SUMMARY OF NEW LOS ALAMOS NATIONAL LABORATORY GROUNDWATER DATA LOADED IN J ANUARY 2009 ## INTRODUCTION This report provides preliminary information to the New Mexico Environment Department (NMED) concerning recent groundwater monitoring data obtained by the Los Alamos National Laboratory (the Laboratory) under its interim monitoring plan. This report contains results for chemical constituents that meet the seven screening criteria laid out in the Compliance Order on Consent (Consent Order), modified May 13, 2008. The report covers groundwater samples taken from wells or springs (listed in the accompanying table) that provide surveillance of the groundwater zones indicated in the table. The report includes one table, *Table 1: NMED 1-09 Groundwater Report*. This table contains numerous values, often because new data are reported when they are detected for the first time since June 14, 2007, or are greater than other data collected since that time (as specified in the Consent Order). These reported data are often similar to data gathered before June 14, 2007. Over time, the data that exceed the reference data are expected to be reduced substantially. This table includes additional comments on the significance of the results for those that appear to be exceptional or are first-time occurrences of results based on considering monitoring data acquired before June 14, 2007 (using statistics described below). The table contains supplemental information summarizing monitoring results obtained before June 14, 2007. The table includes sampling date, the name of the well or spring, the location of the well or spring, the depth of the screened interval, the groundwater zone sampled, analytical result, detection limit, values for regulatory standards, and analytical and secondary validation qualifiers. Additional information describing the locations and analytical data is also included. All data have been through secondary validation. The definitions for abbreviations in the table may be found at http://www.lanl.gov/environment/all/racer.shtml. In accordance with the Consent Order, the screening levels used include the U.S. Environmental Protection Agency (EPA) maximum contaminant levels (MCLs), the New Mexico groundwater standards, and the EPA Region 6 tap water screening levels (for compounds having no other regulatory standard). In the table, the EPA Region 6 tap water screening levels are identified as being for cancer (10⁻⁵ excess) or noncancer risk values. The data were screened using 10 times the EPA's 10⁻⁶ excess cancer risk values, as indicated in Section VIII.A.1 of the Consent Order. Background levels applied in Criteria 2 and 5 are the most recent NMED-approved 95% upper tolerance limits for background for each groundwater zone as set forth in the "Groundwater Background Investigation Report," prepared under Section IV.A.3.d of the Consent Order. Criteria 5 and 6 involve conclusions based on four consecutive samples. No results are included for these criteria in the table because few locations have been sampled a sufficient number of times since June 14, 2007, to meet the criteria. ## **DESCRIPTION OF TABLE** The table is divided into separate categories that correspond to the seven screening criteria in the Consent Order: these are labeled (in the first column) C1 through C6 for the numbered criteria and CA for cases where the concentration of a constituent in a well screen or spring has not previously exceeded either the New Mexico Water Quality Control Commission (NMWQCC) standard or the federal MCLs. Some data meet more than one criterion and appear in the table multiple times. The criteria are as follows: - CA. The Respondents shall notify the Department orally within one business day after review of the analytical data if such data show detection of a contaminant in a well screen interval or spring at a concentration that exceeds either the NMWQCC water quality standard or the federal MCL if that contaminant has not previously exceeded such water quality standard or maximum contaminant level in such well screen interval or spring. - C1. Detection of a contaminant that is an organic compound in a spring or screened interval of a well if that contaminant has not previously been detected in the spring or screened interval. - C2. Detection of a contaminant that is a metal or other inorganic compound at a concentration above the background level in a spring or screened interval of a well if that contaminant has not previously exceeded the background level in the spring or screened interval. - C3. Detection of a contaminant in a spring or screened interval of a well at a concentration that exceeds either one-half the New Mexico water quality standard or one-half the federal maximum contaminant level, or if there is no such standard for the contaminant, one-half the EPA Region 6 human health medium-specific screening level for tap water, if that contaminant has not previously exceeded one-half such standard or screening level in the spring or screened interval. - C4. Detection of perchlorate in a spring or screened interval of a well at a concentration of 2 µg/L or greater if perchlorate at such concentration has not previously been detected in the spring or screened interval. - C5. Detection of a contaminant that is a metal or other inorganic compound in a spring or screened interval of a well at a concentration that exceeds 2 times the background level for the third consecutive sampling of the spring or screened interval. - C6. Detection of a contaminant in a spring or screened interval of a well at a concentration that exceeds either one-half the New Mexico water quality standard or one-half the federal MCL, and that has increased for the third consecutive sampling of that spring or screened interval. The next seven columns of the table give information on monitoring results obtained over a longer time frame than samples collected after June 14, 2007. The columns provide summary statistics on for the samples collected since January 1, 2000, for the same analyte and field preparation (for example, filtered samples). The information includes the date of first sampling event included in the statistics, the numbers of sampling events and samples analyzed, the number of detections, and the minimum, maximum, and median concentration for detections. This information indicates whether the new result is consistent with the range of earlier data. The subsequent columns contain location and sampling information: Hdr 1—canyon where monitoring location is found Zone—groundwater zone sampled by monitoring location (such as alluvial spring) Location—monitoring location name Port Depth—depth of top of well screen in feet (0 for springs, -1 if unknown) Start Date—sample date Fld QC Type Code—identifies samples that are field duplicates (definitions for these and other abbreviations may be found at http://www.lanl.gov/environment/all/racer.shtml) Fld Prep—identifies whether samples are filtered or unfiltered Lab Sample Type Code—indicates whether result is a primary (customer) sample or reanalysis Anyl Suite—gives analytical suite (such as volatile organic compounds) for analyzed compound Analyte Desc-name of analyte Analyte—chemical symbol for analyte or CAS (Chemical Abstracts Service) number for organic compounds Std Result—the analytical result in standard measurement units Result/Median—the ratio of the Std Result to the median of all detections since 2000 LVL Type/Risk Code—the type of regulatory standard, screening level, or background value (indicating groundwater zone) used for comparison Screen Level—the value of the LVL Type/Risk Code Exceedance Ratio—the ratio of Std Result to LVL Type/Risk Code Std Mdl—the method detection limit in standard measurement units Std UOM— the standard units of measurement Dilution Factor—amount by which the sample was diluted to measure the concentration Lab Qual Code—the analytical laboratory qualifiers indicating analytical quality of the sample Concat Flag Code—concatenated secondary validation qualifiers produced by an independent contractor who reviews data packages, verifying, for example, that holding times were met, that all documentation is present, and that analytical laboratory quality control measures were applied, documented, and kept within contract requirements Concat Reason Code—concatenated secondary validation codes explaining assignment of qualifiers Anyl Meth Code—analytical method number Lab Code—analytical laboratory name Comment—a comment on the analytical result Table 1: NMED 1-09 Groundwater Report | | | | LD 1-0 | | | | | • |---|--------|---------|-------------|------------|------------|---------------|------------|--|--------------------|-------------------|------------|------------|----|---------------|----------------------|-----------------|----------------------|----------|------------|---------------|--------------------|--------------|------------------|---------|---------|-----------------|---------|-----------------|--------------------|----------------|----------|---| | | Visits | Samples | First Event | Min Detect | Max Detect | Median Detect | Num Detect | Hdr 1 | Zone | Location | Port Depth | Start Date | | Fld Prep Code | Lab Sample Type Code | Anyl Suite Code | Analyte Desc | Analyte | Std Result | Result/Median | LVL Type/Risk Code | Screen Level | Exceedance Ratio | Std Mdl | Std Uom | Dilution Factor | Qual Co | icat Flag Code | Concat Reason Code | Anyl Meth Code | Lab Code | Comment | | C | 1 1 | 1 | 11/05/08 | | 13.5 | 13.5 | 1 | Sandia Canyon | Regional | R-43 | 903.9 | 11/05/08 | FD | | | VOA | Toluene | 108-88-3 | 13.5 | 1.00 | | | | 0.25 | ug/L | 1 | | | | | GELC |
Sample taken following aquifer test, prior to sampling system installation | | C | 1 1 | 1 | 11/10/08 | 0.819 | 0.819 | 0.819 | 1 | Sandia Canyon | Regional | R-43 | 969.1 | 11/10/08 | FD | F | CS ' | VOA | Toluene | 108-88-3 | 0.819 | 1.00 | | | | 0.25 | ug/L | 1 J | J | J_L | AB : | SW-846:8260B | GELC | Sample taken
following aquifer test,
prior to sampling
system installation | | C | 1 7 | 8 | 08/30/05 | 0.309 | 0.309 | 0.309 | 1 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Alluvial | PCO-2 | 1.5 | 12/10/08 | | UF | CS ' | VOA | Toluene | 108-88-3 | 0.309 | 1.00 | NM GW
STD | 750 | 0.0 | 0.25 | ug/L | 1 J | J | J_L | AB : | SW-846:8260B | GELC | | | C | 1 16 | 24 | 10/17/02 | 1.99 | 1.99 | 1.99 | 1 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Regional | R-23 | 816 | 12/03/08 | | UF | CS : | SVOA | Phenol | 108-95-2 | 1.99 | 1.00 | NM GW
STD | 5 | 0.4 | 1 | ug/L | 1 J | J | J_L | .AB | SW-846:8270C | GELC | | | C | 2 8 | 9 | 10/24/01 | 0.3 | 0.54 | 0.39 | 9 | Guaje Canyon
(includes Barrancas
and Rendija
Canyons) | Water
Supply | G-5A | 746.6 | 09/10/08 | | UF | CS | GENINORG | Perchlorate | CIO4 | 0.406 | 1.04 | LANL Reg
BG LVL | 0.05 | 8.1 | 0.05 | ug/L | 1 | J | PE [*] | 12e | SW-846:6850 | GELC | | | C | 2 1 | 2 | 11/10/08 | 3.99 | 4 | 4 | 2 | Sandia Canyon | Regional | R-43 | 969.1 | 11/10/08 | FD | F | CS | GENINORG | Chloride | CI(-1) | 3.99 | | LANL Reg
BG LVL | 3.57 | 1.1 | 0.066 | mg/L | 1 | | | | EPA:300.0 | GELC | Sample taken
following aquifer test,
prior to sampling
system installation | | C | 2 1 | 2 | 11/10/08 | 3.99 | 4 | 4 | 2 | Sandia Canyon | Regional | R-43 | 969.1 | 11/10/08 | | F | CS | GENINORG | Chloride | CI(-1) | 4 | 1.00 | LANL Reg
BG LVL | 3.57 | 1.1 | 0.066 | mg/L | 1 | | | | EPA:300.0 | GELC | Sample taken following aquifer test, prior to sampling system installation | | C | 2 1 | 3 | 11/10/08 | 4.65 | 4.87 | 4.73 | 3 | Sandia Canyon | Regional | R-43 | 969.1 | 11/10/08 | | F | CS | GENINORG | Magnesium | Mg | 4.87 | | LANL Reg
BG LVL | 4.15 | 1.2 | 0.085 | mg/L | 1 | | | , | SW-846:6010B | GELC | Sample taken
following aquifer test,
prior to sampling
system installation | | C | 2 1 | 1 | 11/10/08 | 0.398 | 0.398 | 0.398 | 1 | Sandia Canyon | Regional | R-43 | 969.1 | 11/10/08 | | UF | CS | GENINORG | Total Organic Carbon | TOC | 0.398 | 1.00 | LANL Reg
BG LVL | 0.33 | 1.2 | 0.33 | mg/L | 1 J | J | J_L | AB : | SW-846:9060 | GELC | Sample taken
following aquifer test,
prior to sampling
system installation | | C | 2 1 | 3 | 11/10/08 | 98.1 | 255 | 235 | 3 | Sandia Canyon | Regional | R-43 | 969.1 | 11/10/08 | | F | CS | METALS | Iron | Fe | | | LANL Reg
BG LVL | 21 | 4.7 | 25 | ug/L | 1 J | J | J_L | | SW-846:6010B | | Sample taken
following aquifer test,
prior to sampling
system installation | | | 2 1 | 3 | 11/10/08 | 14.3 | 14.9 | 14.9 | 3 | Sandia Canyon | Regional | R-43 | 969.1 | 11/10/08 | | | | METALS | Manganese | Mn | | | BG LVL | 2.94 | 4.9 | 2 | ug/L | 1 | | | ; | SW-846:6010B | | Sample taken
following aquifer test,
prior to sampling
system installation | | С | 2 1 | 3 | 11/10/08 | | 2.3 | 2.3 | 3 | Sandia Canyon | Regional | R-43 | 969.1 | 11/10/08 | | | | | Molybdenum | Мо | 2.1 | | LANL Reg
BG LVL | | 1.1 | 0.1 | ug/L | 1 | | | | | GELC | Sample taken
following aquifer test,
prior to sampling
system installation | | | 2 1 | | | | 8.2 | 6.3 | 3 | Sandia Canyon | Regional | R-43 | 969.1 | 11/10/08 | | | | | Zinc | Zn | 6.3 | | LANL Reg
BG LVL | | 1.6 | | ug/L | 1 J | J | J_L | AB : | SW-846:6010B | | Sample taken
following aquifer test,
prior to sampling
system installation | | | | | 01/19/06 | | 15.6 | 5.4 | 11 | Mortandad Canyon
(includes Ten Site
Canyon and Canada
del Buey) | Water
Supply | PM-5 | 1440 | 09/10/08 | | | | METALS | Chromium | Cr | | | LANL Reg
BG LVL | | | | ug/L | 1 | | | | | GELC | | | C | 2 3 | 3 | 06/28/05 | 27.8 | 111 | 93.5 | 3 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Alluvial
Spring | TW-1.72
Spring | 0 | 12/11/08 | | F | CS | GENINORG | Chloride | CI(-1) | 111 | 1.19 | LANL Avi
BG LVL | 69.76 | 1.6 | 0.66 | mg/L | 10 | | | | EPA:300.0 | GELC | road salt? Na ~ Cl,
in Twomile | | Criteria Code | Visits | Samples | First Event | Min Detect | Max Detect | Median Detect | Num Detect | Hdr 1 | Zone | Location | Port Depth | Start Date | Fld QC Type Code | Prep Code | Lab Sample Type Code | Anyl Suite Code | Analyte Desc | Analyte | Std Result | Result/Median | LVL Type/Risk Code | Screen Level | Exceedance Ratio | Std Mdl | Std Uom | Dilution Factor | Qual Co | Concat Flag Code | Concat Reason Code | Anyl Meth Code | Lab Code | Comment | |---------------|--------|---------|-------------|------------|------------|---------------|------------|---|--------------------|-------------------|------------|------------|------------------|-----------|----------------------|-----------------|----------------------------------|---------|------------|---------------|--------------------|--------------|------------------|---------|---------|-----------------|---------|------------------|--------------------|----------------|----------|---| | C2 | 3 | 3 | 06/28/05 | 0.0694 | 0.109 | 0.0892 | 2 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Alluvial
Spring | TW-1.72
Spring | 0 | 12/11/08 | F | = (| CS | GENINORG | Perchlorate | CIO4 | 0.109 | 1.22 | LANL AVI
BG LVL | 0.05 | 2.2 | 0.05 | ug/L | 1 | J J | J J | I_LAB | SW-846:6850 | GELC | in Twomile | | C2 | 3 | 3 | 06/28/05 | 3.35 | 10.8 | 3.98 | 3 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Alluvial
Spring | TW-1.72
Spring | 0 | 12/11/08 | F | = (| CS | GENINORG | Potassium | К | 10.8 | | LANL AVI
BG LVL | 5.21 | 2.1 | 0.05 | mg/L | 1 | | | | SW-846:6010B | GELC | in Twomile | | C2 | 3 | 3 | 06/28/05 | 37.2 | 79.8 | 68.1 | 3 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Alluvial
Spring | TW-1.72
Spring | 0 | 12/11/08 | F | = (| CS | GENINORG | Sodium | Na | 68.1 | 1.00 | LANL AVI
BG LVL | 15.54 | 4.4 | 0.045 | mg/L | 1 | | | | SW-846:6010B | GELC | road salt? Na ~ CI,
in Twomile | | C2 | 3 | 3 | 06/28/05 | 0.092 | 0.092 | 0.092 | 1 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Alluvial
Spring | TW-1.72
Spring | 0 | 12/11/08 | F | = (| CS | GENINORG | Total Phosphate as
Phosphorus | PO4-P | 0.092 | 1.00 | LANL AVI
BG LVL | 0.05 | 1.8 | 0.024 | mg/L | 1 | | | | EPA:365.4 | GELC | in Twomile | | C2 | 3 | 4 | 06/28/05 | 164 | 314 | 245 | 4 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Alluvial
Spring | TW-1.72
Spring | 0 | 12/11/08 | F | = (| CS | GENINORG | Total Dissolved Solids | TDS | 272 | 1.11 | LANL AVI
BG LVL | 139 | 2.0 | 2.4 | mg/L | 1 | | | | EPA:160.1 | GELC | road salt? Na ~ CI, in Twomile | | C2 | 3 | 3 | 06/28/05 | 50.4 | 84.9 | 55.6 | 3 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Alluvial
Spring | TW-1.72
Spring | 0 | 12/11/08 | F | = (| CS | METALS | Barium | Ва | 84.9 | 1.53 | LANL AVI
BG LVL | 68.57 | 1.2 | 1 | ug/L | 1 | | | | SW-846:6010B | GELC | Turb = 124 NTU, in
Twomile | | C2 | 3 | 3 | 06/28/05 | 4.2 | 8.1 | 6.2 | 2 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Alluvial
Spring | TW-1.72
Spring | 0 | 12/11/08 | F | = (| CS | METALS | Copper | Cu | 8.1 | 1.31 | LANL AVI
BG LVL | 3 | 2.7 | 3 | ug/L | 1 | J J | J J | I_LAB | SW-846:6010B | GELC | Turb = 124 NTU, in
Twomile | | C2 | 3 | 3 | 06/28/05 | 12.4 | 107 | 17.5 | 3 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Alluvial
Spring | TW-1.72
Spring | 0 | 12/11/08 | F | = (| CS | METALS | Manganese | Mn | 12.4 | 0.71 | LANL AVI
BG LVL | 2 | 6.2 | 2 | ug/L | 1 | | | | SW-846:6010B | GELC | Turb = 124 NTU, in
Twomile | | C2 | 3 | 3 | 06/28/05 | 1.4 | 2.6 | 2.2 | 3 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Alluvial
Spring | TW-1.72
Spring | 0 | 12/11/08 | F | = (| CS | METALS | Nickel | Ni | 2.6 | 1.18 | LANL AVI
BG LVL | 1 | 2.6 | 0.5 | ug/L | 1 | | | | SW-846:6020 | GELC | Turb = 124 NTU, in
Twomile | | C2 | 3 | 3 | 06/28/05 | 0.73 | 1.8 | 0.86 | 3 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Alluvial
Spring | TW-1.72
Spring | 0 | 12/11/08 | F | = (| CS | METALS | Lead | Pb | 0.86 | | LANL AVI
BG LVL | 0.5 | 1.7 | 0.5 | ug/L | 1 | J J | J J | I_LAB | SW-846:6020 | GELC | Turb = 124 NTU, in
Twomile | | C2 | 3 | 3 | 06/28/05 | 4.9 | 24.8 | 14.9 | 2 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Alluvial
Spring | TW-1.72
Spring | 0 | 12/11/08 | F | = (| CS | METALS | Antimony | Sb | 24.8 | | LANL AVI
BG LVL | 0.5 | 49.6 | 0.5 | ug/L | 1 | J | J 4 | 4a | SW-846:6020 | GELC | Turb = 124 NTU, in
Twomile | | C2 | 3 | 3 | 06/28/05 | 15.9 | 374 | 195 | 2 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Alluvial
Spring | TW-1.72
Spring | 0 | 12/11/08 | F | = (| CS | METALS | Zinc | Zn | 374 | 1.92 | LANL AVI
BG LVL | 2 | 187.0 | 2 | ug/L | 1 | | | | SW-846:6010B | GELC | Turb = 124 NTU, in
Twomile | | C2 | 10 | 12 | 08/31/06 | 0.02 | 0.073 | 0.047 | 2 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Alluvial | 18-MW-9 | 6 | 12/10/08 | F | = (| CS | GENINORG | Total Phosphate as
Phosphorus | PO4-P | 0.073 | | LANL AVI
BG LVL | 0.05 | 1.5 | 0.024 | mg/L | 1 | | | | EPA:365.4 | GELC | | | C2 | 10 | 13 | 08/28/06 | 0.038 | 0.103 | 0.077 | 3 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Alluvial | 18-MW-18 | 12.5 | 12/11/08
 F | = (| cs | GENINORG | Total Phosphate as
Phosphorus | PO4-P | 0.077 | 1.00 | LANL AVI
BG LVL | 0.05 | 1.5 | 0.024 | mg/L | 1 | | | | EPA:365.4 | GELC | | | C2 | 10 | 13 | 08/28/06 | 0.038 | 0.103 | 0.077 | 3 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Alluvial | 18-MW-18 | 12.5 | 12/11/08 | FD F | = (| CS | | Total Phosphate as
Phosphorus | PO4-P | 0.103 | 1.34 | LANL AVI
BG LVL | 0.05 | 2.1 | 0.024 | mg/L | 1 | | | | EPA:365.4 | GELC | | | C2 | 3 | 5 | 06/09/08 | 4.8 | 6.9 | 6.8 | 3 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Alluvial | PCAO-5 | 14.7 | 12/02/08 | FD F | = (| CS | METALS | Arsenic | As | 6.8 | 1.00 | LANL AVI
BG LVL | 6 | 1.1 | 1.5 | ug/L | 1 | | | | SW-846:6020 | GELC | Well is in Cerro
Grande fire ash
deposits with high
metals content | | Criteria Code | Visits | Samples | First Event | Min Detect | Max Detect | Median Detect | Num Detect | Hdr 1 | Zone | Location | Port Depth | Start Date | Fld QC Type Code | Prep Code | Lab Sample Type Code | Anyl Suite Code | Analyte Desc | Analyte | Std Result | Result/Median | LVL Type/Risk Code | Screen Level | Exceedance Ratio | Std Mdl | Std Uom | Dilution Factor | Qual Co | Concat Flag Code | Concat Reason Code | Anyl Meth Code | Lab Code | Comment | |---------------|--------|---------|-------------|------------|------------|---------------|------------|--|------------------------|---------------------|------------|------------|------------------|-----------|----------------------|-----------------|----------------------------------|---------|------------|---------------|--------------------|--------------|------------------|---------|---------|-----------------|---------|------------------|--------------------|----------------|----------|---| | C2 | 3 | 5 | 06/09/08 | 4.8 | 6.9 | 6.8 | 3 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Alluvial | PCAO-5 | 14.7 | 12/02/08 | | F (| CS | METALS | Arsenic | As | 6.9 | 1.01 | LANL Avi
BG LVL | 6 | 1.2 | 1.5 | ug/L | 1 | | | | SW-846:6020 | GELC | Well is in Cerro
Grande fire ash
deposits with high
metals content | | C2 | 3 | 3 | 06/22/08 | 1.6 | 1.6 | 1.6 | 1 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Alluvial | PCAO-7c | 9.7 | 12/03/08 | | F (| CS | METALS | Chromium | Cr | 1.6 | | LANL Avi
BG LVL | 1 | | 1.5 | ug/L | 1 | J J | J J | LAB | SW-846:6020 | GELC | | | C2 | 10 | 10 | 08/22/06 | 0.097 | 0.097 | 0.097 | 1 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Intermediate
Spring | Anderson
Spring | 0 | 12/09/08 | | F (| CS | GENINORG | Total Phosphate as
Phosphorus | PO4-P | 0.097 | 1.00 | LANL Int
BG LVL | 0.08 | 1.2 | 0.024 | mg/L | 1 | | | | EPA:365.4 | GELC | | | C2 | 10 | 11 | 08/31/06 | 9.18 | 19.6 | 14 | 11 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Intermediate
Spring | Charlie's
Spring | 0 | 12/04/08 | FD | F (| CS | GENINORG | Calcium | Са | 19.6 | | LANL Int
BG LVL | 17.31 | 1.1 | 0.03 | mg/L | 1 | | | | SW-846:6010B | GELC | | | C2 | 10 | 11 | 08/31/06 | 9.18 | 19.6 | 14 | 11 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Intermediate
Spring | Charlie's
Spring | 0 | 12/04/08 | | F (| CS | GENINORG | Calcium | Са | 19 | 1.36 | LANL Int
BG LVL | 17.31 | 1.1 | | mg/L | 1 | | | | SW-846:6010B | GELC | | | C2 | 10 | 11 | 08/31/06 | 3.05 | 6.42 | 4.93 | 11 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Intermediate
Spring | Charlie's
Spring | 0 | 12/04/08 | FD | F (| CS | GENINORG | Magnesium | Mg | 6.42 | 1.30 | LANL Int
BG LVL | 6.12 | 1.1 | 0.085 | mg/L | 1 | | | | SW-846:6010B | GELC | | | C2 | 10 | 11 | 08/31/06 | 35.1 | 71.9 | 62.8 | 11 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Intermediate
Spring | Charlie's
Spring | 0 | 12/04/08 | FD | F (| CS | METALS | Barium | Ва | 71.9 | 1.14 | LANL Int
BG LVL | 71.83 | 1.0 | 1 | ug/L | 1 | E | | | SW-846:6010B | GELC | | | C2 | 11 | 11 | 06/22/05 | 0.098 | 0.221 | 0.16 | 2 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Intermediate
Spring | Bulldog
Spring | 0 | 12/10/08 | | F (| CS | GENINORG | Bromide | Br(-1) | 0.098 | 0.61 | LANL Int
BG LVL | 0.03 | 3.3 | 0.067 | mg/L | 1 | J J | ı l | LAB | EPA:300.0 | GELC | | | C2 | 8 | 8 | 09/22/00 | 14.9 | 21.1 | 16.8 | 8 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Intermediate | R-19 | 909.3 | 12/03/08 | | F (| CS | GENINORG | Calcium | Са | 17.6 | 1.05 | LANL Int
BG LVL | 17.31 | 1.0 | 0.03 | mg/L | 1 | | | | SW-846:6010B | GELC | | | C2 | | | 09/22/00 | | 21 | 19.5 | 3 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Intermediate | R-19 | 909.3 | 12/03/08 | | | | METALS | Boron | В | 19.5 | | LANL Int
BG LVL | 15.12 | 1.3 | 10 | ug/L | 1 | J J | J J_ | LAB | SW-846:6010B | GELC | | | C2 | 3 | 3 | 07/05/05 | 0.073 | 0.227 | 0.15 | 2 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Regional | R-22 | 1448.2 | 12/19/08 | | | | | Ammonia as Nitrogen | | | | LANL Reg
BG LVL | | | 0.03 | | 1 | J | J- 16a | a | EPA:350.1 | GELC | | | | | | 01/26/07 | | | 0.081 | 1 | Water Canyon
(includes Canyon del
Valle, Potrillo, and
Fence Canyons) | Alluvial | CDV-16-
02659 | 1.7 | 10/08/08 | | | | GENINORG | | Br(-1) | | | LANL Avi
BG LVL | | | 0.067 | | 1 | J J | J J | - | | GELC | | | | | | 03/28/00 | | 23 | | | Water Canyon
(includes Canyon del
Valle, Potrillo, and
Fence Canyons) | | CDV-16-
02659 | 1.7 | 10/08/08 | | | | GENINORG | | Na | | | LANL Avi
BG LVL | | | 0.045 | | 1 | | | | SW-846:6010B | | | | | | | 03/28/00 | | | 46.4 | | Water Canyon
(includes Canyon del
Valle, Potrillo, and
Fence Canyons) | Alluvial | CDV-16-
02659 | 1.7 | 10/08/08 | | | | | Boron | В | 61.8 | | LANL Avi
BG LVL | | 1.2 | | ug/L | 1 | | | | SW-846:6010B | | | | | | | 03/28/00 | | 57.9 | | | Water Canyon
(includes Canyon del
Valle, Potrillo, and
Fence Canyons) | Alluvial | CDV-16-
02659 | 1.7 | 10/08/08 | | | | - | Zinc | Zn | 11 | | LANL Avi
BG LVL | | | | ug/L | 1 | | | | SW-846:6010B | | | | C2 | 26 | 26 | 01/10/00 | 14 | 23 | 17 | 26 | Water Canyon
(includes Canyon del
Valle, Potrillo, and
Fence Canyons) | Intermediate
Spring | SWSC
Spring | 0 | 10/08/08 | | F (| CS | GENINORG | Calcium | Са | 18.4 | 1.08 | LANL Int
BG LVL | 17.31 | 1.1 | 0.03 | mg/L | 1 | | | | SW-846:6010B | GELC | | | | | | | | | | | | | | | | | | o o | | | | | | | | | | | | | | | | | |---------------|--------|---------|-------------|------------|------------|---------------|------------|--|------------------------|-------------------|------------|------------|------------------|---------------|----------------------|-----------------|--------------------------------|----------------|------------|---------------|--------------------|--------------|------------------|---------|---------|-----------------|---------|-------------------------------------|----------------|----------|---| | Criteria Code | Visits | Samples | First Event | Min Detect | Max Detect | Median Detect | Num Detect | Hdr 1 | Zone | Location | Port Depth | Start Date | Fld QC Type Code | Fld Prep Code | Lab Sample Type Code | Anyl Suite Code | Analyte Desc | Analyte | Std Result | Result/Median | LVL Type/Risk Code | Screen Level | Exceedance Ratio | Std Mdl | Std Uom | Dilution Factor | Qual Co | Concat Flag Code Concat Reason Code | Anyl Meth Code | Lab Code | Comment | | C2 | 26 | 26 | 01/10/00 | 2.6 | 8.52 | 3.35 | 4 | Water Canyon
(includes Canyon del
Valle, Potrillo, and
Fence Canyons) | | SWSC
Spring | 0 | 10/08/08 | | F | CS | METALS | Zinc | Zn | 2.9 | 0.87 | LANL Int
BG LVL | 2 | 1.5 | 2 | ug/L | 1 | J J | J_LAE | SW-846:6010B | GELC | | | C2 | 5 | 6 | 01/30/07 | 1.69 | 3.04 | 2.33 | 6 | Water Canyon
(includes Canyon del
Valle, Potrillo, and
Fence Canyons) | Intermediate
Spring | Martin
Spring | 0 | 10/08/08 | | F | CS | GENINORG | Nitrate-Nitrite as
Nitrogen | NO3+NO2-N | 3.04 | 1.30 | LANL Int
BG LVL | 2.41 | 1.3 | 0.05 | mg/L | 5 | J | l4a | EPA:353.2 | GELC | | | C2 | 11 | 13 | 03/29/04 | 0.31 | 1.7 | 0.95 | 13 | Water Canyon
(includes Canyon del
Valle, Potrillo, and
Fence Canyons) | Intermediate
Spring | Martin
Spring | 0 | 10/08/08 | | F | CS | METALS | Uranium | U | 1.5 | | LANL Int
BG LVL | | 2.1 | 0.05 | ug/L | 1 | | | SW-846:6020 | GELC | | | C2 | 2 | 2 | 10/31/01 | 0.388 | 0.388 | 0.388 | 1 | White Rock Canyon and Rio Grande | Water
Supply | Buckman 6 | 291 | 09/24/08 | | UF | CS | GENINORG | Perchlorate | CIO4 | 0.388 | | LANL Reg
BG LVL | 0.05 | 7.8 | 0.05 | ug/L | 1 | | | SW-846:6850 | GELC | | | C2 | 1 | 1 | 09/24/08 | 466 | 466 | 466 | 1 | White Rock Canyon and Rio Grande | Water
Supply | Buckman 6 | 291 | 09/24/08 | | UF | CS | GENINORG | Specific Conductance | SPEC_CON
DC | 466 | 1.00 | LANL Reg
BG LVL | 287.21 | 1.6 | 1 | uS/cm | 1 | | | EPA:120.1 | GELC | | | C3 | 3 | 3 | 06/28/05 | 1200 | 3610 | 1240 | 3 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Alluvial
Spring | TW-1.72
Spring | 0 | 12/11/08 | | F | CS | METALS | Iron | Fe | 1240 | 1.00 | NM GW
STD | 1000 | 2.5 | 25 | ug/L | 1 | * J | l4a | SW-846:6010B | GELC | Turb = 124 NTU, in
Twomile | | C3 | 3 | 3 | 06/28/05 | 1.8 | 9.7 | 2.7 | 3 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Alluvial
Spring | TW-1.72
Spring | 0 | 12/11/08 | | UF | CS | METALS | Lead | Pb | 9.7 | 3.59 |
EPA PRIM
DW STD | 15 | 1.3 | 0.5 | ug/L | 1 | | | SW-846:6020 | GELC | Turb = 124 NTU, in
Twomile | | C3 | 3 | 3 | 06/28/05 | 4.5 | 7.7 | 6.1 | 2 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Alluvial
Spring | TW-1.72
Spring | 0 | 12/11/08 | | UF | CS | METALS | Antimony | Sb | 7.7 | 1.26 | EPA PRIM
DW STD | 6 | 2.6 | 0.5 | ug/L | 1 | J | l4a | SW-846:6020 | GELC | Turb = 124 NTU, in
Twomile | | C3 | 3 | 3 | 06/28/05 | 4.9 | 24.8 | 14.9 | 2 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Alluvial
Spring | TW-1.72
Spring | 0 | 12/11/08 | | F | CS | METALS | Antimony | Sb | 24.8 | 1.66 | EPA PRIM
DW STD | 6 | 8.3 | 0.5 | ug/L | 1 | J | l4a | SW-846:6020 | GELC | Turb = 124 NTU, in
Twomile | | C3 | 3 | 5 | 06/09/08 | 331 | 522 | 423 | 5 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Alluvial | PCAO-5 | 14.7 | 12/02/08 | | F | CS | GENINORG | Total Dissolved Solids | TDS | 519 | 1.23 | NM GW
STD | 1000 | 1.0 | 2.4 | mg/L | 1 | | | EPA:160.1 | GELC | Well is in Cerro
Grande fire ash
deposits with high
metals content | | C3 | 3 | 5 | 06/09/08 | 331 | 522 | 423 | 5 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Alluvial | PCAO-5 | 14.7 | 12/02/08 | FD | F | CS | GENINORG | Total Dissolved Solids | TDS | 522 | 1.23 | NM GW
STD | 1000 | 1.0 | 2.4 | mg/L | 1 | | | EPA:160.1 | GELC | Well is in Cerro
Grande fire ash
deposits with high
metals content | | C3 | 3 | 5 | 06/09/08 | 4.8 | 6.9 | 6.8 | 3 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Alluvial | PCAO-5 | 14.7 | 12/02/08 | | F | CS | METALS | Arsenic | As | 6.9 | 1.01 | EPA PRIM
DW STD | 10 | 1.4 | 1.5 | ug/L | 1 | | | SW-846:6020 | GELC | Well is in Cerro
Grande fire ash
deposits with high
metals content | | C3 | 3 | 5 | 06/09/08 | 4.8 | 6.9 | 6.8 | 3 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Alluvial | PCAO-5 | 14.7 | 12/02/08 | FD | F | CS | METALS | Arsenic | As | 6.8 | 1.00 | EPA PRIM
DW STD | 10 | 1.4 | 1.5 | ug/L | 1 | | | SW-846:6020 | GELC | Well is in Cerro
Grande fire ash
deposits with high
metals content | | C3 | 3 | 5 | 06/09/08 | 3.2 | 5.7 | 5.3 | 3 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Alluvial | PCAO-5 | 14.7 | 12/02/08 | FD | UF | CS | METALS | Arsenic | As | 5.7 | 1.08 | EPA PRIM
DW STD | 10 | 1.1 | 1.5 | ug/L | 1 | | | SW-846:6020 | GELC | Well is in Cerro
Grande fire ash
deposits with high
metals content | | C3 | 3 | 5 | 06/09/08 | 3.2 | 5.7 | 5.3 | 3 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Alluvial | PCAO-5 | 14.7 | 12/02/08 | | | | METALS | Arsenic | As | 5.3 | | EPA PRIM
DW STD | 10 | 1.1 | 1.5 | ug/L | 1 | | | SW-846:6020 | GELC | Well is in Cerro
Grande fire ash
deposits with high
metals content | | C3 | 3 | 5 | 06/09/08 | 281 | 601 | 436 | 5 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Alluvial | PCAO-5 | 14.7 | 12/02/08 | FD | F | CS | METALS | Barium | Ва | 570 | 1.31 | NM GW
STD | 1000 | 1.1 | 5 | ug/L | 1 | | | SW-846:6010B | GELC | Well is in Cerro
Grande fire ash
deposits with high
metals content | | C3 | 3 | 5 | 06/09/08 | 281 | 601 | 436 | 5 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Alluvial | PCAO-5 | 14.7 | 12/02/08 | | F | CS | METALS | Barium | Ва | 601 | 1.38 | NM GW
STD | 1000 | 1.2 | 5 | ug/L | 1 | | | SW-846:6010B | GELC | Well is in Cerro
Grande fire ash
deposits with high
metals content | | Criteria Code | Visits | Samples | First Event | Min Detect | Max Detect | Median Detect | Num Detect | Hdr 1 | Zone | Location | Port Depth | Start Date | | Fld Prep Code | Lab Sample Type Code | Anyl Suite Code | Analyte Desc | Analyte | Std Result | Result/Median | LVL Type/Risk Code | Screen Level | Exceedance Ratio | Std Mdl | Std Uom | Dilution Factor | Lab Qual Code | cat Reas | Anyl Meth Code | Lab Code | Comment | |---------------|--------|---------|-------------|------------|------------|---------------|------------|--|---------------------------|-----------|------------|------------|----|---------------|----------------------|-----------------|--------------|------------------|------------|---------------|------------------------------|--------------|------------------|---------|---------|-----------------|---------------|----------|----------------|----------|---| | C3 | 1 | 1 | 09/24/08 | 7 | 7 | 7 | 1 | White Rock Canyon and Rio Grande | Water
Supply | Buckman 6 | 291 | 09/24/08 | | UF | CS | METALS | Arsenic | As | 7 | | EPA PRIM
DW STD | 10 | 1.4 | 1.5 | ug/L | 1 | | | SW-846:6020 | GELC | Similar to nearby wells | | C5 | 25 | 28 | 10/24/01 | 1.22 | 2.97 | 2.05 | 28 | Pueblo Canyon
(includes Acid
Canyon) | Water
Supply | O-1 | 1017 | 09/10/08 | | UF | CS | GENINORG | Perchlorate | CIO4 | 1.96 | 0.96 | LANL Reg
BG LVL | 0.05 | 19.6 | 0.2 | ug/L | 4 | J | PE12e | SW-846:6850 | GELC | | | C5 | 23 | 25 | 10/24/01 | 0.354 | 0.55 | 0.381 | 24 | Upper Los Alamos
Canyon (includes DP | Water
Supply | 0-4 | 1115 | 09/10/08 | | UF | CS | GENINORG | Perchlorate | CIO4 | 0.415 | | LANL Reg
BG LVL | 0.05 | 4.2 | 0.05 | ug/L | 1 | J | PE12e | SW-846:6850 | GELC | | | C5 | 23 | 25 | 10/24/01 | 0.354 | 0.55 | 0.381 | 24 | Canyon) Upper Los Alamos Canyon (includes DP | Water | 0-4 | 1115 | 09/10/08 | FD | UF | CS | GENINORG | Perchlorate | CIO4 | 0.434 | | LANL Reg
BG LVL | 0.05 | 4.3 | 0.05 | ug/L | 1 | J | PE12e | SW-846:6850 | GELC | | | C5 | 21 | 23 | 10/24/01 | 0.401 | 0.52 | 0.444 | 21 | Canyon) Sandia Canyon | Water | PM-1 | 945 | 09/10/08 | | UF | CS | GENINORG | Perchlorate | CIO4 | 0.472 | 1.06 | LANL Reg | 0.05 | 4.7 | 0.05 | ug/L | 1 | J | PE12e | SW-846:6850 | GELC | | | C5 | 11 | 11 | 11/28/01 | 0.3 | 0.354 | 0.337 | 11 | Mortandad Canyon
(includes Ten Site
Canyon and Canada
del Buey) | Supply
Water
Supply | PM-4 | 1260 | 09/10/08 | | UF | CS | GENINORG | Perchlorate | CIO4 | 0.35 | 1.04 | BG LVL
LANL Reg
BG LVL | 0.05 | 3.5 | 0.05 | ug/L | 1 | J | PE12e | SW-846:6850 | GELC | | | C5 | 25 | 31 | 10/24/01 | 0.296 | 0.444 | 0.338 | 26 | Mortandad Canyon
(includes Ten Site
Canyon and Canada
del Buey) | Water
Supply | PM-5 | 1440 | 09/10/08 | | UF | CS | GENINORG | Perchlorate | CIO4 | 0.34 | | LANL Reg
BG LVL | 0.05 | 3.4 | 0.05 | ug/L | 1 | J | PE12e | SW-846:6850 | GELC | | | C5 | 10 | 11 | 08/29/06 | 0.268 | 0.388 | 0.309 | 11 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Alluvial | 18-BG-1 | 10 | 12/08/08 | | F | CS | GENINORG | Perchlorate | CIO4 | 0.268 | | LANL AvI
BG LVL | 0.05 | 2.7 | 0.05 | ug/L | 1 | | | SW-846:6850 | GELC | | | C5 | 10 | 12 | 08/31/06 | 0.247 | 0.568 | 0.32 | 12 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Alluvial | 18-MW-9 | 6 | 12/10/08 | | F | CS | GENINORG | Perchlorate | CIO4 | 0.28 | | LANL AvI
BG LVL | 0.05 | 2.8 | 0.05 | ug/L | 1 | | | SW-846:6850 | GELC | | | C5 | 10 | 12 | 08/31/06 | 0.266 | 0.417 | 0.34 | 12 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Alluvial | 18-MW-11 | 27 | 12/09/08 | | F | CS | GENINORG | Perchlorate | CIO4 | 0.266 | | LANL AvI
BG LVL | 0.05 | 2.7 | 0.05 | ug/L | 1 | | | SW-846:6850 | GELC | | | C5 | 10 | 13 | 08/28/06 | 0.0972 | 0.242 | 0.162 | 13 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Alluvial | 18-MW-18 | 12.5 | 12/11/08 | FD | F | CS | GENINORG | Perchlorate | CIO4 | 0.115 | | LANL AvI
BG LVL | 0.05 | 1.2 | 0.05 | ug/L | 1 . | J J | J_LAB | SW-846:6850 | GELC | | | C5 | 10 | 13 | 08/28/06 | 45.1 | 96.3 | 56.2 | 13 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Alluvial | 18-MW-18 | 12.5 | 12/11/08 | FD | F | CS | GENINORG | Sodium | Na | 56.3 | | LANL Avl
BG LVL | 15.54 | 1.8 | 0.045 | mg/L | 1 | | | SW-846:6010B | GELC | | | C5 | 10 | 13 | 08/28/06 | 45.1 | 96.3 | 56.2 | 13 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Alluvial | 18-MW-18 | 12.5 | 12/11/08 | | F | CS | GENINORG | Sodium | Na | 56.2 | | LANL AVI
BG LVL | 15.54 | 1.8 | 0.045 | mg/L | 1 | | | SW-846:6010B | GELC | | | C5 | 3 | | 06/09/08 | | 444 | 350 | 5 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Alluvial | PCAO-5 | 14.7 | 12/02/08 | | | | | Ţ | ALK-
CO3+HCO3 | | | BG LVL | 76 | | | mg/L | 1 | | | EPA:310.1 | | Well is in Cerro
Grande fire ash
deposits with high
metals content | | | 3 | | 06/09/08 | 241 | 444 | 350 | 5 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Alluvial | PCAO-5 | 14.7 | 12/02/08 | FD | | | | | ALK-
CO3+HCO3 | | | LANL AvI
BG LVL | 76 | | | mg/L | 1 | | | EPA:310.1 | GELC | Well is in Cerro
Grande fire ash
deposits with high
metals content | | C5 | 3 | 5 | 06/09/08 | 61.9 | 114 | 85.7 | 5 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Alluvial | PCAO-5 | 14.7 | 12/02/08 | | F | CS | GENINORG | Calcium | Ca | 106 | | BG LVL | 26.36 | 2.0 | 0.15 | mg/L | 1 | | | SW-846:6010B | GELC | Well is in Cerro
Grande fire ash
deposits with high
metals content | | C5 | 3 | 5 | 06/09/08 | 61.9 | 114 | 85.7 | 5 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Alluvial | PCAO-5 | 14.7 | 12/02/08 | FD | F | CS | GENINORG | Calcium | Са | 114 | 1.33 | LANL AvI
BG LVL | 26.36 | 2.2 | 0.15 | mg/L | 1 | | | SW-846:6010B | GELC | Well is in Cerro
Grande fire ash
deposits with high
metals content | | Criteria Code | Visits | Samples | First Event | Min Detect | Max Detect | Median Detect | Num Detect | Hdr 1 | Zone | Location | Port Depth | Start Date | Fld QC Type Code | Fld Prep Code | Lab Sample Type
Code | Anyl Suite Code | Analyte Desc | Analyte | Std Result | Result/Median | LVL Type/Risk Code | Screen Level | Exceedance Ratio | Std Mdl | Std Uom | Dilution Factor | Qual Co | Concat Flag Code | Concat Reason Code | Anyl Meth Code | Lab Code | Comment | |---------------|--------|---------|-------------|------------|------------|---------------|------------|---|----------|----------|------------|------------|------------------|---------------|----------------------|-----------------|------------------------|---------|------------|---------------|--------------------|--------------|------------------|---------|---------|-----------------|---------|------------------|--------------------|----------------|----------|---| | C5 | 3 | 5 | 06/09/08 | 0.932 | 1.48 | 1.3 | 5 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Alluvial | PCAO-5 | 14.7 | 12/02/08 | | | CS | GENINORG | Ammonia as Nitrogen | NH3-N | 1.48 | 1.14 | LANL AVI
BG LVL | 0.04 | 18.5 | 0.03 | mg/L | 1 | J | J- 16 | Sa | EPA:350.1 | GELC | Well is in Cerro
Grande fire ash
deposits with high
metals content | | C5 | 3 | 5 | 06/09/08 | 0.932 | 1.48 | 1.3 | 5 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Alluvial | PCAO-5 | 14.7 | 12/02/08 | FD | F | CS | GENINORG | Ammonia as Nitrogen | NH3-N | 1.37 | 1.05 | LANL AVI
BG LVL | 0.04 | 17.1 | 0.03 | mg/L | 1 | J | J- 16 | Sa | EPA:350.1 | GELC | Well is in Cerro
Grande fire ash
deposits with high
metals content | | C5 | 3 | 5 | 06/09/08 | 331 | 522 | 423 | 5 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Alluvial | PCAO-5 | 14.7 | 12/02/08 | FD | F (| CS | GENINORG | Total Dissolved Solids | TDS | 522 | 1.23 | LANL AVI
BG LVL | 139 | 1.9 | 2.4 | mg/L | 1 | | | | EPA:160.1 | GELC | Well is in Cerro
Grande fire ash
deposits with high
metals content | | C5 | 3 | 5 | 06/09/08 | 331 | 522 | 423 | 5 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Alluvial | PCAO-5 | 14.7 | 12/02/08 | | F (| CS | GENINORG | Total Dissolved Solids | TDS | 519 | 1.23 | LANL AVI
BG LVL | 139 | 1.9 | 2.4 | mg/L | 1 | | | | EPA:160.1 | GELC | Well is in Cerro
Grande fire ash
deposits with high
metals content | | C5 | 3 | 5 | 06/09/08 | 281 | 601 | 436 | 5 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Alluvial | PCAO-5 | 14.7 | 12/02/08 | | F (| CS | METALS | Barium | Ва | 601 | 1.38 | LANL AVI
BG LVL | 68.57 | 4.4 | 5 | ug/L | 1 | | | | SW-846:6010B | GELC | Well is in Cerro
Grande fire ash
deposits with high
metals content | | C5 | 3 | 5 | 06/09/08 | 281 | 601 | 436 | 5 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Alluvial | PCAO-5 | 14.7 | 12/02/08 | FD | F (| CS | METALS | Barium | Ва | 570 | 1.31 | LANL AVI
BG LVL | 68.57 | 4.2 | 5 | ug/L | 1 | | | | SW-846:6010B | GELC | Well is in Cerro
Grande fire ash
deposits with high
metals content | | C5 | 3 | 5 | 06/09/08 | 9.6 | 23.6 | 17.1 | 5 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Alluvial | PCAO-5 | 14.7 | 12/02/08 | FD | F (| CS | METALS | Cobalt | Co | 22.1 | 1.29 | LANL AVI
BG LVL | 0.5 | 22.1 | 5 | ug/L | 1 | J J | J J | _LAB | SW-846:6010B | GELC | Well is in Cerro
Grande fire ash
deposits with high
metals content | | C5 | 3 | 5 | 06/09/08 | 9.6 | 23.6 | 17.1 | 5 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Alluvial | PCAO-5 | 14.7 | 12/02/08 | | F (| CS | METALS | Cobalt | Co | 23.6 | 1.38 | LANL AVI
BG LVL | 0.5 | 23.6 | 5 | ug/L | 1 | J J | J J_ | _LAB | SW-846:6010B | GELC | Well is in Cerro
Grande fire ash
deposits with high
metals content | | C5 | 3 | 5 | 06/09/08 | 6040 | 17500 | 11900 | 5 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Alluvial | PCAO-5 | 14.7 | 12/02/08 | FD | F (| CS | METALS | Manganese | Mn | 16900 | 1.42 | LANL AVI
BG LVL | 2 | 4225.
0 | 10 | ug/L | 5 | | | | SW-846:6010B | GELC | Well is in Cerro
Grande fire ash
deposits with high
metals content | | C5 | 3 | 5 | 06/09/08 | 6040 | 17500 | 11900 | 5 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Alluvial | PCAO-5 | 14.7 | 12/02/08 | | F (| CS | METALS | Manganese | Mn | 17500 | 1.47 | LANL AVI
BG LVL | 2 | 4375.
0 | 10 | ug/L | 5 | | | | SW-846:6010B | GELC | Well is in Cerro
Grande fire ash
deposits with high
metals content | | C5 | 3 | 5 | 06/09/08 | 6.8 | 8.2 | 7.3 | 5 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Alluvial | PCAO-5 | 14.7 | 12/02/08 | FD | F (| CS | METALS | Molybdenum | Мо | 7.1 | 0.97 | LANL AVI
BG LVL | 2 | 1.8 | 0.1 | ug/L | 1 | J | J 14 | 1 a | SW-846:6020 | GELC | Well is in Cerro
Grande fire ash
deposits with high
metals content | | C5 | 3 | 5 | 06/09/08 | 6.8 | 8.2 | 7.3 | 5 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Alluvial | PCAO-5 | 14.7 | 12/02/08 | | F (| CS | METALS | Molybdenum | Мо | 6.8 | 0.93 | LANL AvI
BG LVL | 2 | 1.7 | 0.1 | ug/L | 1 | J | J 14 | 1 a | SW-846:6020 | GELC | Well is in Cerro
Grande fire ash
deposits with high
metals content | | | 3 | | 06/09/08 | | | 7.1 | 5 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Alluvial | PCAO-5 | 14.7 | 12/02/08 | | | | METALS | Nickel | Ni | 10.5 | | LANL AVI
BG LVL | 1 | | 0.5 | ug/L | 1 | | | | | GELC | Well is in Cerro
Grande fire ash
deposits with high
metals content | | C5 | 3 | | 06/09/08 | | 10.7 | 7.1 | 5 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Alluvial | PCAO-5 | 14.7 | 12/02/08 | FD | | | METALS | Nickel | Ni | 10.7 | | LANL Avi
BG LVL | 1 | 5.4 | 0.5 | ug/L | 1 | | | | | GELC | Well is in Cerro
Grande fire ash
deposits with high
metals content | | C5 | 3 | | 06/09/08 | | 777 | 583 | 5 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Alluvial | PCAO-5 | 14.7 | 12/02/08 | FD | | | METALS | Strontium | Sr | 777 | | LANL AVI
BG LVL | 120 | | 5 | ug/L | 1 | | | | SW-846:6010B | | Well is in Cerro
Grande fire ash
deposits with high
metals content | | C5 | 3 | 5 | 06/09/08 | 383 | 777 | 583 | 5 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Alluvial | PCAO-5 | 14.7 | 12/02/08 | | F (| cs | METALS | Strontium | Sr | 723 | 1.24 | LANL AVI
BG LVL | 120 | 3.0 | 5 | ug/L | 1 | | | | SW-846:6010B | GELC | Well is in Cerro
Grande fire ash
deposits with high
metals content | | Criteria Code | Visits | Samples | First Event | Min Detect | Max Detect | Median Detect | Num Detect | Hdr 1 | Zone | Location | Port Depth | Start Date | Fld QC Type Code | Fld Prep Code | Lab Sample Type Code | Anyl Suite Code | Analyte Desc | Analyte | Std Result | Result/Median | LVL Type/Risk Code | Screen Level | Exceedance Ratio | Std Mdl | Std Uom | Dilution Factor | Lab Qual Code | Concat Flag Code | Concat Reason Code Anyl Meth Code | | Lab Code | Comment | |---------------|--------|---------|-------------|------------|------------|---------------|------------|--|------------------------|---------------------|------------|------------|------------------|---------------|----------------------|-----------------|----------------------|---------|------------|---------------|-----------------------|--------------|------------------|---------|---------|-----------------|---------------|------------------|-----------------------------------|------|----------|---------| | C5 | 11 | 20 | 06/20/05 | 0.161 | 0.405 | 0.253 | 20 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Intermediate
Spring | Homestead
Spring | 0 | 12/04/08 | 1 | | CS | GENINORG | Perchlorate | CIO4 | 0.163 | 0.64 | LANL Int
BG LVL | 0.05 | 1.6 | 0.05 | ug/L | 1 | J J | | _LAB SW-846:6 | 350 | GELC | | | C5 | 11 | 11 | 06/21/05 | 0.213 | 0.457 | 0.266 | 11 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Intermediate
Spring | Starmer
Spring | 0 | 12/04/08 | | F | CS | GENINORG | Perchlorate | CIO4 | 0.213 | 0.80 | BG LVL | 0.05 | 2.1 | 0.05 | ug/L | 1 | | | SW-846:6 | 350 | GELC | | | C5 | 10 | 10 | 08/22/06 | 0.324 | 0.633 | 0.413 | 10 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Intermediate
Spring | Anderson
Spring | 0 | 12/09/08 | 1 | | | GENINORG | Perchlorate | CIO4 | 0.329 | 0.80 | LANL Int
BG LVL | 0.05 | 3.3 | 0.05 | ug/L | 1 | | | SW-846:6 | 350 | GELC | | | | | | 08/22/06 | | | 4.9 | 10 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Spring | Anderson
Spring | 0 | 12/09/08 | 1 | | | METALS | Chromium | Cr | 4.5 | 0.92 | P. LANL Int
BG LVL | 1 | 2.3 | 1.5 | ug/L | 1 | | | SW-846:6 | 020 | GELC | | | C5 | 11 | 11 | 06/20/05 | 0.377 | 0.804 | 0.472 | 11 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Intermediate
Spring | Kieling
Spring | 0 | 12/10/08 | 1 | F | | GENINORG | | CIO4 | 0.804 | 1.70 | LANL Int
BG LVL | 0.05 | 8.0 | 0.05 | ug/L | 1 | | | SW-846:6 | 350 | GELC | | | C5 | 10 | 11 | 08/31/06 | 0.213 | 0.447 | 0.31 | 11 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Intermediate
Spring | Charlie's
Spring | 0 | 12/04/08 | | F | CS | GENINORG | Perchlorate | CIO4 | 0.31 | 1.00 | BG LVL | 0.05 | 3.1 | 0.05 | ug/L | 1 | | | SW-846:6 | 350 | GELC | | | C5 | 10 | 11 | 08/31/06 | 0.213 | 0.447 | 0.31 | 11 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Intermediate
Spring | Charlie's
Spring | 0 | 12/04/08 | FD I | F | CS | GENINORG | Perchlorate | CIO4 | 0.312 | 1.01 | LANL Int
BG LVL | 0.05 | 3.1 | 0.05 | ug/L | 1 | | | SW-846:6 | 350 |
GELC | | | C5 | 11 | 11 | 06/22/05 | 0.606 | 0.947 | 0.698 | 11 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Intermediate
Spring | Bulldog
Spring | 0 | 12/10/08 | | F | CS | GENINORG | Perchlorate | CIO4 | 0.947 | 1.36 | BG LVL | 0.05 | 9.5 | 0.05 | ug/L | 1 | | | SW-846:6 | 350 | GELC | | | C5 | 8 | 8 | 09/22/00 | 0.409 | 0.71 | 0.54 | 8 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Intermediate | R-19 | 909.3 | 12/03/08 | 1 | F | CS | GENINORG | Fluoride | F(-1) | 0.622 | 1.15 | BG LVL | 0.23 | 1.4 | 0.033 | mg/L | 1 | | | EPA:300.0 |) | GELC | | | C5 | | 10 | | | | 0.204 | 10 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Intermediate | R-23i | | 12/02/08 | | | | GENINORG | | CIO4 | 0.228 | 1.12 | LANL Int
BG LVL | 0.05 | 2.3 | 0.05 | ug/L | 1 | | | SW-846:6 | 350 | GELC | | | C5 | 12 | 22 | 08/25/05 | 0.364 | 1.28 | 0.704 | 18 | (includes Twomile
and Threemile
Canyons) | Regional | R-18 | 1358 | 12/11/08 | FD I | UF | CS | GENINORG | Total Organic Carbon | TOC | 0.688 | | B LANL Reg
BG LVL | | 1.0 | 0.33 | | 1 | J J | J J | _LAB SW-846:9 | 060 | GELC | | | | | | 12/17/03 | | 1.51 | 0.868 | 20 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Regional | R-23 | 816 | 12/03/08 | | | | | Total Organic Carbon | TOC | 1.41 | 1.62 | LANL Reg
BG LVL | 0.33 | 2.1 | 0.33 | mg/L | 1 | | | SW-846:9 | 060 | GELC | | | | | | 03/28/00 | | 8440 | 6410 | 37 | Water Canyon
(includes Canyon del
Valle, Potrillo, and
Fence Canyons) | | CDV-16-
02659 | 1.7 | 10/08/08 | | | | | Barium | Ва | 6470 | | LANL AVI
BG LVL | 68.57 | 47.2 | | ug/L | 1 | | | SW-846:6 | | | | | C5 | 4 | | 05/10/07 | | 23 | 17.6 | 4 | Water Canyon
(includes Canyon del
Valle, Potrillo, and
Fence Canyons) | | Spring | 0 | 10/08/08 | | | | GENINORG | | CI(-1) | 18.1 | | B LANL Int
BG LVL | 7.78 | | 0.066 | _ | 1 | | | EPA:300.0 | | GELC | | | C5 | | | 05/10/07 | | | 0.595 | 4 | Water Canyon
(includes Canyon del
Valle, Potrillo, and
Fence Canyons) | | Spring | 0 | 10/08/08 | | | | GENINORG | | CIO4 | 0.72 | | LANL Int
BG LVL | 0.05 | | 0.05 | ug/L | 1 | | | SW-846:6 | | GELC | | | C5 | 26 | 26 | 01/10/00 | 209 | 371 | 279 | 25 | Water Canyon
(includes Canyon del
Valle, Potrillo, and
Fence Canyons) | Intermediate
Spring | SWSC
Spring | 0 | 10/08/08 | | F | cs | METALS | Barium | Ва | 268 | 0.96 | BG LVL | 71.83 | 1.9 | 1 | ug/L | 1 | | | SW-846:6 | 010B | GELC | | | oisetic O | Visits | Samples | First Event | Min Detect | Max Detect | Median Detect | Num Detect | Hdr 1 | Zone | Location | Port Depth | Start Date | FId QC T | Fld Prep Code | Lab Sample Type Code | Anyl Suite Code | Analyte Desc | Analyte | Std Result | Result/Median | LVL Type/Risk Code | Screen Level | Exceedance Ratio | Std Mdl | Std Uom | Dilution Factor | Qual Coo | Concat Flag Code Concat Reason Code | Anyl Meth Code | Lab Code | Comment | |-----------|--------|---------|-------------|------------|------------|---------------|------------|--|------------------------|-------------------|------------|------------|----------|---------------|----------------------|-----------------|--------------|---------|------------|---------------|--------------------|--------------|------------------|---------|---------|-----------------|----------|-------------------------------------|----------------|----------|-------------------------------| | C | 26 | 26 | 01/10/00 | 5 | 85 | 10 | 15 | Water Canyon
(includes Canyon del
Valle, Potrillo, and
Fence Canyons) | Intermediate
Spring | SWSC
Spring | 0 | 10/08/08 | F | | CS | METALS | Manganese | Mn | 11 | | LANL Int
BG LVL | 2 | 2.8 | 2 | ug/L | 1 | | | SW-846:6010B | GELC | | | C | 5 | 6 | 01/30/07 | 19.2 | 32.4 | 23.3 | 6 | Water Canyon
(includes Canyon del
Valle, Potrillo, and
Fence Canyons) | Intermediate
Spring | Martin
Spring | 0 | 10/08/08 | F | | CS | GENINORG | Chloride | CI(-1) | 20.5 | | LANL Int
BG LVL | 7.78 | 1.3 | 0.13 | mg/L | 2 | | | EPA:300.0 | GELC | | | C | 5 | 6 | 01/30/07 | 0.459 | 0.694 | 0.541 | | Water Canyon
(includes Canyon del
Valle, Potrillo, and
Fence Canyons) | Intermediate
Spring | Martin
Spring | 0 | 10/08/08 | F | = | CS | GENINORG | Perchlorate | CIO4 | 0.694 | | LANL Int
BG LVL | 0.05 | 6.9 | 0.05 | ug/L | 1 | | | SW-846:6850 | GELC | | | C | 41 | 44 | 01/10/00 | 570 | 2840 | 2020 | | Water Canyon
(includes Canyon del
Valle, Potrillo, and
Fence Canyons) | Intermediate
Spring | Martin
Spring | 0 | 10/08/08 | F | = | CS | METALS | Boron | В | 1230 | | LANL Int
BG LVL | 15.12 | 40.7 | 10 | ug/L | 1 | | | SW-846:6010B | GELC | | | C! | 3 | 3 | 06/16/08 | 10.9 | 14.1 | 11.1 | 3 | | | R-23i PIEZ | 0 | 12/12/08 | ι | JF (| CS | GENINORG | Magnesium | Mg | 11.1 | 1.00 | | 0.0636 | 87.3 | 0.085 | mg/L | 1 | | | SW-846:6010B | GELC | | | C | 3 | 3 | 06/16/08 | 10.9 | 13.7 | 11.4 | 3 | | | R-23i PIEZ | 0 | 12/12/08 | F | - | CS | GENINORG | Magnesium | Mg | 11.4 | 1.00 | | 0.0636 | 89.6 | 0.085 | mg/L | 1 | | | SW-846:6010B | GELC | | | C | 3 | 3 | 06/16/08 | 10.9 | 14.1 | 11.1 | 3 | | | R-23i PIEZ | 0 | 12/12/08 | ι | JF (| CS | GENINORG | Magnesium | Mg | 11.1 | 1.00 | | 0.0636 | 87.3 | 0.085 | mg/L | 1 | | | SW-846:6010B | GELC | | | C | 3 | 3 | 06/16/08 | 10.9 | 13.7 | 11.4 | 3 | | | R-23i PIEZ | 0 | 12/12/08 | F | = (| CS | GENINORG | Magnesium | Mg | 11.4 | 1.00 | | 0.0636 | 89.6 | 0.085 | mg/L | 1 | | | SW-846:6010B | GELC | | | C | 3 | 3 | 06/28/05 | 1200 | 3610 | 1240 | | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Alluvial
Spring | TW-1.72
Spring | 0 | 12/11/08 | F | - | CS | METALS | Iron | Fe | 1240 | | NM GW
STD | 1000 | 1.2 | 25 | ug/L | 1 | * J | l4a | SW-846:6010B | GELC | Turb = 124 NTU, in
Twomile | | C | 3 | 3 | 06/28/05 | 4.5 | 7.7 | 6.1 | | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Alluvial
Spring | TW-1.72
Spring | 0 | 12/11/08 | l | JF | CS | METALS | Antimony | Sb | 7.7 | | EPA PRIM
DW STD | 6 | 1.3 | 0.5 | ug/L | 1 | J | l4a | SW-846:6020 | GELC | Turb = 124 NTU, in
Twomile | | C | 3 | 3 | 06/28/05 | 4.9 | 24.8 | 14.9 | 2 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Alluvial
Spring | TW-1.72
Spring | 0 | 12/11/08 | F | = (| CS | METALS | Antimony | Sb | 24.8 | | EPA PRIM
DW STD | 6 | 4.1 | 0.5 | ug/L | 1 | J | l4a | SW-846:6020 | GELC | Turb = 124 NTU, in
Twomile |