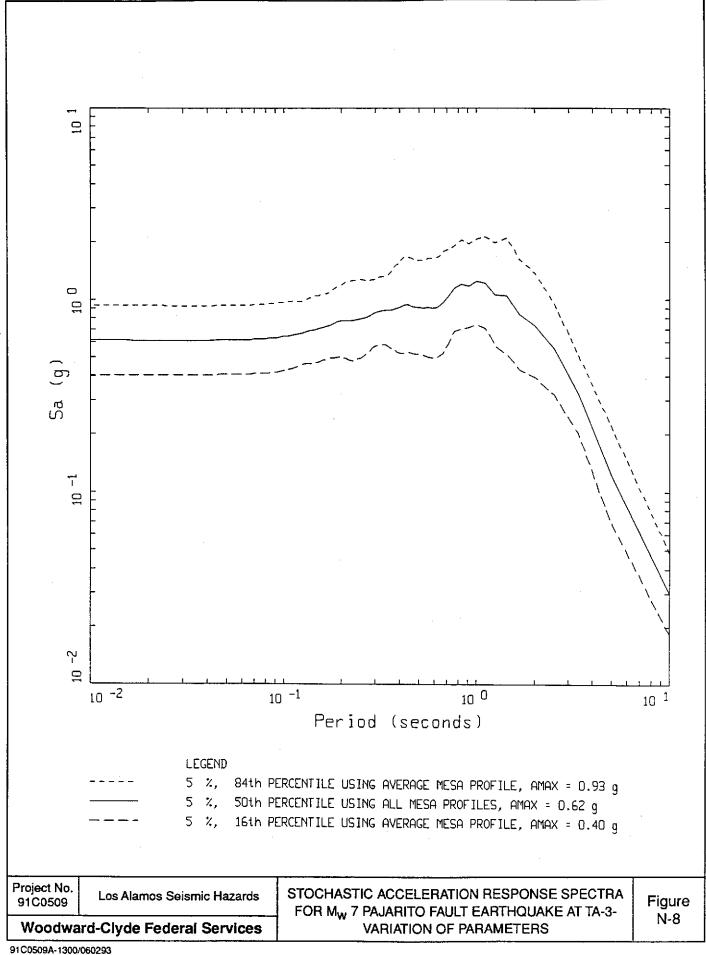


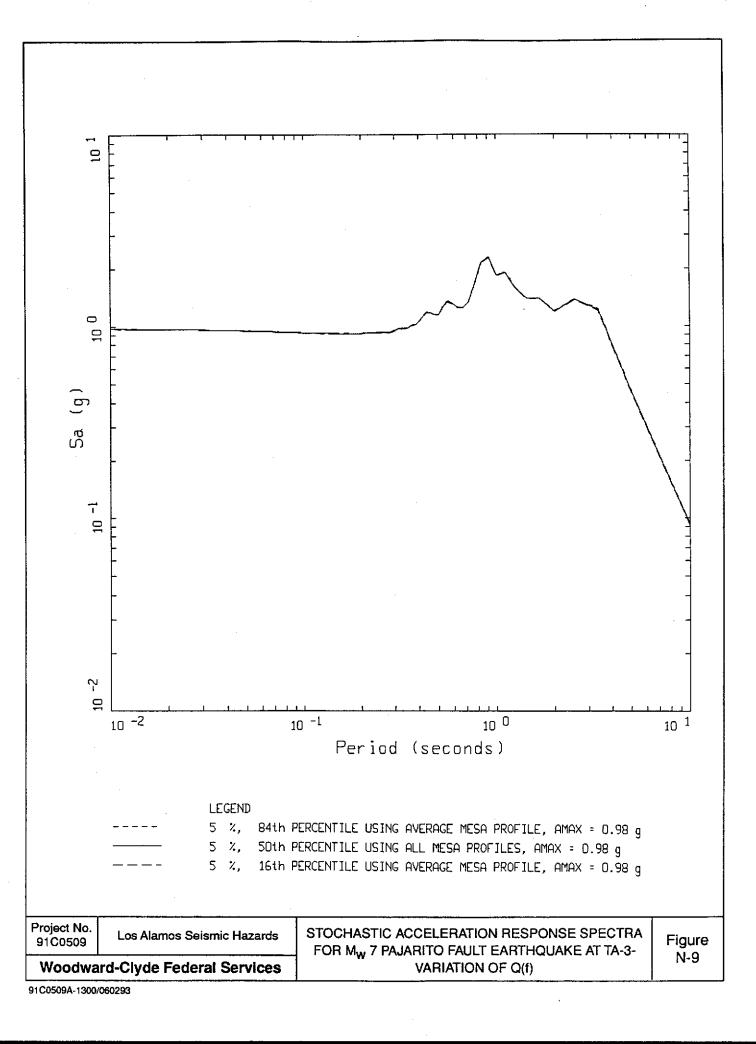

APPENDIX N STOCHASTIC ATTENUATION RESPONSE SPECTRA VARIATION OF PARAMETERS

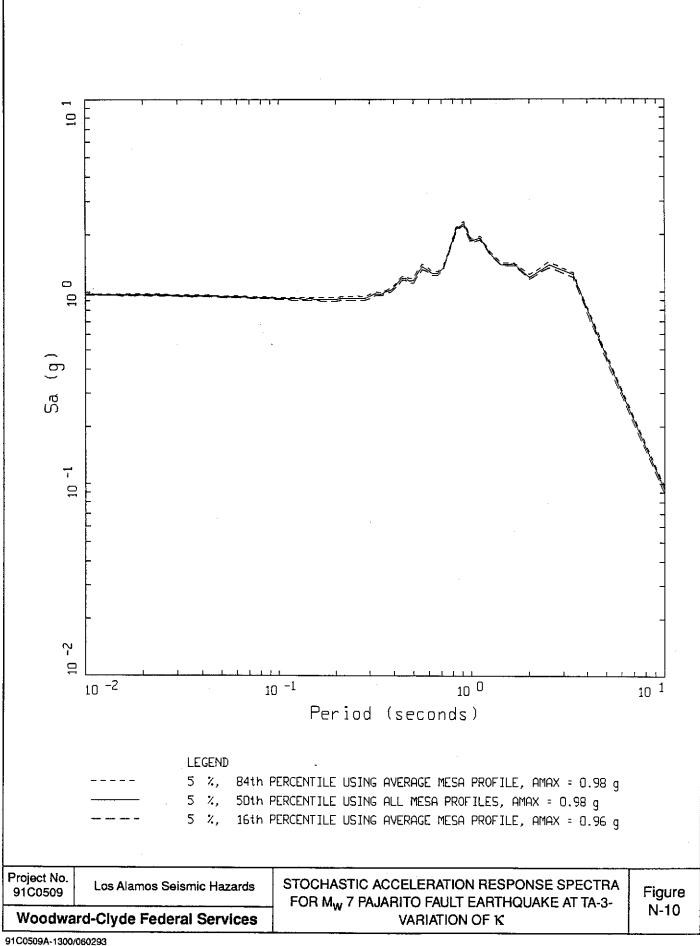


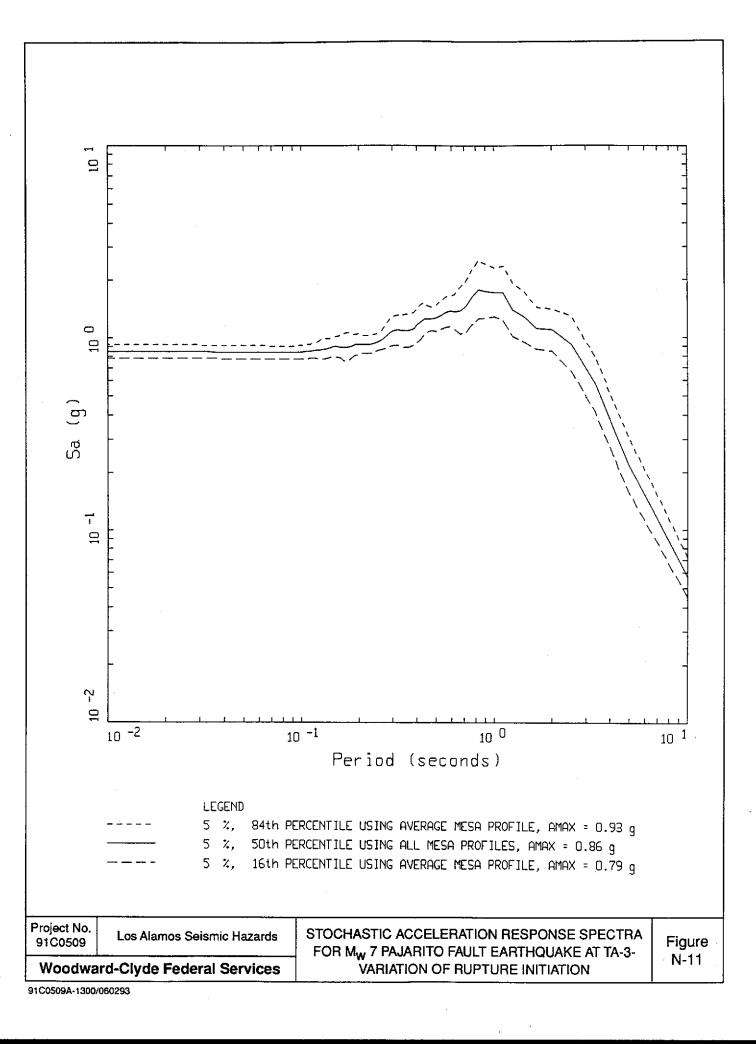


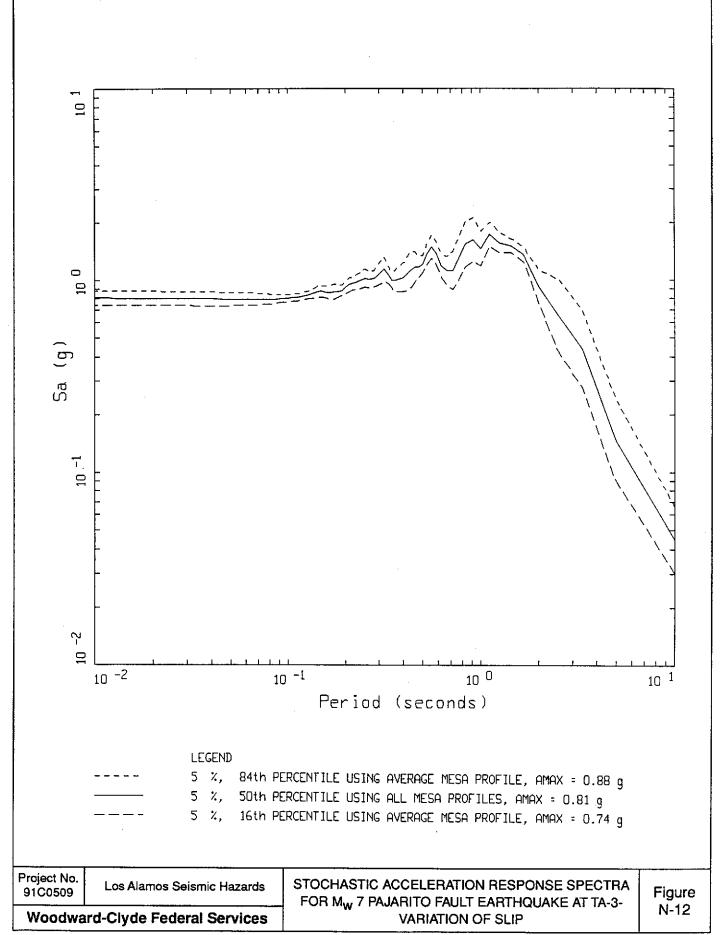


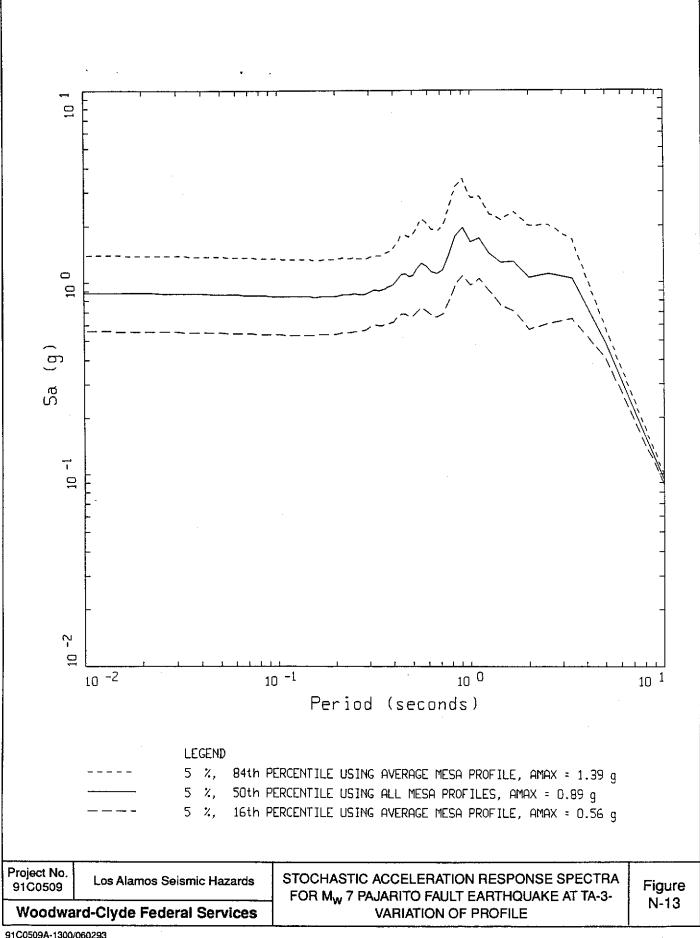

91C0509	STOCHASTIC ACCELERATION RESPONSE SPECTRA FOR M _W 7 PAJARITO FAULT EARTHQUAKE AT TA-2-	Figure N-3
Woodward-Clyde Federal Services	VARIATION OF K	

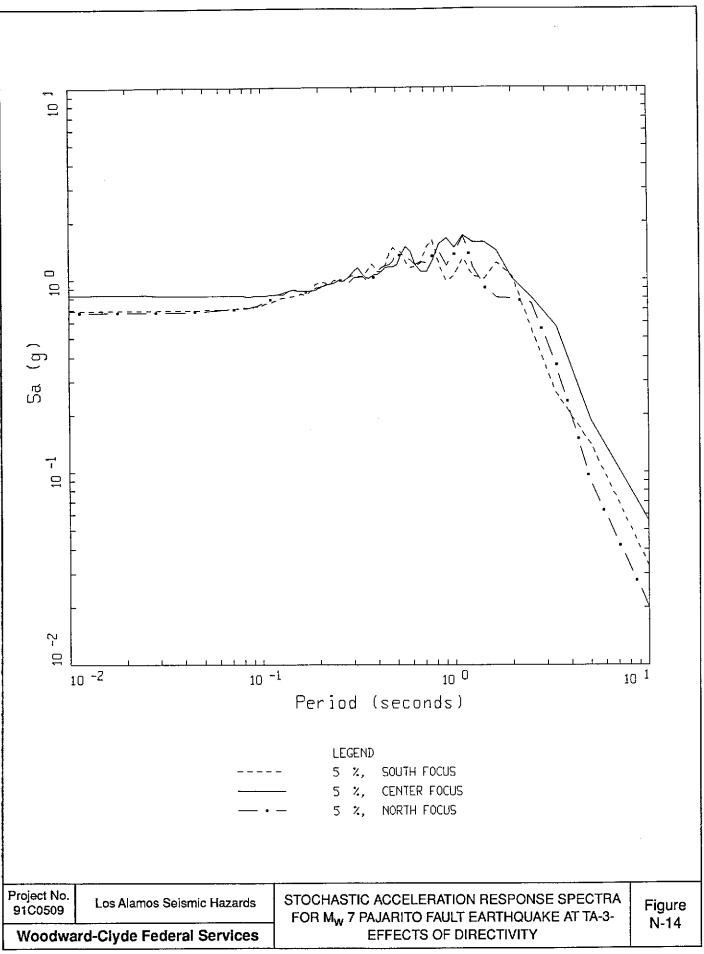


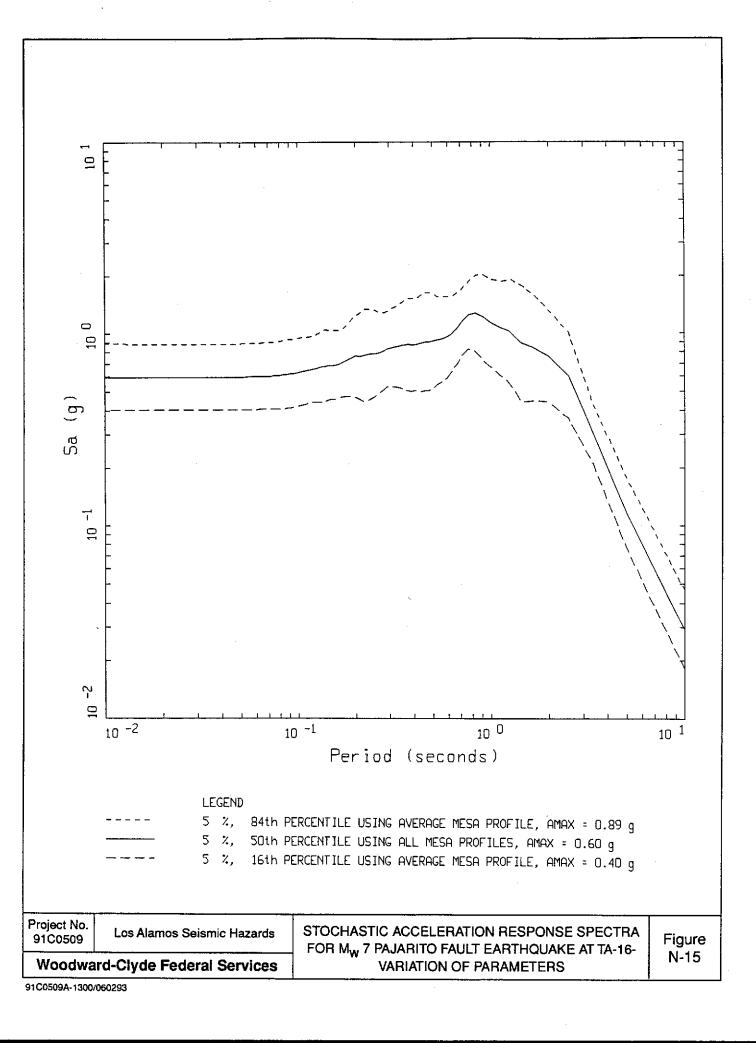


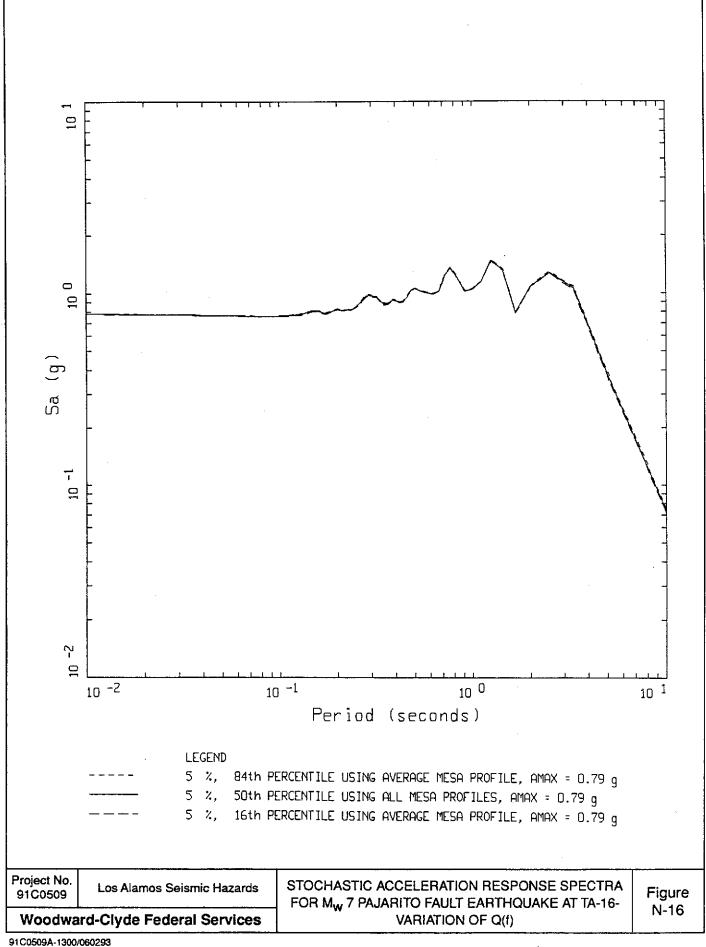


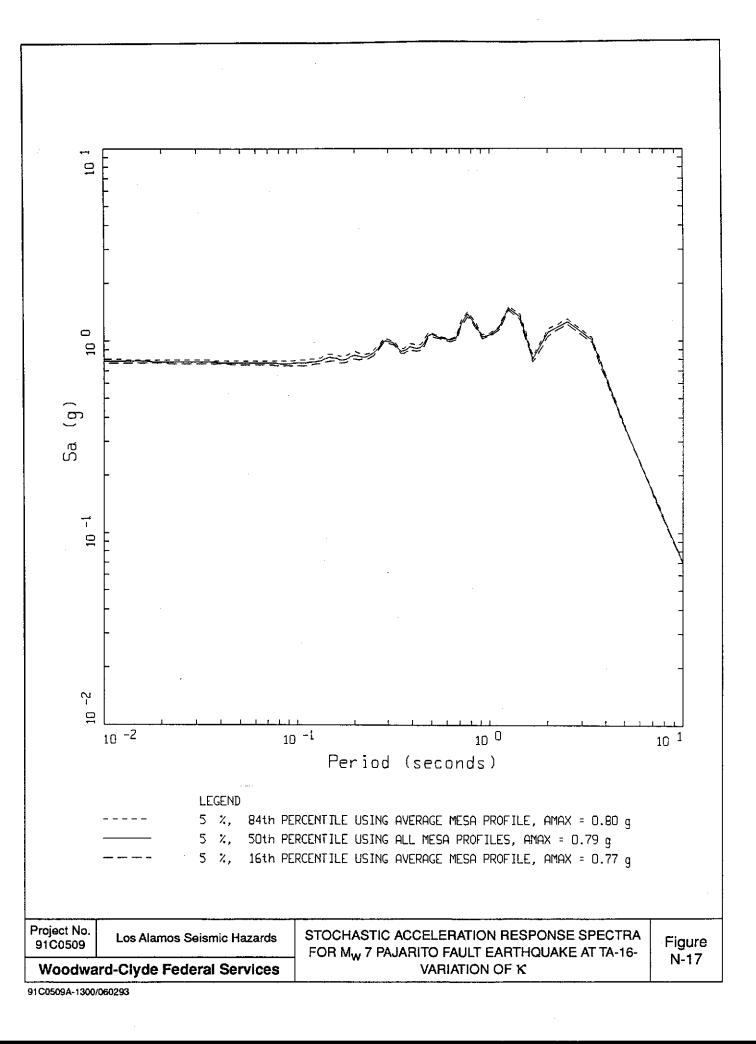


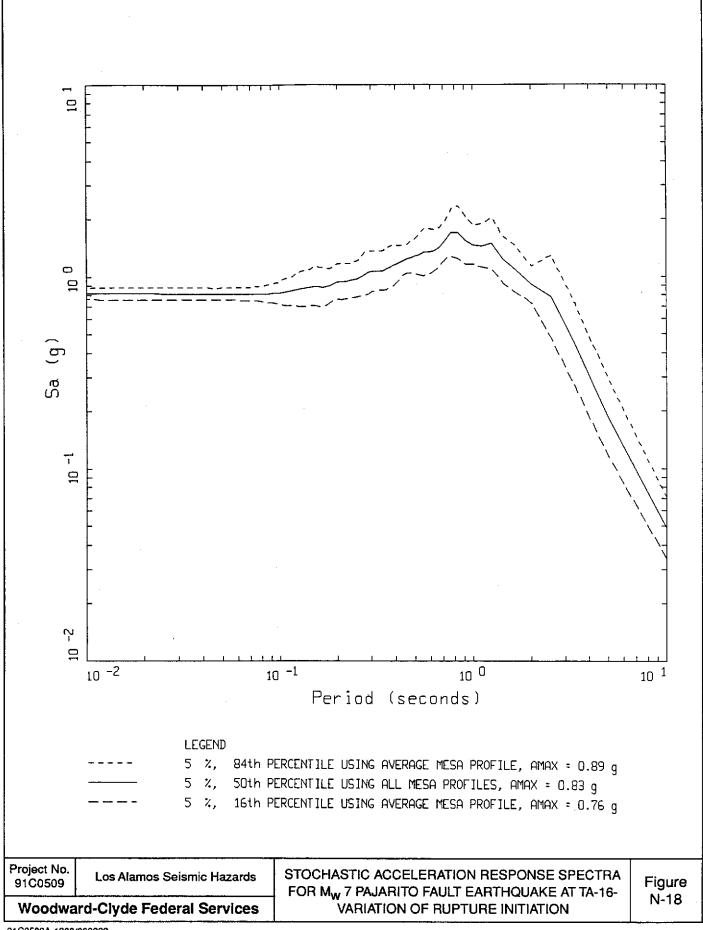


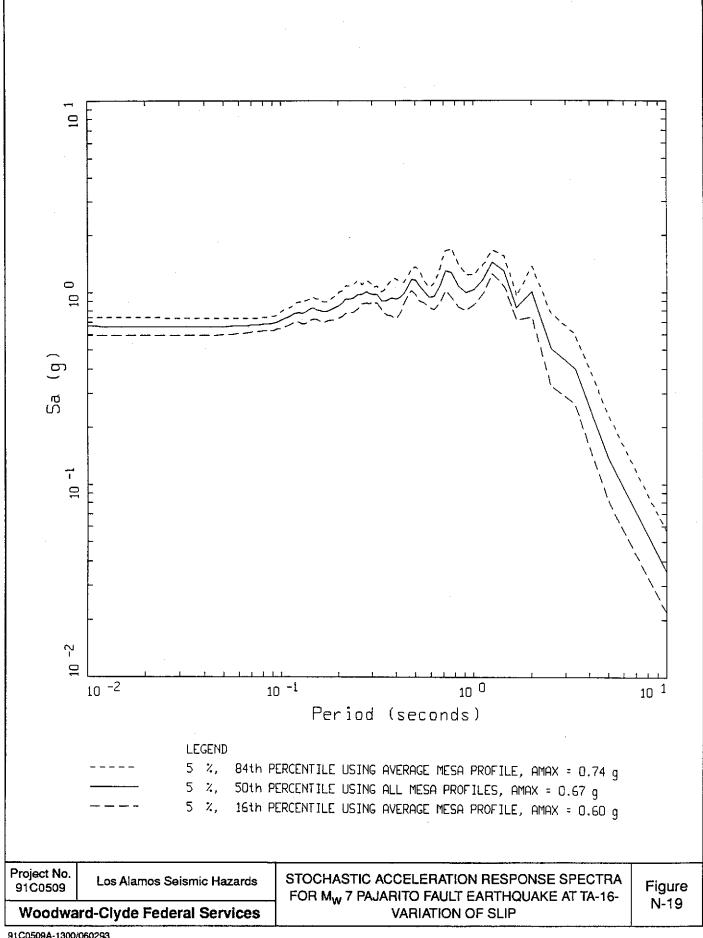


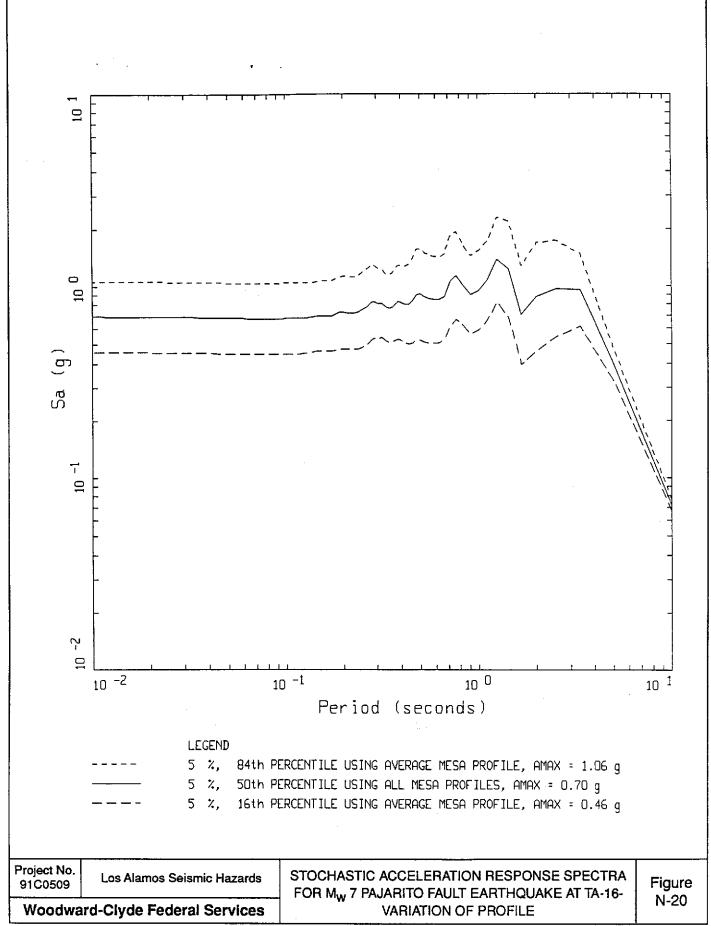


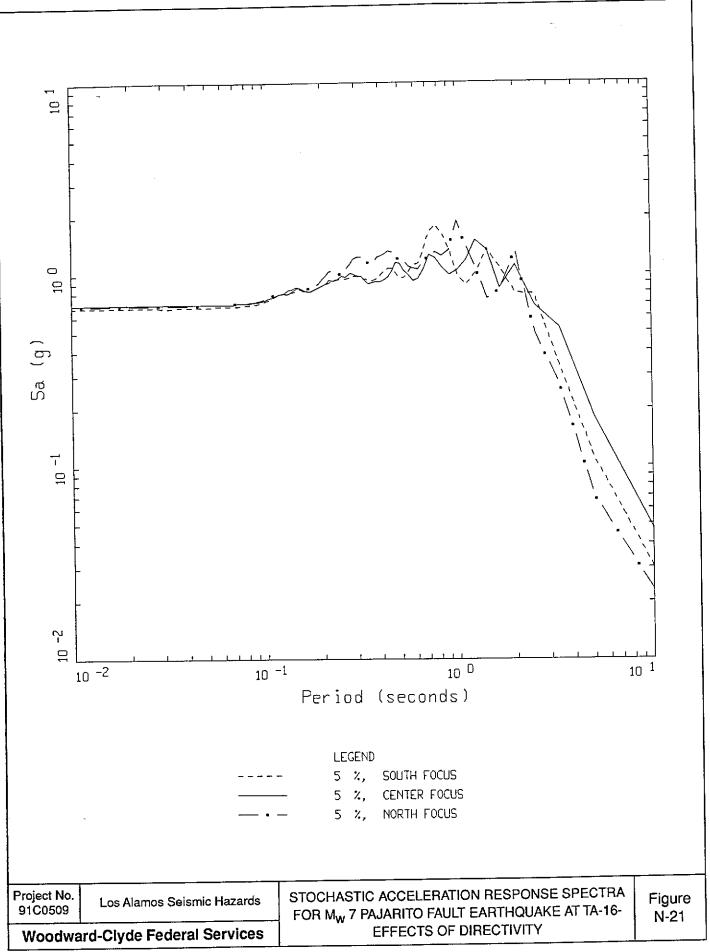


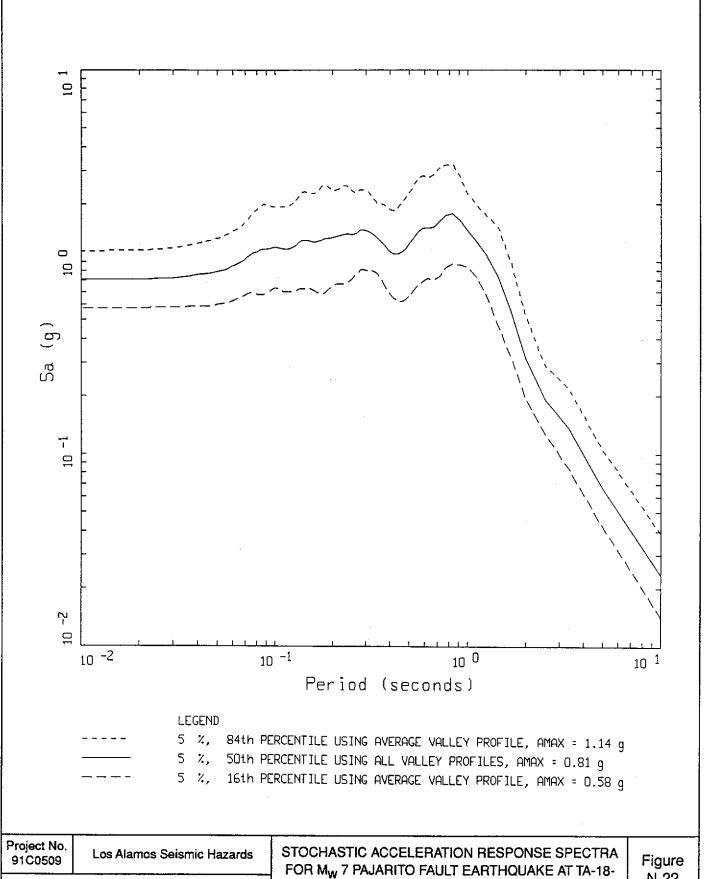


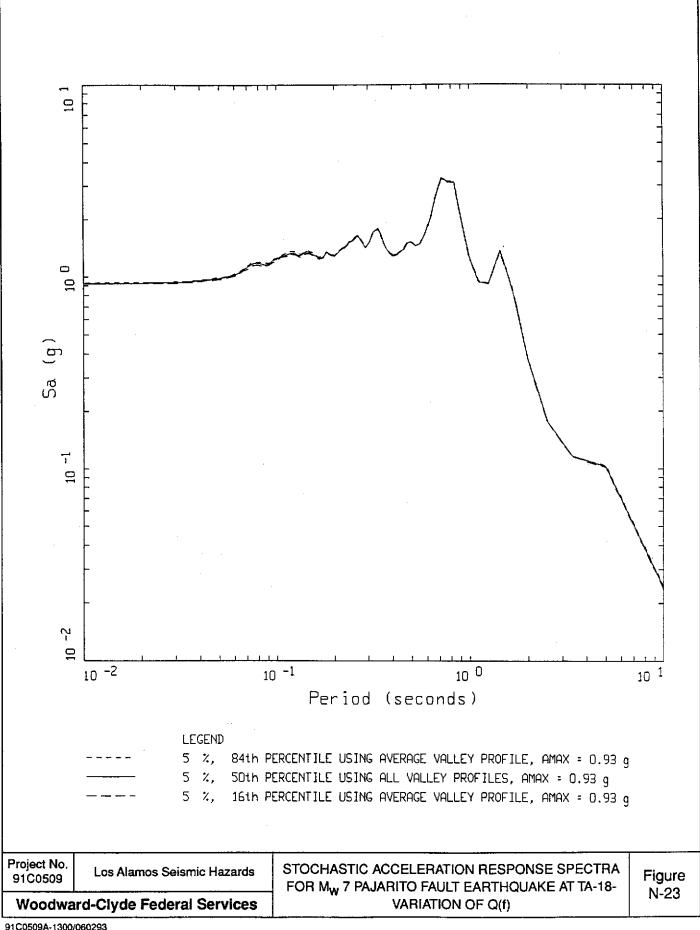


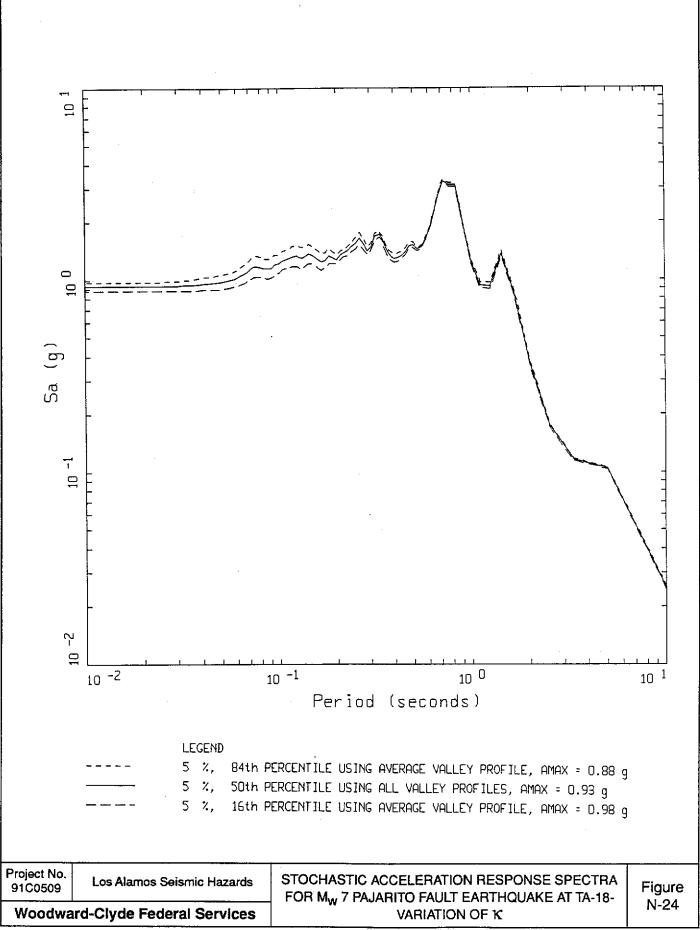


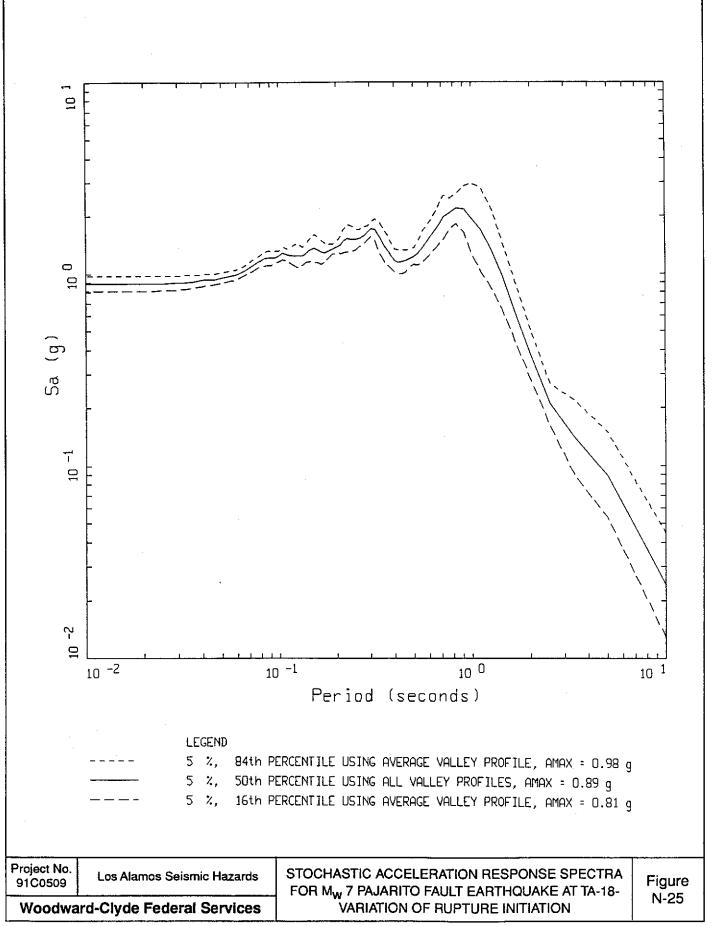


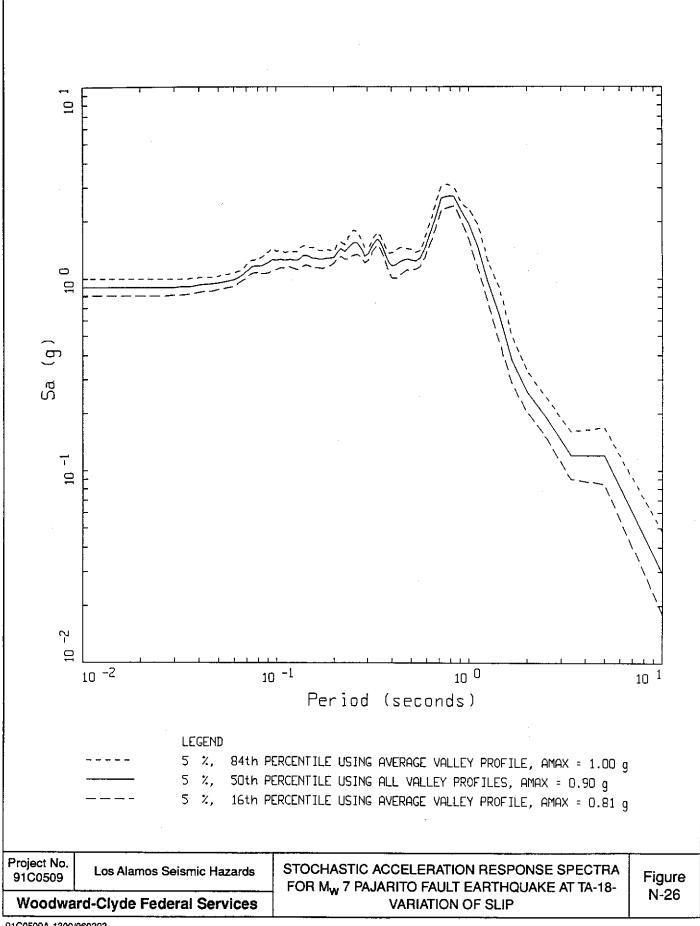


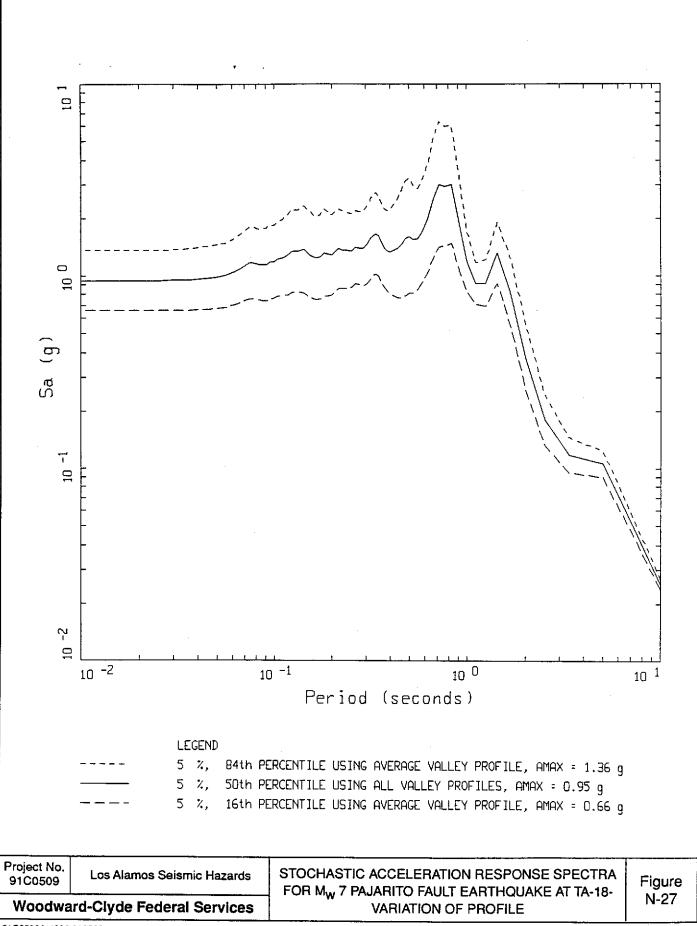


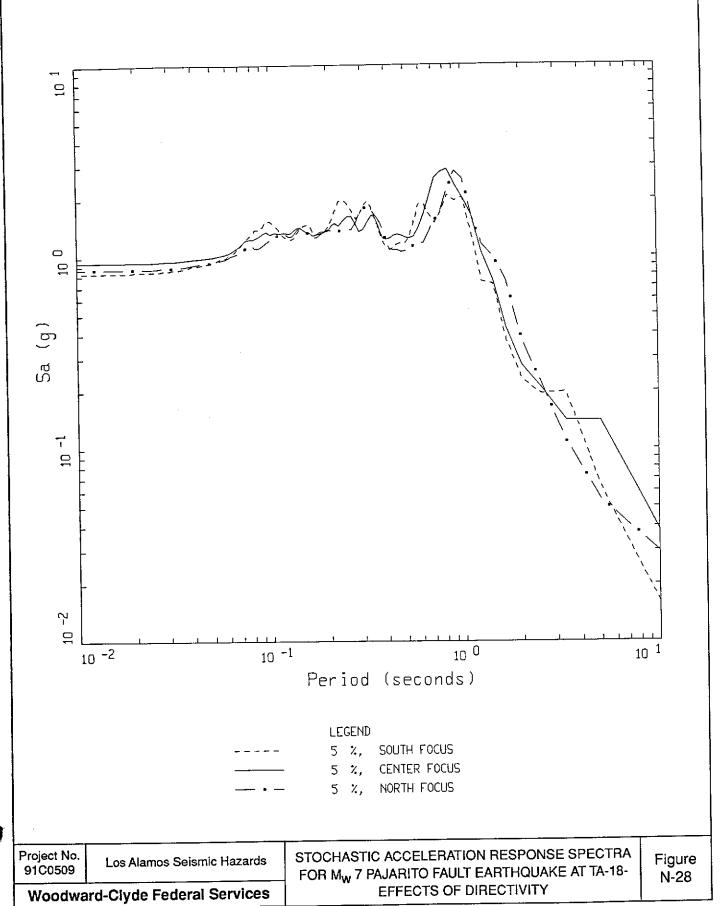


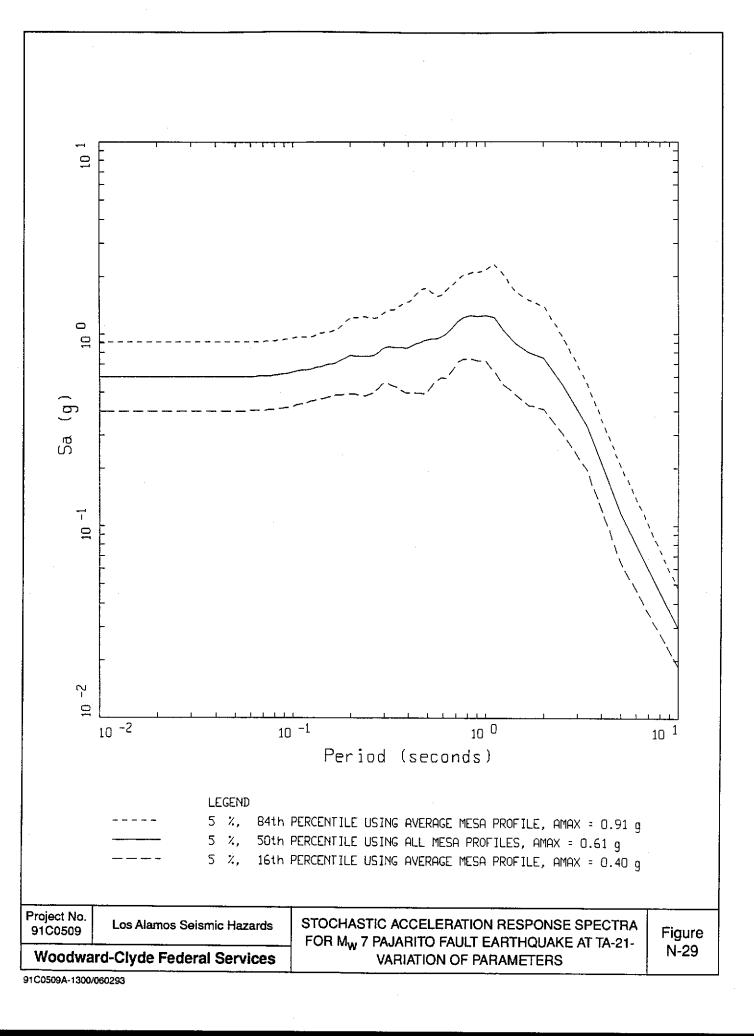


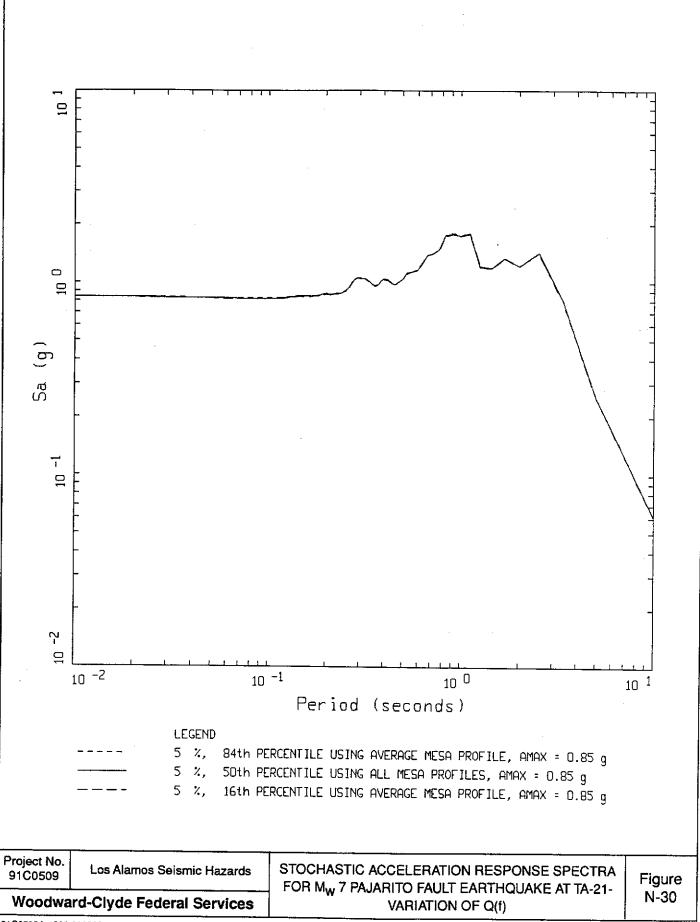

VARIATION OF PARAMETERS

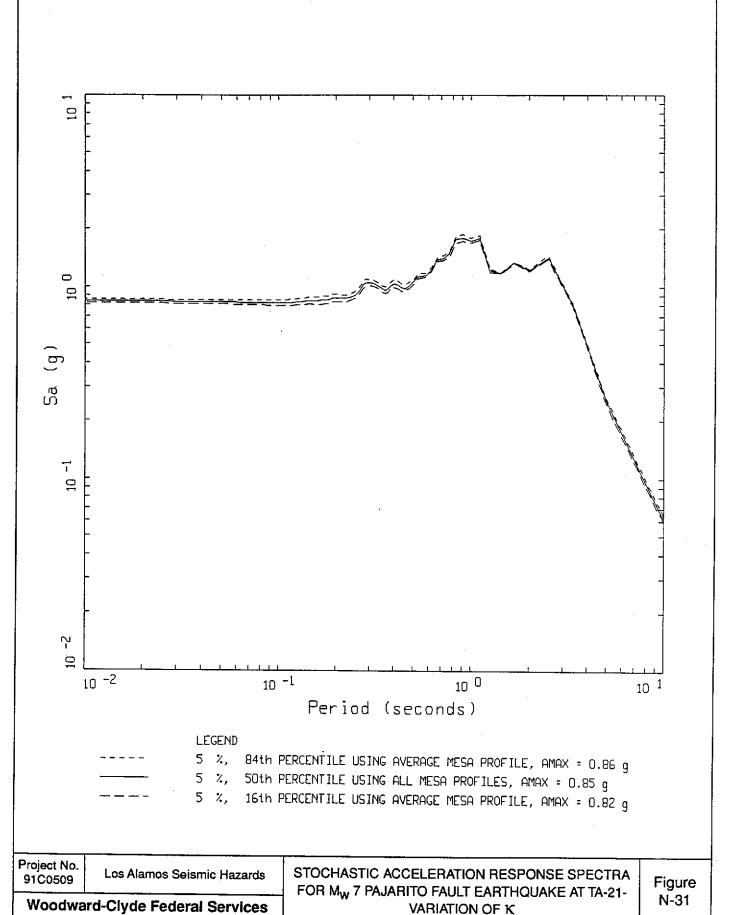

N-22

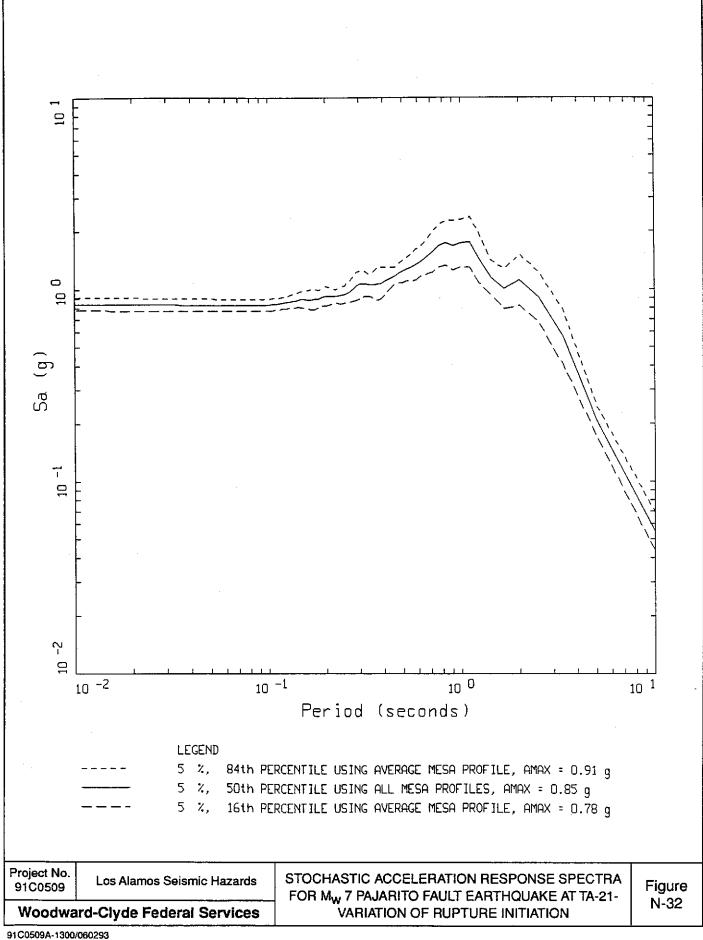

Woodward-Clyde Federal Services

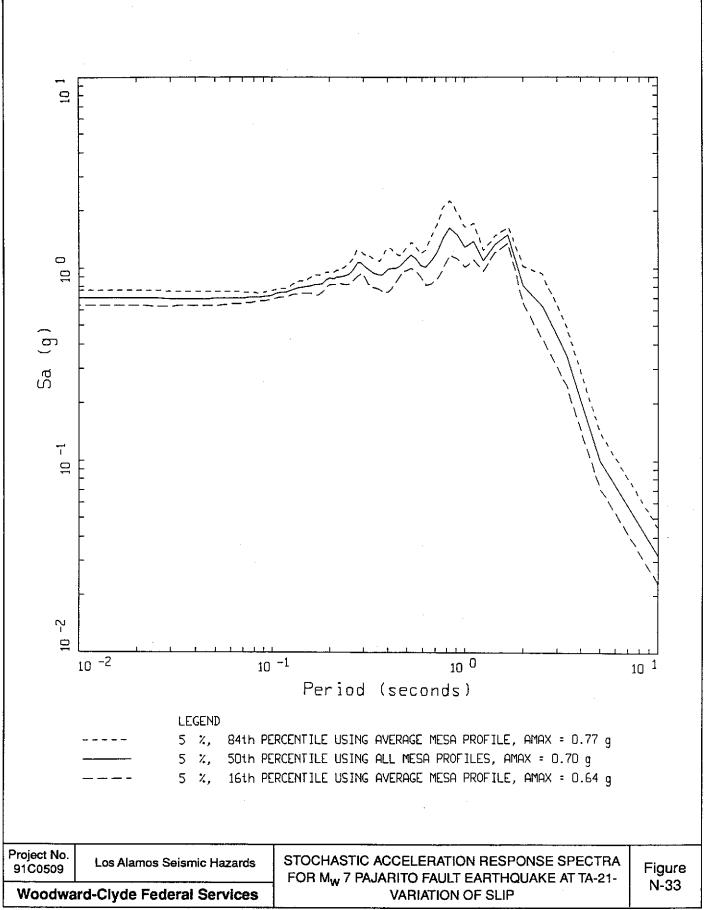


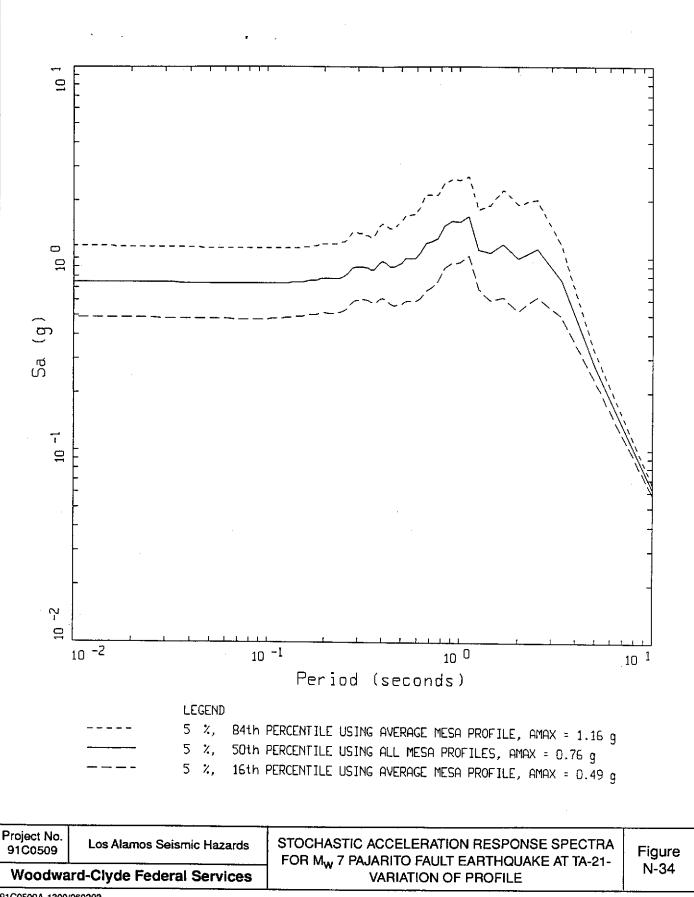


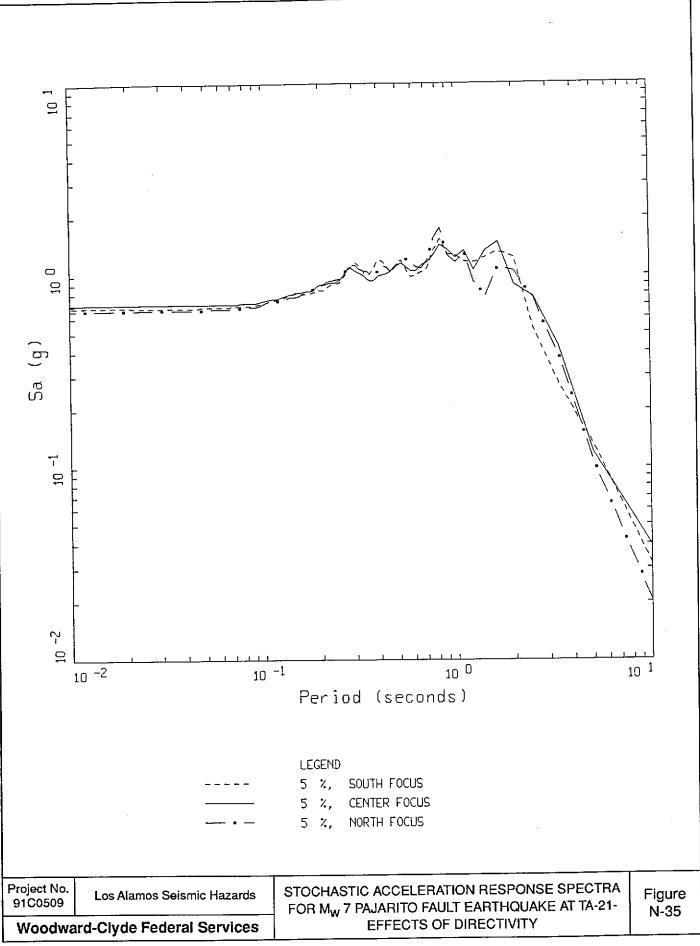




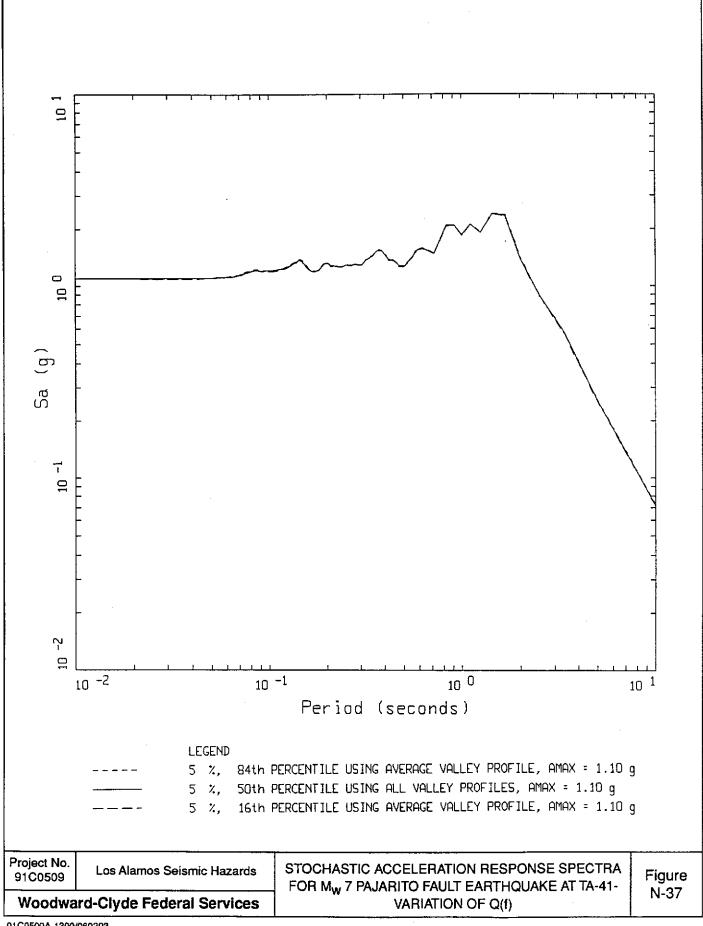


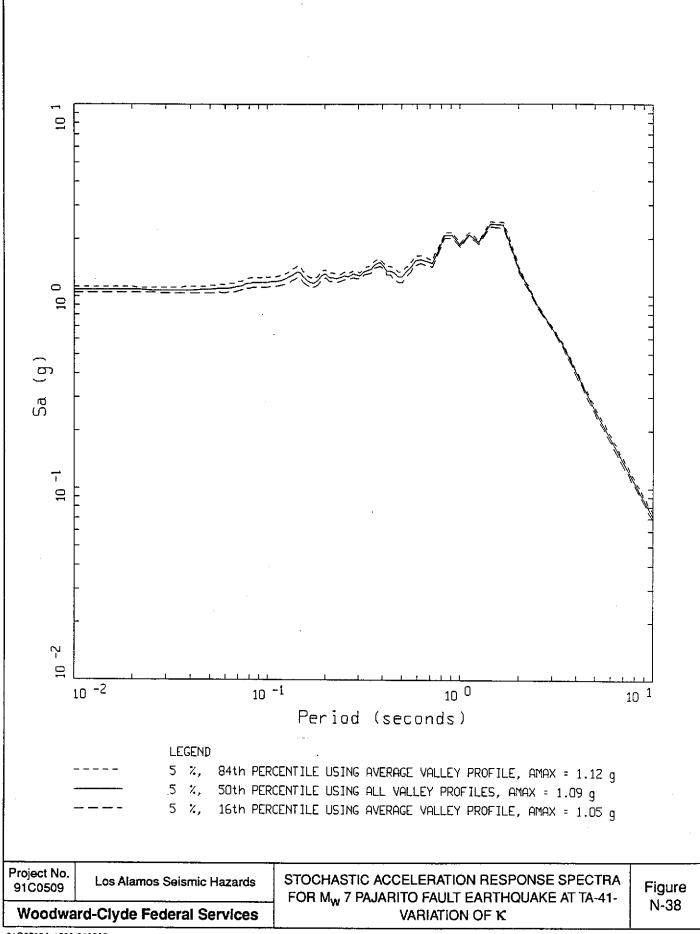




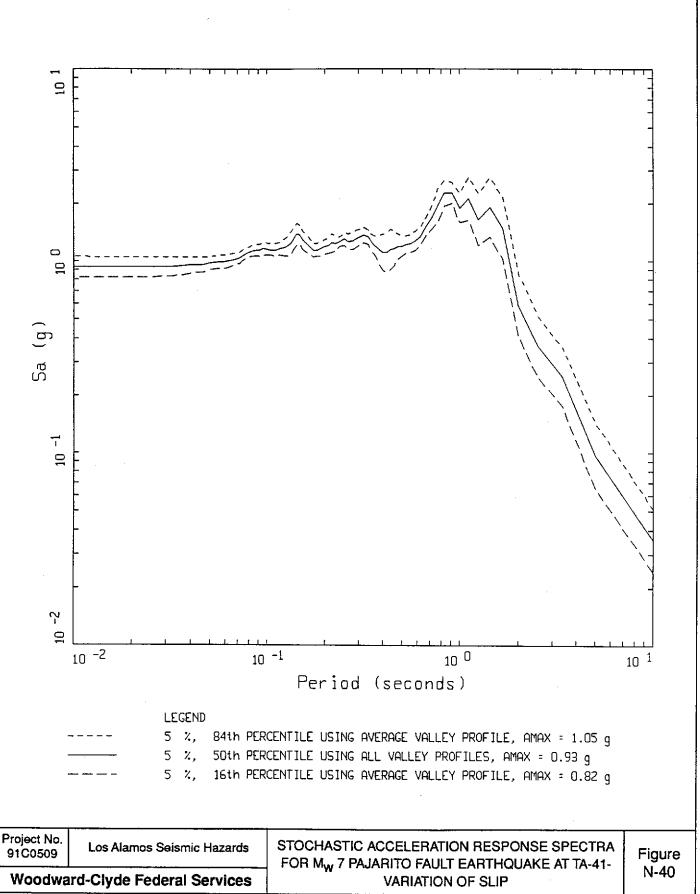

VARIATION OF K

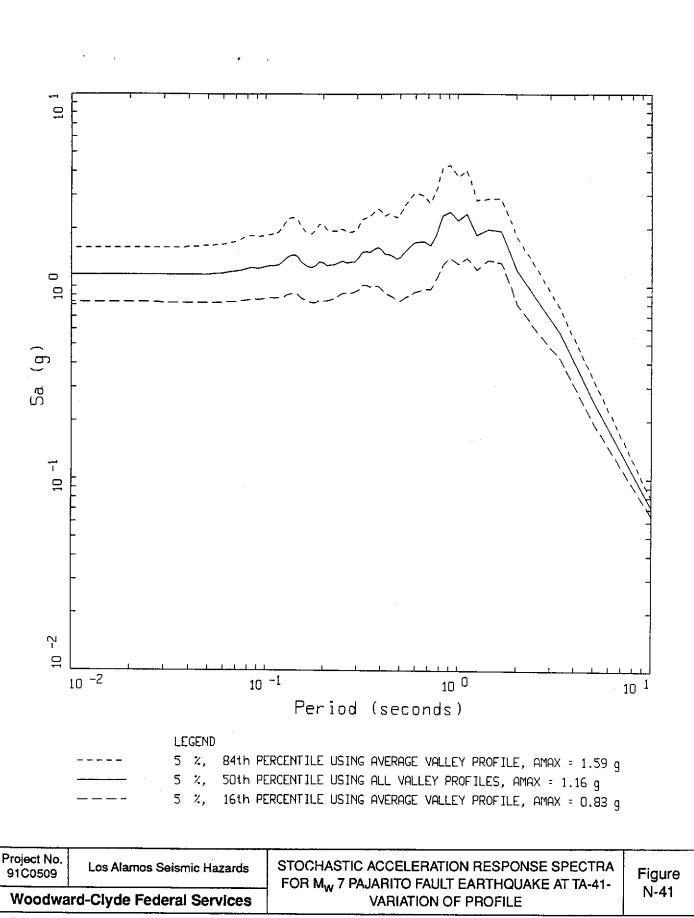
91C0509A-1300/060293

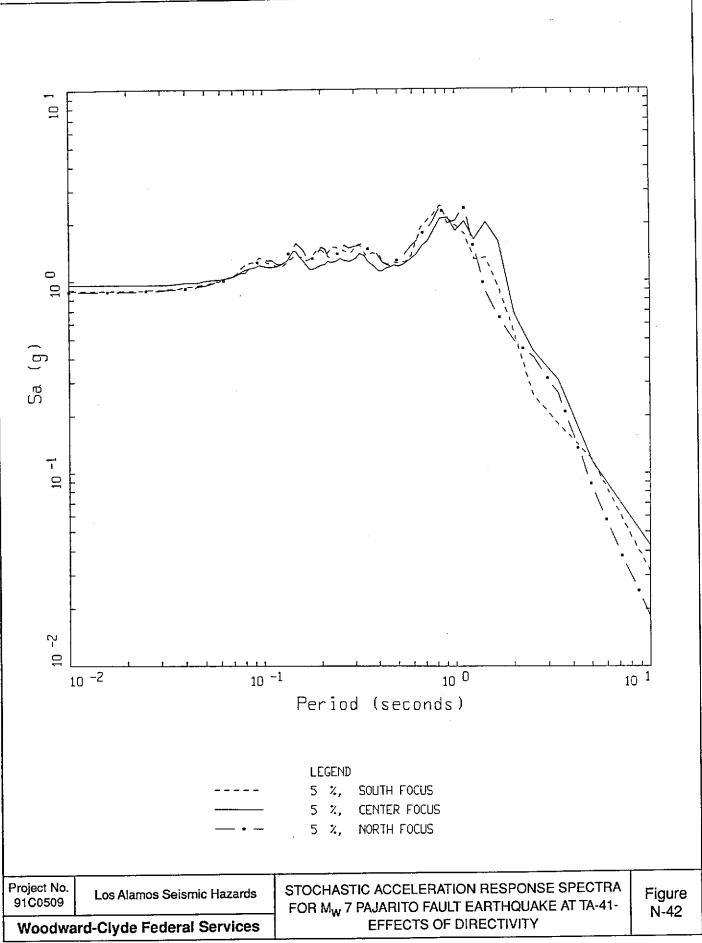


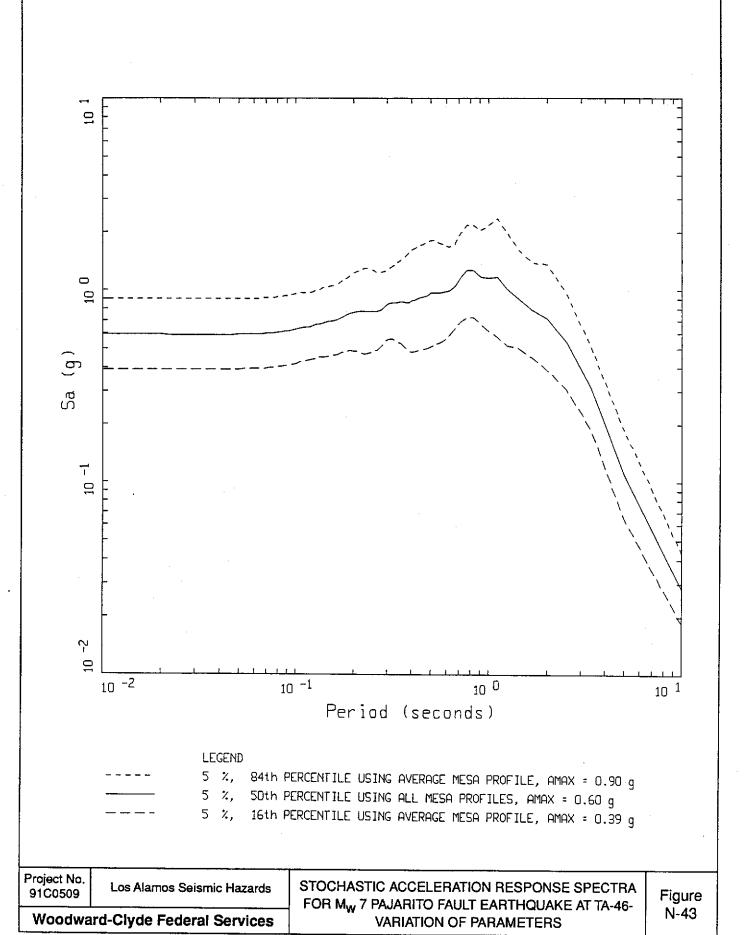


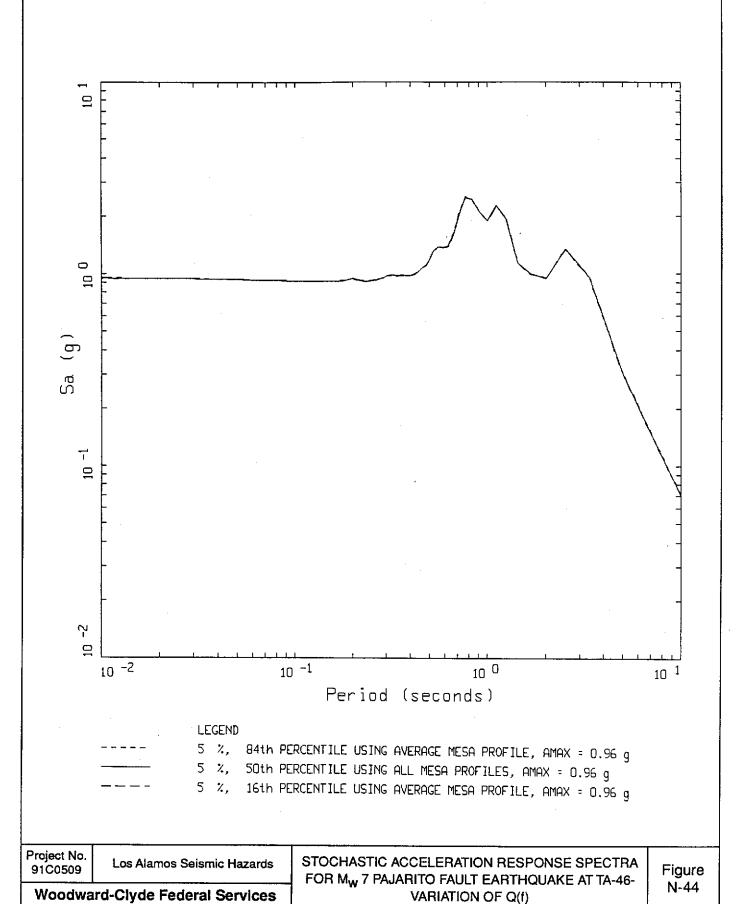


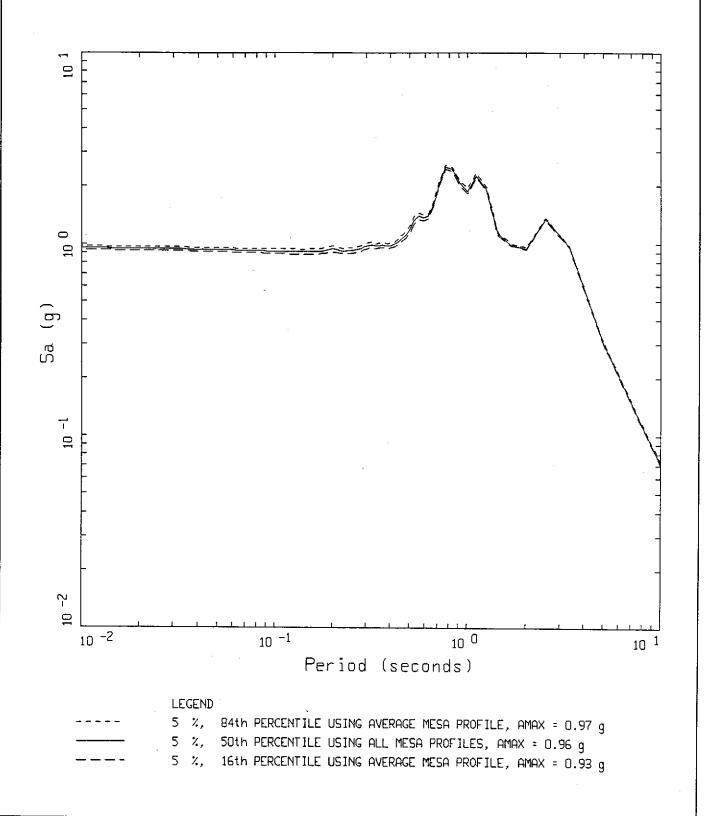










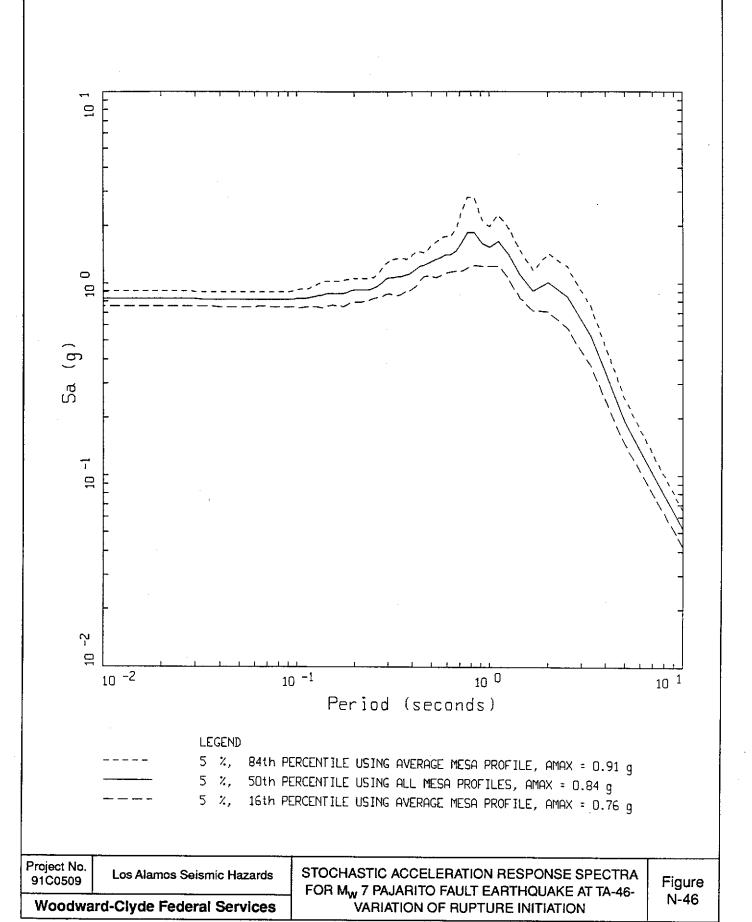


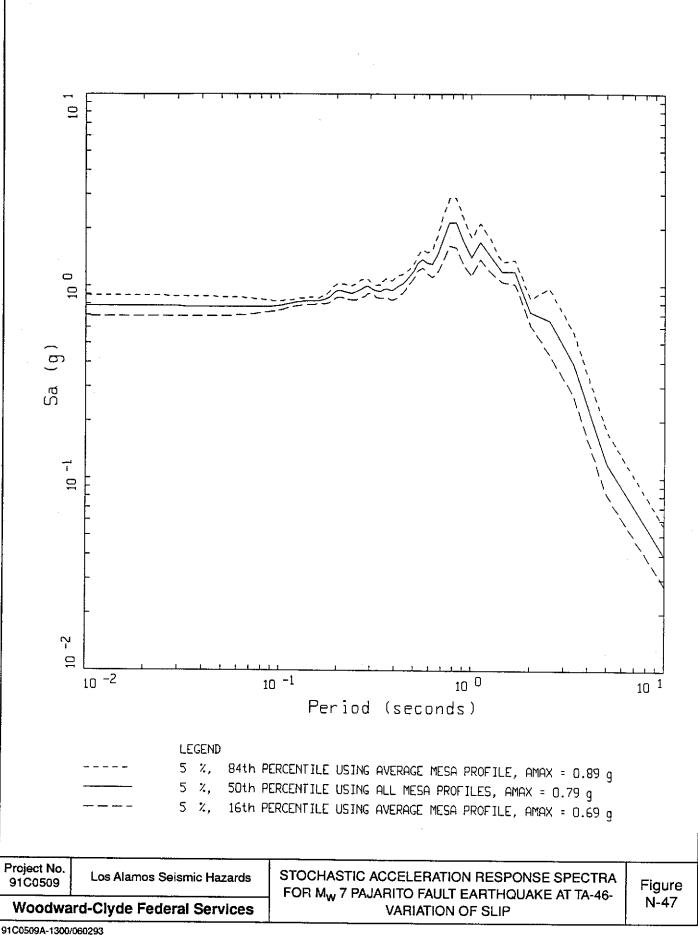
STOCHASTIC ACCELERATION RESPONSE SPECTRA

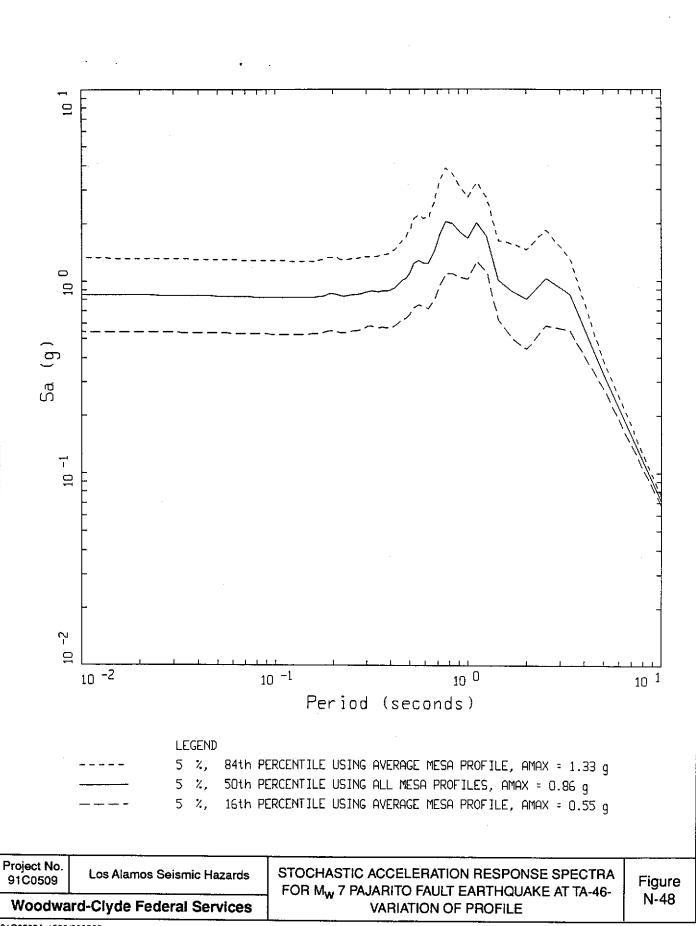
FOR M_W 7 PAJARITO FAULT EARTHQUAKE AT TA-46-

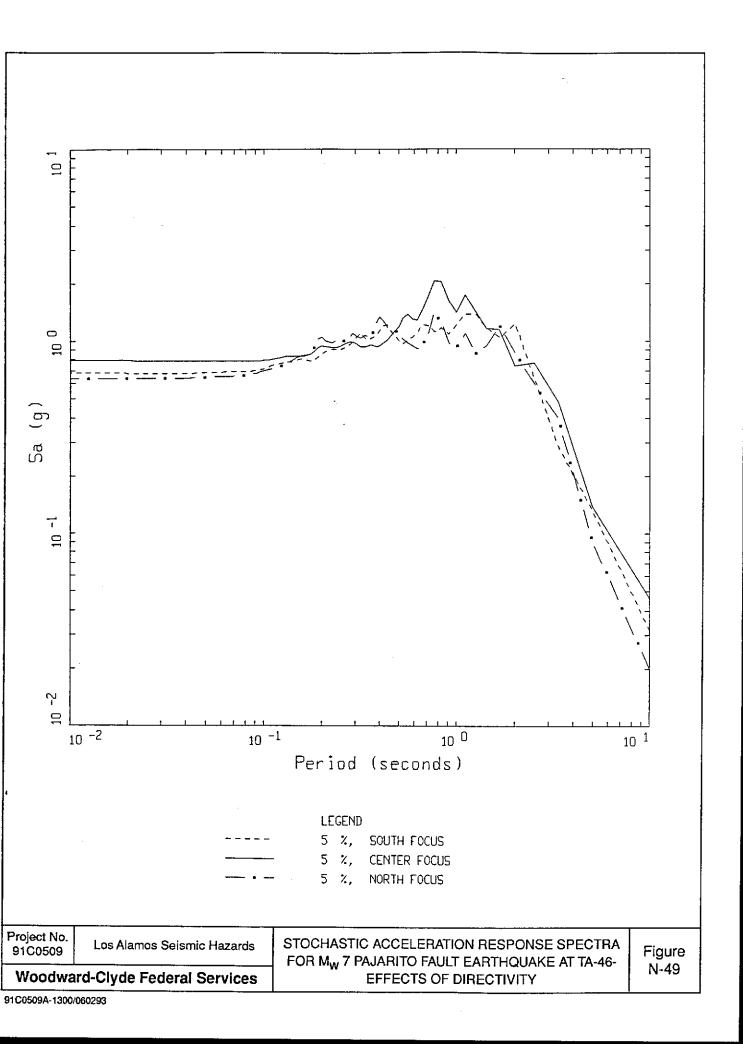
VARIATION OF K

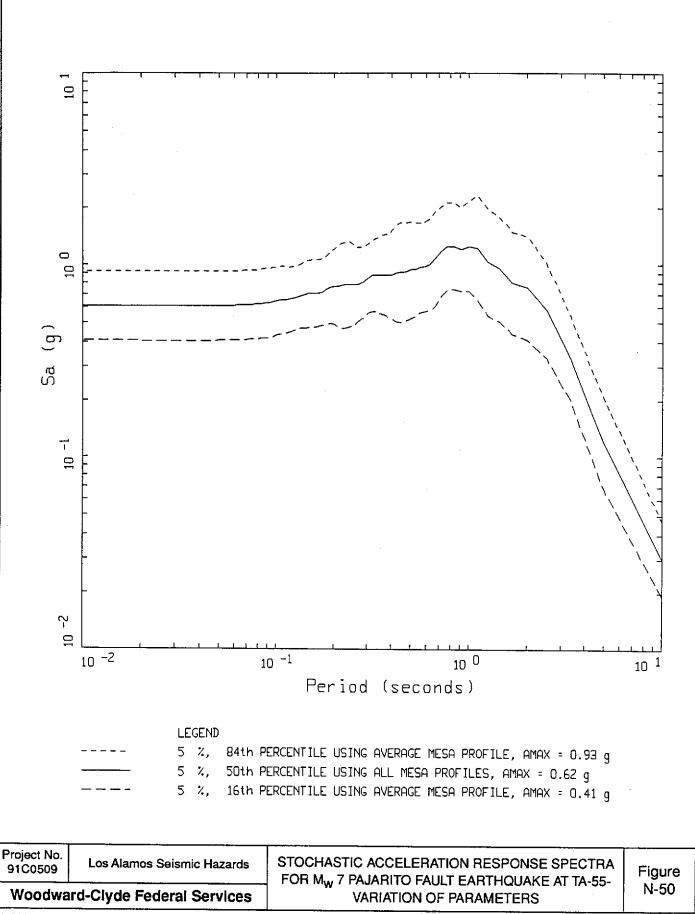
Figure

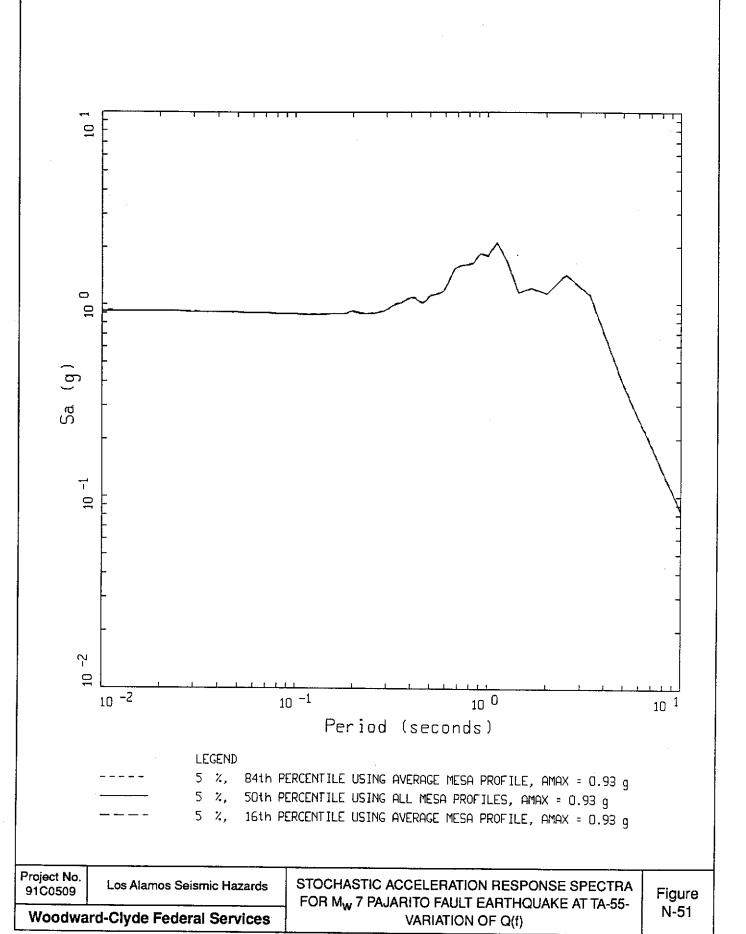

N-45

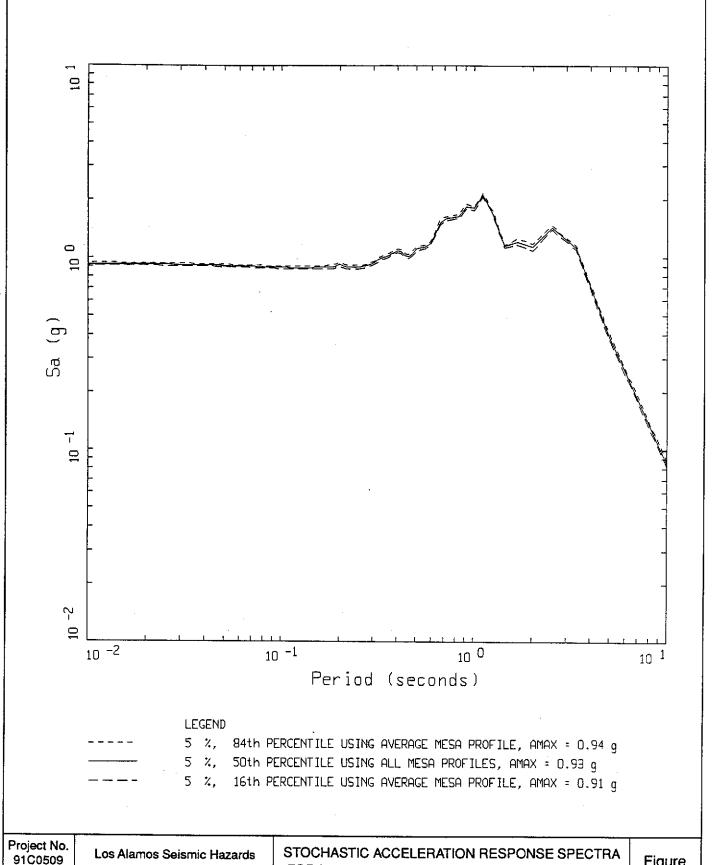

Los Alamos Seismic Hazards

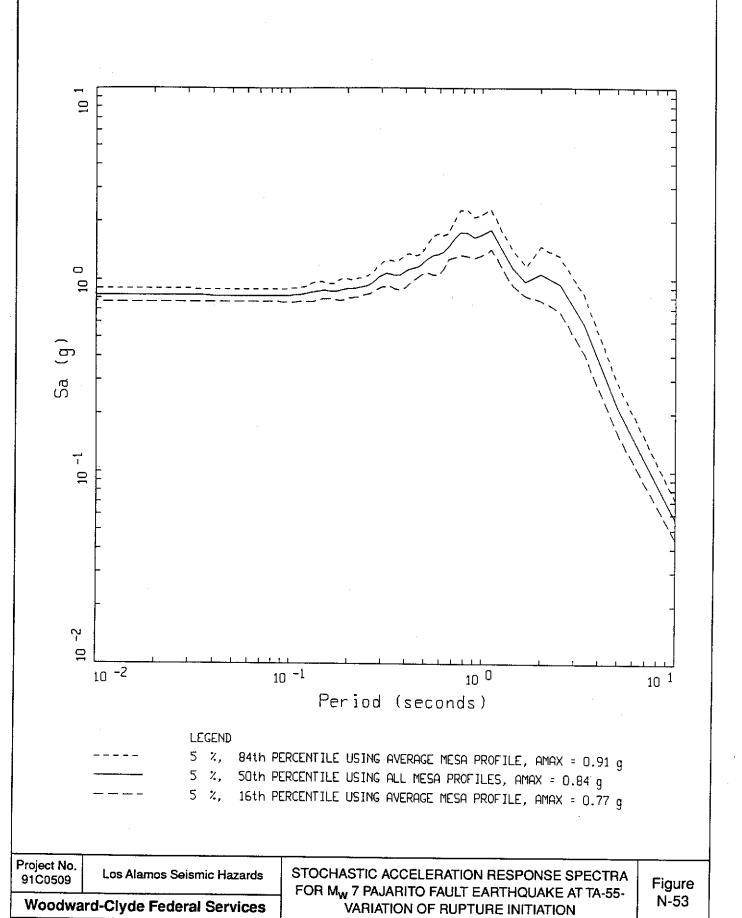

Woodward-Clyde Federal Services

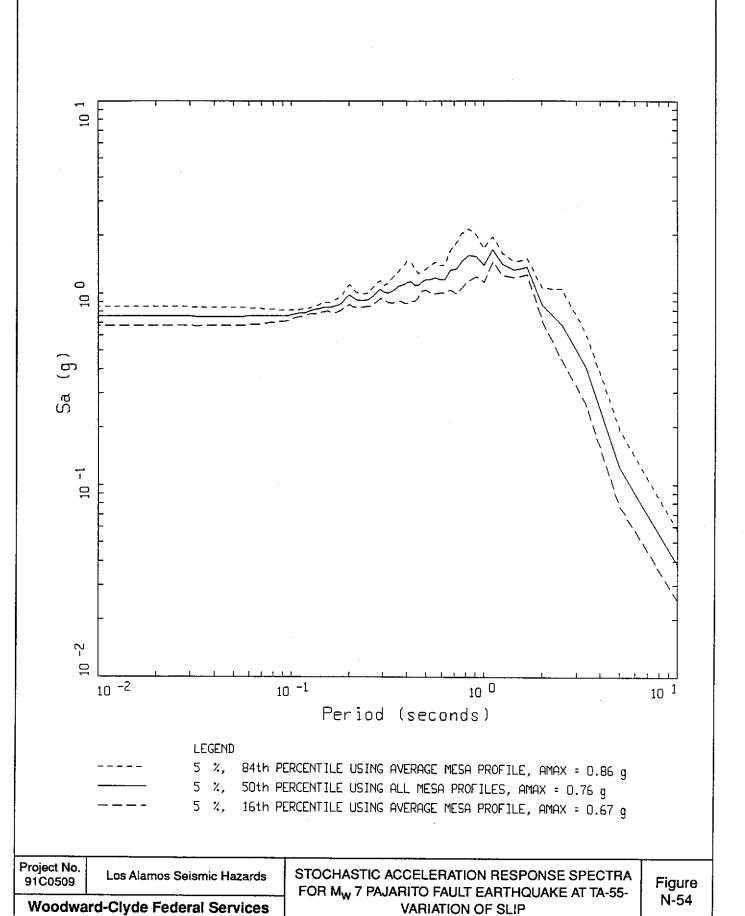

Project No.

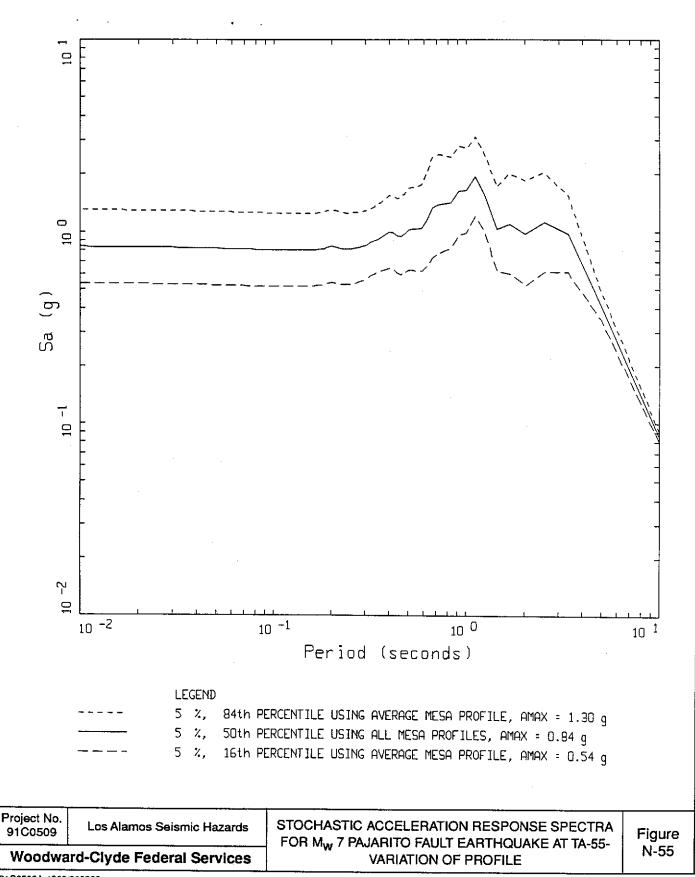

91C0509

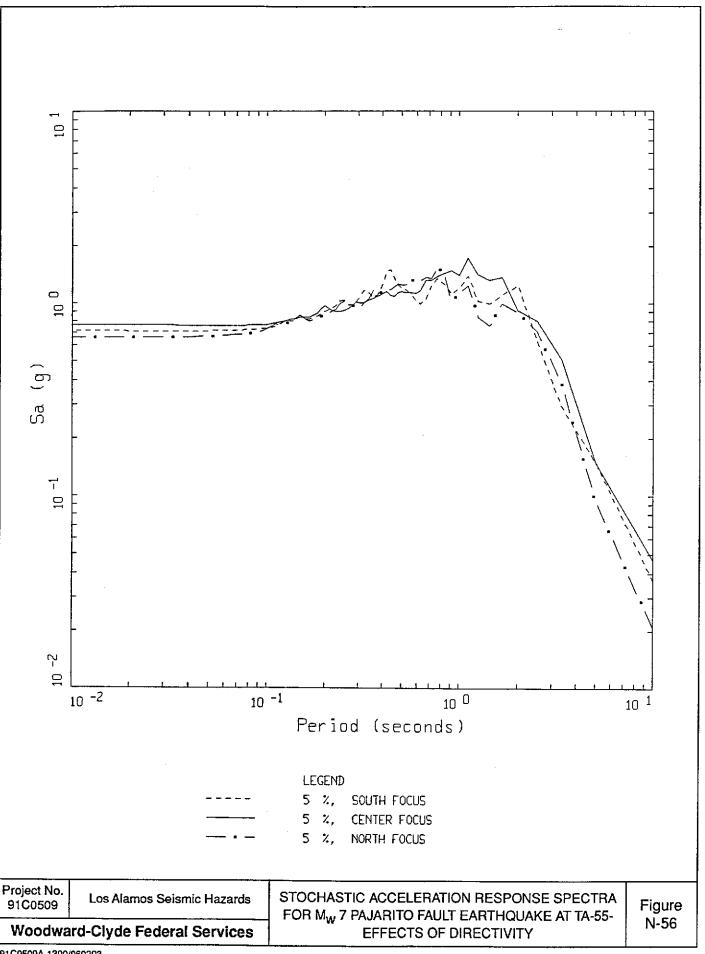




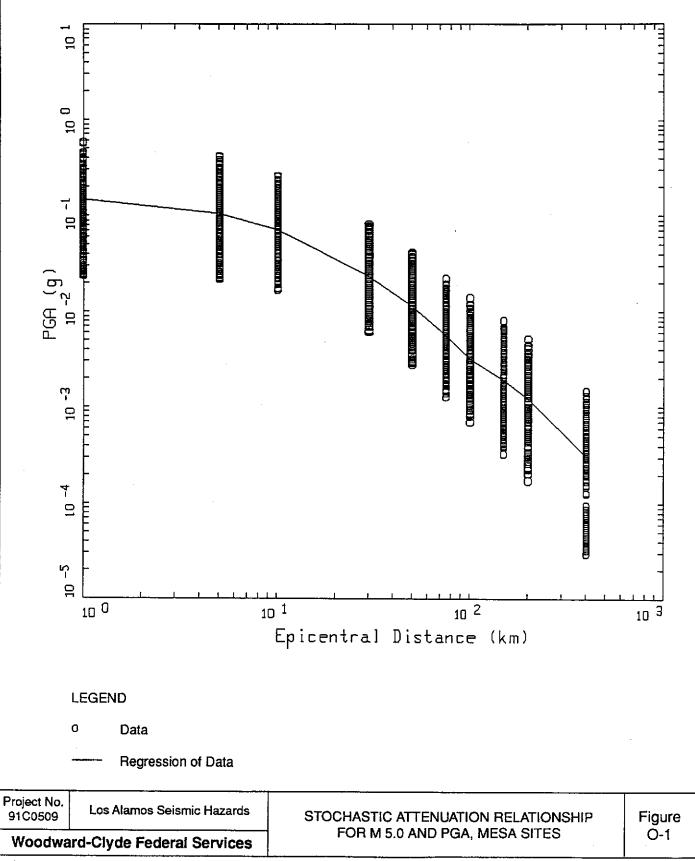

FOR M_W 7 PAJARITO FAULT EARTHQUAKE AT TA-55-

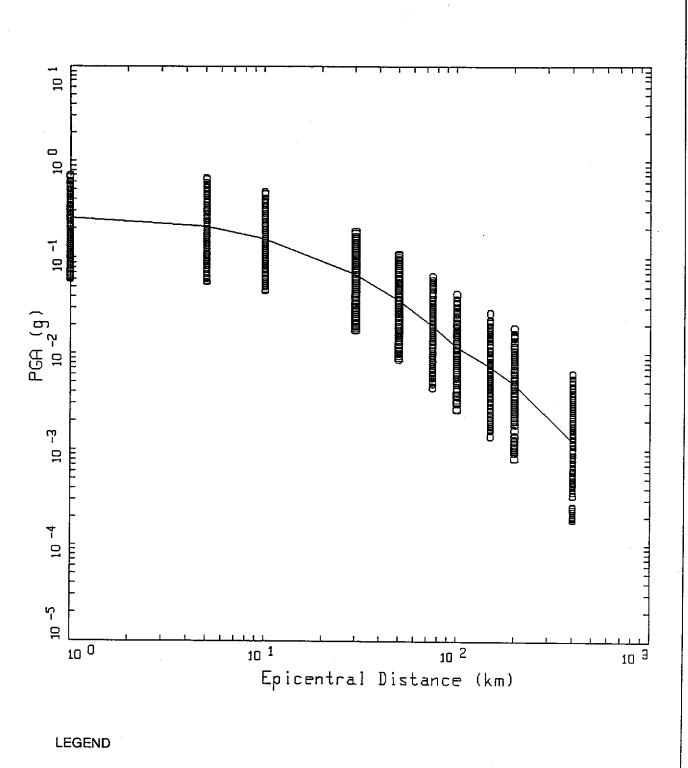

VARIATION OF K


Figure

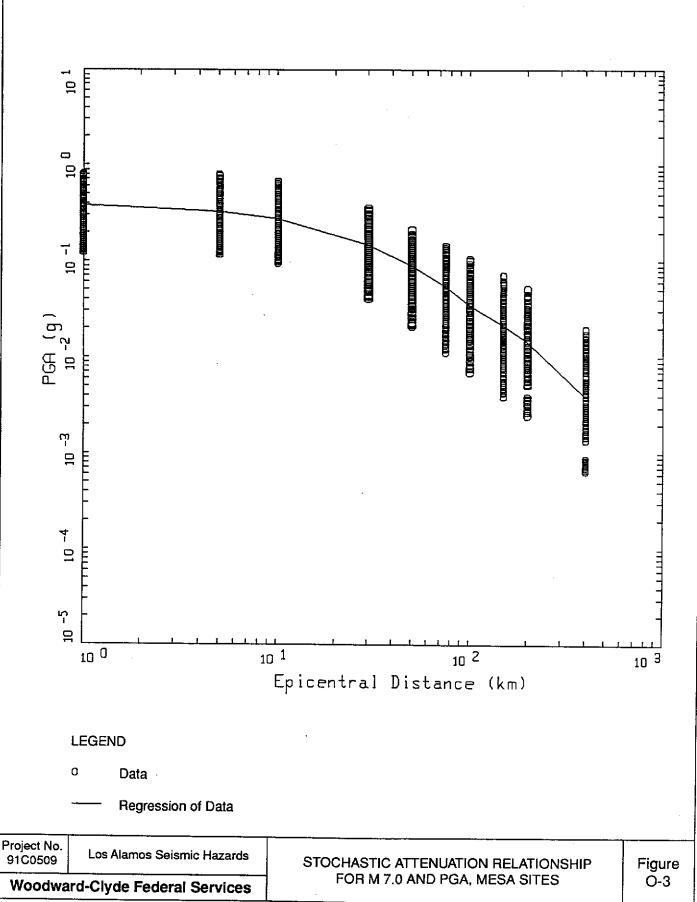

N-52

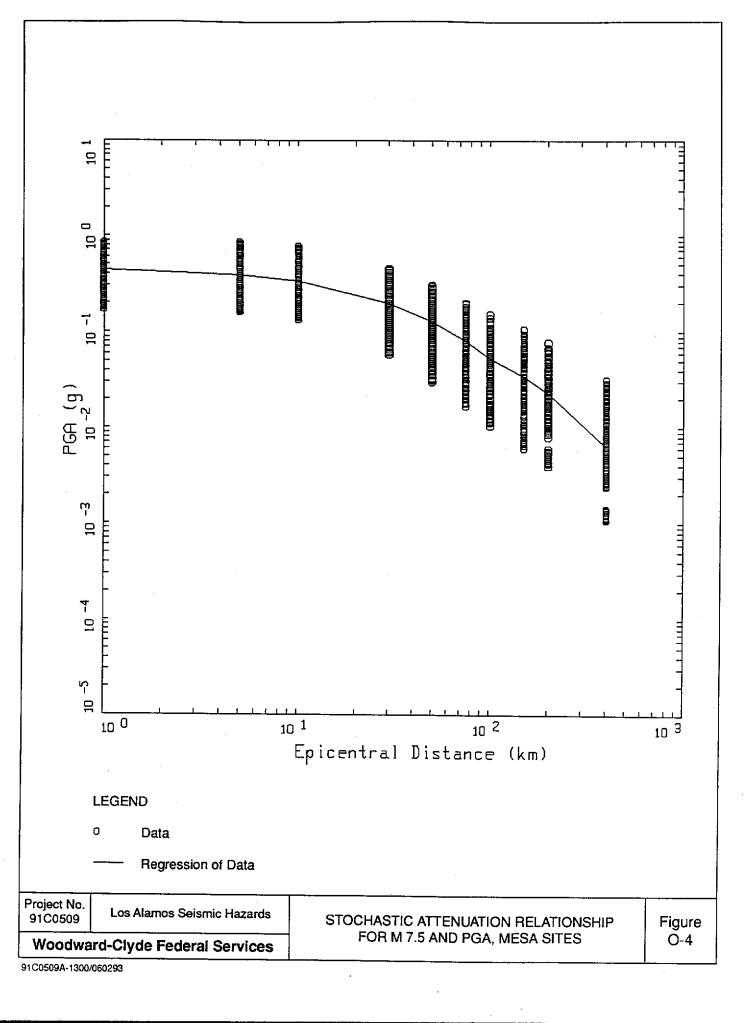
Woodward-Clyde Federal Services

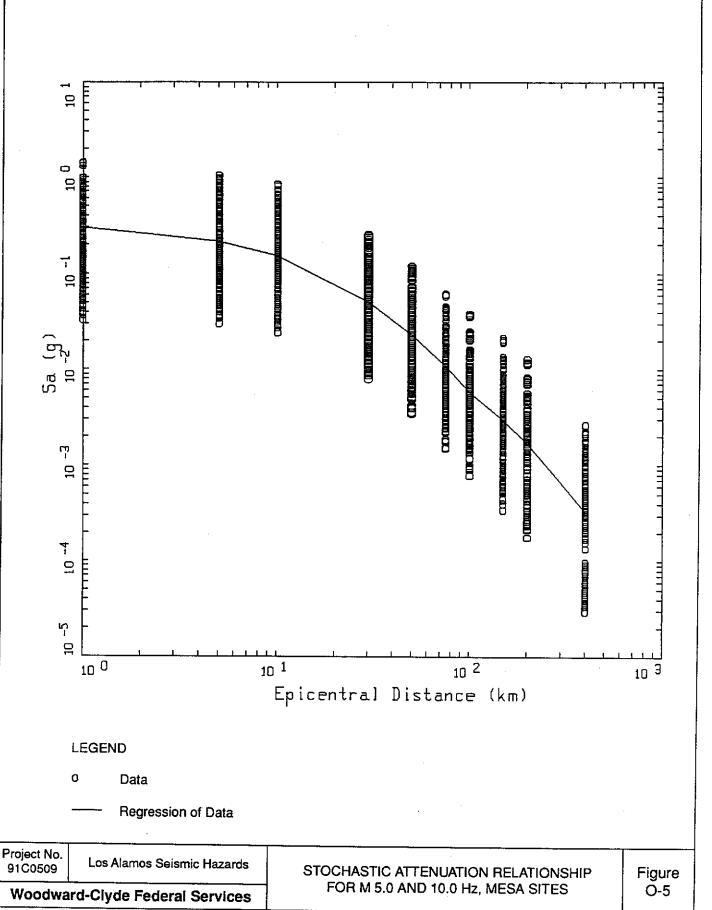


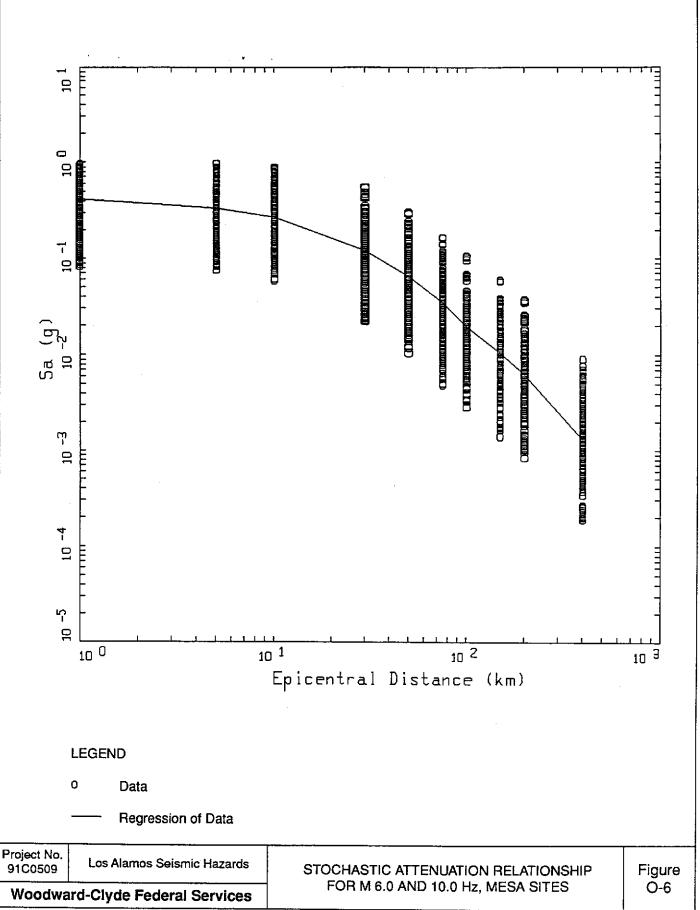


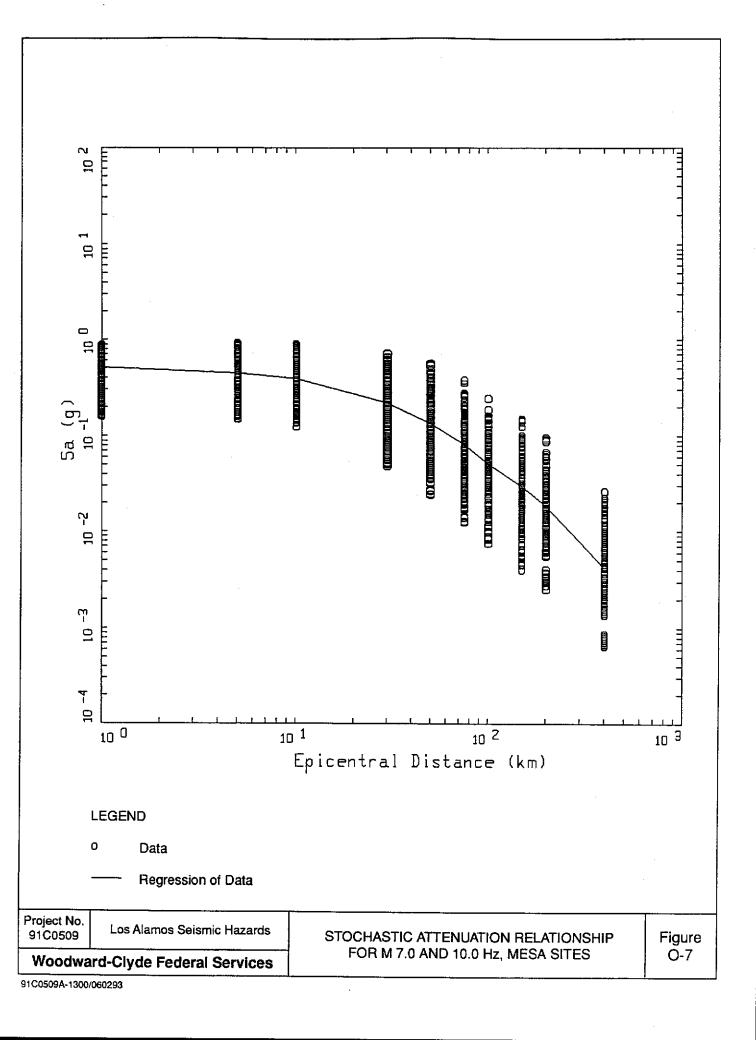
APPENDIX 0 STOCHASTIC ATTENUATION RELATIONSHIPS FOR LANL SITES

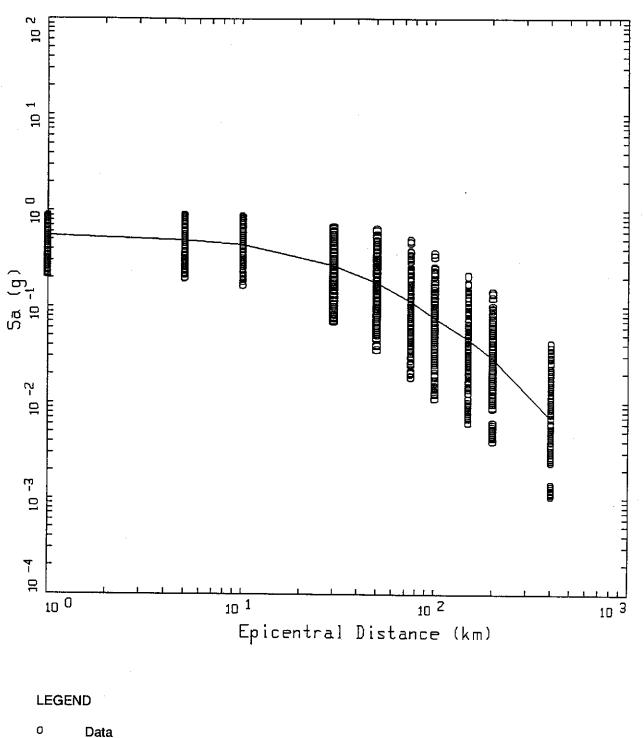


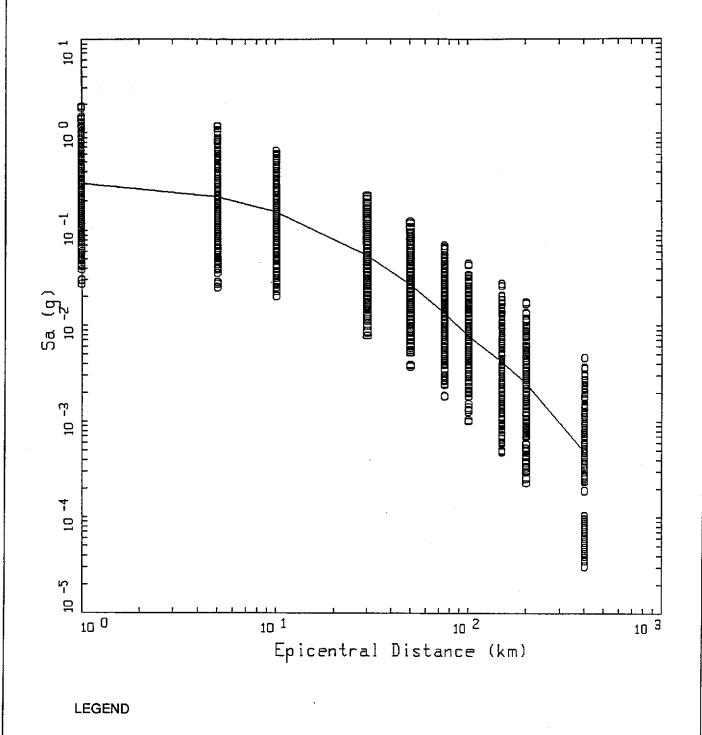



o Data

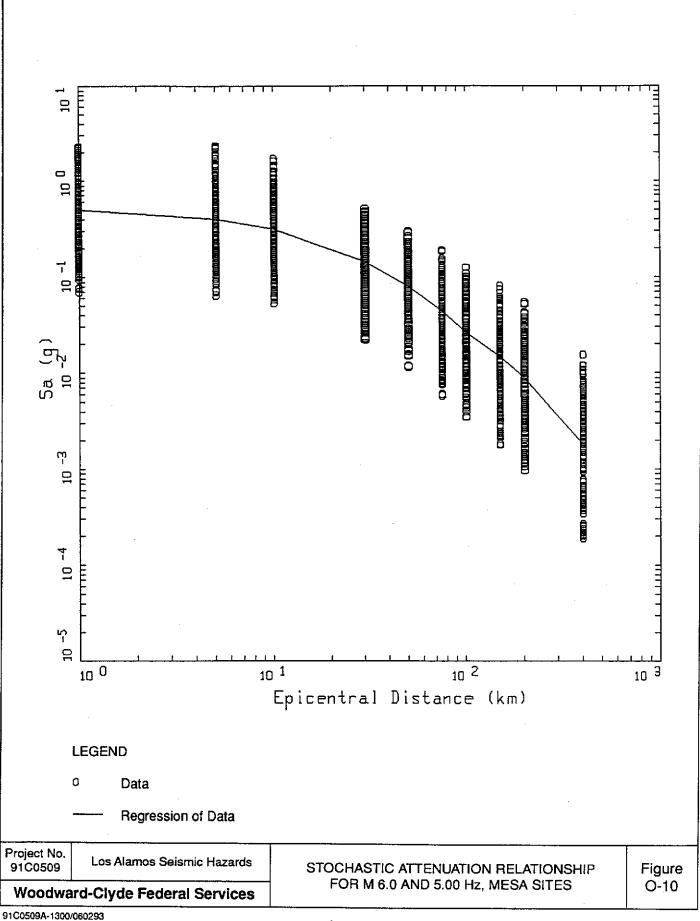

---- Regression of Data

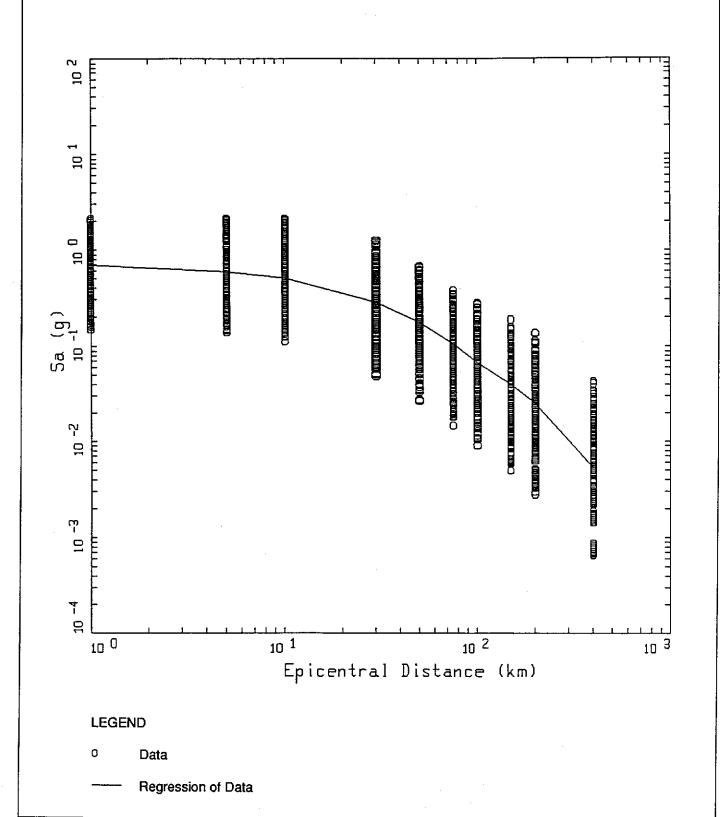

Project No. 91C0509	Los Alamos Seismic Hazards	STOCHASTIC ATTENUATION RELATIONSHIP	Figure
Woodward-Clyde Federal Services		FOR M 6.0 AND PGA, MESA SITES	O-2





Regression of Data


Project No. Los Alamos Seismic Hazards 91C0509 STOCHASTIC ATTENUATION RELATIONSHIP Figure FOR M 7.5 AND 10.0 Hz, MESA SITES O-8 **Woodward-Clyde Federal Services**



o Data

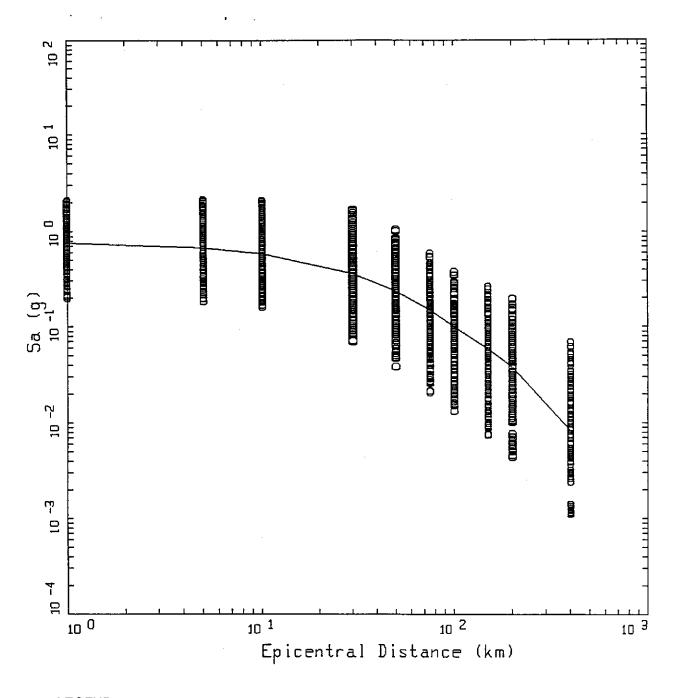
---- Regression of Data

Project No. 91C0509 Los Alamos Seismic Hazards STOCHASTIC ATTENUATION RELATIONSHIP FOR M 5.0 AND 5.00 Hz, MESA SITES O-9

STOCHASTIC ATTENUATION RELATIONSHIP

FOR M 7.0 AND 5.00 Hz, MESA SITES

Figure

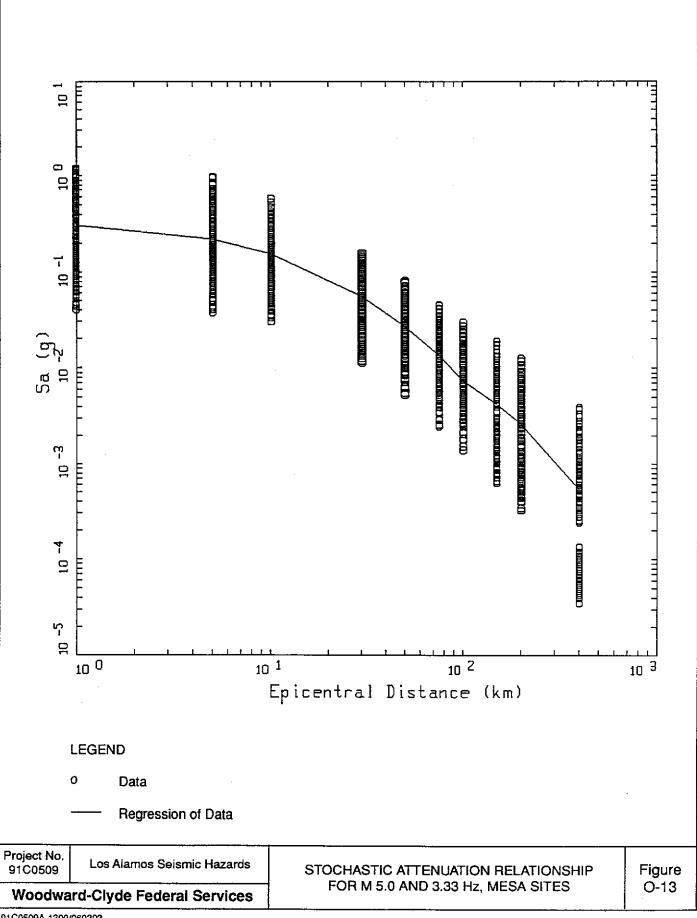

0-11

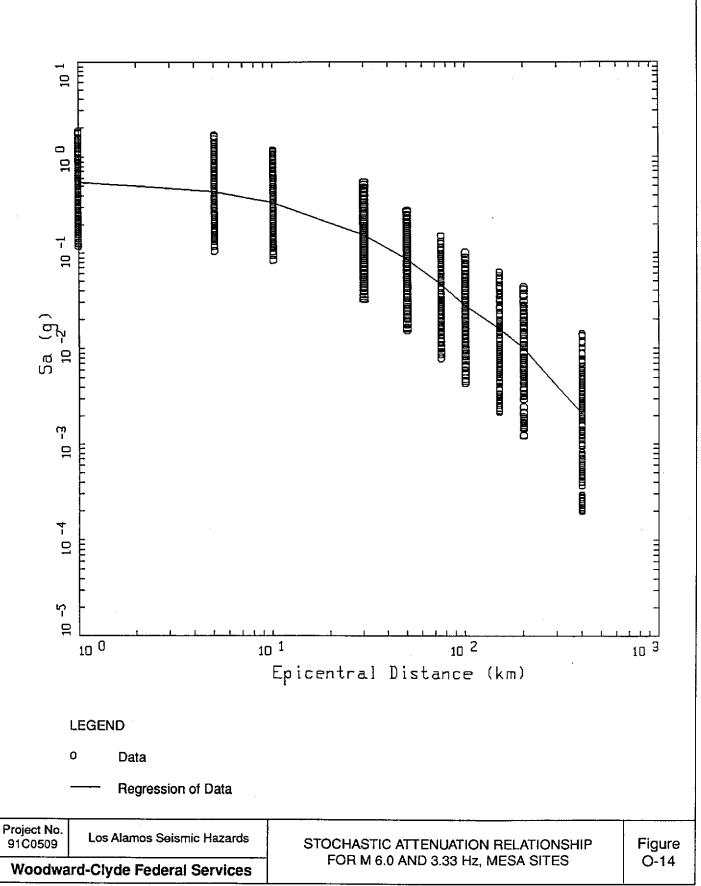
91C0509A-1300/060293

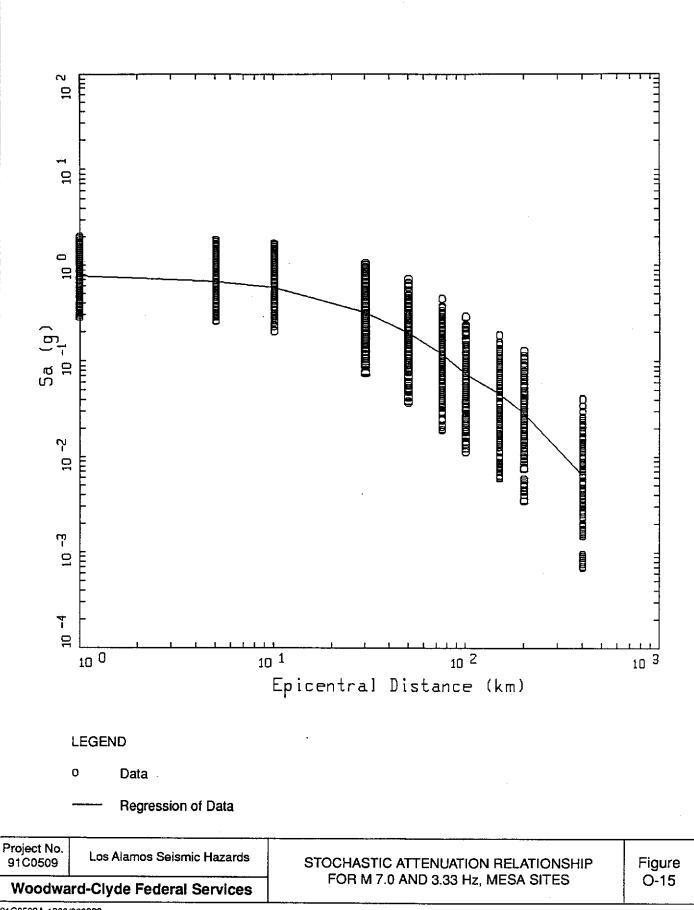
Los Alamos Seismic Hazards

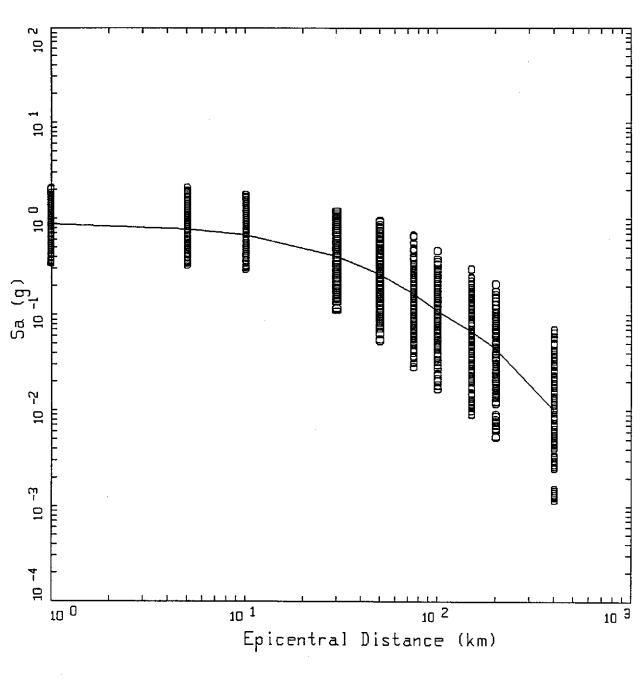
Woodward-Clyde Federal Services

Project No. 91C0509

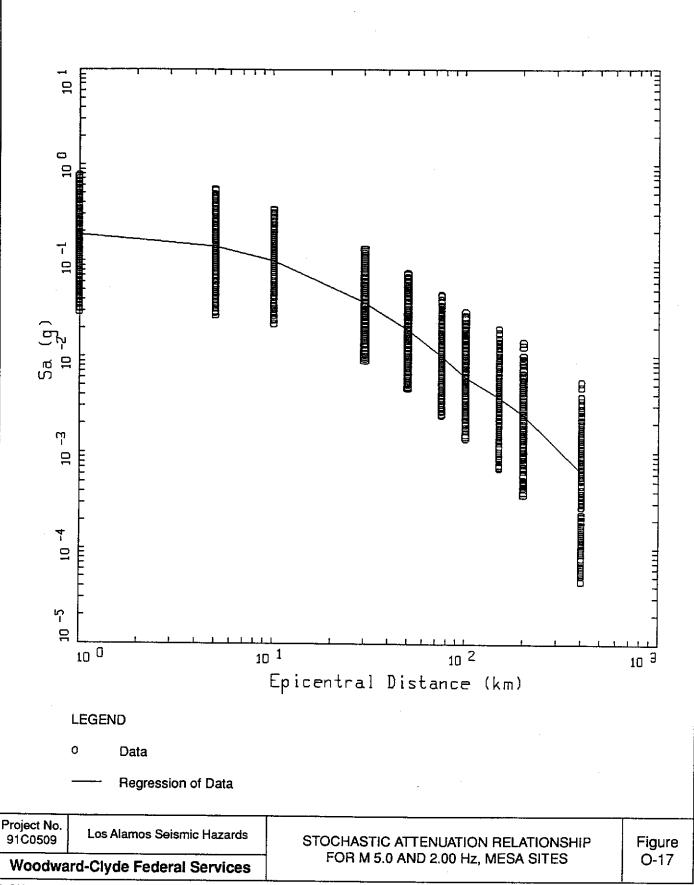


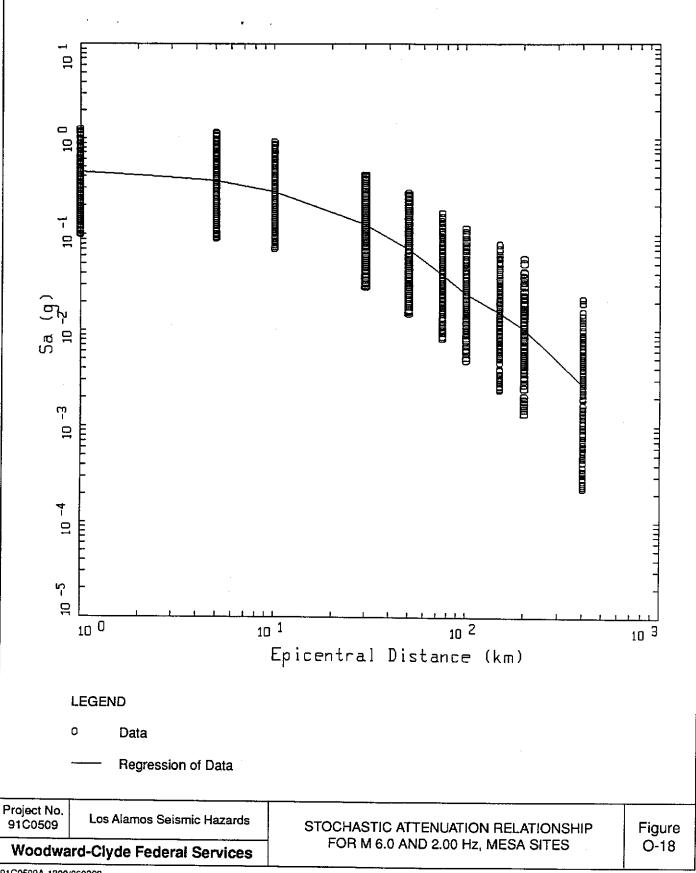

LEGEND

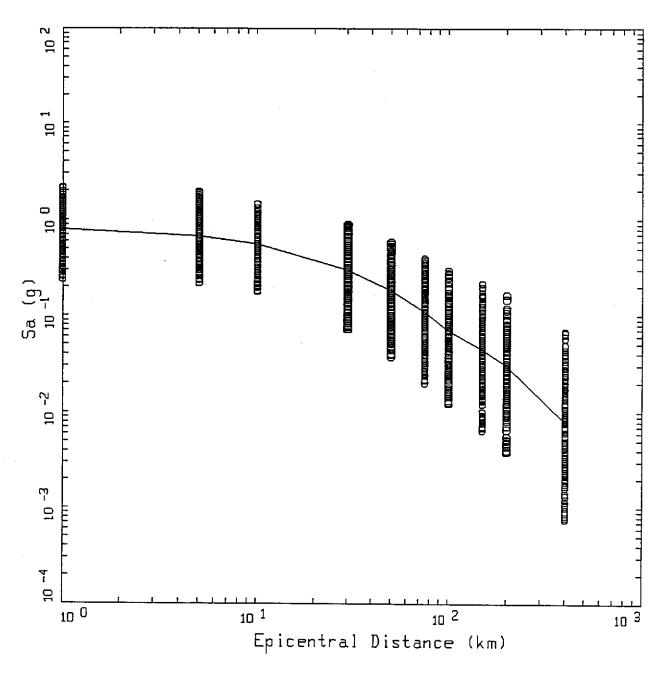

o Data


--- Regression of Data

Project No. 91C0509 Los Alamos Seismic Hazards STOCHASTIC ATTENUATION RELATIONSHIP FOR M 7.5 AND 5.00 Hz, MESA SITES O-12

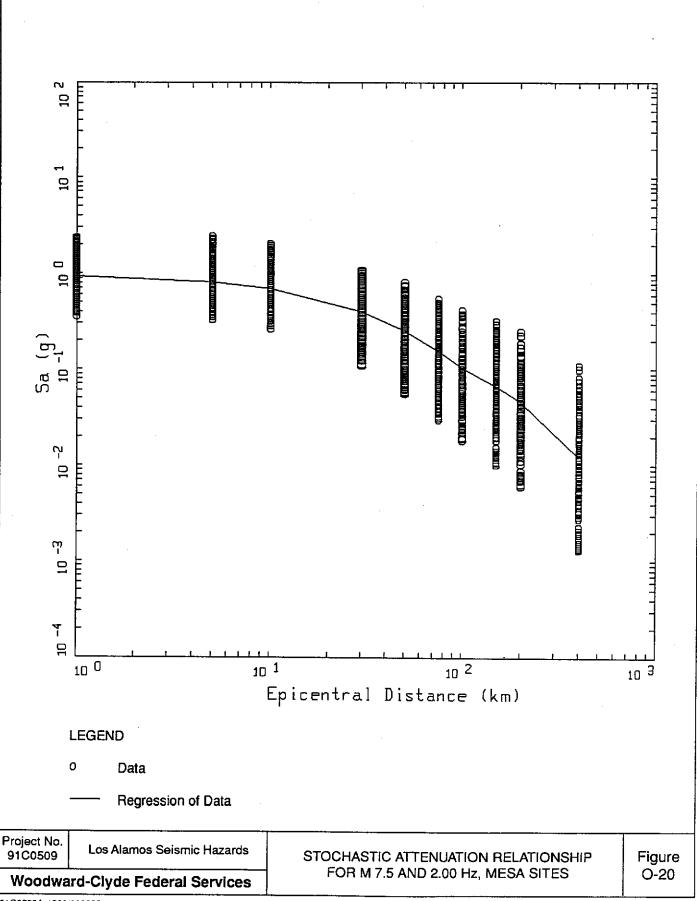


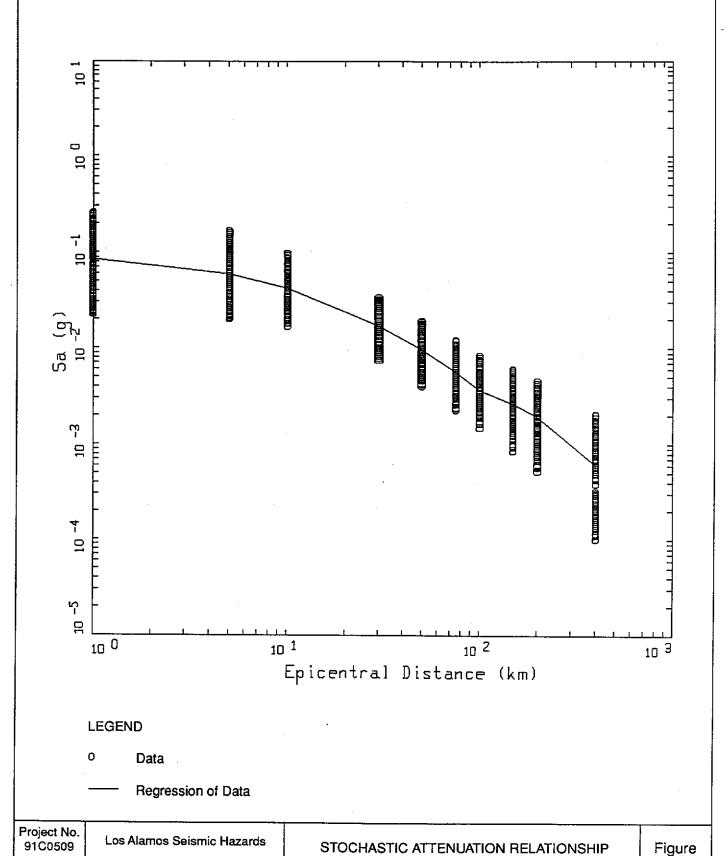



o Data

--- Regression of Data

Project No. 91C0509 Los Alamos Seismic Hazards STOCHASTIC ATTENUATION RELATIONSHIP FOR M 7.5 AND 3.33 Hz, MESA SITES O-16

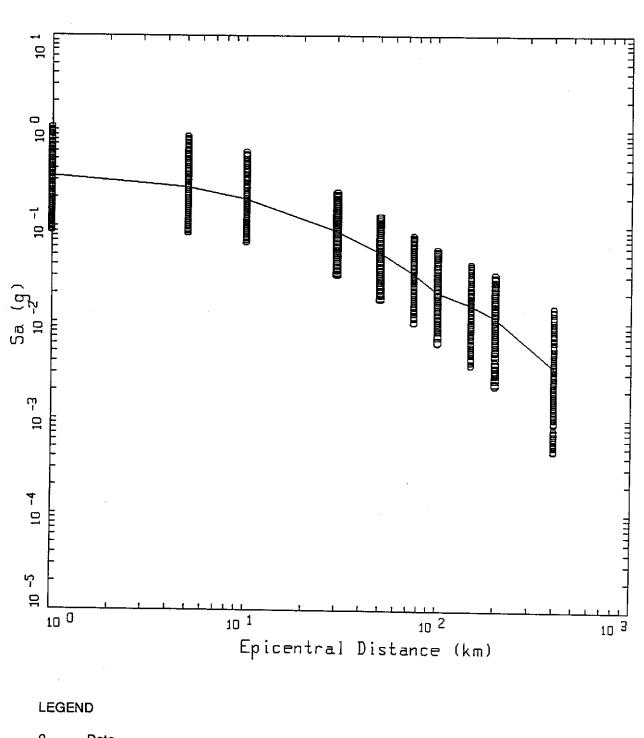




o Data

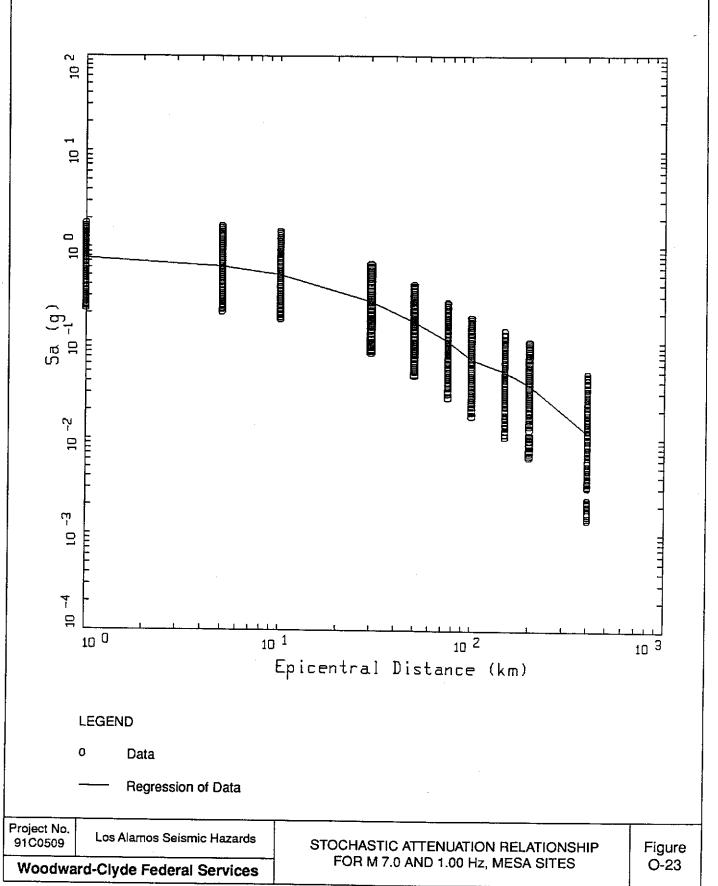
---- Regression of Data

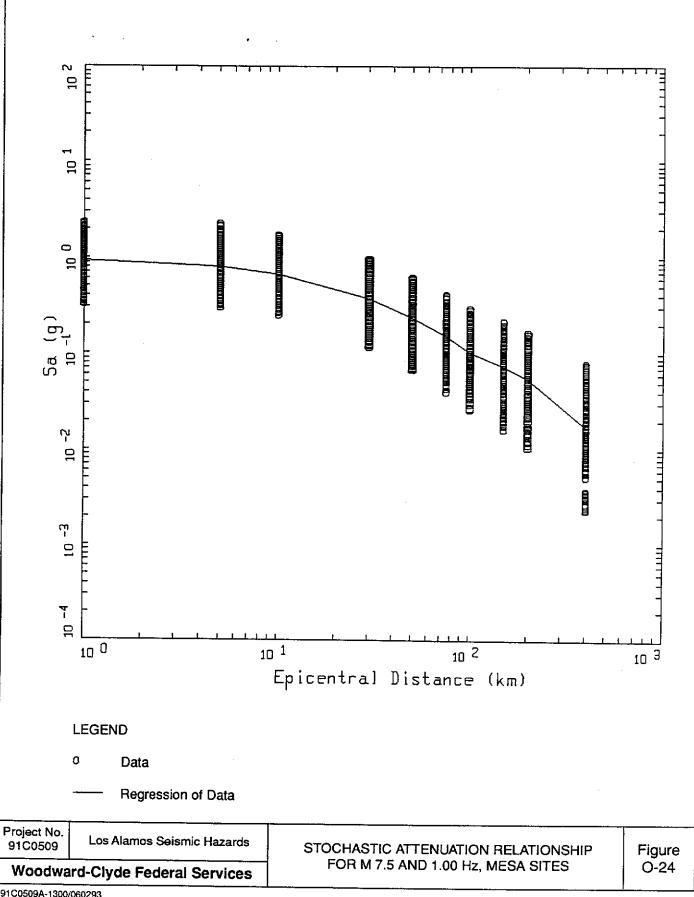
Project No. 91C0509 Los Alamos Seismic Hazards STOCHASTIC ATTENUATION RELATIONSHIP FOR M 7.0 AND 2.00 Hz, MESA SITES O-19

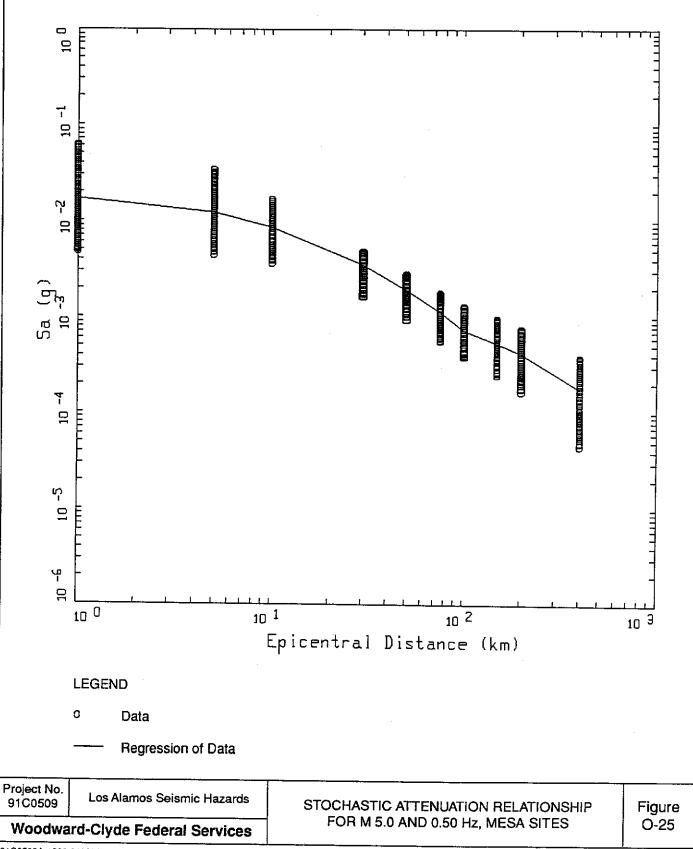


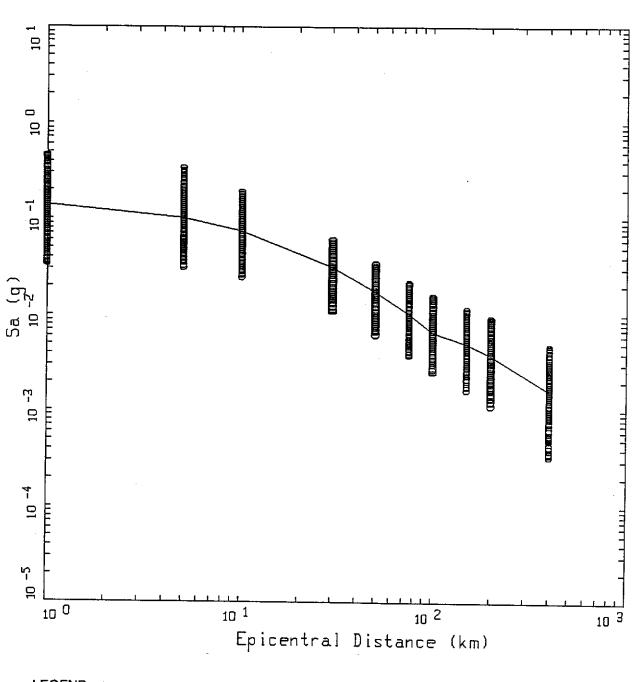
FOR M 5.0 AND 1.00 Hz, MESA SITES

O-21

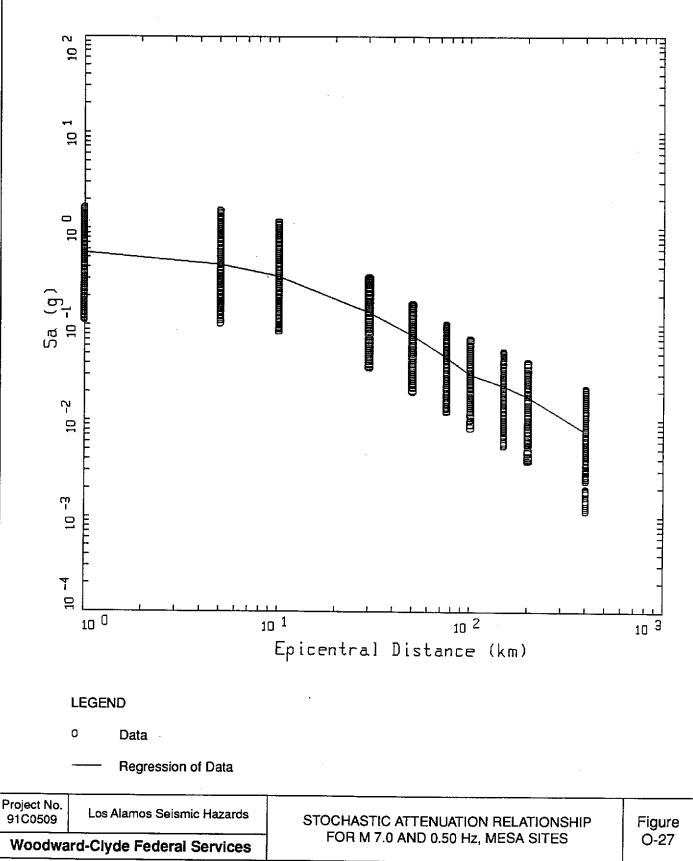

Woodward-Clyde Federal Services

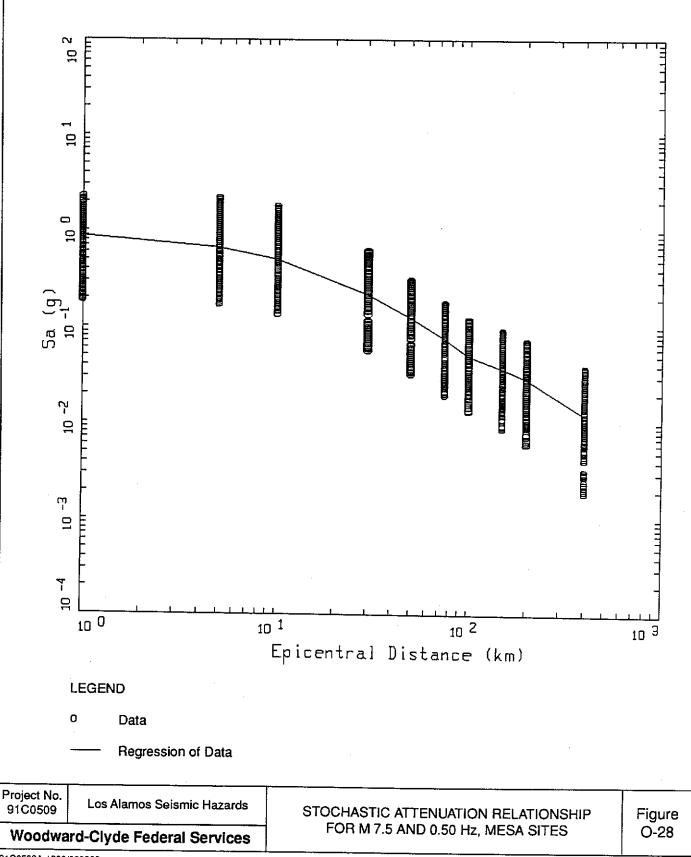


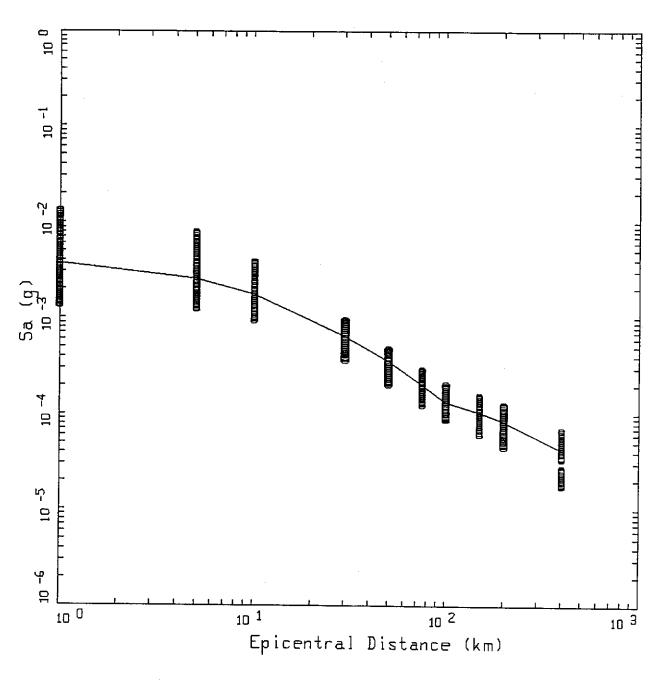

O Data


---- Regression of Data

Project No. 91C0509 Los Alamos Seismic Hazards STOCHASTIC ATTENUATION RELATIONSHIP FOR M 6.0 AND 1.00 Hz, MESA SITES O-22

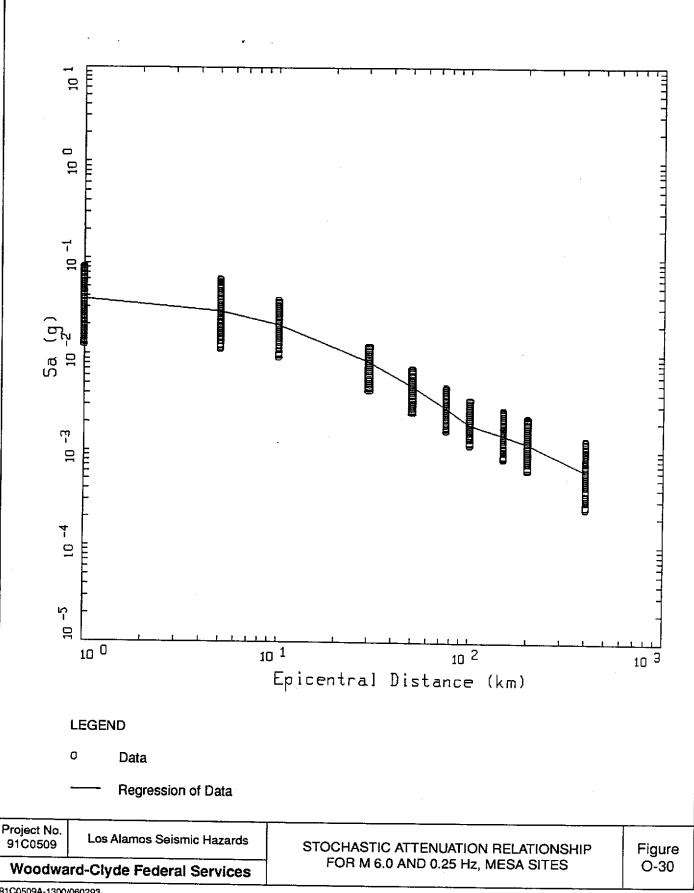

o Data

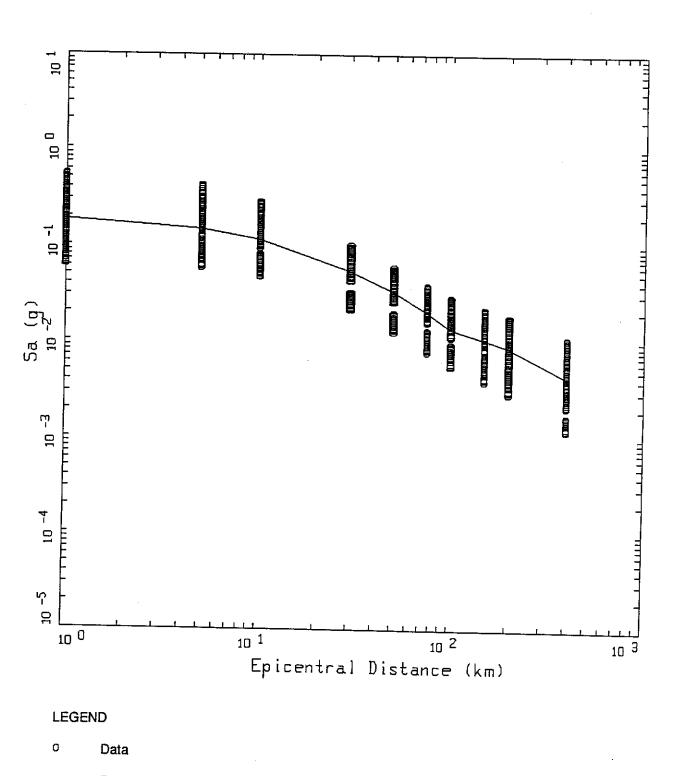

Regression of Data


Project No. 91C0509 Los Alamos Seismic Hazards
STOCHASTIC ATTENUATION RELATIONSHIP FOR M 6.0 AND 0.50 Hz, MESA SITES

FOR M 6.0 AND 0.50 Hz, MESA SITES

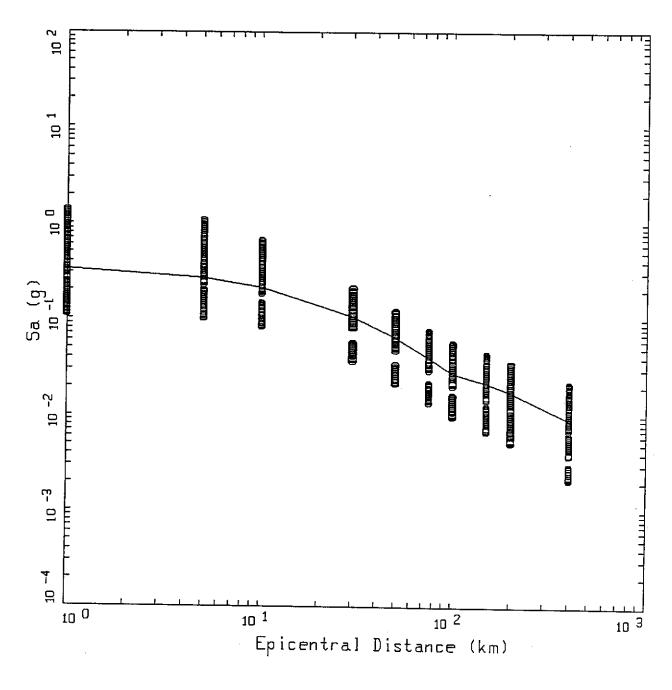
O-26



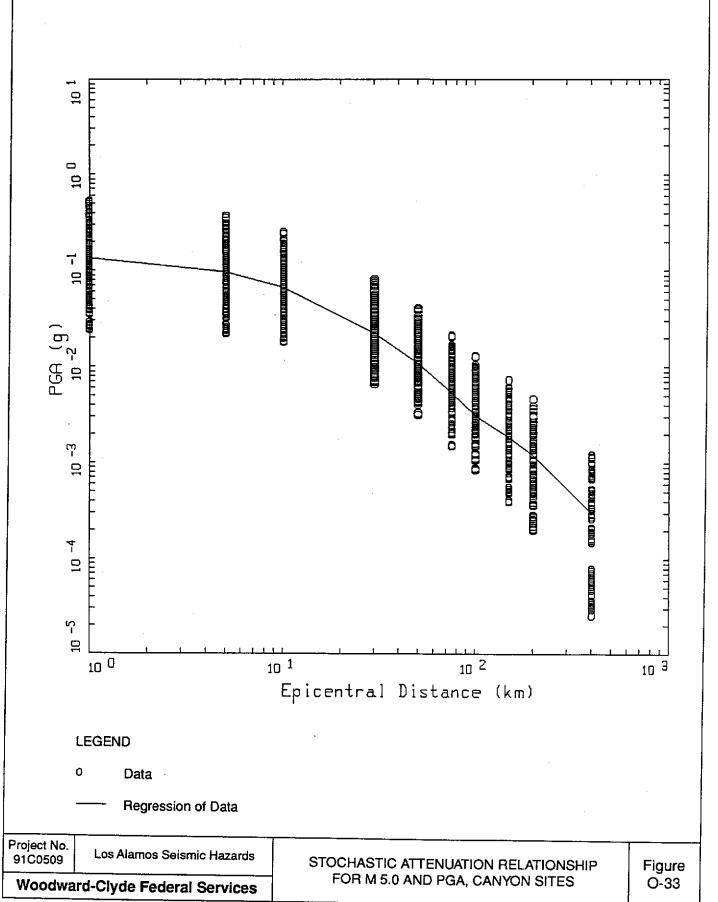


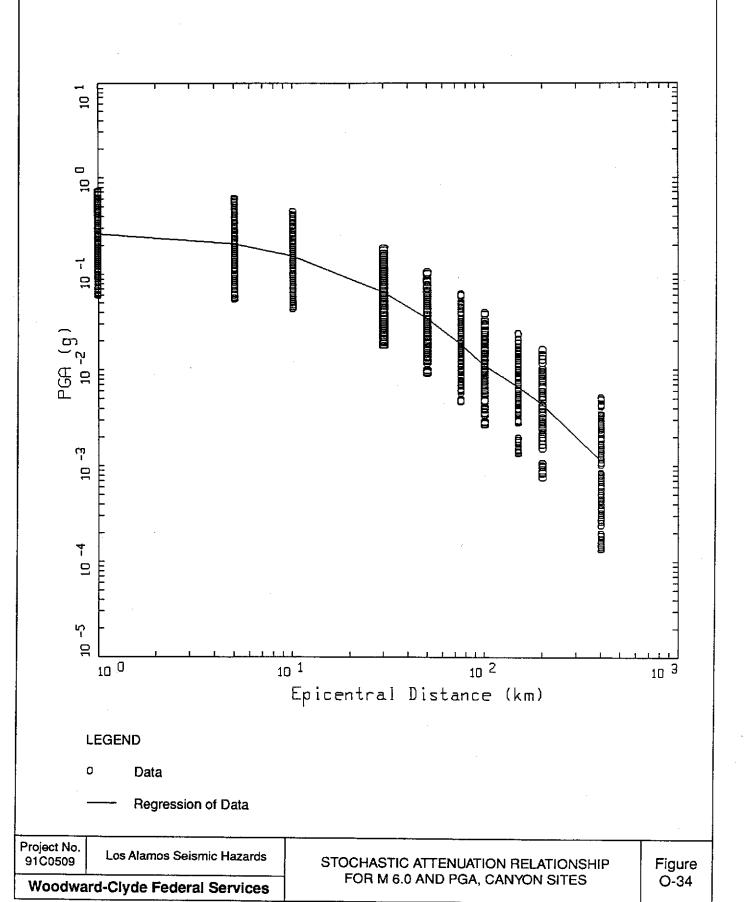
o Data

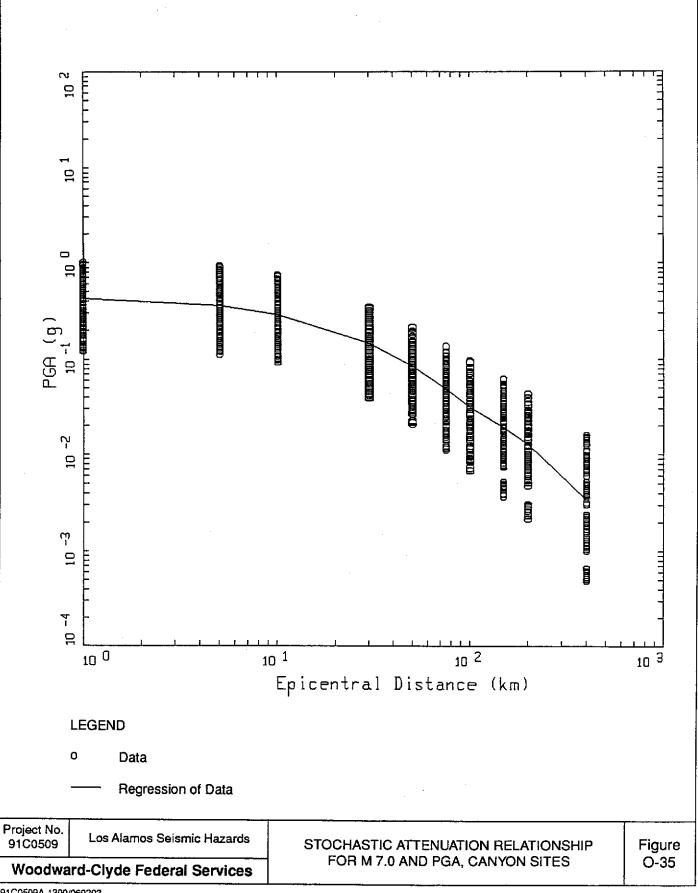
---- Regression of Data

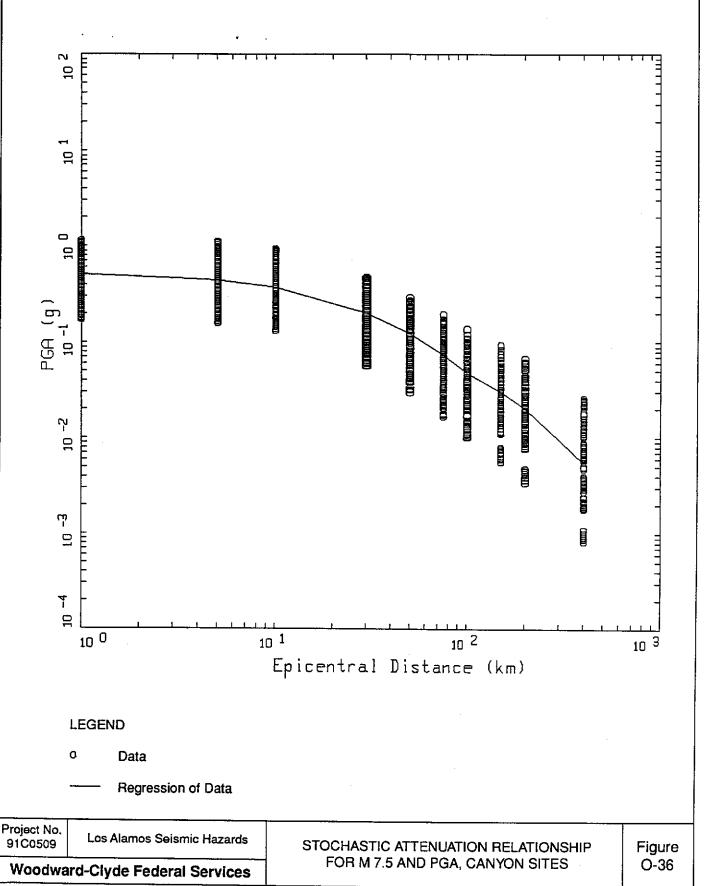

Project No. 91C0509 Los Alamos Seismic Hazards STOCHASTIC ATTENUATION RELATIONSHIP FOR M 5.0 AND 0.25 Hz, MESA SITES O-29

---- Regression of Data

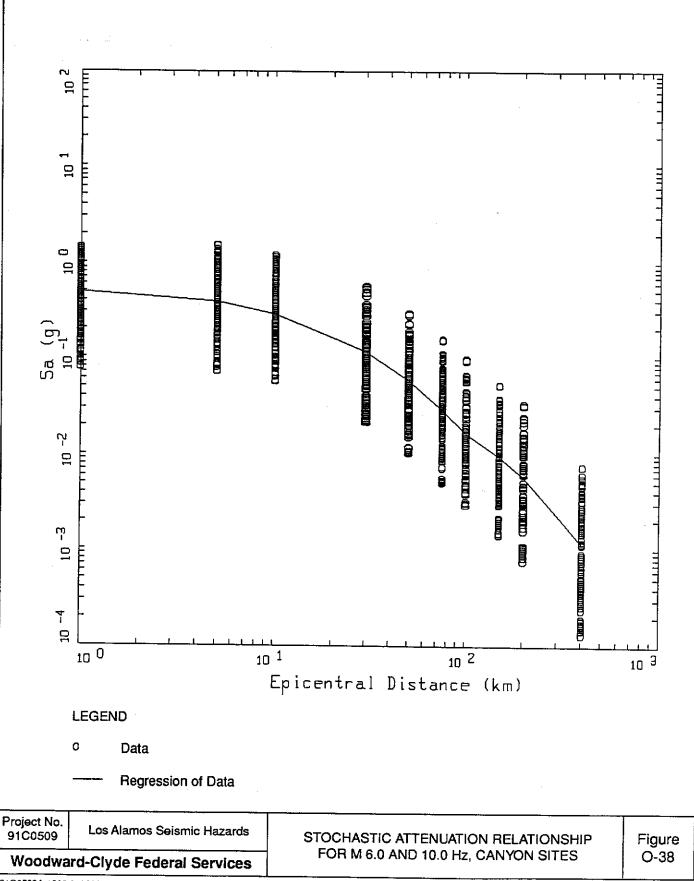

Project No. 91C0509 Los Alamos Seismic Hazards STOCHASTIC ATTENUATION RELATIONSHIP FOR M 7.0 AND 0.25 Hz, MESA SITES O-31

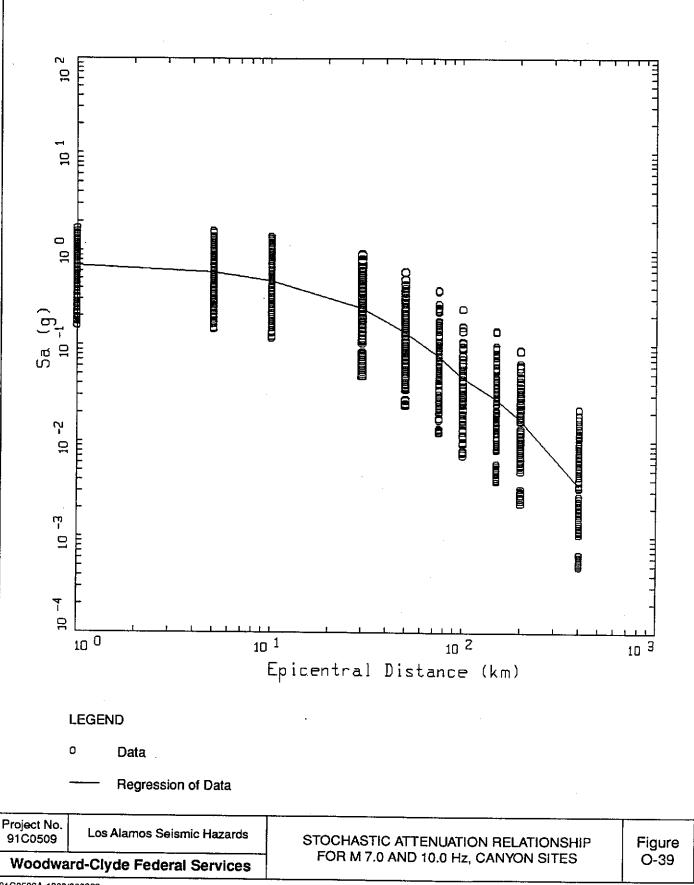


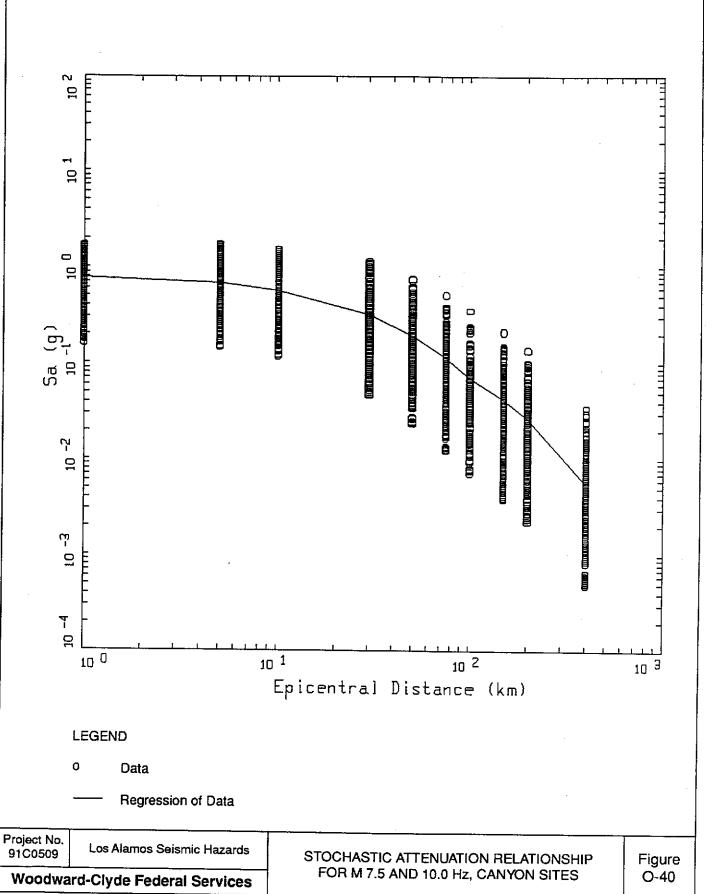

o Data

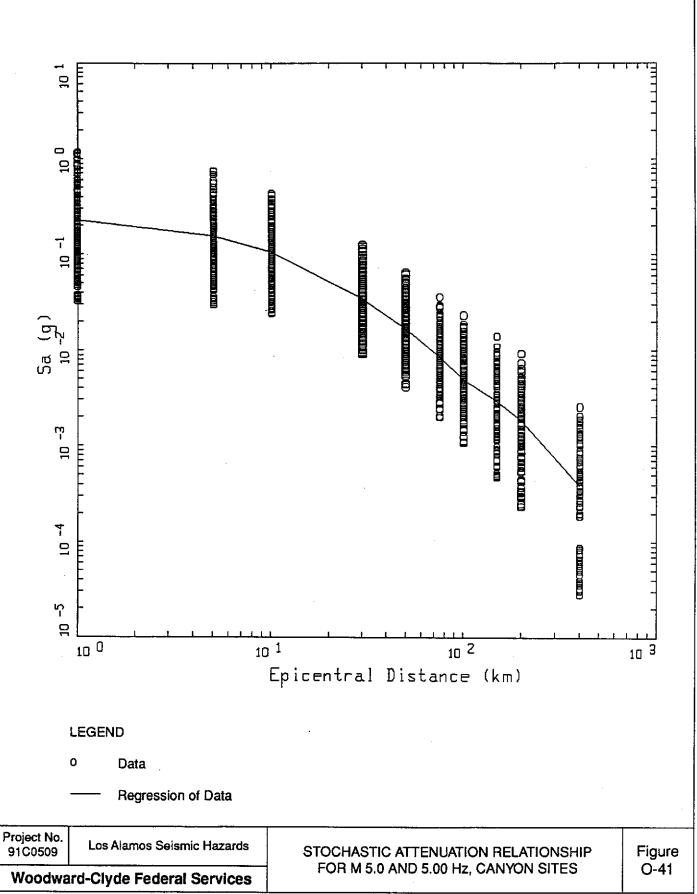

--- Regression of Data

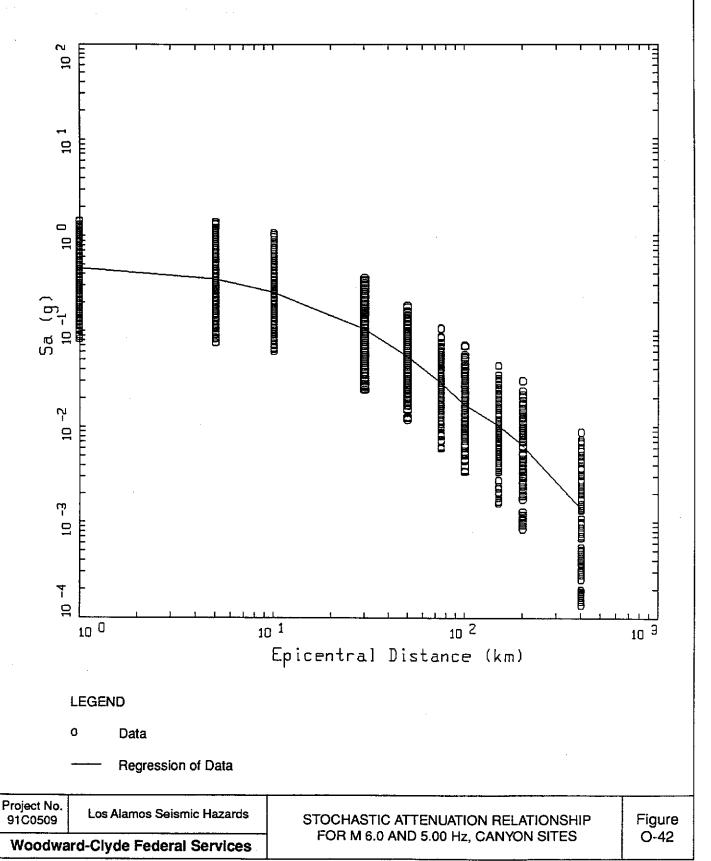
Project No. 91C0509 Los Alamos Seismic Hazards STOCHASTIC ATTENUATION RELATIONSHIP FOR M 7.5 AND 0.25 Hz, MESA SITES O-32

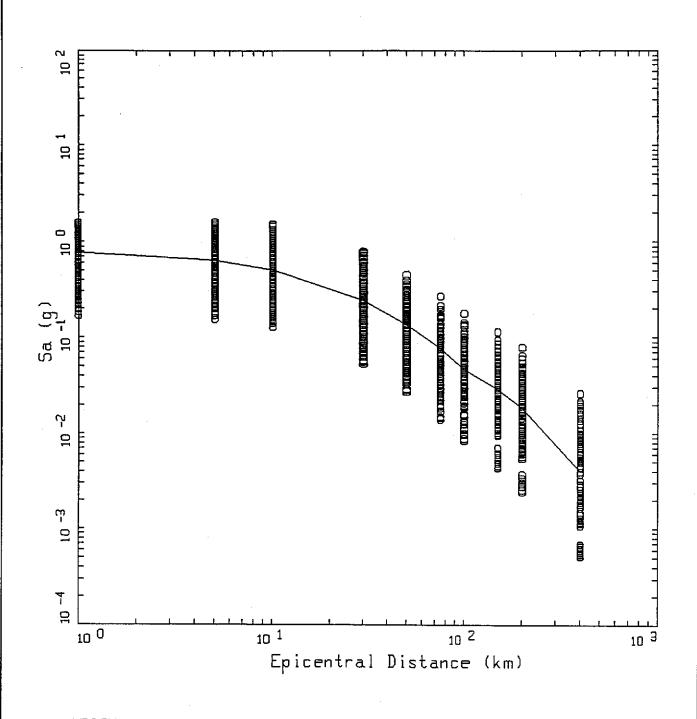


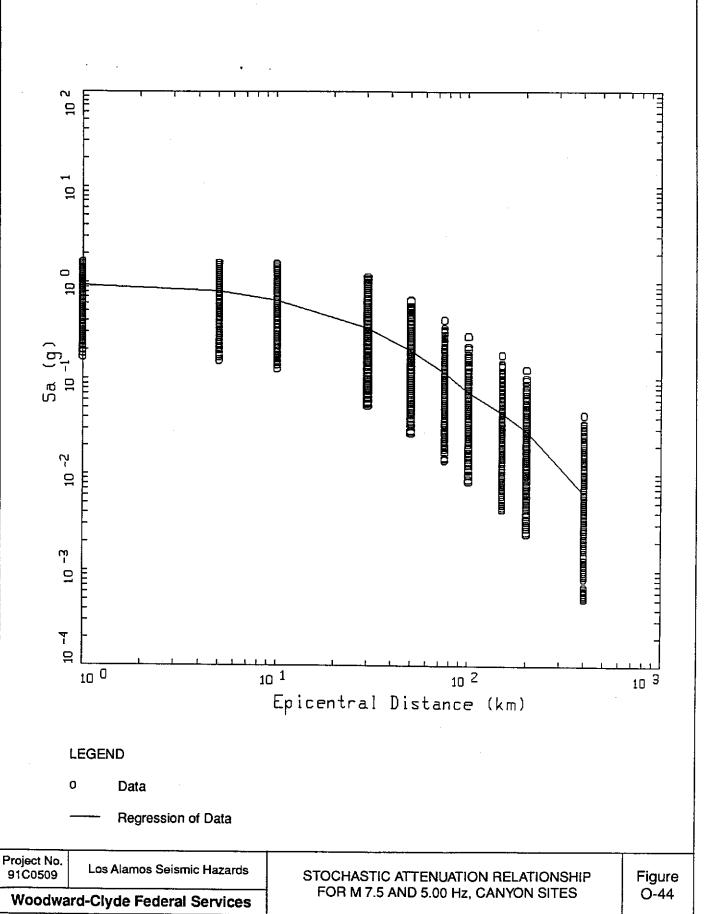










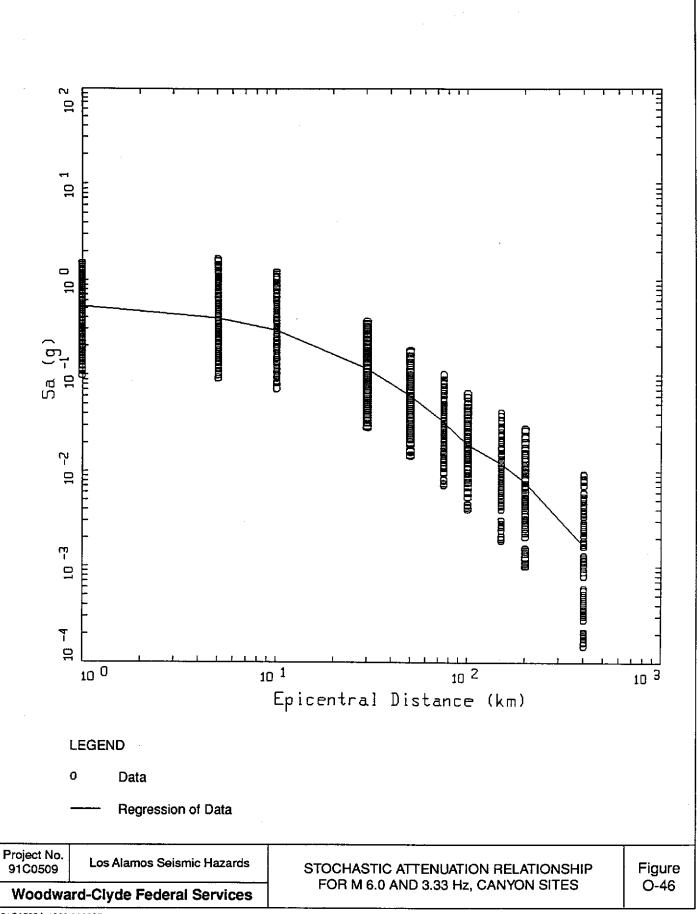


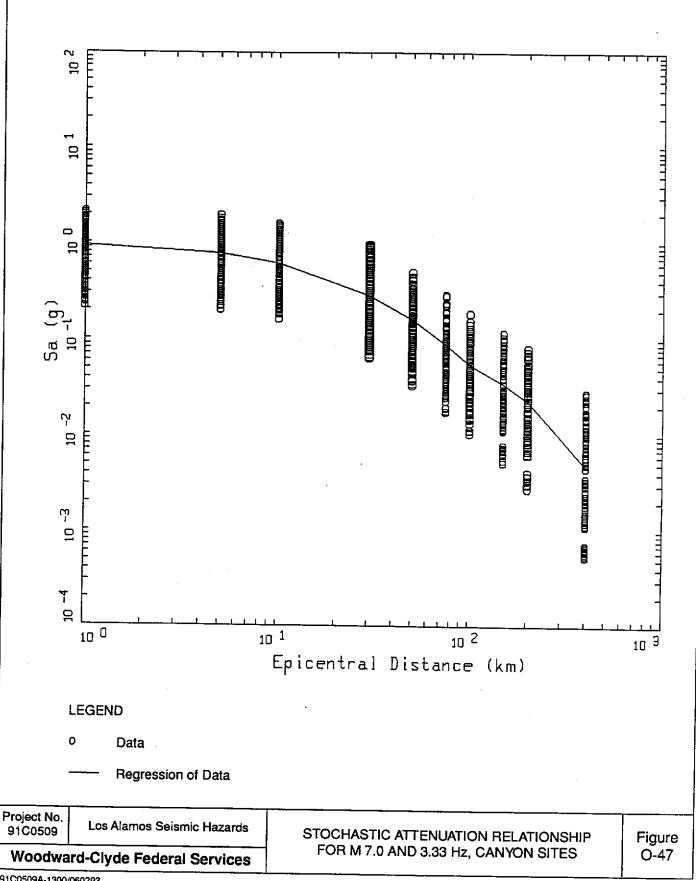


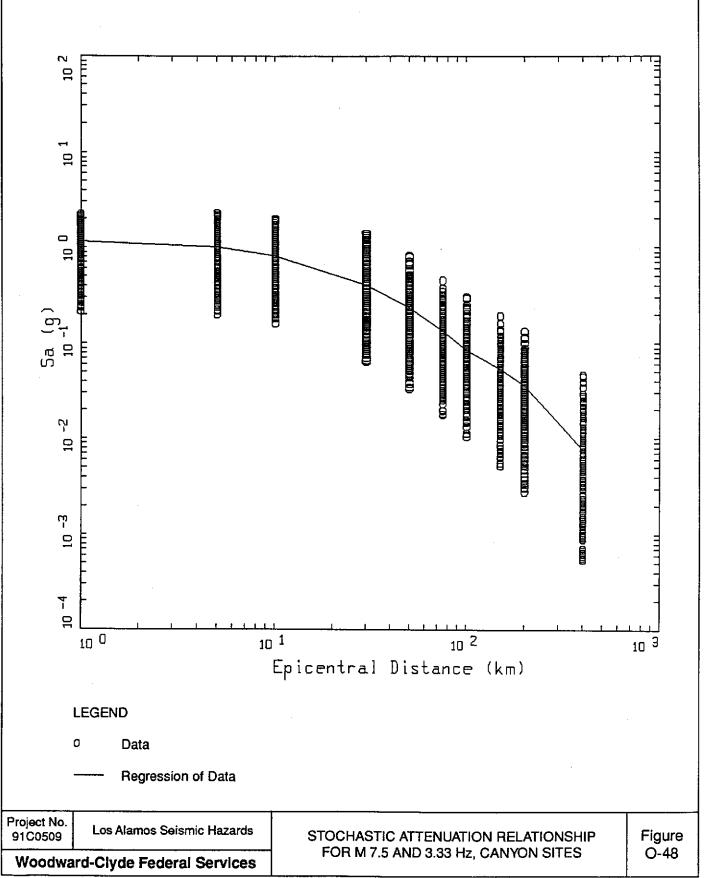
o Data

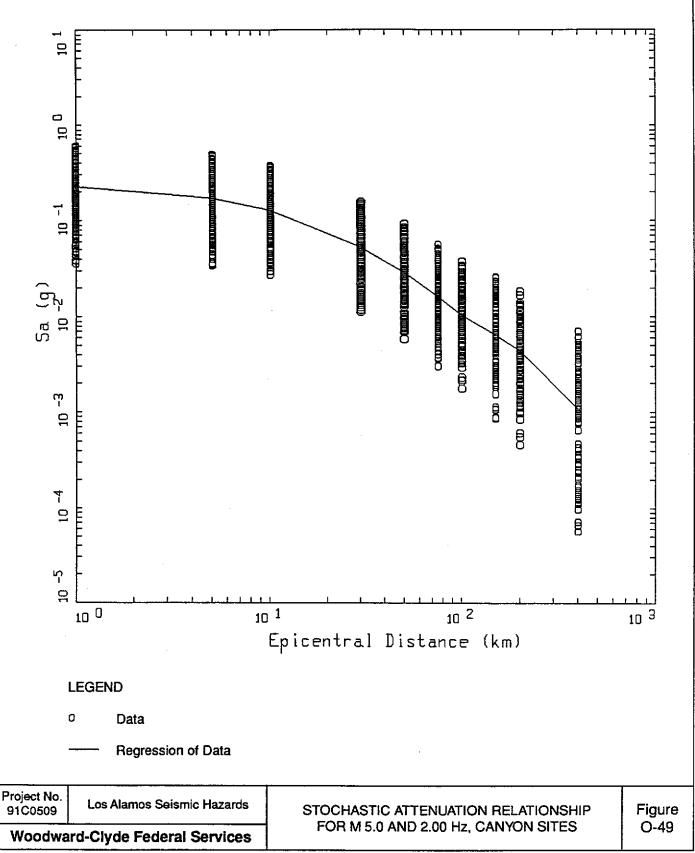
Regression of Data

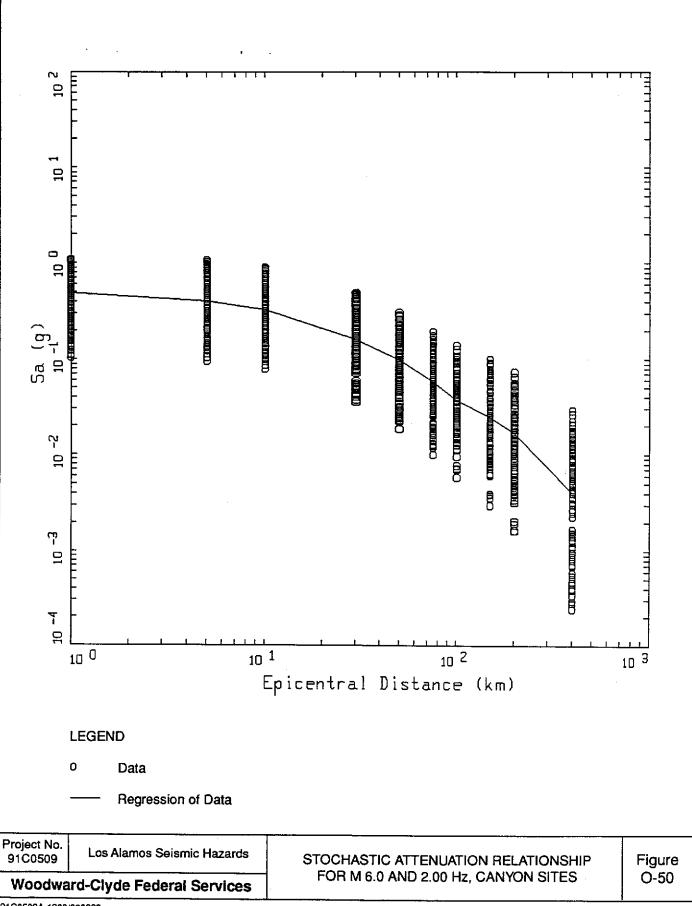
Project No. 91C0509 Los Alamos Seismic Hazards STOCHASTIC ATTENUATION RELATIONSHIP FOR M 7.0 AND 5.00 Hz, CANYON SITES O-43

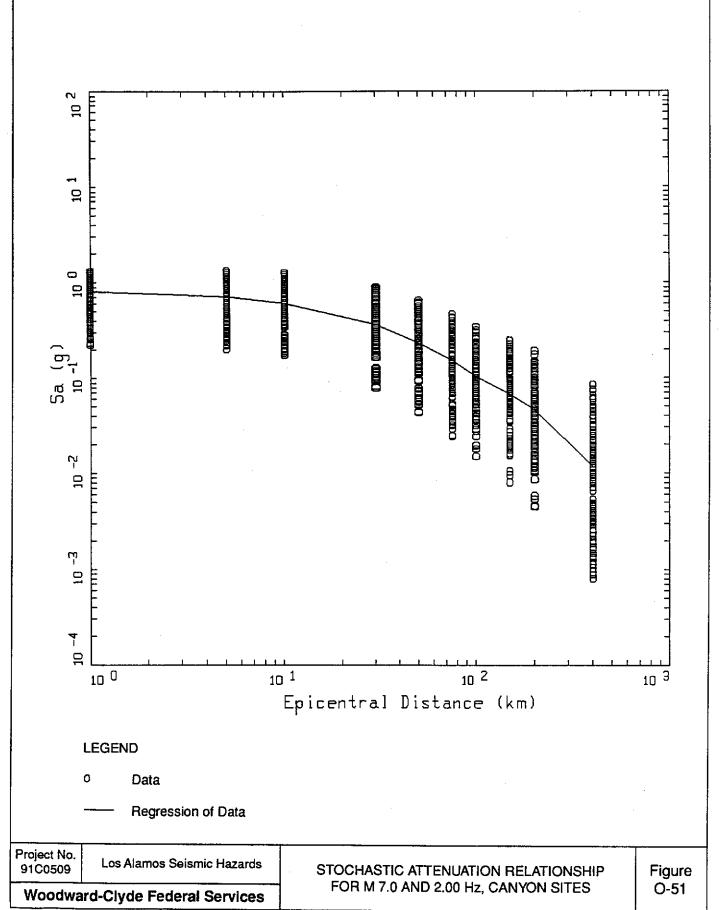


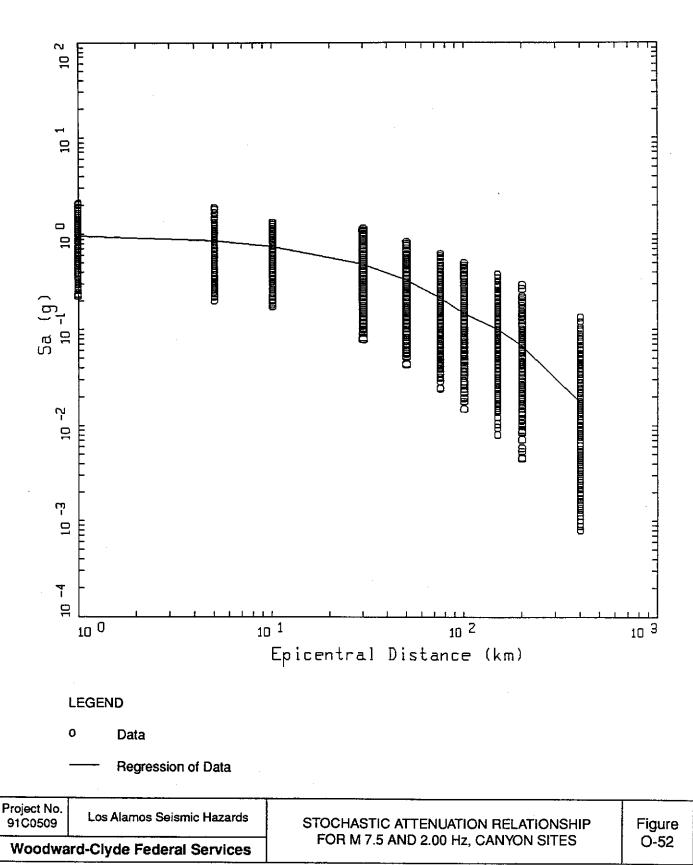


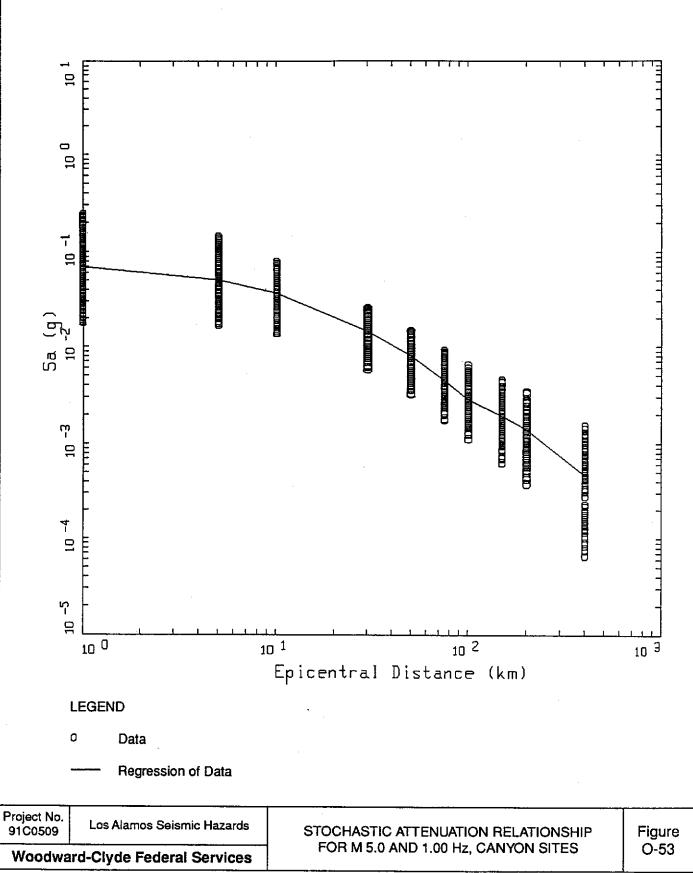

o Data

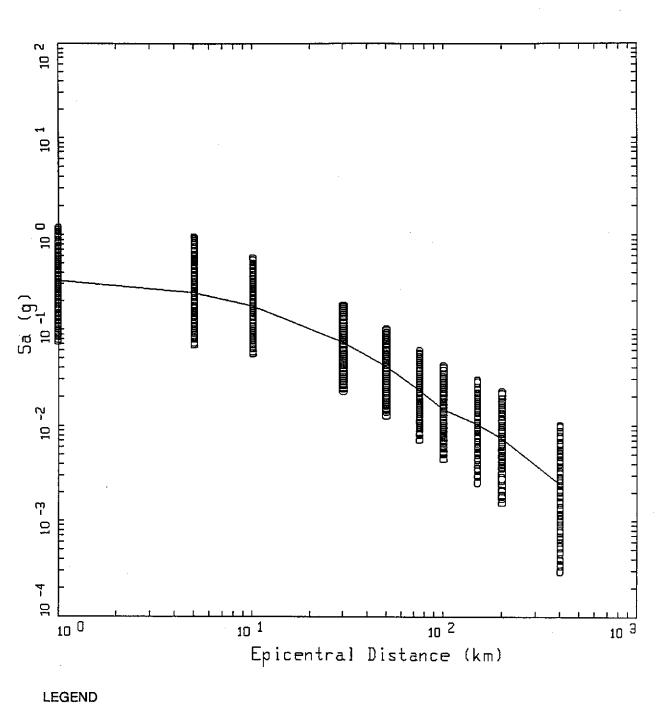

---- Regression of Data

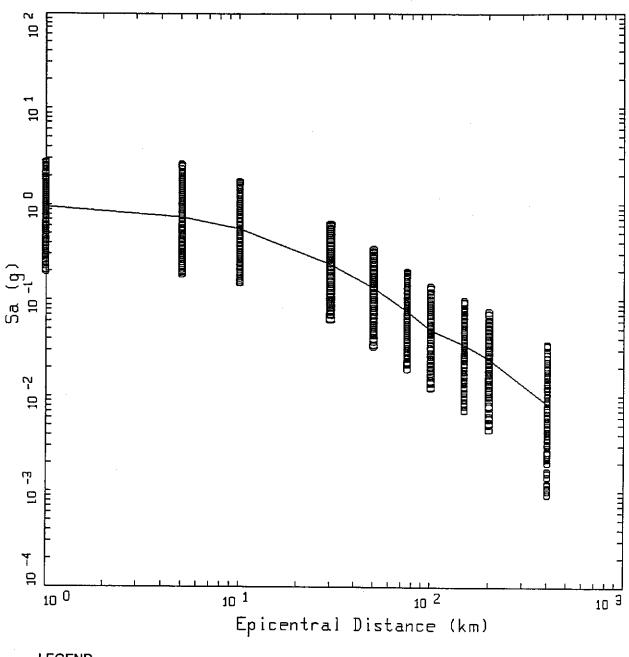

Project No. 91C0509 Los Alamos Seismic Hazards STOCHASTIC ATTENUATION RELATIONSHIP FOR M 5.0 AND 3.33 Hz, CANYON SITES O-45







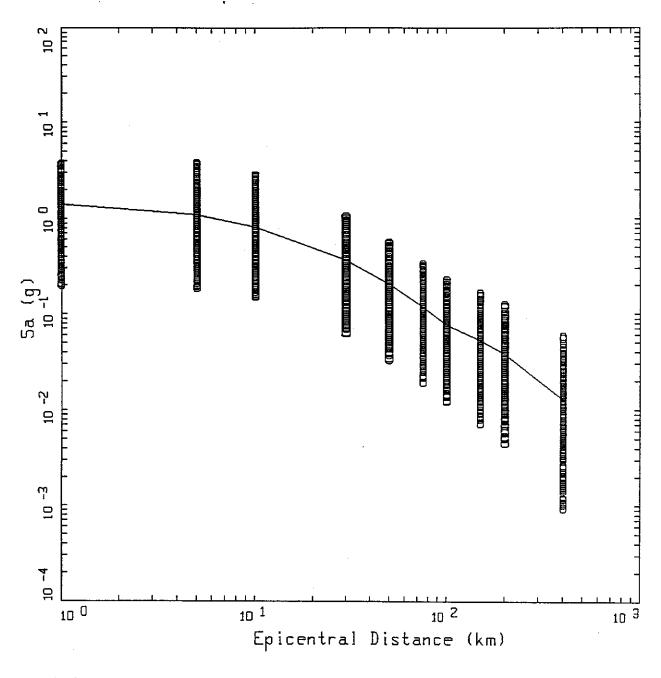




O Data

Regression of Data

Project No. 91C0509 Los Alamos Seismic Hazards STOCHASTIC ATTENUATION RELATIONSHIP FOR M 6.0 AND 1.00 Hz, CANYON SITES O-54

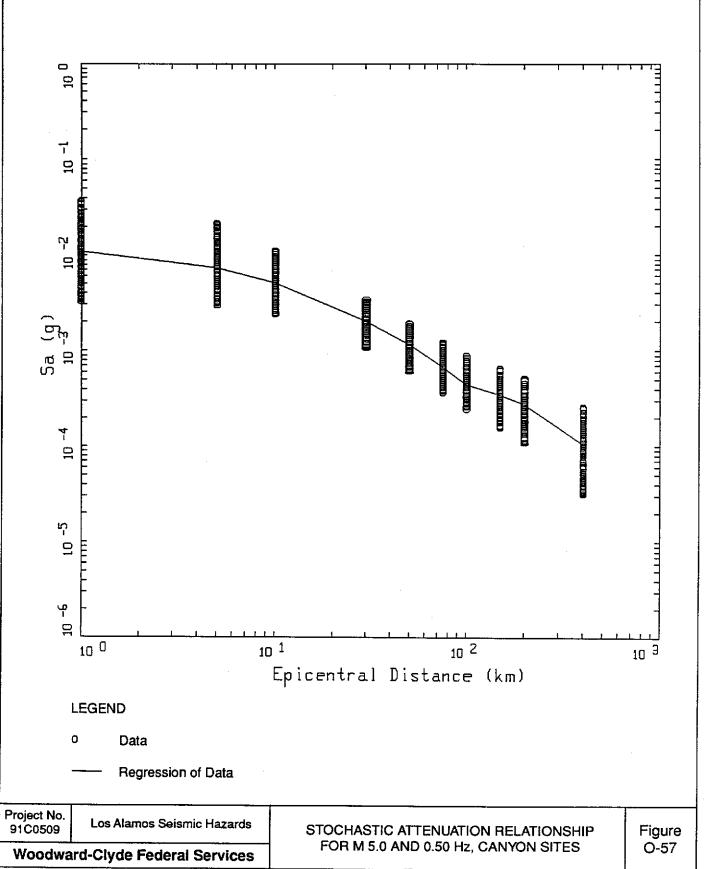


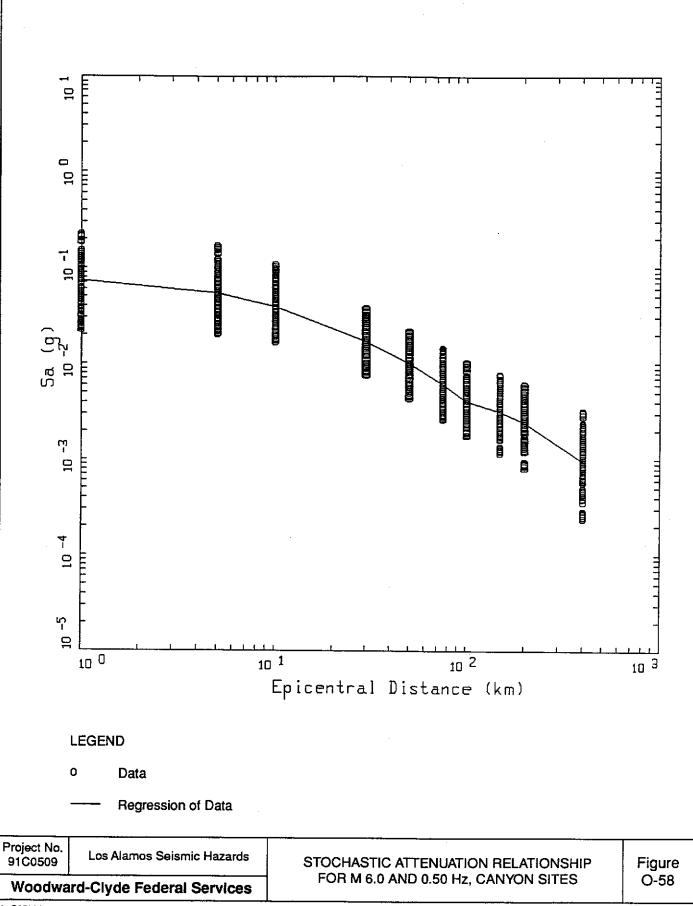
LEGEND

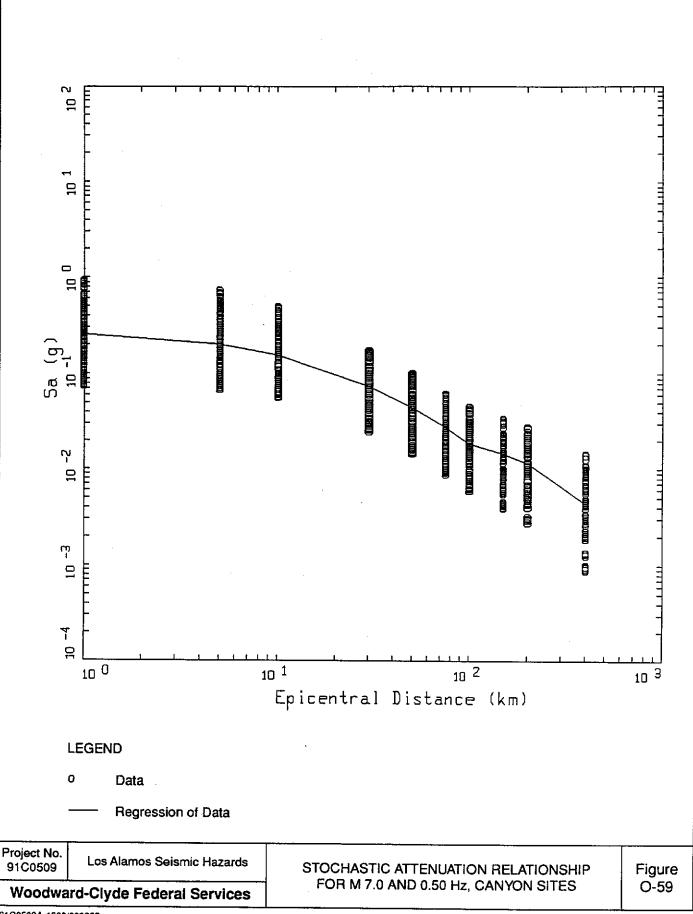
o Data

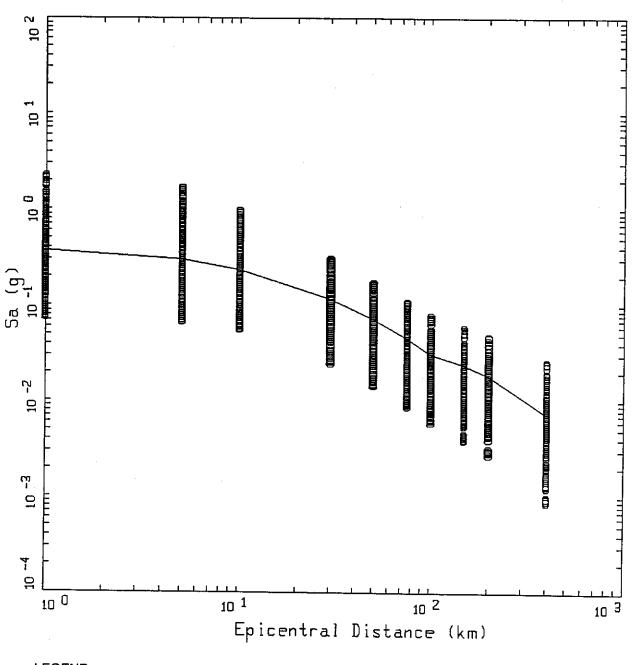
--- Regression of Data

Project No. 91C0509 Los Alamos Seismic Hazards STOCHASTIC ATTENUATION RELATIONSHIP FOR M 7.0 AND 1.00 Hz, CANYON SITES O-55

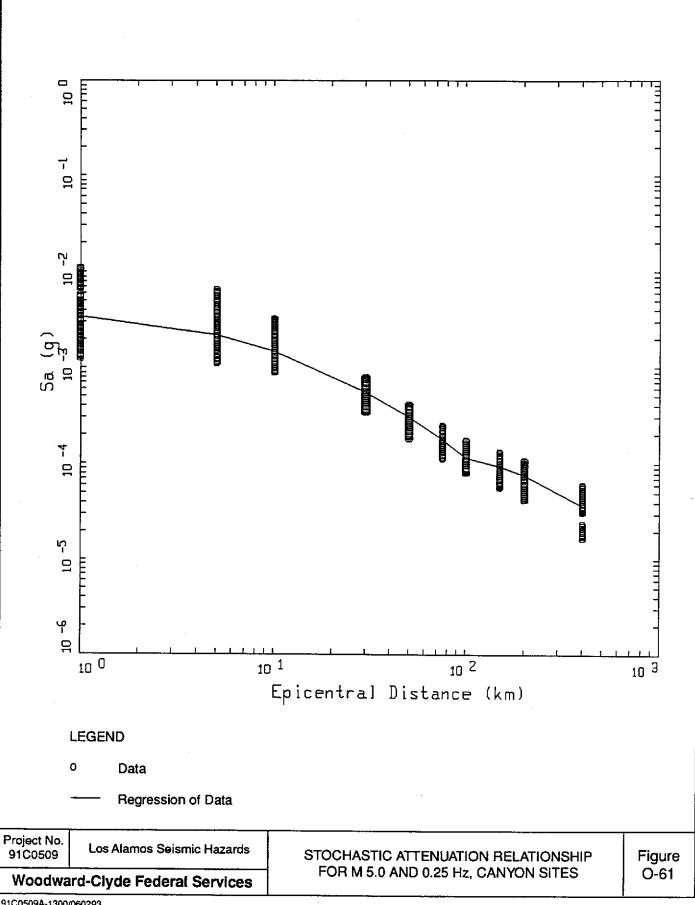


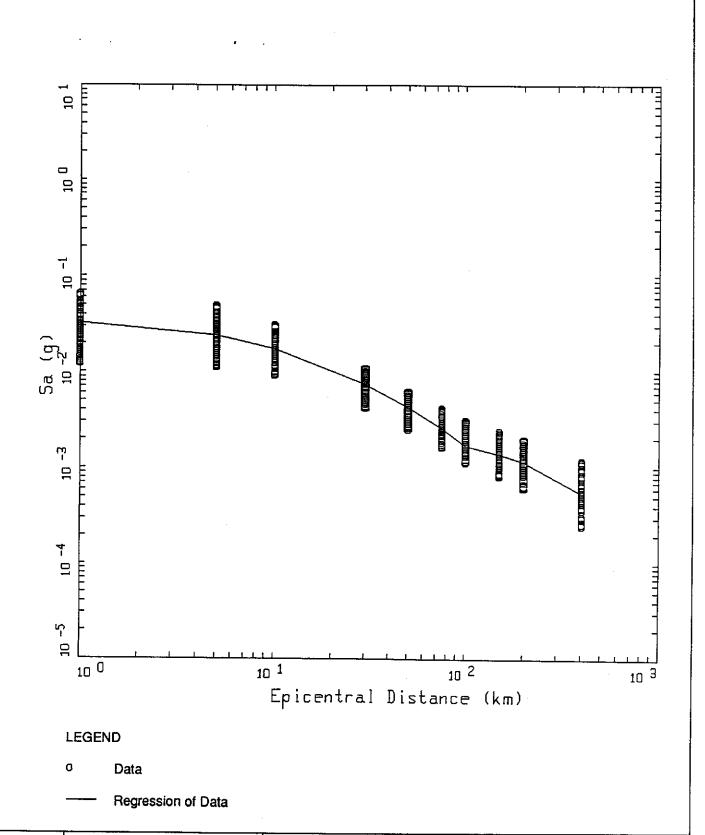

LEGEND


o Data


--- Regression of Data

Project No. 91C0509 Los Alamos Seismic Hazards STOCHASTIC ATTENUATION RELATIONSHIP FOR M 7.5 AND 1.00 Hz, CANYON SITES O-56

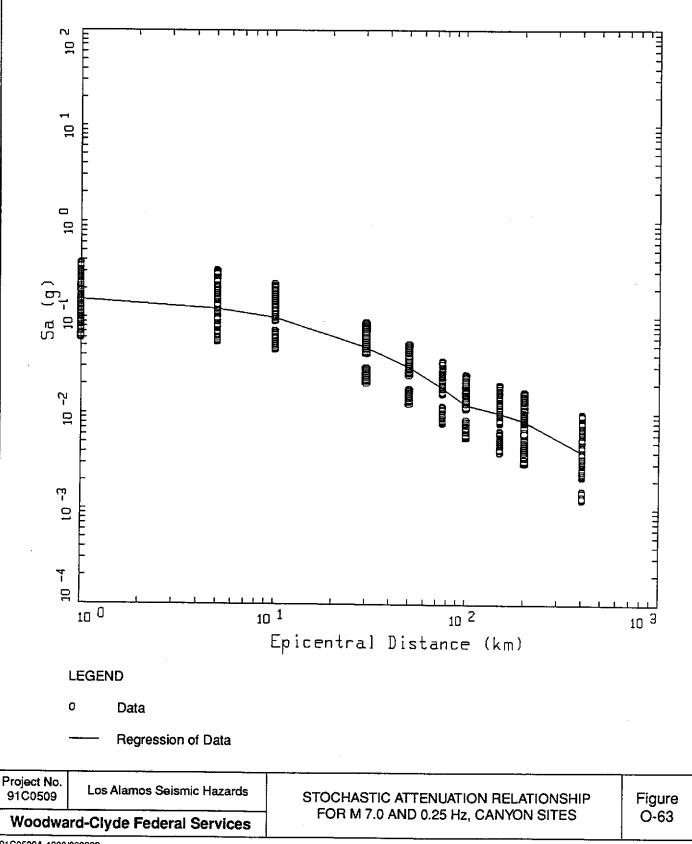


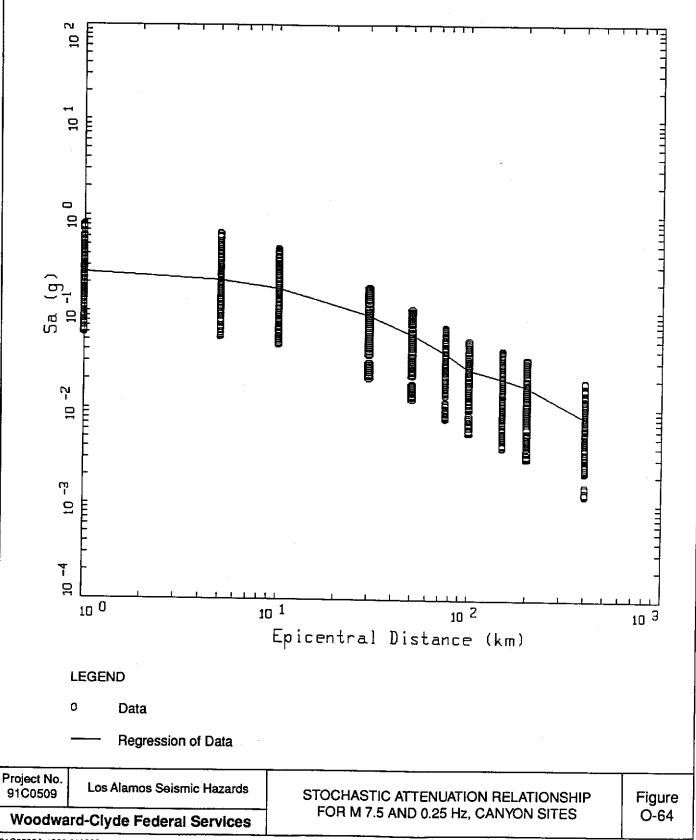

LEGEND

o Data

---- Regression of Data

Project No. 91C0509 Los Alamos Seismic Hazards STOCHASTIC ATTENUATION RELATIONSHIP FOR M 7.5 AND 0.50 Hz, CANYON SITES O-60




Project No. 91C0509

Los Alamos Seismic Hazards

STOCHASTIC ATTENUATION RELATIONSHIP FOR M 6.0 AND 0.25 Hz, CANYON SITES Figure O-62

Woodward-Clyde Federal Services

APPENDIX P EVALUATION OF SITE EFFECTS AT THE NEVADA TEST SITE

INTRODUCTION

Site response is considered to be an important factor in defining the spectral characteristics of strong ground motion. Frequency-dependent site response is a function of impedance contrasts, attenuation characteristics, and thickness of the geologic materials below the site and the spectral content of the input motion (Trifunac, 1990). In the bandwidth of interest for engineering design, the impedance contrast (the ratio of the products of seismic velocity and material density across an interface) and anelastic attenuation compete in their effects on the spectral shape and amplitudes of ground motion. Soil sites show higher amplification than rock sites by a factor of 2 to 3 for frequencies lower than about 5 Hz and less amplification than rock sites for frequencies greater than about 5 Hz (Aki, 1988). At lower frequencies, amplification is observed because of the generally strong impedance contrast between the rock and the overlying soil. However, motions in the soil are damped at higher frequencies because of the frequency dependent nature of anelastic attenuation (Trifunac, 1990). Site effects are also observed at sites located on rock (Hough and Anderson, 1988; Hough et al., 1988; Humphrey and Anderson, 1992). A study in Guerrero, Mexico, using recordings from a strong motion array located on a variety of plutonic and volcanic lithologies, found significant frequency-dependent site amplification and deamplification of ground motion (Humphrey and Anderson, 1992). Similar effects have been observed in volcanic terrain in the western United States, Hawaii, and Italy. This appendix will review in some detail observations of underground nuclear explosions (UNE) recorded at seismograph sites located on Tertiary volcanic tuff at the NTS in southern Nevada.

NEVADA TEST SITE DATA

Surface and downhole seismic monitoring of nuclear explosions and earthquakes has been underway for several years at the NTS, with intensive investigations focusing on Yucca Mountain, the location of a proposed underground high-level nuclear waste repository. The Yucca Mountain area is underlain by silicic volcanic rocks, including ashflow tuffs that are similar in many respects to the layered tuff units comprising the Pajarito Plateau near Los

Alamos. This appendix reviews investigations of the variations in spectral response recorded between the surface and subsurface seismometers. The objective is to assess the effects of impedance contrasts on ground motions at NTS.

Seismograph stations of the Weapons Test Seismic Investigations program (WTSI) were installed to record the ground motions produced by UNEs at the level of the proposed repository. The WTSI network consists of 30 triaxial accelerometers placed in pre-existing boreholes and tunnels scattered throughout the NTS. Because of the opportunistic nature of the sensor placement, the holes were not logged in a manner which would allow modeling of the site response of rock units based on their material properties. Unfortunately, only the most cursory information is available for the majority of the holes. This information was used to identify trends in site response which are relevant to LANL.

Two studies describe the early phase of investigation for the WTSI program, specifically the results of a program to monitor UNEs from Pahute Mesa and Yucca Flat at various locations using sensors in surface/downhole pairs (Vortman and Long, 1982a; 1982b). The UNEs are used as seismic sources to identify the maximum detonation permissible in the future should a repository be built and nuclear testing continue and also as analogues for ground motion produced by tectonic earthquakes. Ground motion from 28 different UNEs at Yucca Flat and 10 tests originating in Pahute Mesa were recorded at seven locations. Each station recorded vertical, radial, and tangential components of acceleration at the surface and at depths ranging from 61 to 762 m. These data were used to determine the peak vector amplitudes of acceleration, velocity, and displacement, and vector pseudo-relative velocity (PSRV) spectra. Ratios of the PSRV data were used to examine the effects of variation in geology on wave transmission between the downhole and surface accelerometers.

The locations of the WTSI stations used in this early phase are shown in Figure P-1 and listed in Table P-1 in addition to the geology and elevation of the sensors. Of the seven surface/downhole pairs of sensors, only W9 (Rainier Mesa) and W13 (Area 18) are located in tuff units which are relevant to the LANL study. The accelerometers at W9 are separated by 432 m of "a series of tuff strata" (Vortman and Long, 1982b), most likely interbedded welded and nonwelded silicic ashflow tuff overlain by rhyolitic flows and shallow intrusive rocks. The surface and downhole sensors at W13 are separated by 762 m consisting of "nine

units of ash-flow and bedded tuffs and one each rhyolite lava and gravel and tuffaceous sediments" (Vortman and Long, 1982b).

There were some difficulties in interpreting the data from these sites. At W9, on Rainier Mesa, topographic effects are thought to play a significant role in amplifying the downhole motions (Vortman and Long, 1982a; 1982b). Azimuthal effects impact interpretation of results at W13, the closest station to the Pahute Mesa testing area (Vortman and Long, 1982a). In spite of these complicating factors, the following observations could be made from the two studies (Phillips, 1991a).

- A large variability was observed in the ratios between the surface and downhole pairs, indicating sensitivity to source and path effects. [Because of the shallow depth of detonation in the tests, this is not an unexpected result.]
- Local station geology played a major role in the observed variability in the ground motions at depth.
- The variability of the surface/downhole ratios appeared to be independent of UNE yield. [This implies the results are independent of strain amplitude over the given range of yields.]

The significant result here is that differences in site lithology are a primary cause of variability in PSRV ratios between stations.

A later phase of the WTSI program focused specifically on the variations in ground motion between the surface and depths likely to be considered as repository horizons (Phillips, 1991a). Four surface/downhole stations are located in the vicinity of Yucca Mountain (W25, W28, W29, and W30; Figure P-2). The downhole accelerometer at W29 is located at a shallow depth to provide data to support the design of surface facilities.

Ground motion from a total of 11 Pahute Mesa UNEs have been recorded at these stations. Station W28 is the closest of the group at an average distance of 42 km away from the testing area. The downhole accelerometer is located at a depth of 368 m. W25 is located 45 km from Pahute Mesa, with the downhole sensor located 358 m below the surface. W29

is 47 km from the test area and the downhole sensors are 82 m below the surface. W30 is located 50 km from Pahute Mesa with the downhole unit located at a depth of 352 m.

The seismometers of these four stations are located in units of the Paintbrush Tuff, a mid-Tertiary silicic volcanic sequence. The Paintbrush Tuff consists of four ash-flow cooling units: the Tonopah Springs, Pah Canyon, Yucca Mountain, and Tiva Canyon Members (in ascending order). The Pah Canyon and Yucca Mountain Members are relatively small cooling units which thin out south of station W29. Bedded and non-welded ash-flow tuffs, lava, and interbedded volcanic breccia are locally present between members of the Paintbrush Tuff at Yucca Mountain (Broxton et al., 1989). The individual units hosting the seismometers are described below:

<u>UO</u> - An informal classification for late Tertiary and Quaternary surficial sedimentary deposits consisting of colluvium and fan alluvium, plus nonwelded, vitric ashflow tuff of the Tiva Canyon Member and any other tuff units that stratigraphically overlie the welded, devitrified Tiva Canyon Member (Ortiz et al., 1985; Phillips, 1991a). The surface accelerometer at W25 is located on alluvium in this unit (Figure P-3). The downhole sensor is located at the interface between the alluvium and the tuff (Phillips, 1991a).

<u>TCw</u> - The Tiva Canyon Member is the uppermost unit of the Paintbrush Tuff. It is a multiple flow, compound cooling unit made up of ash flows erupted from a caldera north of Yucca Mountain and consists of a moderately to densely welded devitrified central portion underlain by a less densely welded vitric zone. The surface seismometers for stations W28 (Figure P-3) and W30 (Figure P-4) are located in this member.

<u>TSw1</u> - This is a subunit of the Tonopah Spring Member of the Paintbrush Tuff. The Tonopah Spring Member is a multiple flow, compound cooling unit consisting of nonwelded to densely welded ashflows. TSw1 represents the upper lithophysal zone which contains more than 10 percent lithophysal cavities (by volume) in a moderately to densely welded, devitrified ashflow. The downhole unit at station W28 is located in TSw1.

<u>TSw2</u> - This subunit represents the lower lithophysal zone of the Tonopah Spring Member and is similar in composition to TSw1. It has less than 10 percent lithophysal cavities. The downhole sensors for stations W25 and 30 are located in this subunit.

Data from UNEs were used in the Phillips (1991b) study and analyzed in the same manner as Vortman and Long (1982a; 1982b) except that component PSRV spectra were calculated for these stations as opposed to the vector PSRV determined from the earlier studies. An average PSRV ratio of the surface/downhole motions was determined from all the events (six to nine UNEs) recorded at a station. Figures P-5 to P-8 show the average spectral ratios and the $\pm 1\sigma$ bounds for each of the stations. The average surface/downhole ratios for each station reflect the station-to-station variability which exists in the data, i.e., the variation due to differences in geology at each site (Figure P-9).

Based on his analysis, Phillips (1991a) makes the following general observations:

- The amplitude of downhole motions is generally less than the amplitude of the surface motions.
- The frequency content of the surface recordings are similar to the downhole recordings, but varies from component to component and from station to station.
- The radial and transverse components have larger surface/downhole ratios than the vertical component.

For stations located in similar geologic materials, at distances equidistant from the source, the spectral ratios between the surface and downhole sensors would be expected to be similar. This is not the case for the deep stations at Yucca Mountain (W28, W25, and W30) despite the fact that only 8 km separates the closest and farthest stations and all stations are supposedly founded on tuff (Figure P-9). In particular, W25 (located between W28 and W30) has consistently larger spectral ratios than the other stations. Phillips (1991a) proposed that the differences in the site amplification effects are due to variations in material properties of the various tuff units. He argues that the more consolidated tuff in TCw, which hosts the surface accelerometers of W28 and W30, is stiffer (higher bulk density and seismic velocity) than the relatively unconsolidated tuff of U0 at W25. Note that Phillips' analysis here is qualitative; although the boreholes have been logged these data were not used. This difference in seismic impedance results in higher amplifications for W25. In general, the impedance contrasts of the formations between the surface and downhole sensors are responsible for the amplification of downhole motions at the surface.

The average surface/downhole PSRV ratio at station W28 (Figure P-9) suggests that deamplification of shear waves is occurring at high frequencies. This effect is maximized in the radial components of the W28 recording of event Tierra, the easternmost UNE at Pahute Mesa (Figure P-10). Phillips (1991a; 1991b) suggests that the cause of the higher motions at the base of W28 may due to amplification of particle motion by waves crossing from the stiffer TSw2 into the softer TSw1 in which the downhole sensor is located. Figure P-11 shows the lithology of drillhole USW G-2 and the location of the downhole unit of W28 near some brecciated zones. In contrast, the two other deep stations (W25 and W30) are founded in TSw2 and are underlain by softer material (Phillips, 1991a). Their downhole motions are lower in amplitude than the surface motions.

Phillips (1991a) concludes that the variation in the inter-station surface/downhole behavior at Yucca Mountain can be explained by the differences in material properties of the geologic column at these stations.

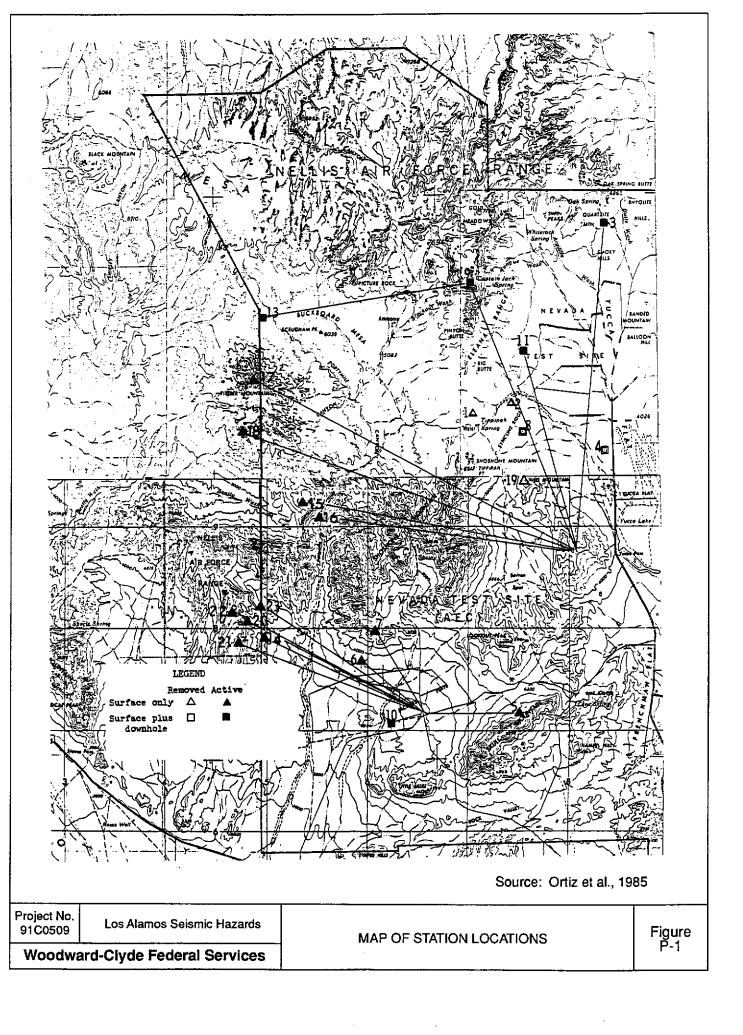
P-6

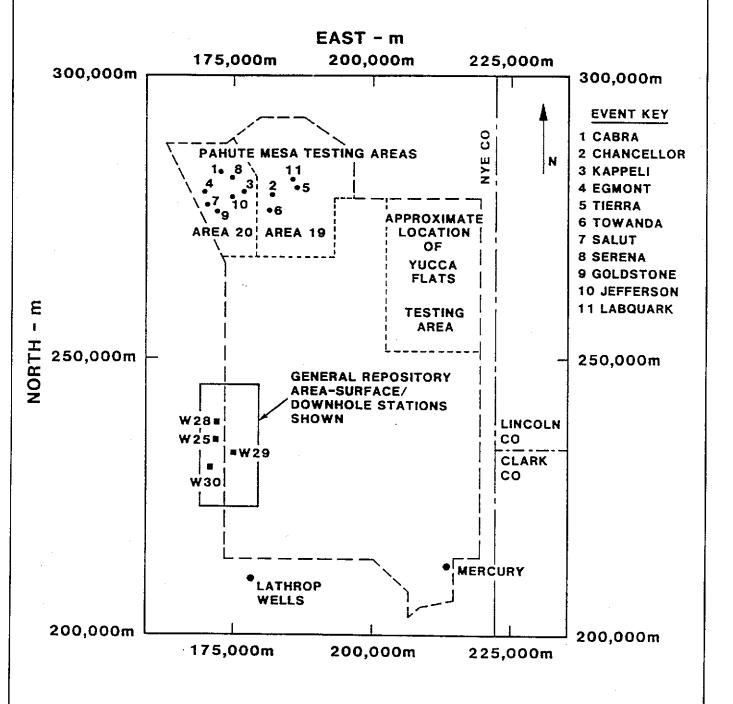
TABLE P-1
SEISMIC MEASUREMENTS FOR A TERMINAL WASTE STORAGE PROGRAM

		Hole	Coor	dinates	53		
<u>Station</u>	Location	No.	North	East	Elevation (ft)	Medium	Date Installed
ı	Area 16	None	840,515	634,760	Surf. ~5325	Eleana Shale	8/77 (Removed 11/77)
2	Syncline Ridge	None	~843,250	~646,250	Surf. ~4785	Lîmestone over Eleana	8/77 (Removed 6/78)
3	Piledriver	Ue-15.01	901,147	677,016	Surf. 5036	Alluvium over Granite	9/77
					Tun. 3669 (1367)	Granite	9/77
4	Area 6	Ue-6b	810,000	678,450	Surf. 3933	Alluvium	4/77
					Hole 3505 (428)	Alluvium	4/77 (Removed 5/78)
5	Skull Mountain	None	743,978	643,233	Surf. ~4565	Tuff	10/77
			~742,100	~650,600	Surf. ~	Tuff	Moved 5/81
6	ETS-2	None	758,073	604,467	Surf. ~3810	Alluvium	10/77
7	Calico Hills	None	768,209	608,655	Surf. ~4337	Eleana Shale	10/77
8	Yacht Hole	Ue-1L	837,000	654,001	Surf. 4465	Alluvium over Eleana	11/77 (Removed 8/78)
		•			Hole 2237, 2595(a) (2228)(1870)	Eleana Shale	3/78 (Removed 8/78)
9	Rainier Mesa	U-12g.08	882,173	633,268	Surf. 7602.2	Tuff	12/77
		CH No. 1			Tun. 6186.15 (1416)	Tuff	12/77
10	Well J-11	J-11	~740,806	~611,832	Surf, 3445	Alluvium	3/78
			740,968	611,764	Hole 2276(b),		4/78
					2321 (1169)(b)(112	4)	
10	200	J-11'	~740,896	~611,828	Hole 3245 (200)	Alluvium	3/78
11	Area 4	Ue-4aa	854,145	666,794	Surf. 4210	Alluvium	3/78
					Hole 3076	Limestone	3/78
	(a) After Reblo	chon Event			(1134)		

⁽a) After Reblochon Event

⁽b) Before Farm Event

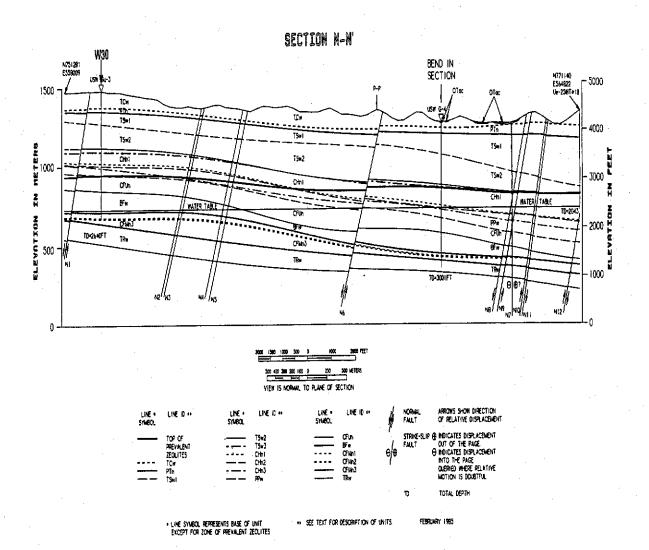

TABLE P-1 (continued)


		Hole	Coor	Coordinates			Date	
<u>Station</u>	Location	No.	North	<u>East</u>	Elevation (ft)	Medium	<u>Installed</u>	
12*							_	
		8	2					
13	Area 18	Üe-18r	868,100	564,700	Surf. 5538	Tuff	6/78	
					Hole 3038 (2500)	Welded Tuff	8/78	
14	Yucca Mountain	None	767,171	566,735	Surf. 4119	Tuff	10/78 (Moved to YM H-1 9/81)	
15	Dome Mountain	None	813,801	579,396	Surf. 6193	Lava	10/78	
16	Forty-Mile Canyon	None	812,025	586,261	Surf. 4289	Rhyolite	10/78	
17	North Timber Mountain	None	~850,300	~562,300	Surf. 7448	Tuff	7/78	
18	South Timber Mountain	None	~834,000	~557,800	Surf. 7239	Tuff	7/78	
19	Mine Mountain	None	815,533	651,950	Surf. 5226	Limestone	2/79	
20	Yucca Mountain G-1	None	772,262	560,566	Surf. 4798	Tuff	7/80	
21	Yucca Mountain SW	None	763,987	558,892	Surf. 4863	Tuff	7/80	
22	Yucca Mountain NW	None	773,114	554,093	Surf. 5183	Tuff	7/80	
23	Yucca Mountain NE	None	777,073	565,125	Surf. 4748	Tuff	7/80	

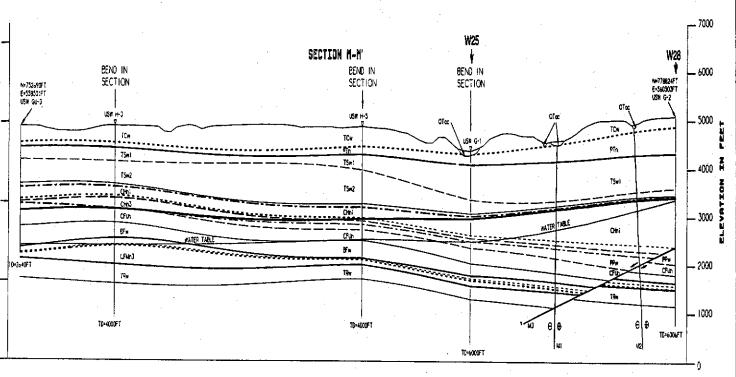
Note: Numbers in () are differences in elevation

Source: Ortiz et al., 1985

 $^{^{\}star}$ Reserved for an unspecified future installation.



NOTE: COORDINATES SHOWN ARE CENTRAL NEVADA GRID


Source: Phillips, 1991a

Project No. 91C0509	Los Alamos Seismic Hazards	LOCATIONS OF THE UNEs AT THE NTS	Figure	
Woodwa	ard-Clyde Federal Services		P-2	

Source: Ortiz et al., 1985

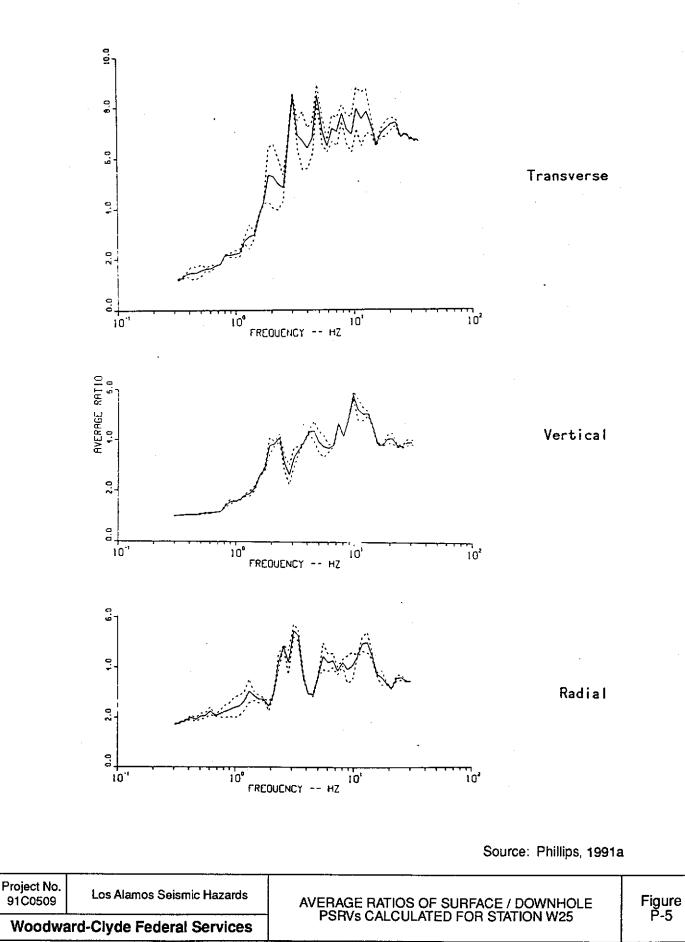
Project No. 9100509	Los Alamos Seismic Hazards	CROSS-SECTION THROUGH	Figure	
Woodwa	rd-Clyde Federal Services	BOREHOLE W30		

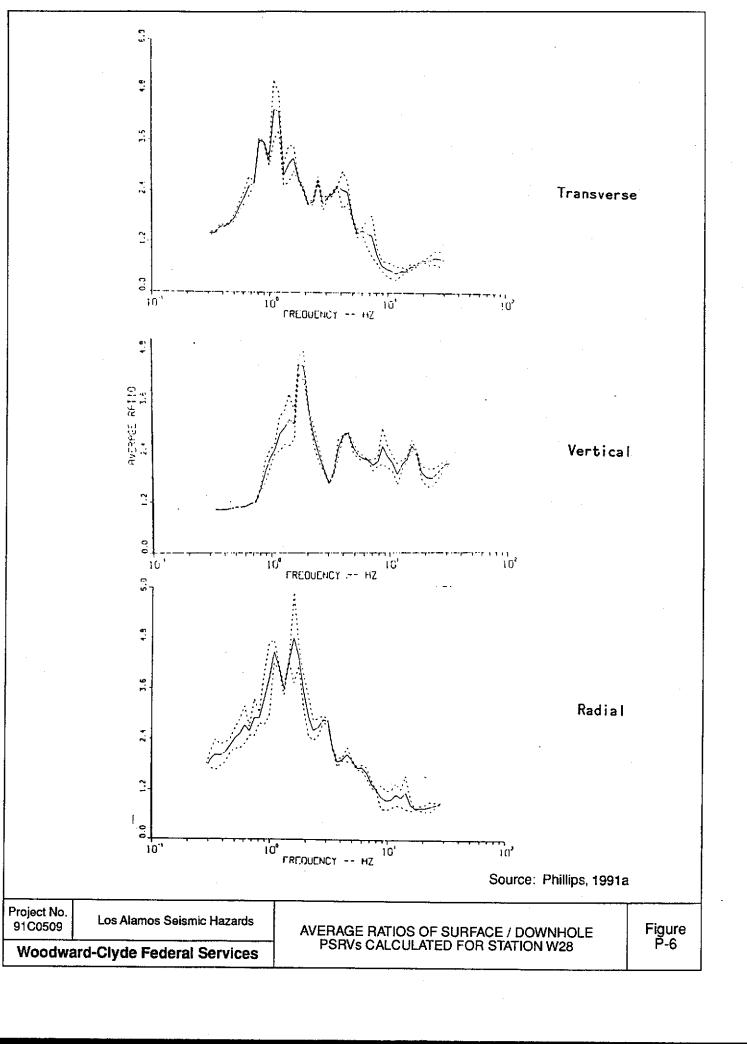
200 :50 :000 300 0 1900 2000 FET

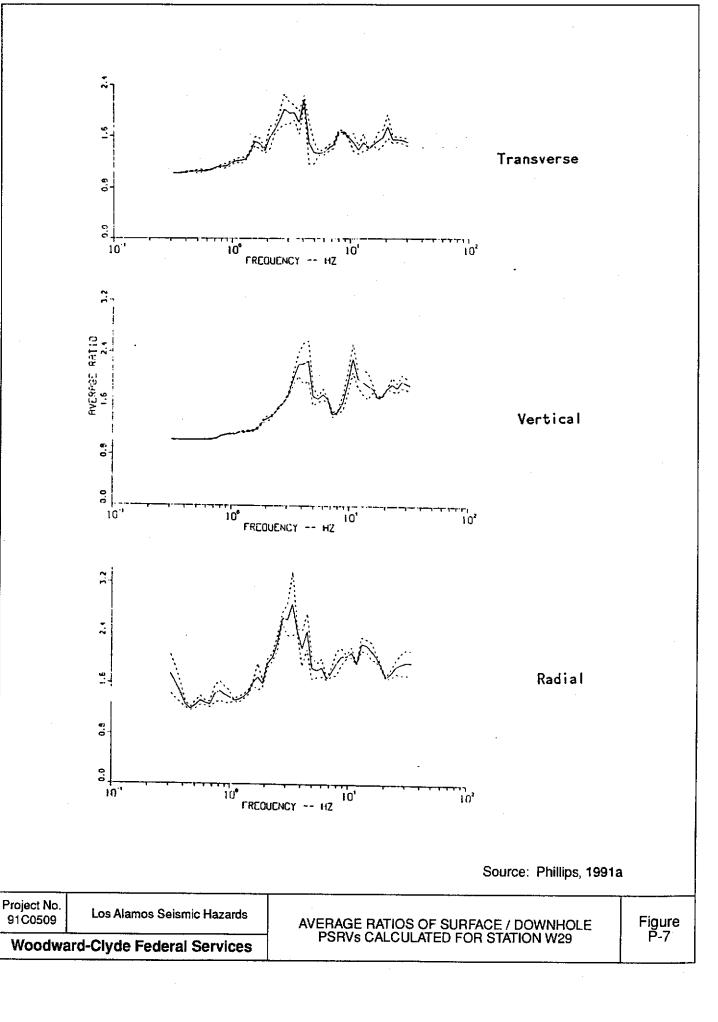
300 400 300 300 100 0 200 300 40085

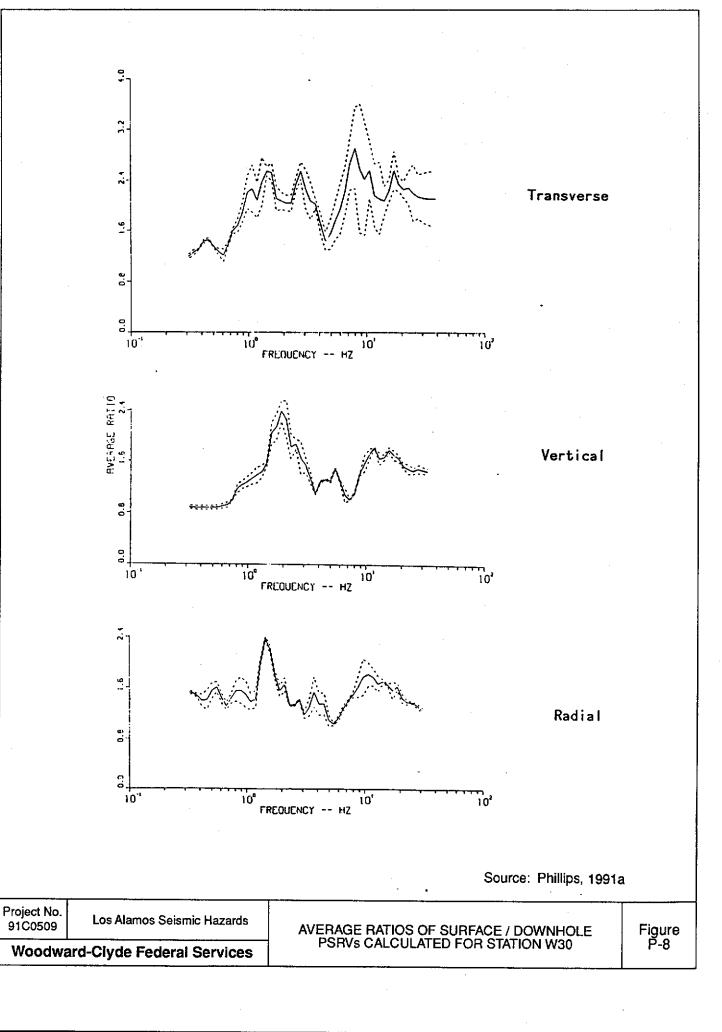
VER 15 479844, TO RUNE OF SECTION

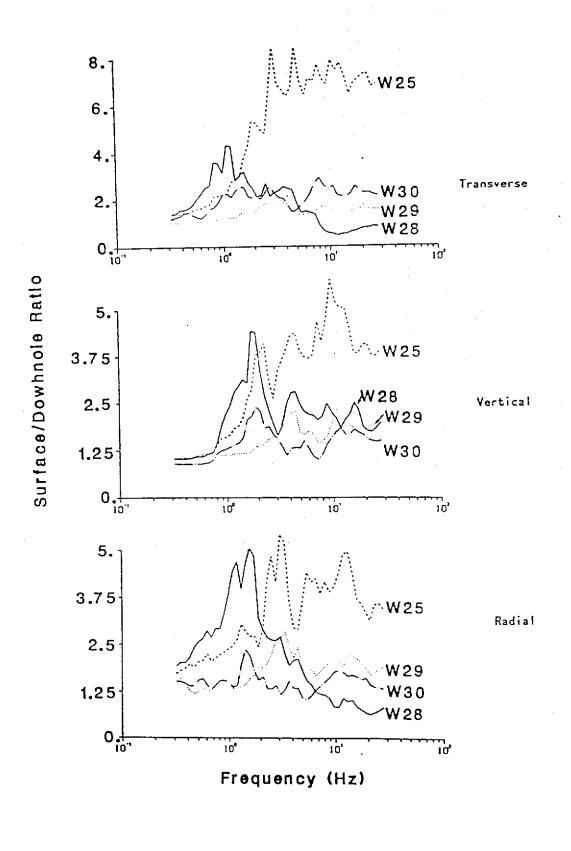
LINE . Joshyz	LINE ID **	LINE Symbol	LINE ID III	LINE + Symbol	LINE ID #	Á	NORMAL FAULT	ARROWS SHOW DIRECTION OF RELATIVE DISPLACEMEN
	TOP OF		TSw2		en L	7		
-	PREVALENT				ÇFUh			
			TSm3		8Fm	- [.	STRIKE-SLIP	INDICATES DISPLACEMENT
	ZEOLITES		Q+n1		CFMnI	6/8	FAULT	OUT OF THE PAGE.
	TON		012		CFMn2	- 1		
	Pīn		CHrJ	***************************************	CFMn3	,		A INDICATES DISPLACEMENT
	75w1		PPn −		TAN			INTO THE PAGE

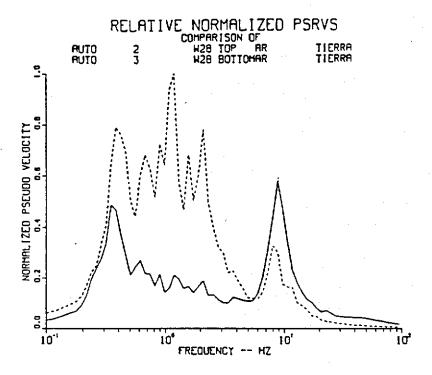

 LINE SYMBOL REPRESENTS BASE OF UNIT EXCEPT FOR ZONE OF PREVALENT ZEOLITES

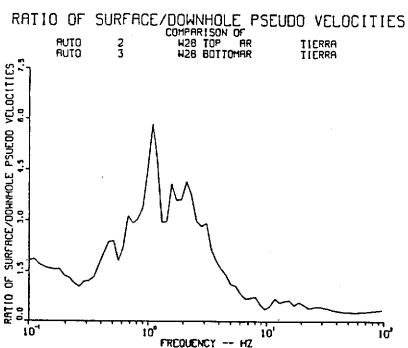

. SEE TEXT FOR DESCRIPTION OF UNITS


FEBRUARY 1985


Source: Ortiz et al., 1985

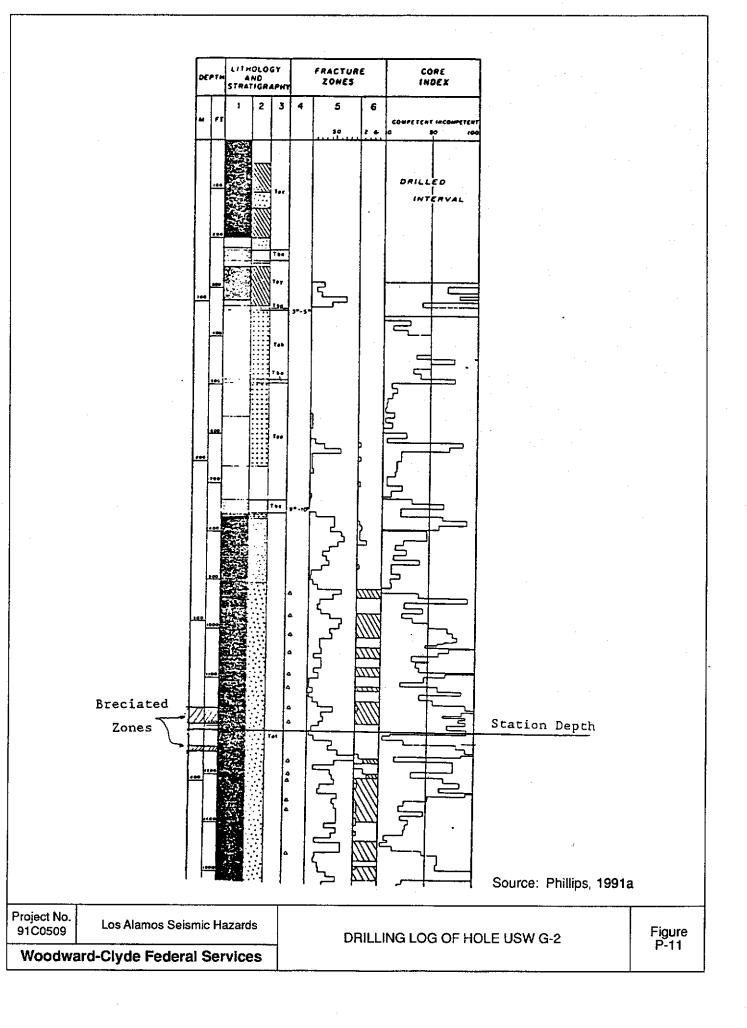

Project No. 91C0509	Los Alamos Seismic Hazards	CROSS-SECTIONS THROUGH	Figure
Woodwa	ard-Clyde Federal Services	BOREHOLES W25 AND W28	P-3





Source: Phillips, 1991a

Project No. 91C0509 Los Alamos Seismic Hazards
Woodward-Clyde Federal Services COMPARISON OF AVERAGE SURFACE / DOWNHOLE PSRV RATIOS AT THE YUCCA MOUNTAIN STATIONS P-9


Source: Phillips, 1991a

Project No. 91C0509

Los Alamos Seismic Hazards

RELATIVE NORMALIZED PSRVs AND RATIOS OF SURFACE/DOWNHOLE PSRVs FOR RADIAL MOTIONS, STATION W28, EVENT TIERRA

Figure P-10

