
Well R-32 Rehabilitation and Conversion Summary Report

Well R-32 Rehabilitation and Conversion Summary Report

October 2007

Responsible project leader:

Ardyth Simmons	aly De	Project – Leader	Environmental Programs	10/31/07
Printed Name	Signature	Title	Organization	Date
Responsible LANS rep	presentative:			
Susan G. Stiger	Colongers	Associate Director	Environmental Programs	10/31/07
Printed Name	Signature	Title	Organization	Date
Responsible DOE repr	resentative:			
David R. Gregory	Danda Bein	Project Director	DOE-LASO	10/31/07
Printed Name	Signature	Title	Organization	Date /

CONTENTS

1.0	INTROD	DUCTION	1
2.0	2.1 F 2.2 \ 2.3 S 2.4 S 2.5 S 2.2 2	Retrieval of Westbay Sampling System /ideo Logging Screen Abandonment and Well Conversion Specific Capacity Testing Screen 1 Water Quality 2.5.1 Sample Collection, Field Preparation, and Analytical Techniques 2.5.2 Field Parameters 2.5.3 Analytical Results 2.5.4 Well Screen Analysis	1 2 2 4 4 5
3.0	DEVIAT	IONS FROM WORK PLAN	7
4.0	CONCL	USIONS	7
5.0	REFER	ENCES	8
Figure	es		
Figure	2.3-1	Well R-32 proposed rehabilitation and conversion configuration	9
Figure	2.5-1	Concentrations of dissolved iron versus uncorrected ORP measurements taken at R-32 screen 1	10
Figure	2.5-2	Comparison of pH and TOC concentrations during sampling of R-32 screen 1 using Westbay equipment on December 13, 2006, and the pumping test conducted on October 9 through 11, 2007	11
Figure	Figure 2.5-3 Comparison of dissolved concentrations of magnesium (Mg), chloride (Cl), sulfa (SO ₄), and nitrate (NO ₃)-N during sampling of R-32 screen 1 using Westbay equipment on December 13, 2006, and the pumping test conducted on October through 11, 2007		12
Figure	2.5-4	Comparison of dissolved concentrations of barium (Ba), chromium (Cr), manganese (Mn), nickel (Ni), and zinc (Zn) during sampling of R-32 screen 1, using Westbay equipment, on December 13, 2006, and a pumping test conducted October 9 through 11, 2007	13
Tables	S		
Table :	2.2-1	Video Log Data and Observations	
Table :	2.4-1	R-32 Screen 1 Pumping Results	15
Table :	2.5-1	Field Parameters Measured at R-32 Screen 1 on October 9 and 11, 2007	16
Table :	2.5-2	Summary of Test Results of the Well Screen Analysis for R-32 Screen 1	17

Appendixes

Appendix A Westbay Retrieval Report

Appendix B R-32 Well Log (on DVD included with this document)

Appendix C Analytical Data Results

1.0 INTRODUCTION

This report provides a summary of the work performed and the results of rehabilitating and converting well R-32 to a single-screen well. Plans for R-32 conversion were presented in the 'Work Plan for R-Well Rehabilitation and Replacement, Rev. 2 (LANL 2007, 098119) that was approved by the New Mexico Environment Department (NMED) on August 20, 2007 (NMED 2007, 098182). The R-32 well was drilled to a total depth of 1008 ft using fluid-assisted air-rotary and conventional mud-rotary techniques and was completed in August 2002 with three screened intervals in the regional aquifer: screen 1 from 867.5 ft to 875.2 ft; screen 2 from 931.8 ft. to 934.9 ft; and screen 3 from 972.9 ft to 980.6 ft. A dedicated Westbay sampling system was installed in the well after completion.

The results of the well screen analysis for R-32 (LANL 2007, 096330) indicated that as of December 2006, screen 1 was very good, passing >90% of the assessment tests, screen 2 was not rated, and screen 3 passed 60% to 80% of the tests. Screen 2 was not rated because it was only intended and used for pressure readings. Because of these results, it was planned that the lower two screens would be abandoned, and a submersible pump would be installed for long-term sampling of the uppermost screen (screen 1).

2.0 REHABILITATION ACTIVITIES (SCOPE)

The activities performed as part of the R-32 rehabilitation and conversion included removing the Westbay sampling system, video logging of the well, abandoning screens 2 and 3, hydraulic testing to measure the specific capacity of screen 1, collecting water samples for laboratory analysis, and installing the submersible pump (pending) in accordance with the work plan approved by NMED (LANL 2007, 098119) (NMED 2007, 098182). These activities are described in the following subsections.

2.1 Retrieval of Westbay Sampling System

The Westbay MP55 sampling system was retrieved between September 17 and September 18, 2007. A Westbay technical representative was on-site to lead the retrieval operations. All Westbay components were successfully removed from the well. The Westbay Retrieval Report is presented in Appendix A. The Retrieval Report describes field operations in detail and documents field measurements recorded in association with the retrieval process.

2.2 Video Logging

A downhole video camera was run in the R-32 well on September 19, 2007, to document current screen conditions and verify screen locations, total working depth of the well, and composite static water level before backfilling and development activities. Los Alamos National Laboratory's (the Laboratory's) geophysical trailer and camera were used to complete video logging from the surface to the total depth of the well. Ground surface was used as the datum for all video depth measurements. Static water level in the well at the time of logging was recorded at 785.5 ft below ground surface (bgs). Observed screen depths, static water level (SWL), and total well depth are noted in Table 2.2-1. Overall, water clarity was very good and provided excellent visibility of the screened intervals. All three screen intervals were observed to be in excellent condition; screen 1 was the best of the three screens. A well log DVD is included with this report as Appendix B.

2.3 Screen Abandonment and Well Conversion

Screens 2 and 3 at R-32 were abandoned between September 20 and 24, 2007. Details of abandonment materials and placement are presented in Figure 2.3-1. Filter-grade 10/20 silica sand was used as the primary backfill material through the screened intervals. The 10/20 sand was installed from the total depth (TD) of the well at 1002.0 to 968.0 ft bgs. Finer 20/40 filter-grade silica sand was installed above the 10/20 sand from 968.0 to 959.4 ft bgs. The finer 20/40 sand serves as a transition interval to keep the cement from flowing into the coarser 10/20 sand. All of the backfill sand was installed with a tremie pipe while running a small volume of potable water to carry the sand into place. A Portland cement seal was installed above the fine transition sand from 946.5 to 959.4 ft bgs between screens 2 and 3. Cement was emplaced using a wire line dump bailer. The dump bailer allowed discrete placement of a calculated volume of cement while minimizing impacts to the well screen by fugitive cement. The cement was allowed to cure overnight (approximately 14 h) before proceeding with the next sand interval. A second interval of 10/20 sand was installed through the screened interval at screen 2 from 926.6 to 946.5 ft bgs. This was followed by a fine transitional 20/40 sand from 920.6 to 926.6 ft bgs. A second neat-cement seal was then installed between screens 1 and 2 from 910.1 to 920.6 ft bgs. The cement was allowed to cure overnight before proceeding with final abandonment activities.

Before a final interval of sand was placed above the upper cement seal, purging was conducted to remove any cement-impacted waters resulting from seal placement. A Laboratory-owned submersible pump was used for initial purging; however, problems with the pump were encountered after purging approximately 300 gal. The pump was removed from the well, and the exact cause of the problems could not be determined because the pump functioned properly when tested at ground surface. As an alternative to pumping, bailing was implemented to complete the purging process. The bailer was run inside a 3-in. diameter conductor pipe that was run from just above ground surface to just above the cement plug. The conductor pipe was deployed into the well to isolate screen 1 from the bailing process and prevent any fugitive cement-impacted water from contacting the screen. Approximately 180 gal. was removed in 53 trips with the bailer. A final interval of 10/20 sand was installed from 895.1 to 910.1 ft bgs above the cement seal to help isolate the upper cement plug. The final sand interval was placed on September 29, 2007.

2.4 Specific Capacity Testing

A short specific capacity testing was performed on screen 1 to establish hydraulic response to pumping. The test pumping consisted of installing an inflatable packer above the screen to eliminate casing storage effects. A pressure transducer was installed in that interval as well. Plans called for 1 h of equilibration time, pumping the isolated interval for a minimum of 3 h, and allowing a minimum of 3 h of recovery following pumping. Actual testing exceeded these requirements, including several short-duration tests followed by two long-duration (10.5 h) tests during the water-sampling effort. Based on the anticipated capacity of R-32 screen 1, a pump with a capacity of less than 5 gal./min was used for the testing.

During testing, water-level data were collected using the down-hole pressure transducer to capture the pumping and recovery response. The recorded data were intended to provide information on the specific capacity of the permanent sampling zone.

In addition, the data obtained can support hydraulic analysis of the aquifer in which screen 1 is placed. A detailed hydraulic analysis of the data is, however, beyond the scope of the well rehabilitation project. The current discussion is limited to presenting the specific capacity results with general comments and observations. However, the data will be archived and available for examination if a rigorous analysis of site hydraulics is needed.

Several brief pumping events occurred on September 30 from which specific capacity was determined. Subsequently, more extended pumping was performed on October 9 and again on October 10.

On September 30, screen 1 was pumped initially at 2.36 gal./min for 69 min from 12:44 p.m. to 1:53 p.m. The resulting drawdown was 33.51 ft, making the specific capacity 0.0704 gal./min/ft of drawdown. Following a recovery period of 187 min, the zone was pumped at 1.64 gal./min for 65 min from 5:00 p.m. to 6:05 p.m. The resulting drawdown was 22.17 ft, making the specific capacity 0.0740 gal./min/ft. The slightly higher specific capacity was attributed to a modest reduction in turbulent flow associated with the reduced discharge rate. At 6:05 p.m., the pumping rate was increased and maintained near 2.38 gal./min until 7:00 p.m., extending the period of continuous pumping to 120 min. The drawdown at the end of this pumping episode was 33.28 ft, making the specific capacity 0.0715 gal./min/ft. Table 2.4-1 summarizes the respective pumping rates, pumping times, observed drawdown, and specific capacity values.

After correcting electrical problems that interfered with continuous pump operation, screen 1 was purged for extended periods on October 9 and 10. Pumping on October 9 occurred at 2.32 gal./min for 630 min from 8:00 a.m. until 6:30 p.m. The resulting drawdown was 36.64 ft, making the specific capacity 0.0633 gal./min/ft. On October 10, the well was pumped at 2.26 gal./min for 630 min from 7:30 a.m. to 6:00 p.m. The resulting drawdown was 35.33 ft, resulting in a similar specific capacity of 0.0640 gal./min/ft. These results are included in Table 2.4-1.

The only other hydraulic data previously available from screen 1 consisted of an injection test performed after well installation using isolation packers. That test showed an injection rate of 4.73 gal./min with a head buildup of 55.8 ft, for a specific capacity of 0.085 gal./min/ft—greater than the specific capacities measured during the pumping effort. It is unusual for the injection capacity of a well to exceed the pumping capacity because of aeration and other clogging effects associated with injection. It is possible that the isolation packers used during the injection test may have allowed some fluid bypass so that some of the injected fluid actually flowed into screens 2 and 3.

Of note was that the specific capacities declined significantly with increased pumping time. The specific capacities after 10 h of pumping were about 10% lower than those after about an hour of pumping. While common in many hydrogeologic settings, this effect is unusual for wells on the plateau. In most of the R wells, partial penetration effects (vertical growth of the cone of depression) result in a flattening of the drawdown curve after a short pumping period, with little increase in drawdown over time and therefore little falloff in specific capacity.

The greater than normal decline in specific capacity was attributed to steadily increasing drawdown throughout the pumping period. For typical aquifers, when this effect is seen in the drawdown data, it also should be seen in the recovery response curve, that is, recovery response should mirror pumping response. However, in R-32, the recovery data did not show the steady and significant change in water level over time that was observed during pumping. This is highly unusual and not readily explainable without a detailed analysis of the data.

One possible explanation of the unusual response observed in R-32 is a spatially limited permeable aquifer zone (aquifer boundaries) that is not well connected to the greater regional aquifer. Consistent with this, after each of the extended pumping periods, the water levels failed to recover to the prepumping levels. For example, after the October 9 pumping period of 630 min, the water level recovered to a position about 0.35 ft short of the original static level and then stopped recovering altogether. Likewise, after the October 10 pumping period of 630 min, recovery fell about 0.4 ft short of the starting point with no further rebound of levels.

This very unusual response tentatively suggests that the pumped zone may be hydraulically isolated from the greater regional aquifer. It is notable that the static water level for screen 1 is 10 ft higher than the

levels measured in screens 2 and 3, suggesting hydraulic separation between screen 1 and screens 2 and 3. Also of note is that the background data recorded in screen 1 show no discernible response to municipal pumping in the area, consistent with hydraulic isolation from the main regional aquifer.

2.5 Screen 1 Water Quality

2.5.1 Sample Collection, Field Preparation, and Analytical Techniques

A total of 21 groundwater samples were collected during the specific capacity test conducted at R-32 screen 1 from October 9 (20 samples) to October 11, 2007 (1 sample). Field parameters consisting of pH, turbidity, dissolved oxygen (DO), temperature, specific conductance (SC), and oxidation-reduction potential (ORP) were measured using a flow-through cell (Geotech) during sample collection. Measurements of the field parameters recorded during the specific capacity test are provided in Table 2.5-1. Field pH and temperature were measured using a Beckman (Model 255) meter, and DO was measured using a WTW (Model OXI-330I) instrument. Specific conductance and ORP were measured using a HACH Sension-5 meter and a Thermoelectron Corp. (Russell RL 060P Model) instrument, respectively. Groundwater samples were collected every 5 min during the initial 25 min of the pumping test. The frequency of sample collection decreased to every 10 min from 25 to 55 min during the test and to every 30 min during the remainder of the test (6.08 h) conducted on October 9, 2007. A final sample was collected on October 11, 2007. Groundwater samples were collected from a submersible pump consisting of a mild-steel discharge pipe equipped with a standard retrofitted submersible pump. The discharge rate was approximately 2.3 gal./min during the test.

Groundwater samples were filtered before analysis for metals, trace elements, and major cations and anions. Aliquots of samples collected from R-32 screen 1 were filtered through 0.45-µmeter Geotech disposable filters. Samples were acidified with analytical-grade nitric acid to a pH of 2.0 or less for metal and major cation analyses. Samples collected for TOC analysis were not filtered.

Chemical analyses of screening-groundwater samples were performed at the Laboratory's Earth and Environmental Sciences Group 6 (EES-6) laboratory. Groundwater samples were analyzed using techniques specified in the U.S. Environmental Protection Agency SW-846 Manual. Total carbonate alkalinity was measured using standard titration techniques. Ion chromatography was the analytical method for bromide, chloride, fluoride, nitrate, nitrite, oxalate, chlorate, perchlorate, phosphate, and sulfate. The instrument detection limits for perchlorate were 0.001 and 0.0005 parts per million (ppm). Inductively coupled (argon) plasma optical emission spectroscopy (ICPOES) was used for analyses of calcium, magnesium, potassium, silica, and sodium. Aluminum, antimony, arsenic, barium, beryllium, boron, cadmium, cesium, chromium, cobalt, copper, iron, lead, lithium, manganese, mercury, molybdenum, nickel, rubidium, selenium, silver, thallium, thorium, tin, vanadium, uranium, and zinc were analyzed by inductively coupled (argon) plasma mass spectrometry (ICPMS). The precision limits (analytical error) for major ions and trace elements were generally less than ±10% using ICPOES and ICPMS. Total organic carbon was measured using a total carbon—organic carbon analyzer.

2.5.2 Field Parameters

Field pH and groundwater temperature varied from 8.04 to 8.20 and from 20.8 to 23.2°C, respectively, during the specific capacity test conducted at R-32 screen 1 (Table 2.5-1). Specific conductance and DO varied from 161.5 to 167.1 microSiemens per centimeter (μ S/cm) and 1.08 to 1.41 mg/L, respectively. Screen 1 is completed within the Cerros del Rio basalt, and low DO measurements less than 2 mg/L are considered to be typical of groundwater in contact with ferrous-iron rich glass and minerals concentrated within the basalt. All measurements of turbidity were less than 5 nephelometric turbidity units (NTU) (Table 2.5-1). Noncorrected ORP measurements decreased from +175 to –58 millivolts (mV) during the

pumping test in which groundwater was initially overall oxidizing. Geochemical factors influencing the change in ORP are discussed in Section 2.5.4.

2.5.3 Analytical Results

Analytical results for groundwater samples collected during aquifer performance testing at R-32 screen 1 are provided in Appendix C. Charge balance errors for dissolved cations and anions were generally less than ±10% for complete analyses of inorganic solutes provided in Appendix C. Calcium and total carbonate alkalinity are the dominant solutes present in the regional aquifer at R-32 screen 1. Concentrations of dissolved calcium and total alkalinity varied from 15.4 to 17.8 ppm (or mg/L) and from 67.3 to 99.7 mgCaCO₃/L, respectively. Dissolved concentrations of calcium and total carbonate alkalinity at R-32 screen 1 are within geochemical screening criteria for calcium (8.66 to 24.1 mg/L) and total carbonate alkalinity (<105 mgCaCO₃/L) (LANL 2007, 096330). Dissolved concentrations of chloride and sulfate varied from 4.21 to 4.81 ppm and from 4.24 to 8.09 ppm, respectively, during the pumping test (Appendix C). Dissolved concentrations of chloride and sulfate exceed geochemical screening criteria for chloride (<3.75 mg/L) and sulfate (0.8 to 6.22 mg/L) (LANL 2007, 096330). Dissolved concentrations of nitrate(N) and magnesium varied from 0.974 to 1.029 ppm and from 4.35 to 4.82 ppm, respectively, during the pumping test (Appendix C). Chloride, nitrate(N), and sulfate are considered to be influenced by predrilling site conditions, including leachate migration from former sewage lagoons upgradient of R-32.

Dissolved concentrations of barium, boron, and manganese at R-32 screen 1 (Appendix C) typically are within background distributions for the regional aquifer (LANL 2007, 095817). Dissolved concentrations of arsenic, nickel, lead, total chromium, copper, selenium, strontium, uranium, vanadium, and zinc at R-32 screen 1, when detected, are within background distributions for the regional aquifer (LANL 2007, 095817). Dissolved concentrations of manganese and zinc varied from 0.015 to 0.027 ppm and from 0.013 to 0.029 ppm, respectively (Appendix C). Dissolved concentrations of manganese and zinc were corrected for contamination in the deionized water-equipment blank as part of the well screen analysis.

2.5.4 Well Screen Analysis

Previous Results

Analytical results obtained from sampling well R-32 screen 1 were evaluated for representativeness and reliability, following geochemical protocols established by the Laboratory (LANL 2007, 096330) and approved by NMED (2007, 098182). Groundwater samples were collected from this Westbay-equipped well from 2004 to 2006. R-32 screen 1 passed the Laboratory well screen analysis with overall scores ranging from 89% to 97% (LANL 2007, 096330). The test scores improved over time with only 1, 2, or 4 analytes or general indicators per sampling event failing the geochemical criteria, consisting of 33, 34, and 36 individual tests. The analytes that did not meet the well screen criteria in the revised well screen analysis (LANL 2007, 096330) included magnesium (five results), barium (two results), chromium (two results), nickel (one result), ammonia (one result), and one of the general indicators, pH (one result) (LANL 2007, 096330).

Well Screen Analysis of R-32 Screen 1 During Pumping Test

Groundwater samples analyzed from well R-32 screen 1 during the pumping test passed the well screen analysis consisting of 21 criteria (Table 2.5-2) with scores ranging from 85.7% to 95.2% for 21 samples. Analytical results for six groundwater samples collected from R-32 screen 1 were evaluated against screening criteria. Five samples collected at the beginning (11:00 a.m.) and during (11:55 a.m., 2:55 p.m., 5:00 p.m., and 6:00 p.m.) the pumping test conducted on October 9, 2007, were selected for this updated

well screen analysis. The last sample collected at the conclusion of the pumping test on October 11, 2007 (1:05 p.m.), was also included in this evaluation. Negative ORP values (12 measurements), DO concentrations less than 2 mg/L (23 measurements), and excessive concentrations of dissolved manganese (1 sample) and molybdenum (1 sample) exceeding Laboratory background caused several samples to fail some criteria of the well screen analysis (Table 2.5-2). The samples collected at 11:00 a.m., 11:55 a.m., 2:55 p.m., 5:00 p.m., and 6:00 p.m. on October 9, 2007, had test scores of 95.2%, 95.2%, 90.5%, 85.7%, and 90.5%, respectively. These samples did not meet the criteria for DO, ORP, and/or dissolved manganese. The sample collected at 1:05 p.m. on October 11, 2007, had a test score of 90.5% and did not meet the well screen criteria for ORP and DO.

Well screen tests for seven criteria were not included in the updated analysis either because groundwater samples were not analyzed (acetone, total Kjeldahl nitrogen [TKN], and ammonia), or the tests were not applicable because of site conditions unrelated to drilling (nitrate, chloride, and sulfate). Well R-32 is downgradient of inactive sewage lagoons in Technical Area 18, and it is likely that leachate migration caused elevated above background concentrations of nitrate, chloride, and sulfate. Perchlorate was analyzed by using the IC method, which does not have a maximum detection limit (MDL) less than the 0.001 ppm required for the well screen analysis. Perchlorate, therefore, was not included in the updated well screen analysis.

Iron and TOC contamination in the deionized water-equipment blank is evident from analytical results provided in Appendix C. The blank contained 0.80 ppm of dissolved iron, 1.12 mgC/L of TOC, and 0.005 ppm of dissolved manganese (Appendix C). Test criteria for iron and TOC were not applied to this well screen analysis due to contamination in the blank sample.

The criteria for iron concentrations in nonfiltered samples and the iron ratio of nonfiltered to filtered samples relevant to potential well screen corrosion at R-32 screen 1 were not included in this analysis because of iron dissolution resulting from corrosion of the mild-steel discharge pipe used during groundwater sampling. Dissolved iron concentrations ranged from 0.45 to 1.04 ppm or mg/L during sampling (Appendix C).

Figure 2.5-1 shows concentrations of dissolved iron versus noncorrected ORP measurements for groundwater samples collected at R-32 screen 1. The positive ORP values measured in the field decreased from +175 to +2.0 mV from 11:00 a.m. to 12:55 p.m. on October 9, 2007 (Table 2.5-1), with dissolved iron concentrations increasing from 0.46 to 0.73 ppm (Appendix C). The ORP measurements became negative as concentrations of dissolved iron increased during the remainder of the pumping test. During the pumping test, ferrous iron was the dominant form of total dissolved iron, and concentrations of iron were very similar in filtered and nonfiltered samples (Appendix C). It is likely that the oxidation-reduction (redox) couple, Fe(OH)₃/Fe²⁺ is controlling ORP measurements taken at R-32 screen 1, which results from corrosion of the mild-steel discharge pipe and is not reflective of in situ redox conditions within the regional aquifer. This redox couple is both reversible and electrochemically active (Langmuir 1997, 056037).

A geochemical evaluation was conducted to compare sampling methodologies of selected analytes and of pH obtained during a sampling event that was conducted at R-32 screen 1 on December 13, 2006, using Westbay equipment and on October 9 and 11, 2007, during the pumping test. Figure 2.5-2 shows that similar pH values and TOC concentrations were observed during the two sampling events. Concentrations of TOC were generally less than 1 mgC/L in samples collected during the pumping test. Dissolved concentrations of magnesium and nitrate(N) shown in Figure 2.5-3 compared very well during the Westbay sampling event and pumping test. Higher dissolved concentrations of both chloride and sulfate, shown in Figure 2.5-3, however, were measured in the final groundwater sample collected during the pumping test. Figure 2.5-4 shows similar concentrations of dissolved barium, chromium, manganese,

nickel, and zinc during sampling conducted on December 13, 2006, and the more recent pumping test. Dissolved concentrations of manganese and zinc were higher in the final sample collected during the pumping test (Figure 2.5-4) in comparison to the Westbay sampling event.

3.0 DEVIATIONS FROM WORK PLAN

With the exception of pump installation (see below), no deviations to the work plan have occurred. The work plan indicated that if the results indicated that the chemistry degraded below 90% tests passed, when subjected to the well screen analysis criteria, then the screen would undergo rehabilitation steps (jetting, surging, etc.). If the results ranged from 90% to 100%, no rehabilitation actions would be needed. In this case, the next step would be installation of the submersible pump. Because the results of the well screen analysis for R 32-screen 1 fell within the range of previous results, no further rehabilitation of the screen was indicated.

R-32 will be outfitted with a single environmentally retrofitted 4-in. submersible pump with a 1-in. stainless pump column. The submersible pump will be a Grundfos Model 5S20-39DS. The 1-in. drop pipe will consist of threaded schedule 40 Type 304 stainless-steel pipe, meeting the requirements of the American Society for Testing and Materials Standard A 312. The threaded ends and couplings will conform to 1-in. National Pipe Taper design with eight threads per inch. The thread design will be American Petroleum Institute 10 round nonupset casing threads. The depth of the pump intake depends on hydraulic data collected during aquifer testing. A dedicated 1-in. polyvinyl chloride transducer tube will be installed with and banded to the pump column. As of the submittal of this report, the custom-made Baski K-packer has not been received. Receipt is anticipated in early November. Therefore, all activities associated with well rehabilitation and conversion, with the exception of pump installation, have been completed. Pump installation will be scheduled upon receipt of the Baski K-packer, and the well should be operational for the December watershed sampling event.

4.0 CONCLUSIONS

- The Westbay sampling system was removed successfully. In addition, screens 2 and 3 successfully isolated from screen 1.
- The video log indicated that water clarity was very good overall and provided excellent visibility of the screened intervals. All three screen intervals were observed to be in excellent condition; screen 1 is the best of the three screens.
- The unusual response of the specific capacity test tentatively suggests that the pumped zone at screen 1 may be hydraulically isolated from the greater regional aquifer. It is notable that the static water level for screen 1 is 10 ft higher than the levels measured in screens 2 and 3, suggesting hydraulic separation between screen 1 and screens 2 and 3. Also of note is that the historical background data recorded in screen 1 showed no discernible response to municipal pumping in the area, consistent with hydraulic isolation from the main regional aquifer.
- Groundwater samples analyzed from well R-32 screen 1 during the pumping test passed the well screen analysis consisting of 21 criteria (Table 2.5-2) with scores ranging from 85.7% to 95.2% for 21 samples. This is within the range of previous samples subjected to the well screen analysis methodology.
- Well screen tests for seven criteria were not included in the updated analysis either because
 groundwater samples were not analyzed (acetone, TKN, and ammonia) or the tests were not
 applicable because of site conditions unrelated to drilling (nitrate, chloride, and sulfate). Chloride,
 nitrate(N), and sulfate are considered to be influenced by predrilling site conditions including

- leachate migration from former sewage lagoons upgradient of R-32. Perchlorate was analyzed by using the IC method, which does not have a MDL less than the 0.001 ppm required for the well screen analysis. Perchlorate, therefore, was not included in the updated well screen analysis.
- Test criteria for iron and TOC were not applied to this well screen analysis due to contamination in the blank sample. The criteria for iron concentrations in nonfiltered samples and the iron ratio of nonfiltered to filtered samples relevant to potential well screen corrosion at R-32 screen 1 were not included in this analysis because of iron dissolution resulting from corrosion of the mild-steel discharge pipe used during groundwater sampling. It is likely that the oxidation-reduction (redox) couple, Fe(OH)₃/Fe²⁺ is controlling ORP measurements taken at R-32 screen 1, which results from corrosion of the mild-steel discharge pipe and is not reflective of in situ redox conditions within the regional aquifer.
- Dissolved concentrations of manganese and zinc were higher in the final sample collected during the pumping test (Figure 2.5-4) in comparison to the Westbay sampling event.
- All planned activities were completed successfully except for the installation of the submersible pump, which will be installed when the custom-made Baski K-packer arrives.

5.0 REFERENCES

The following list includes all documents cited in this report. Parenthetical information following each reference provides the author(s), publication date, and ER ID number. This information is also included in text citations. ER ID numbers are assigned by the Environmental Programs Directorate's Records Processing Facility (RPF) and are used to locate the document at the RPF and, where applicable, in the master reference set.

Copies of the master reference set are maintained at the NMED Hazardous Waste Bureau; the U.S. Department of Energy—Los Alamos Site Office; the U.S. Environmental Protection Agency, Region 6; and the Directorate. The set was developed to ensure that the administrative authority has all material needed to review this document, and it is updated with every document submitted to the administrative authority. Documents previously submitted to the administrative authority are not included.

- Langmuir, D., 1997. *Aqueous Environmental Geochemistry*, Prentice Hall, Inc., Upper Saddle River, New Jersey. (Langmuir 1997, 056037)
- LANL (Los Alamos National Laboratory), May 2007. "Groundwater Background Investigation Report, Revision 3," Los Alamos National Laboratory document LA-UR-07-2853, Los Alamos, New Mexico. (LANL 2007, 095817)
- LANL (Los Alamos National Laboratory), May 2007. "Well Screen Analysis Report, Revision 2,"
 Los Alamos National Laboratory document LA-UR-07-2852, Los Alamos, New Mexico. (LANL 2007, 096330)
- LANL (Los Alamos National Laboratory), July 2007. "Work Plan for R-Well Rehabilitation and Replacement, Revision 2," Los Alamos National Laboratory document LA-UR-07-5087, Los Alamos, New Mexico. (LANL 2007, 098119)
- NMED (New Mexico Environment Department), August 20, 2007. "Approval of the Workplan for R-Well Rehabilitation and Replacement, Revision 2," New Mexico Environment Department letter to D. Gregory (DOE LASO) and D. McInroy (LANL) from J.P. Bearzi (NMED HWB), Santa Fe, New Mexico. (NMED 2007, 098182)

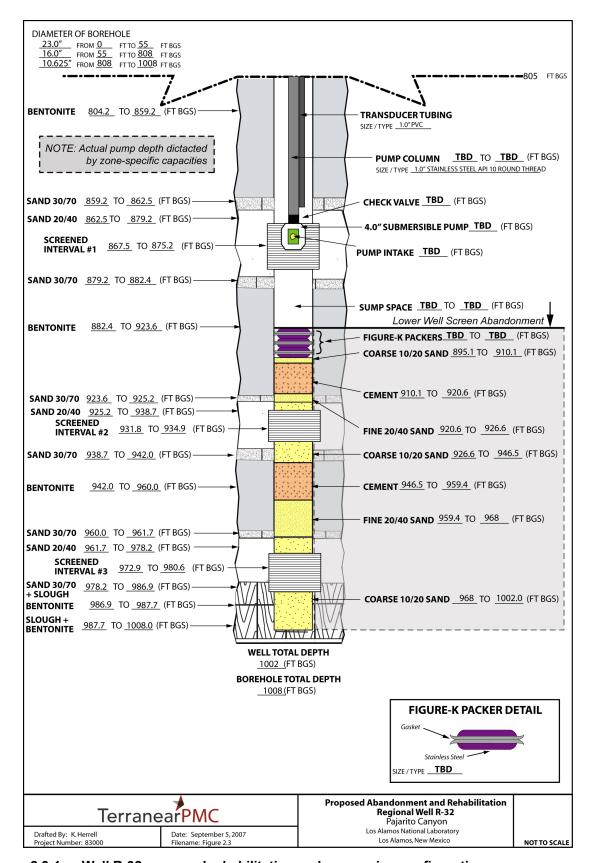


Figure 2.3-1 Well R-32 proposed rehabilitation and conversion configuration

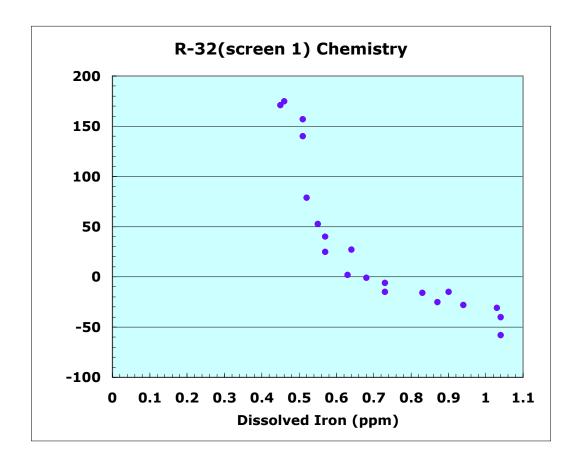


Figure 2.5-1 Concentrations of dissolved iron versus uncorrected ORP measurements taken at R-32 screen 1

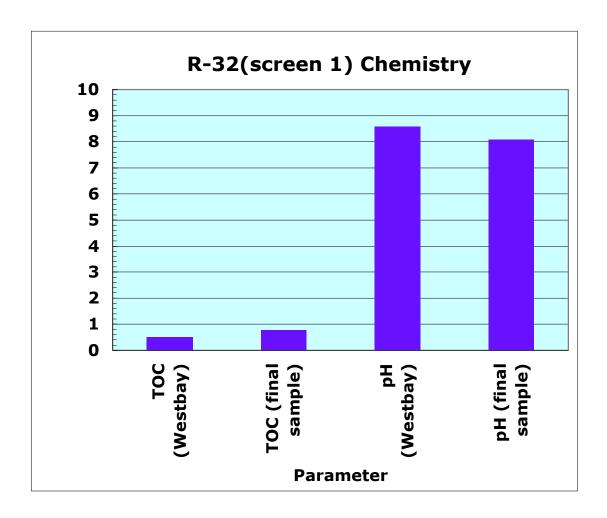


Figure 2.5-2 Comparison of pH and TOC concentrations during sampling of R-32 screen 1 using Westbay equipment on December 13, 2006, and the pumping test conducted on October 9 through 11, 2007

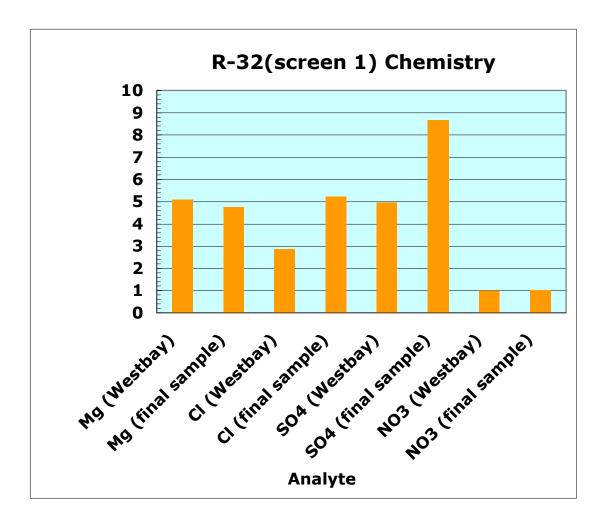


Figure 2.5-3 Comparison of dissolved concentrations of magnesium (Mg), chloride (Cl), sulfate (SO₄), and nitrate (NO₃)-N during sampling of R-32 screen 1 using Westbay equipment on December 13, 2006, and the pumping test conducted on October 9 through 11, 2007

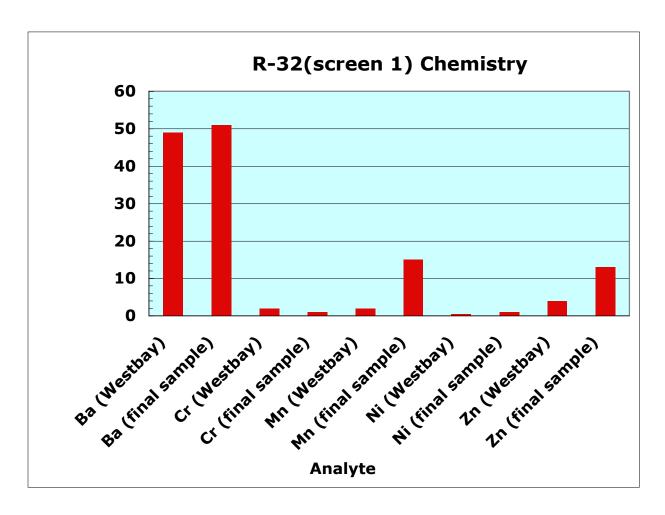


Figure 2.5-4 Comparison of dissolved concentrations of barium (Ba), chromium (Cr), manganese (Mn), nickel (Ni), and zinc (Zn) during sampling of R-32 screen 1, using Westbay equipment, on December 13, 2006, and a pumping test conducted October 9 through 11, 2007

Table 2.2-1 Video Log Data and Observations

	Depth to		
	Тор	Bottom	Remarks
SWL	785 ft 5 in.	na*	Composite
Screen #1	867 ft 2 in.	874 ft 4 in.	Pipe-based; visibility excellent; screen interval very clean.
Screen #2	931 ft 5 in.	934 ft	Pipe-based; visibility good; screen interval very clean.
Screen #3	972 ft 3 in.	979 ft 4 in.	Pipe-based; visibility good; screen interval clean.
Total Depth	1000 ft 1 in.	na	Minor sediment in bottom of sump.

^{*}na = Not available.

Table 2.4-1 R-32 Screen 1 Pumping Results

Date	Pumping Rate (gal./min)	Drawdown (ft)	Pumping Time (min)	Specific Capacity (gal./min/ft)
9/30/07	2.36	33.51	69	0.0704
9/30/2007	1.64	22.17	65	0.0740
9/30/2007	2.38	33.28	120	0.0715
10/9/2007	2.32	36.64	630	0.0633
10/10/2007	2.26	35.33	630	0.0640

Table 2.5-1
Field Parameters Measured at R-32 Screen 1 on October 9 and 11, 2007

Time (yr-mo-d-h)	pH (SU*)	Temperature (°C)	Specific Conductance (μS/cm)	Dissolved Oxygen (mg/L)	Turbidity (NTU)	ORP (mV)
0710091100	8.04	20.8	167.0	1.34	1.16	+175
0710091105	8.14	20.8	166.5	1.16	0.89	+171
0710091110	8.16	20.9	165.9	1.25	0.43	+157
0710091115	8.18	21.0	165.8	1.25	0.80	+140
0710091120	8.19	21.2	165.6	1.08	0.68	+104
0710091125	8.20	20.8	165.2	1.24	0.74	+79
0710091135	8.19	20.8	165.1	1.25	0.75	+53
0710091145	8.18	21.7	165.8	1.19	0.69	+25
0710091155	8.19	21.8	164.5	1.21	0.77	+40
0710091225	8.16	22.8	163.3	1.22	0.67	+27
0710091255	8.15	23.0	163.1	1.25	0.65	+2
0710091325	8.14	23.2	162.5	1.29	0.81	-1
0710091355	8.12	23.0	163.5	1.25	0.73	-6
0710091425	8.11	23.2	162.4	1.24	0.79	-15
0710091455	8.09	23.1	162.1	1.33	0.75	-16
0710091530	8.08	22.9	161.4	1.39	1.80	-25
0710091600	8.08	22.6	162.1	1.27	0.79	-15
0710091630	8.07	22.1	161.6	1.35	0.73	-28
0710091700	8.07	21.7	161.5	1.36	0.75	-31
0710091730	8.06	21.1	162.0	1.35	1.01	-40
0710091800	8.05	20.8	162.3	1.37	0.88	-58
0710111255	7.86	22.5	168.6	1.44	0.81	-20
0710111305	8.07	22.5	167.1	1.41	0.77	-37

^{*}SU = Standard unit.

Table 2.5-2
Summary of Test Results of the Well Screen Analysis for R-32 Screen 1

Test Criterion (with value)	Number of Passed Samples	Number of Failed Samples
pH (6.94-8.07)	21	0
Total Carbonate Alkalinity (<105 mg CaCO ₃ /L)	21	0
Turbidity (<5 NTU)	21	0
Total Organic Carbon	n/a*	n/a
Ba (F) (<70 μg/L)	21	0
Ca (F) (8.66–24.1 mg/L)	21	0
CI (F) (<3.75 mg/L)	n/a	n/a
F (F) (<0.53 mg/L)	21	0
Mg (F) (<4.81 mg/L)	21	0
NO ₃ (N) (F) (>0.1 mg/L)	n/a	n/a
ORP (mV) (>0 mV)	11	10
DO (mg/L) (>2 mg/L)	0	21 (all samples)
ClO ₄ (>0.17 μg/L)	n/a	n/a
PO ₄ (P) (F) (<0.3 mg/L)	21	0
Na (<28.55 mg/L)	21	0
SO ₄ (F) (0.8–6.22 mg/L)	n/a	n/a
Total Sulfide (<0.01 mg/L)	21	0
Cr (F) (>1 μg/L)	21	0
Cr (NF) (<10 μg/L)	21	0
Cr Ratio (NF/F) (<5)	21	0
Fe (F) (<0.102 mg/L)	n/a	n/a
Mn (F) (<16 μg/L)	20	1
Mo (F) (<4 μg/L)	20	1
Ni (F) (<2 μg/L)	21	0
Sr (F) (44.88–179.8 μg/L)	21	0
U (F) (<0.2 μg/L)	21	0
Zn (F) (1.0–40.0 μg/L)	21	0

^{*} n/a = Not applicable. Not applicable for total organic carbon due to predrilling site condition. Not applicable for CIO_4 because perchlorate was analyzed by ion chromatography at EES-6 with a method detection limit of 1 μ g/L. Not applicable for iron because dissolved iron (ferrous iron) was detected in the equipment-deionized water blank at a concentration of 0.80 ppm or mg/L. (See the tables in Appendix C.) See text for discussion.

Westbay Retrieval Report

Schlumberger Water Services USA Inc. 2520 Venture Oaks Way, Suite 430 Sacramento, CA 95833 Tel: (916) 329-9199 Fax (916) 329-9191

October 15, 2007 WB777

Mr. Steven White Terranear PMC, LLC 1911 Central Avenue, 2nd Floor, Los Alamos, NM, 87544-2385 USA

Subject:

Retrieval Report for Westbay System Well R-32 at Los Alamos National Laboratory

Dear Mr. White:

This report summarizes the work carried out by Westbay Instruments Inc. related to retrieval of the Westbay System casing components from LANL well R-32 near Los Alamos, NM. This work was carried out under Terranear PMC, LLC (TPMC) Task Order No. 001 dated September 7, 2007, under Subcontract Agreement No. 0001.

Westbay technical services representative Mr. Dave Larssen was on site for the retrieval tasks from September 13 to 19, 2007. The Westbay MP55 System completion previously installed in LANL well R-32 was successfully retrieved.

We look forward to working with you in the future. Please call if you have any questions or comments.

Yours truly,

Dave Larssen

Westbay Instruments Inc.

a Schlumberger Company

Encl.: Retrieval Report for Westbay System well: R-32

If there are any questions regarding this report, please cotact a Westbay specialist by e-mail at westbay@slb.com or by telephone at 1-800-663-8770.

Westbay Instruments Inc. 3480 Gilmore Way, Suite 110 Burnaby, BC V5G 4Y1 Canada Tel. (604) 430-4272 Fax (604) 430-3538

RETRIEVAL REPORT

Westbay System Monitoring Well: R-32 Los Alamos, NM

Prepared for:

Terranear PMC
1911 Central Ave, 2nd Floor
Los Alamos, NM
87544-2385
USA

Prepared by:
Westbay Instruments Inc.
WB777

October 15, 2007

CONTENTS:

API.						Pomber 13 n
	WESTBAY C	ASING RI	ETRIEVAL	etrieval -	y Casing f	
	2.1 Pre-Defla	tion Profile	•			
	2.2 Deflation	of Westb				
	2.3 Retrieval	of Westba	y Casing	Components		

APPENDIX

APPENDIX: R-32 Retrieval

1. Introduction

This report and the attached Appendix document the technical services carried out by Westbay Instruments Inc. under Terranear PMC, LLC (TPMC) Task Order No. 001 dated September 7, 2007, under Subcontract Agreement No. 0001. The Westbay MP55 System completion previously installed in LANL well R-32 was retrieved.

Westbay technical services representative Mr. Dave Larssen was on site for the retrieval tasks from September 13 to 19, 2007. The work was supervised by Mr. A. Crowder and Mr. S. White of TPMC. This report documents the retrieval tasks and related QA checks.

2. Westbay Casing Retrieval

The monitoring well had previously been installed as indicated below. The well installation was described in a Westbay Installation Report dated February 21, 2003.

(Note: all depths are with respect to ground surface. The monitoring well depth reference point was ground level as defined by a brass survey marker set in a concrete pad at the well.

Monitoring	Installation	Westbay Casing	No.	No.	Open Hole Depth
Well No.	Date	Length (ft)	Screens	Packers	to Water (ft)
R-32	2003	998	3	9	Approx. 831 ft

Table 1, Summary of MP Well Installation

The Westbay casing was retrieved according to the procedure described in the following sections.

2.1 Pre-Deflation Profile

A pre-deflation pressure profile was carried out at the well prior to deflating the packers to confirm the proper operation and position of measurement ports and to confirm the present water levels inside and outside the well. The data confirmed that the ports operated properly. The data for the pre-deflation profile are shown on Figure 1 in the Appendix and on the pre-deflation Field Data and Calculation Sheet.

Based on the information from this profile it was determined that the water level inside the Westbay System casing (about 831 ft) was below the water levels in the three (3) screened intervals (777.8 ft, 788.3 ft and 787.7 ft respectively). Therefore, the water level did not require adjustment before the procedure for deflation of the packers could begin.

2.2 Deflation of the Westbay Packers

The Westbay Model 0625 Packer Tool was deployed in the well on September 17, 2007. Drinking water purchased locally was used for operation of the packer deflation equipment. All of the packers in the well were successfully deflated. After deflation the packer valves were left in the Open

position. The field data for deflation of each packer are shown on the MP55 Packer Deflation Field Records and Packer Deflation graphs in the Appendix.

2.3 Retrieval of Westbay Casing Components

Prior to retrieval of the Westbay System a post-deflation profile of fluid levels was measured. The head differences observed across each packer in the pre-deflation profile (Figure 1 in the Appendix) were no longer present. The fluid pressure distribution was hydrostatic at an approximate depth of 782.5 ft below ground level, thus indicating that none of the packers were sealed inside the well.

The bottom Westbay Pumping Port at 978.5 ft depth was opened to allow the water levels inside and outside the Westbay casing to equilibrate.

The Westbay System casing was lifted from the well. The tensile load applied to the Westbay casing was measured by means of a load gauge provided by Westbay. The retrieved Westbay System items and the load during lifting were recorded on a Casing Retrieval Log. The maximum applied lifting load was 1550 lb, comparable to the maximum load during original installation of 1700 lb. A copy of the log is included in the Appendix.

All of the installed Westbay System casing components were successfully retrieved from the well. A list of the retrieved items is shown on the second page of the Casing Retrieval Log.

Each retrieved casing component was set aside on a rack. Plastic protective caps supplied by Westbay were put on each end for protection against damage during handling. Decontamination, cleaning, inspection, packaging and transport to LANL storage were to be done by others after demobilization of the Westbay representative from the site.

APPENDIX 1

Monitoring Well R-32

Casing Retrieval Log	- 13 pages
Figure 1, Pre-Deflation Pressure Profile (September 17, 2007)	- 1 page
Pre-deflation Piezometric Pressure/Levels	
Field Data and Calculation Sheet (September 17, 2007)	- 2 pages
Figure 2, Post Deflation Pressure Profile (September 18, 2007)	- 1 page
Post Deflation Piezometric Pressure/Levels	
Field Data and Calculation Sheet (September 18, 2007)	- 2 pages
Packer Deflation Records	- 23 pages

Casing Retrieval Log

Company: Los Alamos National Lab

Well: R32 Site: LANL

Project: Hydrogeology Study

Job No: WB777 Author: GG/DL

Well Information

Reference Datum: Ground Level
Elevation of Datum: 0.00 ft.
MP Casing Top: 0.00 ft.
MP Casing Length: 998.45 ft.

Borehole Depth: 1002.00 ft.
Borehole Inclination: vertical
Borehole Diameter: 5.00 in.

Well Description: Plastic MP55

Other References:

Pipe-based wire-wrapped screens. BF and screens after LANL 09/30/02 All depths from meas'd lengths

File Information

File Name: R32.WWD

Report Date: Wed Sep 12 16:54:58 2007

File Date: Jan 20 11:09:17 2003

Date:

Date: _____ Date: _____ Date:

Comments

Retneval	: More for load, cheek telly sheet, check S/N's.
	2: moneter load, cheek tally sheet, check s/N's. ; Blue caps on both ends.
	: No inspection, no removal of O-ring,
	: No Decon.
	Dave larssen. 19 Sept 2007.
Information	19 Sept 2007.

Log Information

Borehole condition confirmed.	(method)		
MP well design & preparation.	By:		
MP well design checked.	Ву:		
MP well and borehole approved to install.	Bv:		

Casing Retrieval Log Los Alamos National Lab

Job No: WB777 Well: R32

Legend Geology (Qty) MP Components Backfill/Casing (Library - WD Library 7/27/00) Concrete (2) 0603 - MP55 End Plug Bentonite 0601M15 - MP55 Casing, 1.5 m, PVC Sand Fine (90) 0601M30 - MP55 Casing, 3.0 m, PVC Sand Coarse Native / Cave (9) 0612 - MP55 Packer, Stiffened, SS Stainless Steel (3) 0601M10 - MP55 Casing, 1.0 m, PVC Well Screen (103) 0602 - MP55 Regular Coupling (11) 0605 - MP55 Measurement Port 0607 - MP55 Hydraulic Pumping Port 0608 - MP55 Magnetic Location Collar

Casing Retrieval Log Los Alamos National Lab

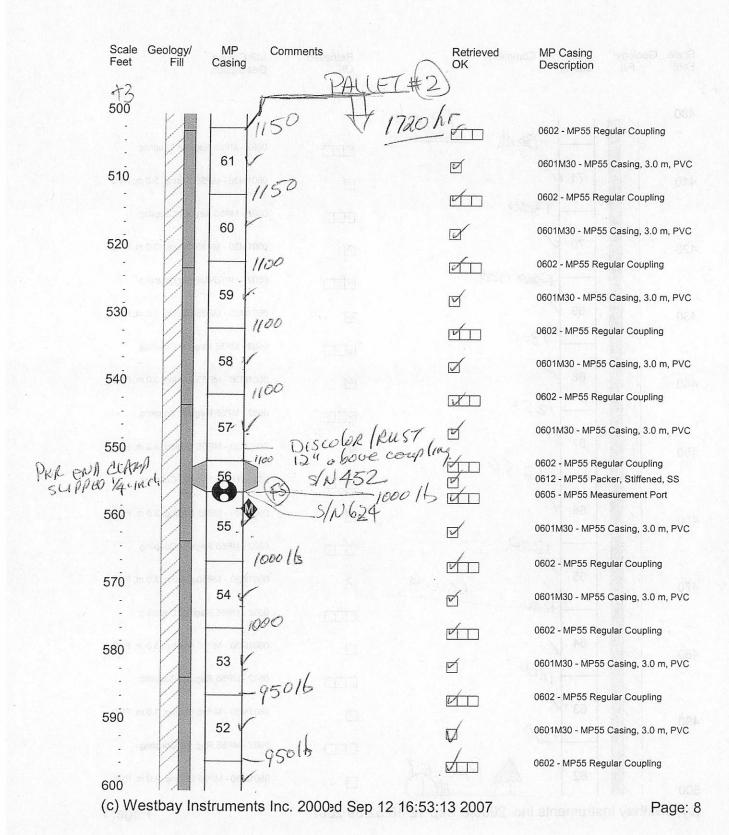
Job No: WB777 Well: R32

Scale Geo Feet		MP Casing	Comments	REDA OK	Retrieved OK	MP Casing Description
0_		114	V 1520	hr start	1. Fting 1	cad=1550 lb Regular co-ap ling
enilats	1993091	113	V 11	TWO SET STATES	/ MI	0602 - MP55 Regular Coupling 0601M15 - MP55 Casing, 1.5 m, PVC
40 1008		- 0255	1550			0602 - MP55 Regular Coupling
	0000	112-	1		v.	0601M30 - MP55 Casing, 3.0 m, PVC
0.00	^	D ₂ A	1220.17		VIII ·	0602 - MP55 Regular Coupling
20_	A 1250	111	(A)		Ø	0601M30 - MP55 Casing, 3.0 m, PVC
			reac			0602 - MP55 Regular Coupling
30_		110			ø.	0601M30 - MP55 Casing, 3.0 m, PVC
			1550 (b	19	VIII	0602 - MP55 Regular Coupling
40_	^o.	109			V	0601M30 - MP55 Casing, 3.0 m, PVC
3		C'HM	1550 16.		V	0602 - MP55 Regular Coupling
50_	1 de 1/2	108	,		4	0601M30 - MP55 Casing, 3.0 m, PVC
		29W	1525 16	LIV.		0602 - MP55 Regular Coupling
60_	1	07	/		v	0601M30 - MP55 Casing, 3.0 m, PVC
Police S		8 91%	1525 lb		V	0602 - MP55 Regular Coupling
70_	1	06	1			0601M30 - MP55 Casing, 3.0 m, PVC
Pallo C	äll-	SEM	154015			0602 - MP55 Regular Coupling
80_	1 1	05	1,000			0601M30 - MP55 Casing, 3.0 m, PVC
- girlabo	11	SEPIM	1540 lb			0602 - MP55 Regular Coupling
90_	1	04	/ ³⁰			0601M30 - MP55 Casing, 3.0 m, PVC
- prilate		sacki	155015			0602 - MP55 Regular Coupling
100	1	03				0601M30 - MP55 Casing, 3.0 m, PVC
	ay Instru	ume	nts Inc. 2000	ed Sep 12 16:52:		Page: 3

Casing Retrieval Log Los Alamos National Lab

Job No: WB777 Well: R32

Scale Feet	Geology/ Fill	MP Comments Casing	Retrieved OK	MP Casing Description
100				
L.OV*		Broken lock wire. 1550 16 1610 Kr	· MD	0602 - MP55 Regular Coupling
110		102 / -155016 - FIRST R	ď	0601M30 - MP55 Casing, 3.0 m, PVC
QXX un		-155016 - FIRST R	OU V	0602 - MP55 Regular Coupling
120		101 / FARA ROW MILL	of the same of the	0601M30 - MP55 Casing, 3.0 m, PVC
UV35 (II)		X FIRST FROM MA	SIMIA.	0602 - MP55 Regular Coupling
130		100	$ \vec{\Box} $	0601M30 - MP55 Casing, 3.0 m, PVC
OV9 in		1550		0602 - MP55 Regular Coupling
140		99	Ø	0601M30 - MP55 Casing, 3.0 m, PVC
5V4.m		1550		0602 - MP55 Regular Coupling
150		98		0601M30 - MP55 Casing, 3.0 m, PVC
m PVO		1550		0602 - MP55 Regular Coupling
160		97	6	0601M30 - MP55 Casing, 3.0 m, PVC
::N9 .n		1550		0602 - MP55 Regular Coupling
170		96 🗸	d	0601M30 - MP55 Casing, 3.0 m, PVC
OVA .m		1550		0602 - MP55 Regular Coupling
180	00400	95	6	0601M30 - MP55 Casing, 3.0 m, PVC
		155 ⁰		0602 - MP55 Regular Coupling
190	mila pel	94	Ó	0601M30 - MP55 Casing, 3.0 m, PVC
-	10.1	1550		0602 - MP55 Regular Coupling
200		93	Ó	0601M30 - MP55 Casing, 3.0 m, PVC

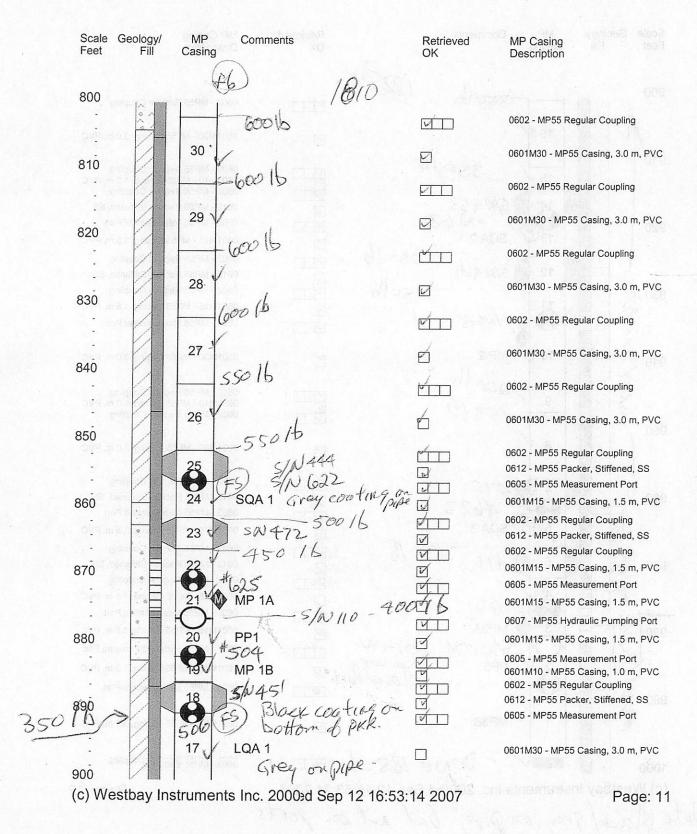

(c) Westbay Instruments Inc. 2000ad Sep 12 16:52:59 2007 Page: 4

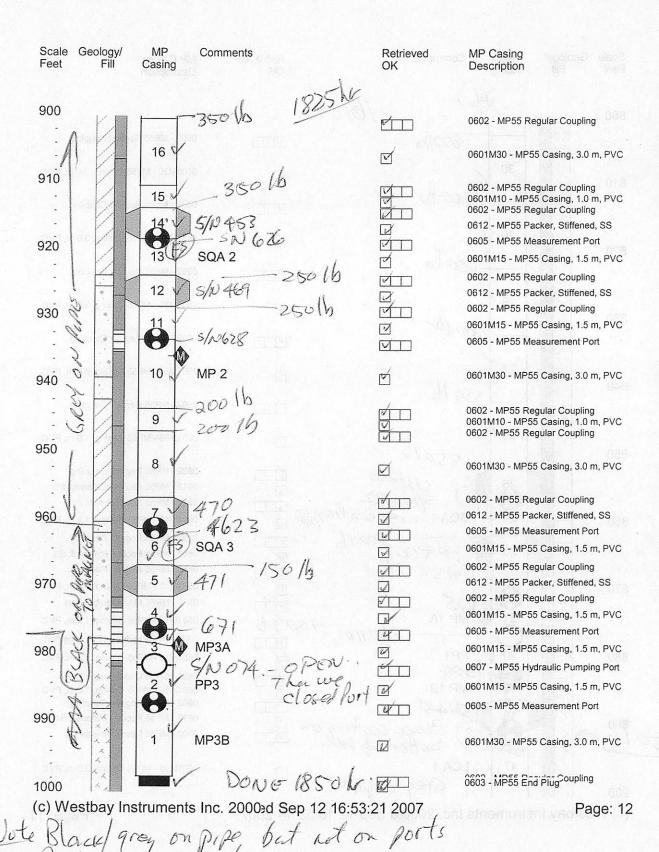
Job No: WB777 Well: R32

Scale Geology/ Feet Fill	MP Comments Casing	Retrieved OK	MP Casing Description
200	1 1000 1630hr		
	1550	MI .	0602 - MP55 Regular Coupling
210	92 🗸	V	0601M30 - MP55 Casing, 3.0 m, PVC
	-155°		0602 - MP55 Regular Coupling
220	91		0601M30 - MP55 Casing, 3.0 m, PVC
:	1550		0602 - MP55 Regular Coupling
230	90	d	0601M30 - MP55 Casing, 3.0 m, PVC
230	1550 _ #2 Row = 12		0602 - MP55 Regular Coupling
	89	☑	0601M30 - MP55 Casing, 3.0 m, PVC
240	1550	<u> </u>	0602 - MP55 Regular Coupling
	88	V	0601M30 - MP55 Casing, 3.0 m, PVC
250	1550		0602 - MP55 Regular Coupling
i saniis	87.	a	0601M30 - MP55 Casing, 3.0 m, PVC
260	1550		0602 - MP55 Regular Coupling
	86-		0601M30 - MP55 Casing, 3.0 m, PVC
270	1500		0602 - MP55 Regular Coupling
	85	<u>r</u>	0601M30 - MP55 Casing, 3.0 m, PVC
280	84 5/V445 PKA 1450		0602 - MP55 Regular Coupling
	FS / 175013		0612 - MP55 Packer, Stiffened, SS 0605 - MP55 Measurement Port
290	83 5/10627		0601M30 - MP55 Casing, 3.0 m, PVC
	1450 15		0602 - MP55 Regular Coupling
(c) Westbay Ins	।	:59 2007	ll einemunent vedre. Page: 5

Scale Geology/ Feet Fill	MP Comments Casing	Retrieved OK	MP Casing Description
300	182 1650 h	<u>^</u>	0601M30 - MP55 Casing, 3.0 m, PVC
- gmiqu O	1450		0602 - MP55 Regular Coupling
310	81	4	0601M30 - MP55 Casing, 3.0 m, PVC
- ordin	1450 lb	ØIII	0602 - MP55 Regular Coupling
320	80	ď	0601M30 - MP55 Casing, 3.0 m, PVC
- 900	1400 16	V	0602 - MP55 Regular Coupling
330	79 /		0601M30 - MP55 Casing, 3.0 m, PVC
- 100809 S	1400 BIEAK		0602 - MP55 Regular Coupling
340	78	র্ঘ	0601M30 - MP55 Casing, 3.0 m, PVC
6510	1400	wii	0602 - MP55 Regular Coupling
350	77		0601M30 - MP55 Casing, 3.0 m, PVC
	1400 Row 3	_ 	0602 - MP55 Regular Coupling
360	76	व	0601M30 - MP55 Casing, 3.0 m, PVC
- Peri	- 1400	rán T	0602 - MP55 Regular Coupling
370	75	ार्च च	0601M30 - MP55 Casing, 3.0 m, PVC
	1350	e e	0602 - MP55 Regular Coupling
380	74 🗸	ar A	0601M30 - MP55 Casing, 3.0 m, PVC
	1350		0602 - MP55 Regular Coupling
390	73		0601M30 - MP55 Casing, 3.0 m, PVC
5,4,60	1350		0602 - MP55 Regular Coupling
400	72		
	r 72 i struments Inc. 2000∌d Sep 12 16:52		0601M30 - MP55 Casing, 3.0 m, PVC

Scale Geology/ Feet Fill	MP Comments Casing	Retrieved OK	MP Casing Description
400	1710hr		
	Bolb =	<u>É</u>	0602 - MP55 Regular Coupling
410	71	ď	0601M30 - MP55 Casing, 3.0 m, PV
	1300	V	0602 - MP55 Regular Coupling
420	70	ď	0601M30 - MP55 Casing, 3.0 m, PV
- 9000	F300 1300	ďП	0602 - MP55 Regular Coupling
430	69	9	0601M30 - MP55 Casing, 3.0 m, PV
	1300	W	0602 - MP55 Regular Coupling
440	68		0601M30 - MP55 Casing, 3.0 m, PV
	1250	d D	0602 - MP55 Regular Coupling
450	67	d	0601M30 - MP55 Casing, 3.0 m, PV
	1250	M	0602 - MP55 Regular Coupling
460	66	4	0601M30 - MP55 Casing, 3.0 m, PV
	1200		0602 - MP55 Regular Coupling
470	65 Row 4	d	0601M30 - MP55 Casing, 3.0 m, PV
	12.90		0602 - MP55 Regular Coupling
180	64 /		0601M30 - MP55 Casing, 3.0 m, PV
	1200		0602 - MP55 Regular Coupling
190	63		0601M30 - MP55 Casing, 3.0 m, PV
	1200	A	0602 - MP55 Regular Coupling
500	62 PALLE		0601M30 - MP55 Casing, 3.0 m, PV


Scale Geology/ Feet Fill	MP Comments Casing	Retrieved OK	MP Casing Description
10	1745 hr		
600	51	<u> </u>	0601M30 - MP55 Casing, 3.0 m, PVC
	950/6		0602 - MP55 Regular Coupling
610	50	d	0601M30 - MP55 Casing, 3.0 m, PVC
	90016		0602 - MP55 Regular Coupling
620	49 V	d	0601M30 - MP55 Casing, 3.0 m, PVC
	900 16		0602 - MP55 Regular Coupling
630	48		0601M30 - MP55 Casing, 3.0 m, PVC
	85016	d	0602 - MP55 Regular Coupling
640	47	d	0601M30 - MP55 Casing, 3.0 m, PVC
	85016	U	0602 - MP55 Regular Coupling
650	46	ø d	0601M30 - MP55 Casing, 3.0 m, PVC
	85016	ref	0602 - MP55 Regular Coupling
660	45 \	ø h	0601M30 - MP55 Casing, 3.0 m, PVC
	85016	V	0602 - MP55 Regular Coupling
670	44 1/-	e e	0601M30 - MP55 Casing, 3.0 m, PVC
	90016	M	0602 - MP55 Regular Coupling
680	43	e dia	0601M30 - MP55 Casing, 3.0 m, PVC
	800 (p	Ú	0602 - MP55 Regular Coupling
690	42	ď	0601M30 - MP55 Casing, 3.0 m, PVC
	800	ď	0602 - MP55 Regular Coupling
700	41 1		0601M30 - MP55 Casing, 3.0 m, PVC
(c) Westbay Ins	struments Inc. 2000ed Sep 12 16:53:	14 2007	Page: 9

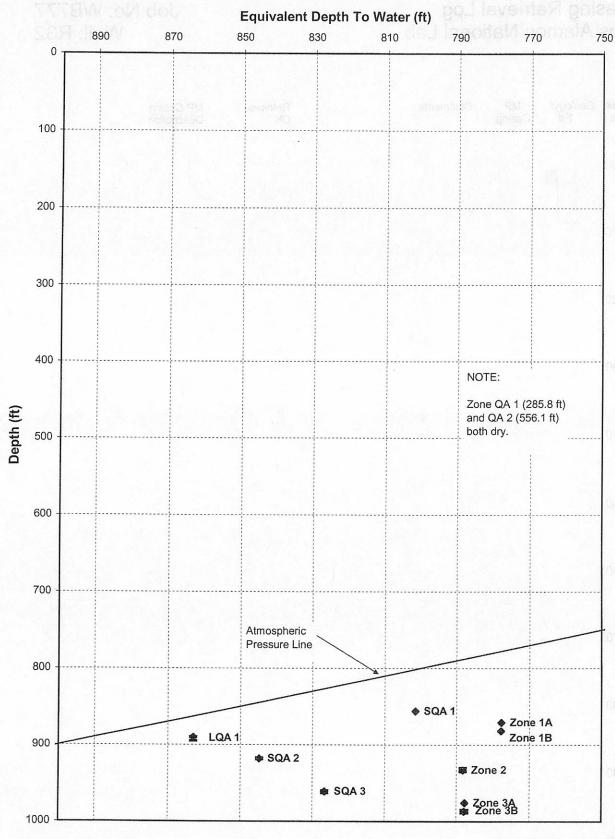

Job No: WB777 Well: R32

Page: 10

Scale Geology/ Feet Fill	MP Comments Casing	Retrieved OK	MP Casing Description
700			
	80016	M .	0602 - MP55 Regular Coupling
710	40 1	r	0601M30 - MP55 Casing, 3.0 m, PVC
	-750 lb	do .	0602 - MP55 Regular Coupling
720	39 / 1800 hr	<u>v</u>	0601M30 - MP55 Casing, 3.0 m, PVC
	750 16 1800 NV		0602 - MP55 Regular Coupling
730	38 Row (2)	ď	0601M30 - MP55 Casing, 3.0 m, PVC
- 10 mass	750 -1007		0602 - MP55 Regular Coupling
740	37.	ď	0601M30 - MP55 Casing, 3.0 m, PVC
S. Gran. P.VC	-750 I ROWS		0602 - MP55 Regular Coupling
750	36	ď	0601M30 - MP55 Casing, 3.0 m, PVC
- 001	700 16		0602 - MP55 Regular Coupling
760	35	6	0601M30 - MP55 Casing, 3.0 m, PVC
- 0.9	700 16		0602 - MP55 Regular Coupling
770	34		0601M30 - MP55 Casing, 3.0 m, PVC
0.79 (m.0.6)	700 lb RUSTY RING		0602 - MP55 Regular Coupling
780	33 V 26+ down from top		0601M30 - MP55 Casing, 3.0 m, PVC
0.9.00 (50)	6501b	m 41	0602 - MP55 Regular Coupling
790	33 V 2Ft down from top 650 15 Griffy joint		0601M30 - MP55 Casing, 3.0 m, PVC
- 0	650 1b		0602 - MP55 Regular Coupling
800	31		0601M30 - MP55 Casing, 3.0 m, PVC

(c) Westbay Instruments Inc. 2000ed Sep 12 16:53:14 2007

Job No: WB777


Well: R32

Scale Feet	Geology/ MP Co Fill Casing	omments	Retrieved OK	MP Ca Descri	asing ption	
1000						
1010						
1020 -						
1030						
1040						
1050						
1060						
1070						
1080						
1090						
: 1						

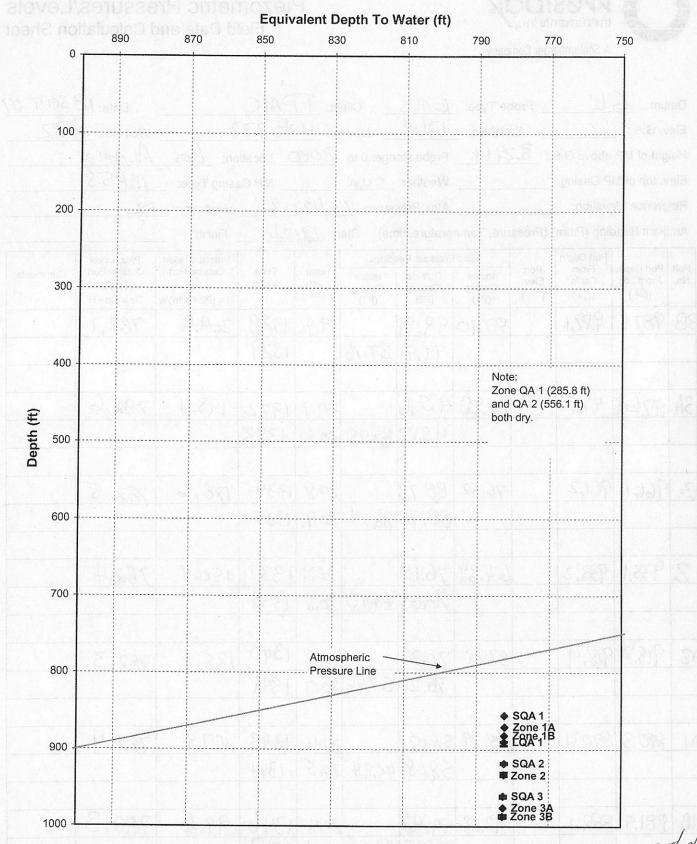
1100

Site Les Alamos N

Piezometric Profile: Monitoring Well: R-32

Client:TPMC Site: Los Alamos NM Datum:Ground Surface Plot By: DL Date: 25/09/0
Checked By: Date: Westbay Project: WB 777
Piezometric Pressures--WB777 - R32.xls

25/05/00 WHB


Piezometric Pressures/Levels Field Data and Calculation Sheet

									ECG PMC		
									7		
He	ignt of MP	above G.S	5.: <u>3</u>	.27 M.	Probe Ra	ange: 0 to	acco	Locat	ion: Los A	CAMOS	- MM
Ele	v. top of iv	iP Casing:	7	. 0	Weather:	Over	18251	MP C	asing Type:	IVIP 3 3	
Am	rerence El	evation: _ (Oncor	eto pad sure Temi	Atm. Pres perature ti	ssure: <u>//</u> me) St	2805	1201 C	Operator: L	4/4/11/18/	11100
Flag.		Port Depth	hat	7	Pressure Re		1		Pressure Head	Piez. Level	10 2 10 0 10
Port No.	Port Depth From Log (++)	From Cable (C+)	Port Elev.	Inside Casing (P1)	Outside Casing (P2)	Inside Casing (P1)	Temp.	Time H:M:S	Outside Port (PSI Cf H = (P2-Patm)/w	Outside Port	Comments
38	987.1	987,2		79.00	97.62			1006	1.841	1-1-1/3-1	2013 [3]
		5.533			97.65	78.99	21.23	1007		787,9	DTW 830.9
3P	976.0	976-1		74.24	92.89		21.28	1012	188.3	787.7	
		230			92.90	74.24	21.27	1013	10.2%	18-37-81	
A3	9611	961.2		67.79	69.62		-	1017	134.6	826.5	
					A TOWNSON	67,80	21.22	1018	(C-1)	- 200	
2	933.1	933.2		55,63	74.05		/	1021	144.8	788.3	
					74.08	55.63	20.99	1027	13 11	19.10((3.)	0.8-68
-2	918.2	918-3		49.12	43.15		20.94	1029	73.5	844,7	
					43.13	49.16	20.28	1030	2377	162.13.783	33
Al	8903	890.4		36.98	23.15		20074	1633	27.4	8629	
	v				23,10	36.97					
18	881,9	88201		33,38	56,40		20,59	1036	104.1	777.8	
					5640		1				

Piezometric Pressures/Levels Field Data and Calculation Sheet

Da	ıtum:		Pro	be Type:		Cli	ent:	Nurse		Date: [7 SERTZ	
Ele	ev. G.S.:	T telsin	_ s	erial No.:		Job 1	No.:		.on istoc	Well No.: F	232	
He	ight of MF	above G.S	S.:		Probe Ra	ange: 0 to	300	Locati	on:			
Ele	Elev. top of MP Casing:			CERT TO	Weather:		eu regina	MP C	asing Type: _			
Re	ference El	evation: _		Alfan Sirken	Atm. Pre	ssure: _			Operator: DL			
		ding (Patm								(5) (s)		
Port	Port Depth	Port Depth From	Port		Pressure Re		Temp.	Time	Pressure Head Outside Port	Piez. Level Outside Port		
No.	From Log (F)	Cable (4)	Elev.	Inside Casing (P1)	Outside Casing (P2)	Inside Casing (P1)	(C)	H:M:S	(F) H = (P2-Patm)/w	(ft)	Comments	
IA	870.9	871.1	3,000	33,46				6,000		18 22 68 13	coots	
	Coste	A HOLL		28.62	51.67		20.46	1040	93.17	777-7		
	A23.33 (17.1. 3.			51.67	28.63	20.43	1041				
eA1	856.1	856-3		22,14	34.95	5 a 3vii 20 y s	20.35	1043	54,6	801,5	300	
¥					34.99	1. St 1.20 1		AND THE REST				
QA2	556.1	556,3		11.5	11.44		19.81	1052	Neich N		111013	
						11,52						
71	285,8	2859		11.37	11.40		18.37	1109		Arcel	1.000	
				1609	11,40	11.37	-	1110				
0	A7.	mos		11.28)		17.80	1114hr	CION	1 5 9 R 1	5 845l	
					384							
		12202		7.99	2000	Cal.			200 PE	Lings.	C. KS	
			2		436 (24) 43,223 5						>	
		53. As F		E 15 4 5 F4 7 34 1	- ASTA	A-3, 4-3		(11 12)	\$5.705	10.7881	P.183	
					(*\$.3) (*)	2755 T	\$6 CO				25/05/00 WH	

Client:Shell Frontier Oil Gas Site:Colorado Datum:Ground Surface

Figure 2

Plot By: DL Date: 25/09
Checked By: Date:

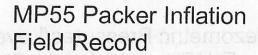
Westbay Project:WB 849 Piezometric Pressures--WB777 - R32.xls

PAGE 1 of 2

25/05/00 WHB

Piezometric Pressures/Levels Field Data and Calculation Sheet

Da	atum: <u>6</u>	nL_	Pro	be Type:	EMS	Cli	ent: <u>7</u>	PMC		Date: 18	sept of
Ele	ev. G.S.:		_ s	erial No.:	1764	Job I	10.: U	JB77	7	Well No.:	535
He	ight of MF	above G.S	s.: <u>3</u> ,	29 ft	Probe R	ange: 0 to	200	C Locat	ion: Los	ALAMOS	No.
									asing Type: _		
									_ Operator: _		GUS T
		ding (Patm									
Port No.	Port Depth From Log ((+)		Port Elev.	Fluid Inside Casing (P1)	Pressure Re Outside Casing (P2)	Inside Casing (P1)	Temp.	Time H:M:S	Pressure Head Outside Port ((+t) H = (P2-Patm)/w	Piez. Level Outside Port (f+) Dz = Dp - H	Comments
33	987,1	987.1			99,9		19.9	1328			- Ali
				0.11		87,76		1329		10 11	nill
3A	9761	9760	33 - 35 13 (3 AG)	82,98	95.16	,	20.7	1332	193.4	782,6	0
					95,17	82,98	20.8	1333			006 美。
											Ö
13	961-1	961.2		76.52	88.73		20.8	1334	178,6	782.5	
					88.72	76,54	209	1335	178.6	Arr	roa "Till
2	933.1	933.2		64.39	76.64		20,9	1337	150.7	782.4	
				1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		64.40		1			LDOY
12	918.2	918,4		57.98	70.20	0050	8.05	1340	135.9	782.3	
					70.21	57.96	20.7	1341			
41	870.3	890,4		45.79	58.07		20.6	1343	107.9	782.4	10B
			SADS Cared	64 55	5808	45.84	20,5	1344			
1B	881.9	882,1	6 431 66 460	42,22)	Committee of the Commit	1346	99.6	782.3	903)
\$815)	(NesajeU	10 ye 1	q		54.45	42.23	20.4	134)			


25/05/00 WHB

Piezometric Pressures/Levels Field Data and Calculation Sheet

												SEPTE
	Ele	v. G.S.:		_ s	Serial No.: Job No.: B777					7	Well No.:	R32
										on:		
	Ele	v. top of N	MP Casing:	, 0	ATT 18151 1	Weather			MP C	asing Type: _	engago (Timi)	Tria V
										Operator:		
	Am	bient Rea	ding (Patm)	(Pres	sure, Temp	perature, ti	me) Sta	art:		Finish:		
			Port Depth		Fluid	Pressure Re	adings			Pressure Head	Piez. Level	
	No.	Port Depth From Log (45	From Cable ((+)	Port Elev.	Inside Casing (P1)	Outside Casing (P2)	Inside Casing (P1)	Temp.	Time H:M:S	Outside Port ((-(+)) H = (P2-Patm)/w	Outside Port (£4) Dz = Dp - H	Comments
	A	870.9	871.1	ahen	37.45	49.74	k	203	1349	88.7	782.2	ufo V
				text		49.74	37,46	20.3	(350	1 (60) (1) (6) (1) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6	failed)	
0/	41	8561	856.2	7.401	30.94	43.26	45	20.3	1352	73,7	782.4	
-						43.29		20.2	1353	1 3 60 1		
A	2	556.1	556,2		31.60			20,2	1354		00 L	
					11.56	11.56		19.8	140(5-2015 -S	
					Aux	11,54	11.54	19.1	1402		3 5.	
A	.(285.8	285.7		11.42	11,46		18.7	1411			
						11.46	1.	185	1412			
-	C	AT	mos		11.29			17.2	1424			
-												
F												

Daga	-4	
Page	of	

Project: WB727 Client: Teri	rangar By: DC Date: 17 Sept 2007
Location: Los ALAMOS Well No. R	Borehole Diameter: 4.5,4ch
Packer No. 87-/ Depth:	Computer Data File: R32R _BT/ .WDF
Inf-Tool No. 2321 Vent Tool No	. 1764 Volume Pumped: Vol Returned
H-B Valve: (P _H) 380 Offset (P _V).	Confirm Venting (Vent Tool Data) (Y/N)
Vent Tool Pressure (Shoe Out, Po)	Final Inf'n Vol: Final Press:(P _F)
Comments: 30 303400	Calc'd Element Pressure (P _F +P _V - P _O)
Eight .	Confirm Pkr Valve Closed (Yes/No):

Pumping Information

Volume		Pressure	il o _n	Clock		Comments
(litres)	Line (psig)	Inf. Tool (psia)	Vent Tool (psia)		Tag No.	Text
3.6	0	11.57	11.25	1352		Start recording
3.6	0	12,5	11.24	1353		SHOE OUT
		- 3 - 32				Pump to 700
4.2	710	12.6	11.24	135430	1	TUS -> WF
						Check fer leaks
42	710	434	11.24	1359	2,	No leeks, TUB -> C
42	710	4116		1400		No leaks
4-2	210	11,6	11.2	1404	3	VENT UNE, SHOT W
3.7	0	i1.6	11.2	1408	4	510
						La L
				1.4.3.3.3		F 124 F 24 F 24 F 27 F 27 F 27 F 27 F 27 F
						AA L
			11.00			HOW BOMPA
				4		
		1				

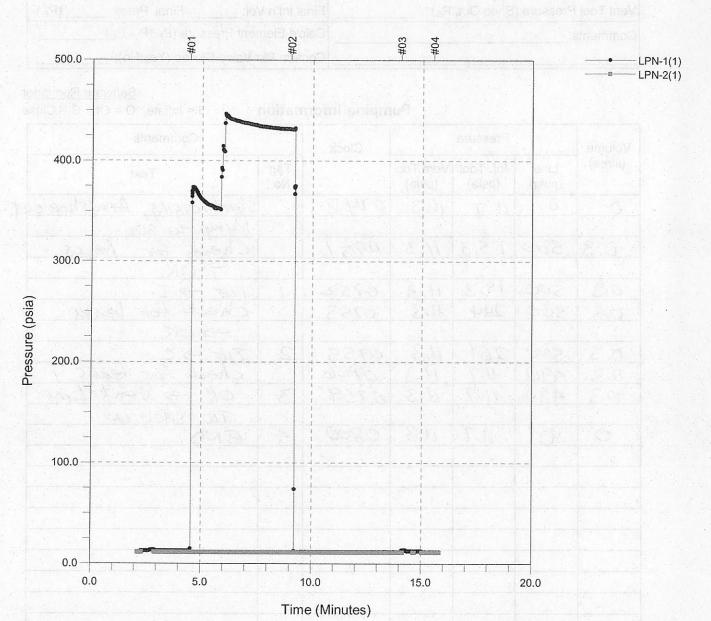
Company: Terranear PMC

Site: Los Alamos

Project: LANL Well Retrieval Description: Plastic MP55

Well: R-32

WB project: WB777 Comment: Blank Test Packer: BT-1


Packer Depth: Ground Surface

Plot By: DL

Date: Sen

Checked By:_

Date:

TZero: Mon Sep 17 20:50:00 2007

Report Date: Tue Sep 25 13:49:15 2007

R32R_BT1.WDF

D		
Page	of	
5-		_

Project: WB777	Client: TPMC	By: DL	Date: Sept 18	2007
Location: LOS Alams	Well No. R32	Borehole Diameter:_	19.15 M 108;	GALLEY ST
Packer No. B 7	Depth: O	Computer Data File:_	R32R-BTZ	.WDF
Inf-Tool No. 2321	Vent Tool No. 1764	Volume Pumped:	Vol Returned	
H-B Valve: (P _H) <u>380 อุร</u> เ	Offset (P _V).	Confirm Venting (Ve	nt Tool Data) (Y/N)	
Vent Tool Pressure (Shoe	Out, Po)	Final Inf'n Vol:	Final Press:	_(P _F)
Comments:		Calc'd Element Press	sure (P _F +P _V - P ₀)	
		Confirm Pkr Valve Cl	osed (Yes/No):	103.

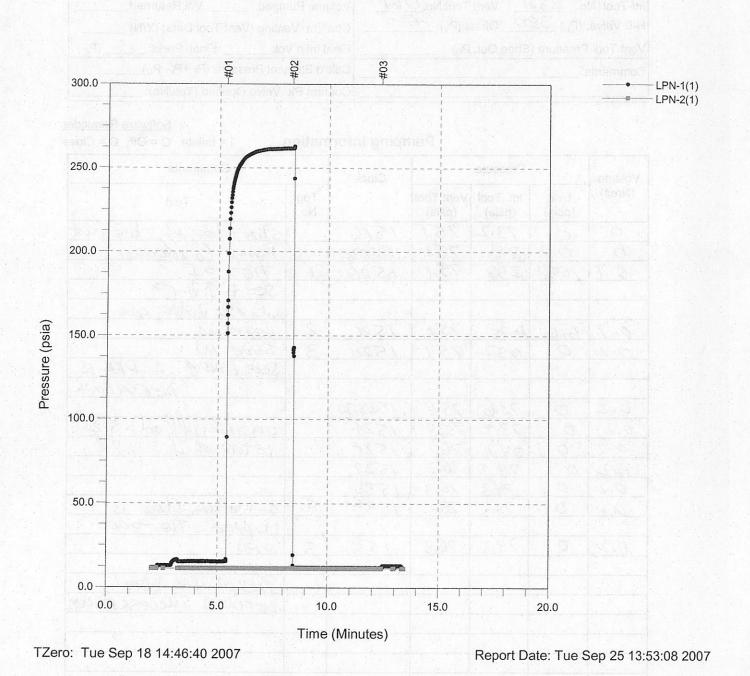
Pumping Information

Software Reminder

Volume	Pressure			lume Pressure Clock		Comments	
(litres)	Line (psig)	Inf. Tool (psia)	Vent Tool (psia)		Tag No.	Text	
0	0	11.7	11.3	0748	-	stert logging, Arm/she	
						Pump to soo	
0,3	500	15,3	11.3	0751		Check for leaks	
						→ OK.	
0.3	500	15.3	11.3	0752	1	TUE -> I	
0,3	500	244	11,3	0753		THE > I Check for leaks	
						>0K.	
03	500	261	11.3	0755	2	715-7C	
0.3	490	11.7	11,3	0756		check for leaks	
03	490	11.7	11.3	0759	3	OK - Vent Li	
						TUE SHOE IN	
0	0	t1.7	113	0800	4	END	
						the state of the s	
						0.6	
	20.0		0.81	9.0		0.0	
				Zaotorită) a	ol I		
N.S. 1. 20 au	Paul rati	(Dimonal)				Mon See 17 20/80/20 2007	
_XSSX							

Company: Terranear PMC Site: Los Alamos NM Project: LANL Well Retrieval Description: Plastic MP55

Well: R-32


WB project: WB777 Comment: Blank Test Packer: BT-2

Packer Depth: Ground Surface

Plot By: DL Date: Sept 25

R32R_BT2.WDF

Checked By:_____ Date:_

Page	of.	
Page	of	

Project: WB 777	Client: TPMC	By: D. Larssen Date: 17 5607 2067
Location Los ALAMOS	Well No. R-32	Borehole Diameter: 4.5 inch.
Packer No. MP5	Depth: 966,5 FT	Computer Data File: R32R _MP5 .WD
Inf-Tool No. 232/	The state of the s	Volume Pumped: Vol Returned
H-B Valve: (P _H) <u>380</u>	Offset (P _v).	Confirm Venting (Vent Tool Data) (Y/N)
Vent Tool Pressure (Shoe	Out, Po)	Final Inf'n Vol: Final Press: (P _F)
Comments:	3.	Calc'd Element Pressure (P _F +P _V - P _O)
		Confirm Pkr Valve Opened (Yes/No):

Pumping Information

Software Reminder

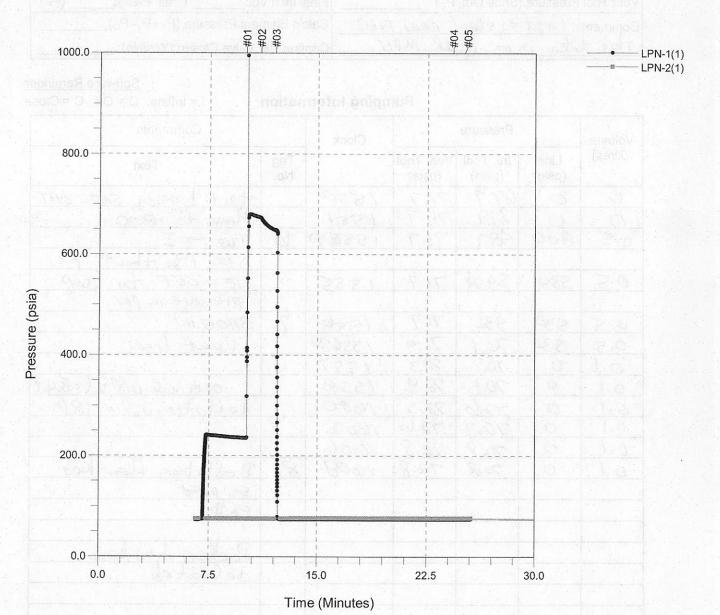
I = Inflate. O = Off. C = Close

			Pur	nping Intori	matioi	n I = Inflate, O = Off, C = Clos
Volume		Pressure		Clock		Comments
(litres)	Line (psig)	Inf. Tool (psia)	Vent Tool (psia)		Tag No.	Text
0	0	73.2	75.1	1516		start logging, shoe out
b	0	241	75.1	1517:30		Pump to 1000 psi
0.7	1000	236	75.1	1520	1	TIESI
						seep 110
						,0. PKr Volve opan
0.7	610	675	75.1	1521	2	Ventlue
0.2	0	1052	75-1	1522	3	SHOE IN.
						See EMS 1 32 PKR IS
						DEFLATING
0.2	0	73.6	756	1522:30		0.0
0.2	0	73,9	25.9	1524		original influor=3,21
0.2	0	741	761	1525		retrievel ud = 1.91
0.2	0	74.2	76.2	1527		
0,2	0	743	26,3	1530		
0,2	0	74.3	76,3	1534	4	defletion flow is
						stopped. TIE >ott
0.2	0	743	763	1535	5	END
				/ Property of the	acompå,	Approximation and approximation of the state
						PACKER HAS BEEN
	0.03		0.61	0		DEFLATED SUCCESS FULLY
				(Cartement)		
ar war da	#(SPE) 1 (SPE)	SPERMINERS				1002 37 38 31 31 333 2011

Company: Terranear PMC Site: Los Alamos, NM Project: LANL Well Retrieval Description: Plastic MP55

Well: R-32

WB project: WB777


Comment:

Packer: MP-5

Packer Depth: 966.5 ft

Plot By: Date: Sept 25/07

Checked By:_____ Date:_

TZero: Mon Sep 17 22:10:00 2007

Report Date: Tue Sep 25 13:59:00 2007

R32R_MP5.WDF

Page	of	
------	----	--

Project: WB 777 Client: TPMC	By: D. L. Date: 17 5507 2007
Location: Los ALAMOS Well No. R-32	Borehole Diameter: 4-5 incl.
Packer No. MP7 Depth: 956,5	Computer Data File: R32R_MP7 .WDF
Inf-Tool No. 232/ Vent Tool No. 1764	Volume Pumped: Vol Returned
H-B Valve: (P _H) <u>380</u> Offset (P _V).	Confirm Venting (Vent Tool Data) (Y/N)
Vent Tool Pressure (Shoe Out, Po)	Final Inf'n Vol: Final Press:(P _F)
Comments: Forgot to start new FILE.	Calc'd Element Pressure (P _F +P _V - P _O)
This data is on RBZR_MPS.	Confirm Pkr Valve Closed (Yes/No):

Pumping Information

Software Reminder I = Inflate, O = Off, C = Close

Volume		Pressure		Clock		Comments
(litres)	Line (psig)	Inf. Tool (psia)	Vent Tool (psia)		Tag No.	Text
0	0	69.7	71.7	1550	1	start logging, SHOE OUT.
0	0	379	71.7	1551		Pump to 800
0,5	800	497	71.7	155430	6	TIG -> I
						See PV then ? P
0.5	530	S45V	71.7	1555		TIE = OFF to STOP
						pressure in per.
0.5	539	932	71.7	1556	7	SHOEIN
0.5	530	20.1	71,9	1556:30		Vent (ine.
0.1	0	703	723	1557		The state of the s
0.1	0	70,5	72.4	1558		original infl Vol = 3.41
0,1	0	706	72,5	1600		deflotion vil = 1.91
0.1	0	70.7	72.6	1602		
0.1	0	70.8	72.8	1606		in one
0.1	0	70.8	72.8	1608	8	Deflation flow has
						stopped.
		70-3				END.
				4		
						Packer has been
	0 GE	7	22.6	0.51		deflated.
negre into ou	2 4 65 70	J=				Cancinhias eq ve su a salt suid
810.891						

Company: Terranear PMC Site: Los Alamos, NM Project: LANL Well Retrieval Description: Plastic MP55 Packer: MP-7 Packer Depth: 956.5

Well: R-32

Plot By:_____ Date:____

Date:

WB project: WB777

Checked By:

Comment: Checked I

#08 1000.0 LPN-1(1) LPN-2(1) Pumping Information 800.0 600.0 Pressure (psia) 400.0 200.0 0.0 -30.0 45.0 52.5 60.0

Time (Minutes)

TZero: Mon Sep 17 22:10:00 2007

Report Date: Tue Sep 25 14:02:04 2007

R32R MP5.WDF

Page	of	

Project: WB 777	Client: TPMC	By: DL	Date: 17 S&PT	7005
Location: Los Alessos	Well No. R-32	Borehole Diameter:_	4.5 mch	IDIQ DV
Packer No. MP (2	Depth: 923.6	Computer Data File:	PSZRMP12	WDF
Inf-Tool No. 2321	Vent Tool No. 1764	Volume Pumped:	Vol Returned	
H-B Valve: (P _H) <u>380</u>	Offset (P _V).	Confirm Venting (Ve	ent Tool Data) (Y/N)	
Vent Tool Pressure (Shoo	e Out, Po)	Final Inf'n Vol:	Final Press:	_(P _F)
Comments:		Calc'd Element Press	sure (P _F +P _V - P ₀)	
71		Confirm Pkr Valve Cl	osed (Yes/No):	1901

Pumping Information

Software Reminder
I = Inflate, O = Off, C = Close

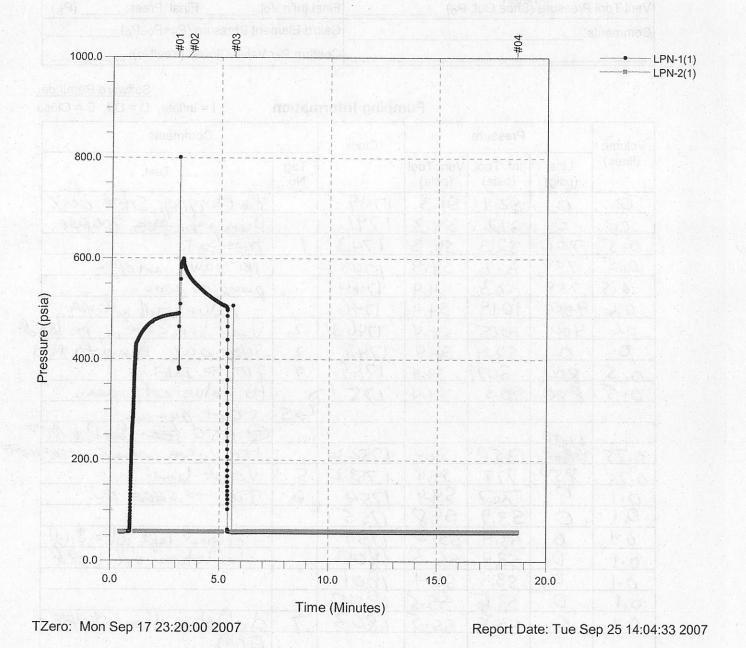
Volume	Pressure			Clock		Comments
(litres)	Line (psig)	Inf. Tool (psia)	Vent Tool (psia)		Tag No.	Text
0	0	55.9	57.8	1620		Start logging, Shoe out
0	0	433	57-8	1621		P4mp to 800
0.5	800	485	57.8	1623	1	TIE->I
				8.		P=V, C? PKR Value is on
0.5	550	570	57.8	1623-15	2	TIE 30 Vent Line.
01	0	513	57.8	1625	3	SHOE IN
01	0	56.3	58.2	1626		observe with as per deflat
0.1	0	56.6	38.5	1627		
0,1	O	56.7	58,6	1629		9
0.1	0	56.8	58,7	1631		deflation Vol = 1.91
0.1	Ø	56.9	58,8	1633		deflation Vol= 1.91
0-1	0	Stan	58,9	1635		
0.1	0	56.9	58.9	1637		deflection flow has
				1		stopped.
0:(Ō	56.9	58.9	1638	4	ENS
						Packer has been
						successfully dellated
	0.0a		82.5	0.20		30.0
				Cantoriid (Vo		
Lat ACL	a Tak	Classon D				Tanc hand See 17 92 th account
HSEH						

Company: Terranear PMC
Site: Los Alamos, NM
Project: LANL Well Retrieval
Description: Plastic MP55

Well: R-32

WB project: WB777

Comment:


Packer: MP 12

Packer Depth: 923.6 ft

Plot By: DL Date: 25 Sept 2007

R32RMP12.WDF

Checked By:_____ Date:____

Daga	of	
Page	UI	

Project: WB777	Client: TPMC	By: BC	Date: // 5@07	2007
Location: Los Alamas		Borehole Diameter:		ERCHEL ETV LINES VISCOLOT
Packer No. MP14	Depth: 913.6ft.	Computer Data File:_	R32RMP14	WDF
Inf-Tool No. 2321	Vent Tool No. 1764	Volume Pumped:	Vol Returned_	
H-B Valve: (P _H) 450		Confirm Venting (Ve	nt Tool Data) (Y/N) _	
اعرون Vent Tool Pressure (Shoe	Out, Po)	Final Inf'n Vol:	_ Final Press:	(P _F)
Comments:		Calc'd Element Press	ure (P _F +P _V - P _O)	
40		Confirm Pkr Valve Cl	osed (Yes/No):	0/301

Pumping Information

Software Reminder
I = Inflate, O = Off, C = Close

	Pressure Cleak Comments				Comments	
Volume	139			Clock		
(litres)	Line	Inf. Tool	Vent Tool		Tag	Text
	(psig)	(psia)	(psia)		No.	
0	0	52,4	54.3	1739		Start logging, SHOE OUT.
0	0	312	54-3	1741		Punp to \$00 700 PS1
015	700	323	54.3	1743	1	TUE->I
0,5	700	812	54.4	1743:30		per value astopen
0.5	700	803	54.4	1744		Quag to 1000
0.6	900	1019	54,4	1746		- value still notoper
0.6	900	1015	54.4	1746-30	2	Vont live shoe in reland
₽.	0	52.4	54.4	1748	3	SHOE OUT, Pump to 800
0.5	800	3071	54,4	1749	4	TIE -> INF
0.5	800	903	54.4	1251-		Per value not open.
					45	Start pumping
	1200					@ 1250 to - See PV 10
0.75	1960	1250	544	1752:30		Her volve operat - THE
0.25	3950	777	54.4	1753-30	5	Vont line:
0.1	0	767	544	1754	6	TIE -> SHOE IN
0, (0	53.9	54,8	1755		
0 .(0	53.4	55,2	1757		original ruft del = 3,18
0.(0	53,4	55,3	1800	99257	deflation vol = 691
0.1	D.00	53,5	55.4	1801		0.0
0:1	0	53.6	55.5	1802		
0.1	0	53.5	55.5	1803	7	deflation flow stopped
						BND
7918.EXI						Packer has been delicte

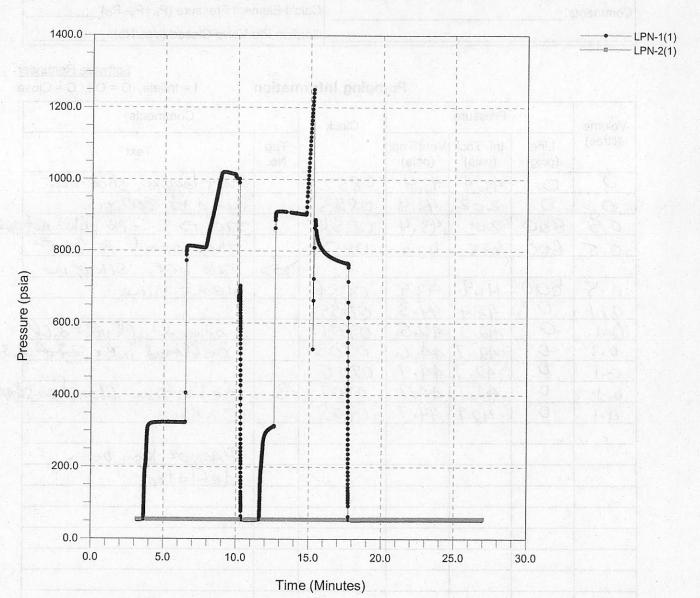
Company: Terranear PMC Site: Los Alamos NM

Project: LANL Well Retrieval Description: Plastic MP55

Well: R-32

WB project: WB777

Comment:


Packer: MP14

Packer Depth: 913.6 ft

Plot By: D(

____ Date: <u>Sept ≥5/0</u>7

Checked By:_____ Date:___

TZero: Tue Sep 18 00:36:40 2007

Report Date: Tue Sep 25 14:05:53 2007

R32RMP14.WDF

D		
Page	of	
. ~9~		

Project: WB777	Client: TPMC	By: DL	Date: 18 Sept	2007
Location: Los Alamos	Well No. R-32,	Borehole Diameter:	4.5 inch	opoti – p opravaj
Packer No. MP 18	Depth: <u>885.7</u>	Computer Data File:_	R32RMP18	WDF
Inf-Tool No. 2321	Vent Tool No. 1764	Volume Pumped:	Vol Returned_	
H-B Valve: (P _H) <u>380 psr</u>	Offset (P _V).	Confirm Venting (Ver	nt Tool Data) (Y/N) _	
Vent Tool Pressure (Shoe	Out, Po)	Final Inf'n Vol:	_ Final Press:	(P _F)
Comments:		Calc'd Element Press	ure (P _F +P _V - P _O)	
		Confirm Pkr Valve Clo	osed (Yes/No):	6041

Pumping Information

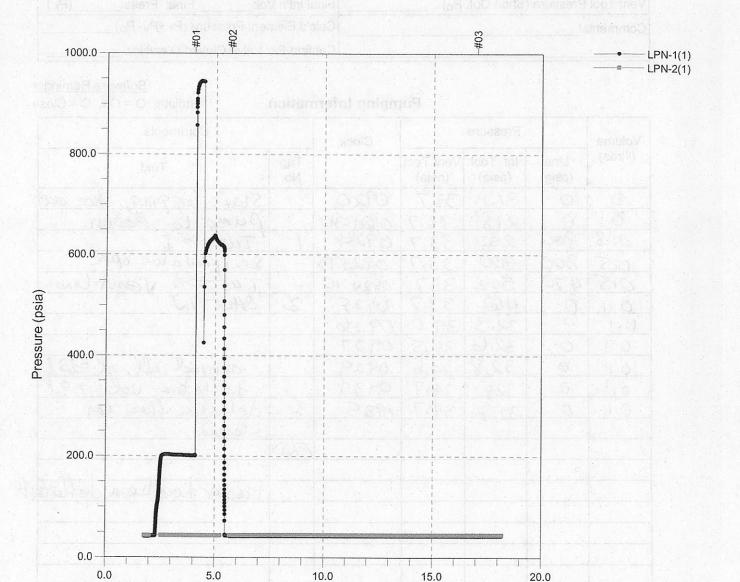
Software Reminder

I = Inflate, O = Off, C = Close Comments Pressure Volume Clock (litres) Inf. Tool Line Vent Tool Tag Text (psig) (psia) (psia) No. 43.4 Start logging, shoe out. 0852 41.4 43.4 0853 0 202 43.4 TIG > I - PKr value not opa 800 0854 201. Thou open! Po 14/3 0855-800 625 43.4 TIE OFF, SHOE IN 800 015 43,9 0856 0 42,4 0859 0901 0903 0.1 0 O 0.1 44.7 0905 0 -1 0 0907 42.7 0 0908 01 PACKOR has been deflated.

Company: Terranear PMC Site: Los Alamos NM Project: LANL Well Retrieval Description: Plastic MP55

Well: R-32

WB project: WB777


Comment:

Packer: MP 18 Packer Depth: 885.7 ft

Plot By: DC

Checked By: Date:

Date: Sept 25/07

Time (Minutes)

TZero: Tue Sep 18 15:50:00 2007

Report Date: Tue Sep 25 14:07:09 2007

R32RMP18.WDF

Page	of	
1 age		

Project: WB777 Client: TPMC	By: DL Date: 18 Sent 2007
Location: Los Alamos Well No. R-32	Borehole Diameter: 4,5 inch
Packer No. MP23 Depth: 861.0	Computer Data File: R32RMP23 WDF
Inf-Tool No. 232/ Vent Tool No. 1264	Volume Pumped: Vol Returned
H-B Valve: (P _H) <u>380</u> Offset (P _V).	Confirm Venting (Vent Tool Data) (Y/N)
Vent Tool Pressure (Shoe Out, Po)	Final Inf'n Vol: Final Press: (P _F)
Comments:	Calc'd Element Pressure (P _F +P _V - P _O)
	Confirm Pkr Valve Closed (Yes/No):

Pumping Information

Software Reminder
I = Inflate, O = Off, C = Close

Pressure Comments Volume Clock (litres) Inf. Tool Vent Tool Line Tag Text (psig) (psia) (psia) No. 0920 31.8 33.7 0 1 0 2181 33.7 0921:30 0 800 0924 250 33.7 Seepkr value open 800 400 0924:05 33.7 470 33.7 TW >0 venture 502 0924:10 2 33.7 0925 462 32,3 0 0.1 0926 Oil 32.6 0927 0 0 0929 0 1 0934 0,1 0 34.7 deflation Slow Los 1935 0.1 0 34,7 32.8 stopped -END Packer has been deflated.

Packer: MP 23 Company: Terranear PMC Packer Depth: 861.0 ft Site: Los Alamos NM Project: LANL Well Retrieval Description: Plastic MP55 Plot By: DL Date: Sept 25/07 Well: R-32 WB project: WB777 Comment: Checked By:_____ Date:__ 1000.0 -LPN-1(1) LPN-2(1) Pumping bit page 19 800.0 -600.0 Pressure (psia) 400.0 200.0 0.0 10.0 15.0 20.0 Time (Minutes)

Report Date: Tue Sep 25 14:18:13 2007

R32RMP23.WDF

TZero: Tue Sep 18 16:20:00 2007

Page	of	
9-		

Project: WB ???	Client: TPM C	By: DC	Date: 18 Sept a	2007-
Location: Los Alamos	Well No. R32	Borehole Diameter:	4.5 mch	
Packer No. MP25	Depth: 851,5	Computer Data File:_	R32RMP25	WDF
Inf-Tool No. 2321	Vent Tool No. 1764	Volume Pumped:	Vol Returned	
H-B Valve: (Р _н) <u>380 р</u> сі	Offset (P _V)	Confirm Venting (Ver	nt Tool Data) (Y/N)	
Vent Tool Pressure (Shoe	e Out, Po)	Final Inf'n Vol:	_ Final Press:	_(P _F)
Comments:		Calc'd Element Press	ure (P _F +P _V - P _O)	
	19	Confirm Pkr Valve Clo	osed (Yes/No):	131

Pumping Information

Software Reminder

I = Inflate, O = Off, C = Close Pressure Comments Volume Clock (litres) Line Inf. Tool Vent Tool Tag Text (psig) (psia) (psia) No. 28,2 30.1 0946 0 0947 0 382 30.1 Pump to 800 0 094830 405 0.5 800 30.1 TIE -> INF PKR value open 0949:30 TIE=0, Vent Line. 800 521 30./ 0.5 2 0950 3 0,1 200 SHOE IN 30,1 0.1 30,7 0:1 0 31.1 0952 0954 0.1 0 31.3 0959 0.1 0 deflation flow has stopped. 1000 29.5 CND 0.1 0 31.3

cription: Plastic MF l: R-32					Plot By:	DL	_ Date:_S	ent2
project: WB777 nment:								
W 029 W					Checked By	2 6 7 8 1	_ Date:	
167-977	#01				-#03			
1000.0	1			, I	<u> </u>		***************************************	LPN-1
Sollwire Rem	1		1 1	900 Sab.				
(e) 0 = 0 1 , 0 = 0	chil =		thin gnia					
	Comm		Vicolo:					
800.0	1	[[eal]		1	V log m	- and		
			1 223 34 3	(619)		(plag)		
600.0				1		500		
800.0	S-127-12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		[32 317 \			3 22 6		
	-		1	1				
200	1		1 1 1	1		1 K3C1		
400.0				1				
	1	• Constitution of the Cons	1 7111		11.2.22			
7. 27 E. J. 7. 7. 7.	3084 EV	Arter Planatiqui de la seconda	1 1					
		Entire Contract of the Contrac		1				
200.0			 					
			1			8.0		
NOT - CA	1		1 2 6 13			Barry()		
0.0						36 (%		
0.0	5.0	1	0.0	15.0		20.0		

R32RMP25.WDF

Page	of	

Project: WB777	Client: TPmC	By: DL	Date: 18 sept	7007
Location: Los Alamos	Well No. <u>R32</u>	Borehole Diameter:	4.5, nch	1014
Packer No. MP56	Depth: SSI.5 Ff-	Computer Data File:_	R32R MP56	WDF
Inf-Tool No. 2321	Vent Tool No. 1764	Volume Pumped:	Vol Returned	
H-B Valve: (Р _н) <u>380рс/</u>	Offset (P _V)	Confirm Venting (Ver	nt Tool Data) (Y/N) _	
Vent Tool Pressure (Shoe	e Out, P _o)	Final Inf'n Vol:	_ Final Press:	_ (P _F)
Comments:		Calc'd Element Press	ure (P _F +P _V - P ₀)	
	1	Confirm Pkr Valve Clo	osed (Yes/No):	1001

Pumping Information I = Inflate, O = Off, C = Close

Software Reminder

		100		mping inton		1 - Illiate, 0 - 011, 0 - 01050	
Volume		Pressure		Clock		Comments	
(litres)	Line (psig)	Inf. Tool (psia)	Vent Tool (psia)	(·,	Tag No.	Text	
0	0	12.06	11.6	1109		Start logging, Shoe out	
0	0	15,6	11.6	1116		Pump to 800 psi	
0,5	800	15,6	11.6	1111	(
0,5	800	5001	11,6	111130		pkr value notopon.	
0.5	800	534	11.6	1112	2	start pumpias	
1-1	M300	1200	11.6	1115:40	پ	See Polop, closh,	
						- pur value open?.	
						not sure.	
(,(950	805	11,6	1117	3	Vent line.	
0,5	25	770	11.6	1118	4	THE SHOE IN lour, Clo	
015	0.5	15.5	11.6	1119:20		See slow decline, as	
						See show decline, as	
į						PKR deflater.	
0,4	04	12,76		11203			
0.4	0.4	12.56	11.6	1125			
0.4	0.4	12.6	11.6	1132	5	TIE Pressure 15 stable.	
			f			SHOE W TIE -OFF	
0.4	0.4	11.97	11.6	113330		SHOG OUT,	
0.4	0.43	12:16	11.6	(335	6	TE=C	
0.4	OAX	12.4	11-6	(33520	e ET	not convisced pers	
A PRO A	(A) eq (Tre)	-Charge-Ch				deflated; Decide to	
						Pump weter in. TIE=I	
0.4	0 /4	12.5	(0)	1337	167	Estart Jump	
	,				1		

Page	of	

Project: WB777 Well No. R32 Packer No. MPS6

Pumping Information

Software Reminder

I = Inflate. O = Off. C = Close

			Pu	mping intor	matioi	I = Inflate, O = Off, C = Close
Volume	Pressure		Clock	Comments		
(litres)	Line (psig)	Inf. Tool (psia)	Vent Tool (psia)	10.4	Tag No.	Text
1,0	160	32.4	11.6	1139	0	
1,5	200	61.5	11.6	1139	8	
1.75	350	340	11.6	1141:45	10	TIE=O STOP PULL
						Looks like normal jull'a
						took 145-14= 1.05L.
No.						to PKI value is open
1.75	460	330	11.6	1145	11	VENTLINE
1.45	0	328	11-6	1145:40	12	TIE SHOEIN
		F. A.				-let per ventidelle
						4 8
					ove	CUSION;
						Per defleted.
						defl vol ~ 1 lotor
1						0
1,45	0	120	11.6	1148	13	END
		3				8
						3.0
NO NO 010	valik ole File			(astractor)	MESTER .	
EL PLOS	10 (01) (1) (4	tepor Bat			2.18	And the seek 18 1870 and constitutions of
HADON OF						

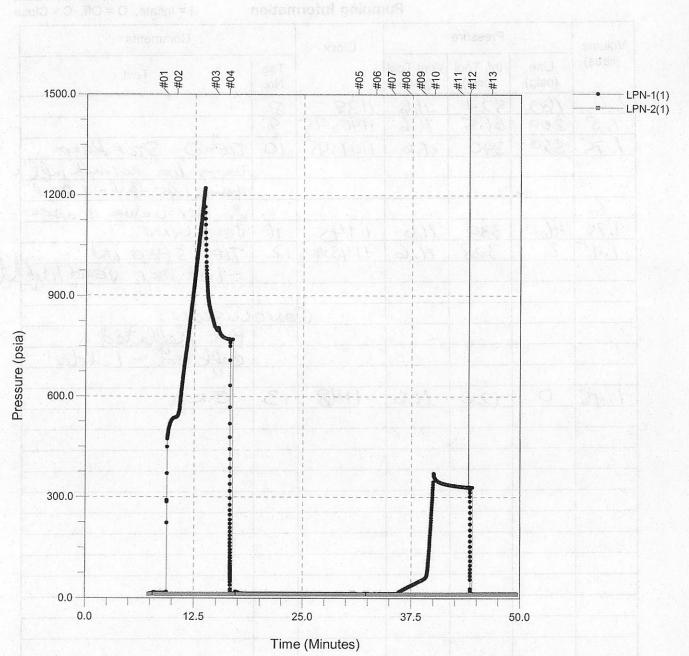
Company: Terranear PMC Site: Los Alamos NM Project: LANL Well Retrieval Description: Plastic MP55

Well: R-32

WB project: WB777

Comment:

Packer: MP 56


Packer Depth: 551.5 ft

Plot By: DC

Date: Sept 25/

Checked By:____

Date:___

TZero: Tue Sep 18 18:01:40 2007

Report Date: Tue Sep 25 14:12:32 2007

R32RMP56.WDF

Page	of	
1 age	UI	

MP55 Packer Deflation Field Record

Project: WB777	Client; TPMC	By: DL		Date: 185007	2007			
Location: Los Alamos	Well No. R3Z	Borehole Diame	eter:	4.5, ach.	istano.			
Packer No. MP84	Depth: 281,2	Computer Data	File:	R32RMP84	WDF			
Inf-Tool No. 2321	Vent Tool No. 1764	Volume Pumpe	d:	Vol Returned				
H-B Valve: (P _H) 38999	Offset (P _V).	Confirm Ventin	g (Vent	Tool Data) (Y/N) _				
Vent Tool Pressure (Shoe	e Out, P _o)	Final Inf'n Vol:_		Final Press:	_(P _F)			
Comments:		Calc'd Element	Pressur	e (P _F +P _V -P ₀)				
		Confirm Pkr Valve Closed (Yes/No):						

Pumping Information I = Infla

	Software	Reminder
I = Inflate,	O = Off,	C = Close

Volume		Pressure		Clock		Comments
(litres)	Line (psig)	Inf. Tool (psia)	Vent Tool (psia)	CIOCK	Tag No.	Text
1.0	0	12.0	11.7	1207:30		Start Logging, shoe out
1,0	0	18.3	11.7	1209		Pump to 1000-1200
1.7	1200	18.3	11.7	1210	(TIB = I
		max38t)			SepAL
						es Per value oper.
1.7	270	69	1(.7	12/11/20	2	Vent Line.
1,5	0	69	11.7	1212:30	3	TIE=OP
1.5	0	69	11.7	1213	4	TIE=C
1.5	0	35	11.7	1212:30		
1.5	0	22	11.7	1214		See TIE-P V slowly
1.5	0	15	11.7	1214,30		as PKr dollater.
1.5	0	129	4.7	1215		flow three TIE,
1,5	0	12.60	11.7	1216		
1.5	0	12,6	11.7	1218		TIO = P. Stable flow stoppe
155	D	12.6	11.7	1220	5	TIE SHOE ON
1.5	0	12.0	lle7	122030		END.
	0.80		1) 2)	Linds	77	92 00
					CON	occusion:
Let Care	C SUE SI	C STORAGE		(832-940)01) (3		PACKER IS DEFLATED,
/ASSA		-				

Packer Deflation

Site: Los Alamos NM	Company: Terranear PMC site: Los Alamos NM Project: LANL Well Retrieval					Packer: MPa Packer Dep		ft	
Description: Plastic M Well: R-32						Plot By:	DL	Date: Se	pt 25/07
WB project: WB777 Comment:						Checked By		Date:	
						de de la composición del composición de la compo		Packar No	
					act M				
Press. (Ps.)									
1000.0	#01	#03	nari Jol		#02		_		LPN-1(1)
Acivies					-				LPN-2(1)
Soft Calculation	I I			1	1				
e. O = Cit. O = Close	inum l				IOSTALL'S				
800.0	ammos į					owern4	_		
1xe7	[[[1 1 1	TooT (enill (piec)		
1 4 V. 64 L. 54	i. Kacinali k			1-3-2-3					
1.5551 65-A.					1				
600.0				i 	·		-		
	149			1	1				
osia)	1			1 1					
Pressure (psia)				1					
nss 400.0				 			_		
P	1						10		
	ı						5		
Likely I S.	and the state of t								
200.0	122			i Pist					
200.0				1					
K -16374 - 2467/15	1	-		1 (3)	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \				
79.0	35	1		1942/42/5	I I				
0.0	F 0				1		20.0		
0.0	5.0			0.0	15.0)	20.0		
			Time	e (Minutes	(3)				

Report Date: Tue Sep 25 14:20:54 2007

R32RMP84.WDF

TZero: Tue Sep 18 19:06:40 2007

Appendix B

R-32 Well Log (on DVD included with this document)

Analytical Data Results

SAMPLE ID	DATE RECEIVED	ER/RRES-WQH	Time	рН	Temp	Cond	Diss O2	Turb	ORP	Ag rslt
EF07090G32R161	10/9/2007	WG-07709-EE	11:00	8.04	20.8	167	1.34	1.16	175	0.001
EU07090G32R161	10/9/2007	WG-07709-EE								0.001
EF07090G32R162	10/9/2007	WG-07713-EE	11:05	8.14	20.8	166.5	1.16	0.89	171	0.001
EU07090G32R162	10/9/2007	WG-07713-EE								0.001
EF07090G32R163	10/9/2007	WG-07714-EE	11:10	8.16	20.9	165.9	1.25	0.43	157	0.001
EU07090G32R163	10/9/2007	WG-07714-EE								0.001
EF07090G32R164	10/9/2007	WG-07715-EE	11:15	8.18	21	165.8	1.25	0.80	140	0.001
EU07090G32R164	10/9/2007	WG-07715-EE								0.001
EF07090G32R165	10/9/2007	WG-07716-EE	11:20	8.19	21.2	165.6	1.08	0.68	104	0.001
EU07090G32R165	10/9/2007	WG-07716-EE								0.001
EF07090G32R166	10/9/2007	WG-07717-EE	11:25	8.20	20.8	165.2	1.24	0.74	79	0.001
EU07090G32R166	10/9/2007	WG-07717-EE								0.001
EF07090G32R167	10/9/2007	WG-07718-EE	11:35	8.19	20.8	165.1	1.25	0.75	53	0.001
EU07090G32R167	10/9/2007	WG-07718-EE								0.001
EF07090G32R168	10/9/2007	WG-07719-EE	11:45	8.18	21.7	165.8	1.19	0.69	25	0.001
EU07090G32R168	10/9/2007	WG-07719-EE								0.001
EF07090G32R110	10/9/2007	WG-07856-EE	11:55	8.19	21.8	164.5	1.21	0.77	40	0.001
EU07090G32R110	10/9/2007	WG-07856-EE								0.001
EF07090G32R120	10/9/2007	WG-07856-EE	11:55	8.19	21.8	164.5	1.21	0.77	40	0.001
EU07090G32R120	10/9/2007	WG-07856-EE								0.001
EU07090G32R101-FB	10/9/2007	WG-07856-EE	11:55	8.19	21.8	164.5	1.21	0.77	40	0.001
EF07090G32R169	10/9/2007	WG-07720-EE	12:25	8.16	22.8	163.3	1.22	0.67	27	0.001
EU07090G32R169	10/9/2007	WG-07720-EE								0.001
EF07090G32R170	10/9/2007	WG-07721-EE	12:55	8.15	23	163.1	1.25	0.65	2	0.001
EU07090G32R170	10/9/2007	WG-07721-EE								0.001
EF07090G32R171	10/9/2007	WG-07725-EE	13:25	8.14	23.2	162.5	1.29	0.81	-1	0.001
EU07090G32R171	10/9/2007	WG-07725-EE								0.001
EF07090G32R172	10/9/2007	WG-07731-EE	13:55	8.12	23	163.5	1.25	0.73	-6	0.001
EU07090G32R172	10/9/2007	WG-07731-EE								0.001
EF07090G32R173	10/9/2007	WG-07732-EE	14:25	8.11	23.2	162.4	1.24	0.79	-15	0.001
EU07090G32R173	10/9/2007	WG-07732-EE								0.001
EF07090G32R174	10/9/2007	WG-07733-EE	14:55	8.09	23.1	162.1	1.33	0.75	-16	0.001
EU07090G32R174	10/9/2007	WG-07733-EE								0.001
EF07090G32R110a	10/9/2007	WG-07855-EE	16:00	8.08	22.6	162.1	1.27	0.79	-15	0.001
EU07090G32R110a	10/9/2007	WG-07855-EE								0.001
EF07090G32R120a	10/9/2007	WG-07855-EE	16:00	8.08	22.6	162.1	1.27	0.79	-15	0.001
EU07090G32R120a	10/9/2007	WG-07855-EE								0.001
EF07090G32R175	10/9/2007	WG-07734-EE	17:00	8.07	21.7	161.5	1.36	0.75	-31	0.001
EU07090G32R175	10/9/2007	WG-07734-EE								0.001
EF07090G32R176	10/9/2007	WG-07735-EE	18:00	8.05	20.8	162.3	1.37	0.88	-58	0.001
EU07090G32R176	10/9/2007	WG-07735-EE								0.001
EF07090G32R177	10/11/2007	WG-07736-EE	13:05	8.07	22.5	167.1	1.41	0.77	-37	0.001
EU07090G32R177	10/11/2007	WG-07736-EE								0.001
EU07090G32R101-EQB	10/11/2007	WG-07852-EE	17:15							0.001

SAMPLE ID	DATE RECEIVED	ER/RRES-WQH	stdev (Aq)	Al rsit	stdev (AI)	As rslt	stdev (As)	B rslt	stdev (B)	Ba rslt
EF07090G32R161	10/9/2007	WG-07709-EE	` "	0.006	0.000	0.001	0.000	0.010	0.001	0.048
EU07090G32R161	10/9/2007	WG-07709-EE		0.010	0.000	0.001	0.000	0.002	0.000	0.047
EF07090G32R162	10/9/2007	WG-07713-EE		0.007	0.000	0.001	0.000	0.002		0.048
EU07090G32R162	10/9/2007	WG-07713-EE		0.009	0.000	0.001	0.000	0.002		0.050
EF07090G32R163	10/9/2007	WG-07714-EE		0.007	0.000	0.001	0.000	0.005	0.001	0.050
EU07090G32R163	10/9/2007	WG-07714-EE		0.008	0.000	0.001	0.000	0.002		0.048
EF07090G32R164	10/9/2007	WG-07715-EE		0.005	0.000	0.001	0.000	0.002		0.048
EU07090G32R164	10/9/2007	WG-07715-EE		0.012	0.000	0.001	0.000	0.002		0.049
EF07090G32R165	10/9/2007	WG-07716-EE		0.006	0.000	0.001	0.000	0.002		0.047
EU07090G32R165	10/9/2007	WG-07716-EE		0.008	0.000	0.001	0.000	0.002		0.048
EF07090G32R166	10/9/2007	WG-07717-EE		0.017	0.000	0.001	0.000	0.002		0.047
EU07090G32R166	10/9/2007	WG-07717-EE		0.009	0.000	0.001	0.000	0.002		0.048
EF07090G32R167	10/9/2007	WG-07718-EE		0.006	0.000	0.001	0.000	0.002		0.048
EU07090G32R167	10/9/2007	WG-07718-EE		0.008	0.000	0.001	0.000	0.044	0.000	0.047
EF07090G32R168	10/9/2007	WG-07719-EE		0.006	0.000	0.001	0.000	0.025	0.000	0.047
EU07090G32R168	10/9/2007	WG-07719-EE		0.011	0.000	0.001	0.000	0.020	0.001	0.046
EF07090G32R110	10/9/2007	WG-07856-EE		0.006	0.000	0.001	0.000	0.020	0.001	0.049
EU07090G32R110	10/9/2007	WG-07856-EE		0.008	0.000	0.001	0.000	0.016	0.000	0.046
EF07090G32R120	10/9/2007	WG-07856-EE		0.006	0.000	0.001	0.000	0.017	0.001	0.049
EU07090G32R120	10/9/2007	WG-07856-EE		0.008	0.000	0.001	0.000	0.015	0.000	0.045
EU07090G32R101-FB	10/9/2007	WG-07856-EE		0.003	0.000	0.000		0.009	0.000	0.001
EF07090G32R169	10/9/2007	WG-07720-EE		0.005	0.000	0.001	0.000	0.015	0.000	0.045
EU07090G32R169	10/9/2007	WG-07720-EE		0.004	0.000	0.001	0.000	0.011	0.001	0.044
EF07090G32R170	10/9/2007	WG-07721-EE		0.002	0.000	0.001	0.000	0.003	0.000	0.044
EU07090G32R170	10/9/2007	WG-07721-EE		0.007	0.000	0.001	0.000	0.002		0.044
EF07090G32R171	10/9/2007	WG-07725-EE		0.005	0.000	0.001	0.000	0.002		0.040
EU07090G32R171	10/9/2007	WG-07725-EE		0.009	0.000	0.001	0.000	0.002		0.041
EF07090G32R172	10/9/2007	WG-07731-EE		0.009	0.000	0.001	0.000	0.002		0.044
EU07090G32R172	10/9/2007	WG-07731-EE		0.010	0.000	0.001	0.000	0.002		0.043
EF07090G32R173	10/9/2007	WG-07732-EE		0.007	0.000	0.001	0.000	0.002		0.043
EU07090G32R173	10/9/2007	WG-07732-EE		0.013	0.000	0.001	0.000	0.002		0.042
EF07090G32R174	10/9/2007	WG-07733-EE		0.006	0.000	0.001	0.000	0.043	0.001	0.042
EU07090G32R174	10/9/2007	WG-07733-EE		0.009	0.000	0.001	0.000	0.024	0.000	0.042
EF07090G32R110a	10/9/2007	WG-07855-EE		0.005	0.000	0.001	0.000	0.018	0.001	0.040
EU07090G32R110a	10/9/2007	WG-07855-EE		0.007	0.000	0.001	0.000	0.015	0.000	0.037
EF07090G32R120a	10/9/2007	WG-07855-EE		0.006	0.000	0.001	0.000	0.017	0.001	0.043
EU07090G32R120a	10/9/2007	WG-07855-EE		0.009	0.000	0.001	0.000	0.016	0.001	0.043
EF07090G32R175	10/9/2007	WG-07734-EE		0.008	0.000	0.001	0.000	0.015	0.001	0.042
EU07090G32R175	10/9/2007	WG-07734-EE		0.006	0.000	0.001	0.000	0.013	0.000	0.039
EF07090G32R176	10/9/2007	WG-07735-EE		0.005	0.000	0.001	0.000	0.013	0.001	0.041
EU07090G32R176	10/9/2007	WG-07735-EE		0.009	0.000	0.001	0.000	0.013	0.000	0.041
EF07090G32R177	10/11/2007	WG-07736-EE		0.006	0.000	0.001	0.000	0.047	0.001	0.044
EU07090G32R177	10/11/2007	WG-07736-EE		0.010	0.000	0.001	0.000	0.026	0.001	0.043
EU07090G32R101-EQB	10/11/2007	WG-07852-EE		0.004	0.000	0.0002		0.016	0.000	0.002

SAMPLE ID	DATE RECEIVED	ER/RRES-WQH	stdev (Ba)	Be rslt	stdev (Be)	Br(-) ppm	Br(-) (U)	TOC rslt	TOC (U)
EF07090G32R161	10/9/2007	WG-07709-EE	0.001	0.001		0.05			
EU07090G32R161	10/9/2007	WG-07709-EE	0.000	0.001				1.68	
EF07090G32R162	10/9/2007	WG-07713-EE	0.000	0.001		0.05			
EU07090G32R162	10/9/2007	WG-07713-EE	0.000	0.001				0.77	
EF07090G32R163	10/9/2007	WG-07714-EE	0.001	0.001		0.05			
EU07090G32R163	10/9/2007	WG-07714-EE	0.000	0.001				0.93	
EF07090G32R164	10/9/2007	WG-07715-EE	0.000	0.001		0.05			
EU07090G32R164	10/9/2007	WG-07715-EE	0.000	0.001				0.73	
EF07090G32R165	10/9/2007	WG-07716-EE	0.000	0.001		0.04			
EU07090G32R165	10/9/2007	WG-07716-EE	0.000	0.001				0.66	
EF07090G32R166	10/9/2007	WG-07717-EE	0.000	0.001		0.05			
EU07090G32R166	10/9/2007	WG-07717-EE	0.000	0.001				0.78	
EF07090G32R167	10/9/2007	WG-07718-EE	0.000	0.001		0.05			
EU07090G32R167	10/9/2007	WG-07718-EE	0.000	0.001				0.98	
EF07090G32R168	10/9/2007	WG-07719-EE	0.000	0.001		0.05			
EU07090G32R168	10/9/2007	WG-07719-EE	0.001	0.001				0.35	
EF07090G32R110	10/9/2007	WG-07856-EE	0.001	0.001		0.06			
EU07090G32R110	10/9/2007	WG-07856-EE	0.001	0.001				0.28	
EF07090G32R120	10/9/2007	WG-07856-EE	0.001	0.001		0.06			
EU07090G32R120	10/9/2007	WG-07856-EE	0.001	0.001				0.95	
EU07090G32R101-FB	10/9/2007	WG-07856-EE		0.001		0.01	U	0.91	
EF07090G32R169	10/9/2007	WG-07720-EE	0.000	0.001		0.06			
EU07090G32R169	10/9/2007	WG-07720-EE	0.001	0.001				0.77	
EF07090G32R170	10/9/2007	WG-07721-EE	0.000	0.001		0.06			
EU07090G32R170	10/9/2007	WG-07721-EE	0.000	0.001				0.69	
EF07090G32R171	10/9/2007	WG-07725-EE	0.001	0.001		0.06			
EU07090G32R171	10/9/2007	WG-07725-EE	0.001	0.001				0.61	
EF07090G32R172	10/9/2007	WG-07731-EE	0.000	0.001		0.06			
EU07090G32R172	10/9/2007	WG-07731-EE	0.000	0.001				0.66	
EF07090G32R173	10/9/2007	WG-07732-EE	0.000	0.001		0.06			
EU07090G32R173	10/9/2007	WG-07732-EE	0.000	0.001				0.59	
EF07090G32R174	10/9/2007	WG-07733-EE	0.000	0.001		0.06			
EU07090G32R174	10/9/2007	WG-07733-EE	0.000	0.001				0.54	
EF07090G32R110a	10/9/2007	WG-07855-EE	0.001	0.001		0.06			
EU07090G32R110a	10/9/2007	WG-07855-EE	0.000	0.001				0.55	
EF07090G32R120a	10/9/2007	WG-07855-EE	0.000	0.001		0.06			
EU07090G32R120a	10/9/2007	WG-07855-EE	0.001	0.001				0.54	
EF07090G32R175	10/9/2007	WG-07734-EE	0.001	0.001		0.05			
EU07090G32R175	10/9/2007	WG-07734-EE	0.000	0.001				0.50	
EF07090G32R176	10/9/2007	WG-07735-EE	0.001	0.001		0.06			
EU07090G32R176	10/9/2007	WG-07735-EE	0.000	0.001				0.49	
EF07090G32R177	10/11/2007	WG-07736-EE	0.000	0.001		0.06			
EU07090G32R177	10/11/2007	WG-07736-EE	0.000	0.001				0.79	
EU07090G32R101-EQB	10/11/2007	WG-07852-EE	0.000	0.001		0.01	U	1.12	

SAMPLE ID	DATE RECEIVED	ER/RRES-WQH	Ca rslt	stdev (Ca)	Cd rslt	stdev (Cd)	CI(-) ppm	CI(-) (U)	CIO3(-) ppm
EF07090G32R161	10/9/2007	WG-07709-EE	16.6	0.1	0.001	, ,	4.21	1, 1,	0.0010
EU07090G32R161	10/9/2007	WG-07709-EE	16.3	0.1	0.001				
EF07090G32R162	10/9/2007	WG-07713-EE	16.3	0.1	0.001		4.21		0.0010
EU07090G32R162	10/9/2007	WG-07713-EE	16.9	0.1	0.001				
EF07090G32R163	10/9/2007	WG-07714-EE	16.1	0.0	0.001		4.24		0.0010
EU07090G32R163	10/9/2007	WG-07714-EE	17.6	0.2	0.001				
EF07090G32R164	10/9/2007	WG-07715-EE	17.2	0.1	0.001		4.21		0.0010
EU07090G32R164	10/9/2007	WG-07715-EE	17.8	0.1	0.001				
EF07090G32R165	10/9/2007	WG-07716-EE	17.2	0.1	0.001		4.15		0.0010
EU07090G32R165	10/9/2007	WG-07716-EE	17.0	0.2	0.001				
EF07090G32R166	10/9/2007	WG-07717-EE	16.8	0.1	0.001		4.20		0.0010
EU07090G32R166	10/9/2007	WG-07717-EE	17.5	0.1	0.001				
EF07090G32R167	10/9/2007	WG-07718-EE	16.9	0.1	0.001		4.21		0.0010
EU07090G32R167	10/9/2007	WG-07718-EE	17.3	0.1	0.001				
EF07090G32R168	10/9/2007	WG-07719-EE	16.9	0.1	0.001		4.24		0.0010
EU07090G32R168	10/9/2007	WG-07719-EE	17.4	0.1	0.001				
EF07090G32R110	10/9/2007	WG-07856-EE	17.7	0.1	0.001		4.24		0.0010
EU07090G32R110	10/9/2007	WG-07856-EE	17.8	0.0	0.001				
EF07090G32R120	10/9/2007	WG-07856-EE	17.4	0.1	0.001		4.20		0.0010
EU07090G32R120	10/9/2007	WG-07856-EE	17.8	0.1	0.001				
EU07090G32R101-FB	10/9/2007	WG-07856-EE	0.10	0.01	0.001		0.01	U	0.0005
EF07090G32R169	10/9/2007	WG-07720-EE	17.1	0.1	0.001		4.21		0.0010
EU07090G32R169	10/9/2007	WG-07720-EE	16.8	0.2	0.001				
EF07090G32R170	10/9/2007	WG-07721-EE	15.6	0.1	0.001		4.24		0.0010
EU07090G32R170	10/9/2007	WG-07721-EE	16.3	0.0	0.001				
EF07090G32R171	10/9/2007	WG-07725-EE	16.3	0.1	0.001		4.18		0.0010
EU07090G32R171	10/9/2007	WG-07725-EE	16.4	0.1	0.001				
EF07090G32R172	10/9/2007	WG-07731-EE	16.1	0.1	0.001		4.21		0.0010
EU07090G32R172	10/9/2007	WG-07731-EE	16.3	0.1	0.001				
EF07090G32R173	10/9/2007	WG-07732-EE	16.7	0.1	0.001		4.16		0.0010
EU07090G32R173	10/9/2007	WG-07732-EE	16.3	0.1	0.001				
EF07090G32R174	10/9/2007	WG-07733-EE	16.1	0.1	0.001		4.14		0.0010
EU07090G32R174	10/9/2007	WG-07733-EE	16.0	0.1	0.001				
EF07090G32R110a	10/9/2007	WG-07855-EE	16.2	0.1	0.001		4.74		0.0010
EU07090G32R110a	10/9/2007	WG-07855-EE	16.5	0.1	0.001				
EF07090G32R120a	10/9/2007	WG-07855-EE	16.3	0.1	0.001		4.81		0.0010
EU07090G32R120a	10/9/2007	WG-07855-EE	16.5	0.1	0.001				
EF07090G32R175	10/9/2007	WG-07734-EE	16.0	0.0	0.001		4.80		0.0010
EU07090G32R175	10/9/2007	WG-07734-EE	16.2	0.2	0.001				
EF07090G32R176	10/9/2007	WG-07735-EE	15.6	0.1	0.001		4.80		0.0010
EU07090G32R176	10/9/2007	WG-07735-EE	15.4	0.0	0.001				
EF07090G32R177	10/11/2007	WG-07736-EE	16.1	0.2	0.001		4.42		0.0010
EU07090G32R177	10/11/2007	WG-07736-EE	15.9	0.1	0.001				
EU07090G32R101-EQB	10/11/2007	WG-07852-EE	0.67	0.00	0.001		0.20		0.0005

SAMPLE ID	DATE RECEIVED	ER/RRES-WQH	CIO3(-) (U)	Co rsit	stdev (Co)	Alk-CO3 rslt	ALK-CO3 (U)	Cr rslt	stdev (Cr)
EF07090G32R161	10/9/2007	WG-07709-EE	,, , ,	0.001	`	6.29	` '	0.002	0.000
EU07090G32R161	10/9/2007	WG-07709-EE		0.001		6.29		0.002	0.000
EF07090G32R162	10/9/2007	WG-07713-EE	U	0.002	0.000	5.64		0.002	0.000
EU07090G32R162	10/9/2007	WG-07713-EE		0.001		5.64		0.002	0.000
EF07090G32R163	10/9/2007	WG-07714-EE	U	0.001		27.3		0.002	0.000
EU07090G32R163	10/9/2007	WG-07714-EE		0.001		27.3		0.002	0.000
EF07090G32R164	10/9/2007	WG-07715-EE	U	0.001		0.8	U	0.002	0.000
EU07090G32R164	10/9/2007	WG-07715-EE		0.001		0.8	U	0.002	0.000
EF07090G32R165	10/9/2007	WG-07716-EE	U	0.001		6.33		0.002	0.000
EU07090G32R165	10/9/2007	WG-07716-EE		0.001		6.33		0.002	0.000
EF07090G32R166	10/9/2007	WG-07717-EE	U	0.001		6.20		0.001	0.000
EU07090G32R166	10/9/2007	WG-07717-EE		0.001		6.20		0.002	0.000
EF07090G32R167	10/9/2007	WG-07718-EE	U	0.001		4.70		0.002	0.000
EU07090G32R167	10/9/2007	WG-07718-EE		0.001		4.70		0.002	0.000
EF07090G32R168	10/9/2007	WG-07719-EE	U	0.001		28.1		0.002	0.001
EU07090G32R168	10/9/2007	WG-07719-EE		0.001		28.1		0.002	0.000
EF07090G32R110	10/9/2007	WG-07856-EE	U	0.001		28.3		0.003	0.001
EU07090G32R110	10/9/2007	WG-07856-EE		0.001		28.3		0.004	0.002
EF07090G32R120	10/9/2007	WG-07856-EE	U	0.001		6.20		0.003	0.001
EU07090G32R120	10/9/2007	WG-07856-EE		0.001		6.20		0.003	0.001
EU07090G32R101-FB	10/9/2007	WG-07856-EE	U	0.001		0.8	U	0.001	
EF07090G32R169	10/9/2007	WG-07720-EE	U	0.001		20.7		0.003	0.002
EU07090G32R169	10/9/2007	WG-07720-EE		0.001		20.7		0.004	0.002
EF07090G32R170	10/9/2007	WG-07721-EE	U	0.001		27.7		0.004	0.001
EU07090G32R170	10/9/2007	WG-07721-EE		0.001		27.7		0.002	0.001
EF07090G32R171	10/9/2007	WG-07725-EE	U	0.001		0.8	U	0.003	0.001
EU07090G32R171	10/9/2007	WG-07725-EE		0.001		0.8	U	0.003	0.001
EF07090G32R172	10/9/2007	WG-07731-EE	U	0.001		6.31		0.001	0.000
EU07090G32R172	10/9/2007	WG-07731-EE		0.001		6.31		0.002	0.000
EF07090G32R173	10/9/2007	WG-07732-EE	U	0.001		0.8	U	0.002	0.000
EU07090G32R173	10/9/2007	WG-07732-EE		0.001		8.0	U	0.002	0.000
EF07090G32R174	10/9/2007	WG-07733-EE	U	0.001		6.41		0.001	0.000
EU07090G32R174	10/9/2007	WG-07733-EE		0.001		6.41		0.001	0.000
EF07090G32R110a	10/9/2007	WG-07855-EE	U	0.001		8.0	U	0.002	0.000
EU07090G32R110a	10/9/2007	WG-07855-EE		0.001		8.0	U	0.002	0.000
EF07090G32R120a	10/9/2007	WG-07855-EE	U	0.001		8.0	U	0.002	0.000
EU07090G32R120a	10/9/2007	WG-07855-EE		0.001		8.0	U	0.002	0.000
EF07090G32R175	10/9/2007	WG-07734-EE	U	0.004	0.000	0.8	U	0.001	0.000
EU07090G32R175	10/9/2007	WG-07734-EE		0.001		0.8	U	0.002	0.000
EF07090G32R176	10/9/2007	WG-07735-EE	U	0.001		0.8	U	0.002	0.000
EU07090G32R176	10/9/2007	WG-07735-EE		0.001		0.8	U	0.001	0.000
EF07090G32R177	10/11/2007	WG-07736-EE	U	0.001		0.8	U	0.002	0.000
EU07090G32R177	10/11/2007	WG-07736-EE		0.001		0.8	U	0.002	0.000
EU07090G32R101-EQB	10/11/2007	WG-07852-EE	U	0.001				0.001	

SAMPLE ID	DATE RECEIVED	ER/RRES-WQH	Cs rslt	stdev (Cs)	Cu rslt	stdev (Cu)	F(-) ppm	F(-) (U)	Fe rslt
EF07090G32R161	10/9/2007	WG-07709-EE	0.001	, ,	0.001		0.34		0.46
EU07090G32R161	10/9/2007	WG-07709-EE	0.001		0.002	0.000			0.47
EF07090G32R162	10/9/2007	WG-07713-EE	0.001		0.001		0.33		0.45
EU07090G32R162	10/9/2007	WG-07713-EE	0.001		0.001				0.53
EF07090G32R163	10/9/2007	WG-07714-EE	0.001		0.001		0.35		0.51
EU07090G32R163	10/9/2007	WG-07714-EE	0.001		0.001				0.51
EF07090G32R164	10/9/2007	WG-07715-EE	0.001		0.001		0.33		0.51
EU07090G32R164	10/9/2007	WG-07715-EE	0.001		0.001				0.54
EF07090G32R165	10/9/2007	WG-07716-EE	0.001		0.001		0.32		0.52
EU07090G32R165	10/9/2007	WG-07716-EE	0.001		0.001				0.55
EF07090G32R166	10/9/2007	WG-07717-EE	0.001		0.001		0.34		0.55
EU07090G32R166	10/9/2007	WG-07717-EE	0.001		0.001				0.57
EF07090G32R167	10/9/2007	WG-07718-EE	0.001		0.001		0.33		0.57
EU07090G32R167	10/9/2007	WG-07718-EE	0.001		0.001				0.57
EF07090G32R168	10/9/2007	WG-07719-EE	0.001		0.001		0.34		0.57
EU07090G32R168	10/9/2007	WG-07719-EE	0.001		0.001				0.59
EF07090G32R110	10/9/2007	WG-07856-EE	0.001		0.001		0.33		0.64
EU07090G32R110	10/9/2007	WG-07856-EE	0.001		0.002	0.001			0.61
EF07090G32R120	10/9/2007	WG-07856-EE	0.001		0.001	0.000	0.33		0.63
EU07090G32R120	10/9/2007	WG-07856-EE	0.001		0.001				0.61
EU07090G32R101-FB	10/9/2007	WG-07856-EE	0.001		0.001		0.01	U	0.01
EF07090G32R169	10/9/2007	WG-07720-EE	0.001		0.001		0.34		0.68
EU07090G32R169	10/9/2007	WG-07720-EE	0.001		0.002	0.001			0.66
EF07090G32R170	10/9/2007	WG-07721-EE	0.001		0.001		0.33		0.73
EU07090G32R170	10/9/2007	WG-07721-EE	0.001		0.001				0.73
EF07090G32R171	10/9/2007	WG-07725-EE	0.001		0.001		0.33		0.73
EU07090G32R171	10/9/2007	WG-07725-EE	0.001		0.001				0.76
EF07090G32R172	10/9/2007	WG-07731-EE	0.001		0.001		0.33		0.83
EU07090G32R172	10/9/2007	WG-07731-EE	0.001		0.001				0.86
EF07090G32R173	10/9/2007	WG-07732-EE	0.001		0.001		0.33		0.87
EU07090G32R173	10/9/2007	WG-07732-EE	0.001		0.001				0.88
EF07090G32R174	10/9/2007	WG-07733-EE	0.001		0.001		0.33		0.90
EU07090G32R174	10/9/2007	WG-07733-EE	0.001		0.001				0.92
EF07090G32R110a	10/9/2007	WG-07855-EE	0.001		0.001		0.39		0.94
EU07090G32R110a	10/9/2007	WG-07855-EE	0.001		0.001				0.88
EF07090G32R120a	10/9/2007	WG-07855-EE	0.001		0.001	0.000	0.40		1.03
EU07090G32R120a	10/9/2007	WG-07855-EE	0.001		0.001	0.000			1.02
EF07090G32R175	10/9/2007	WG-07734-EE	0.001		0.001		0.38		1.04
EU07090G32R175	10/9/2007	WG-07734-EE	0.001		0.001	0.000			0.97
EF07090G32R176	10/9/2007	WG-07735-EE	0.001		0.001		0.38		1.04
EU07090G32R176	10/9/2007	WG-07735-EE	0.001		0.001				1.07
EF07090G32R177	10/11/2007	WG-07736-EE	0.001		0.001		0.35		0.85
EU07090G32R177	10/11/2007	WG-07736-EE	0.001		0.001	0.000			0.89
EU07090G32R101-EQB	10/11/2007	WG-07852-EE	0.001		0.001		0.01	U	0.80

SAMPLE ID	DATE RECEIVED	ER/RRES-WQH	stdev (Fe)	Alk-CO3+HCO3 rslt	ALK-CO3+HCO3 (U)	Hg rslt	stdev (Hg)	K rslt
EF07090G32R161	10/9/2007	WG-07709-EE	0.01	93.6		0.00005		1.63
EU07090G32R161	10/9/2007	WG-07709-EE	0.00	93.6		0.00005		1.60
EF07090G32R162	10/9/2007	WG-07713-EE	0.00	91.2		0.00005		1.58
EU07090G32R162	10/9/2007	WG-07713-EE	0.00	91.2		0.00005		1.56
EF07090G32R163	10/9/2007	WG-07714-EE	0.00	69.5		0.00005		1.65
EU07090G32R163	10/9/2007	WG-07714-EE	0.00	69.5		0.00005		1.60
EF07090G32R164	10/9/2007	WG-07715-EE	0.00	97.0		0.00005		1.60
EU07090G32R164	10/9/2007	WG-07715-EE	0.00	97.0		0.00005		1.63
EF07090G32R165	10/9/2007	WG-07716-EE	0.00	90.4		0.00005		1.57
EU07090G32R165	10/9/2007	WG-07716-EE	0.00	90.4		0.00005		1.56
EF07090G32R166	10/9/2007	WG-07717-EE	0.00	90.3		0.00005		1.57
EU07090G32R166	10/9/2007	WG-07717-EE	0.01	90.3		0.00005		1.67
EF07090G32R167	10/9/2007	WG-07718-EE	0.00	92.2		0.00005		1.63
EU07090G32R167	10/9/2007	WG-07718-EE	0.01	92.2		0.00005		1.77
EF07090G32R168	10/9/2007	WG-07719-EE	0.00	67.4		0.00005		1.68
EU07090G32R168	10/9/2007	WG-07719-EE	0.01	67.4		0.00005		1.64
EF07090G32R110	10/9/2007	WG-07856-EE	0.01	67.9		0.00005		1.78
EU07090G32R110	10/9/2007	WG-07856-EE	0.01	67.9		0.00005		1.69
EF07090G32R120	10/9/2007	WG-07856-EE	0.01	90.3		0.00005		1.71
EU07090G32R120	10/9/2007	WG-07856-EE	0.01	90.3		0.00005		1.63
EU07090G32R101-FB	10/9/2007	WG-07856-EE		0	U	0.00005		0.01
EF07090G32R169	10/9/2007	WG-07720-EE	0.00	74.5		0.00005		1.66
EU07090G32R169	10/9/2007	WG-07720-EE	0.02	74.5		0.00005		1.79
EF07090G32R170	10/9/2007	WG-07721-EE	0.01	67.3		0.00005		1.70
EU07090G32R170	10/9/2007	WG-07721-EE	0.00	67.3		0.00005		1.67
EF07090G32R171	10/9/2007	WG-07725-EE	0.00	95.1		0.00005		1.63
EU07090G32R171	10/9/2007	WG-07725-EE	0.01	95.1		0.00005		1.63
EF07090G32R172	10/9/2007	WG-07731-EE	0.01	88.6		0.00005		1.72
EU07090G32R172	10/9/2007	WG-07731-EE	0.01	88.6		0.00005		1.73
EF07090G32R173	10/9/2007	WG-07732-EE	0.01	94.9		0.00005		1.83
EU07090G32R173	10/9/2007	WG-07732-EE	0.00	94.9		0.00005		1.72
EF07090G32R174	10/9/2007	WG-07733-EE	0.00	88.2		0.00005		1.79
EU07090G32R174	10/9/2007	WG-07733-EE	0.01	88.2		0.00005		1.74
EF07090G32R110a	10/9/2007	WG-07855-EE	0.01	98.3		0.00005		1.70
EU07090G32R110a	10/9/2007	WG-07855-EE	0.01	98.3		0.00005		1.59
EF07090G32R120a	10/9/2007	WG-07855-EE	0.02	94.1		0.00005		1.86
EU07090G32R120a	10/9/2007	WG-07855-EE	0.02	94.1		0.00005		1.87
EF07090G32R175	10/9/2007	WG-07734-EE	0.02	94.2		0.00005		1.79
EU07090G32R175	10/9/2007	WG-07734-EE	0.01	94.2		0.00005		1.65
EF07090G32R176	10/9/2007	WG-07735-EE	0.02	94.2		0.00005		1.70
EU07090G32R176	10/9/2007	WG-07735-EE	0.01	94.2		0.00005		1.69
EF07090G32R177	10/11/2007	WG-07736-EE	0.01	99.7		0.00005		1.84
EU07090G32R177	10/11/2007	WG-07736-EE	0.00	99.7		0.00005		1.74
EU07090G32R101-EQB	10/11/2007	WG-07852-EE	0.01			0.00005		0.11

SAMPLE ID	DATE RECEIVED	ER/RRES-WQH	stdev (K)	Li rslt	stdev (Li)	Mg rslt	stdev (Mg)	Mn rslt	stdev (Mn)
EF07090G32R161	10/9/2007	WG-07709-EE	0.02	0.027	0.000	4.64	0.05	0.015	0.000
EU07090G32R161	10/9/2007	WG-07709-EE	0.01	0.026	0.000	4.54	0.01	0.016	0.000
EF07090G32R162	10/9/2007	WG-07713-EE	0.01	0.026	0.000	4.53	0.02	0.019	0.000
EU07090G32R162	10/9/2007	WG-07713-EE	0.02	0.026	0.000	4.55	0.04	0.017	0.000
EF07090G32R163	10/9/2007	WG-07714-EE	0.01	0.028	0.000	4.59	0.03	0.016	0.000
EU07090G32R163	10/9/2007	WG-07714-EE	0.00	0.026	0.000	4.44	0.02	0.016	0.000
EF07090G32R164	10/9/2007	WG-07715-EE	0.01	0.026	0.000	4.52	0.05	0.015	0.000
EU07090G32R164	10/9/2007	WG-07715-EE	0.02	0.027	0.000	4.60	0.03	0.016	0.000
EF07090G32R165	10/9/2007	WG-07716-EE	0.00	0.026	0.000	4.40	0.03	0.016	0.000
EU07090G32R165	10/9/2007	WG-07716-EE	0.01	0.026	0.000	4.43	0.03	0.016	0.000
EF07090G32R166	10/9/2007	WG-07717-EE	0.02	0.026	0.000	4.47	0.04	0.016	0.000
EU07090G32R166	10/9/2007	WG-07717-EE	0.03	0.028	0.000	4.63	0.06	0.016	0.000
EF07090G32R167	10/9/2007	WG-07718-EE	0.01	0.027	0.000	4.57	0.03	0.016	0.000
EU07090G32R167	10/9/2007	WG-07718-EE	0.03	0.029	0.000	4.51	0.06	0.017	0.000
EF07090G32R168	10/9/2007	WG-07719-EE	0.01	0.028	0.000	4.51	0.03	0.016	0.000
EU07090G32R168	10/9/2007	WG-07719-EE	0.04	0.027	0.001	4.40	0.06	0.016	0.000
EF07090G32R110	10/9/2007	WG-07856-EE	0.04	0.029	0.001	4.81	0.07	0.017	0.000
EU07090G32R110	10/9/2007	WG-07856-EE	0.03	0.027	0.001	4.55	0.08	0.017	0.000
EF07090G32R120	10/9/2007	WG-07856-EE	0.04	0.027	0.000	4.68	0.11	0.018	0.000
EU07090G32R120	10/9/2007	WG-07856-EE	0.03	0.026	0.000	4.46	0.09	0.016	0.000
EU07090G32R101-FB	10/9/2007	WG-07856-EE	0.00	0.001		0.01		0.001	
EF07090G32R169	10/9/2007	WG-07720-EE	0.01	0.026	0.000	4.53	0.02	0.017	0.000
EU07090G32R169	10/9/2007	WG-07720-EE	0.05	0.028	0.001	4.54	0.11	0.016	0.000
EF07090G32R170	10/9/2007	WG-07721-EE	0.01	0.028	0.000	4.54	0.02	0.017	0.000
EU07090G32R170	10/9/2007	WG-07721-EE	0.00	0.027	0.000	4.49	0.01	0.017	0.000
EF07090G32R171	10/9/2007	WG-07725-EE	0.02	0.026	0.000	4.35	0.04	0.016	0.000
EU07090G32R171	10/9/2007	WG-07725-EE	0.02	0.026	0.000	4.27	0.04	0.016	0.000
EF07090G32R172	10/9/2007	WG-07731-EE	0.01	0.028	0.000	4.56	0.02	0.017	0.000
EU07090G32R172	10/9/2007	WG-07731-EE	0.01	0.028	0.000	4.55	0.02	0.017	0.000
EF07090G32R173	10/9/2007	WG-07732-EE	0.01	0.029	0.000	4.66	0.07	0.018	0.000
EU07090G32R173	10/9/2007	WG-07732-EE	0.01	0.028	0.000	4.53	0.04		0.000
EF07090G32R174	10/9/2007	WG-07733-EE	0.01	0.028	0.000	4.56	0.03	0.018	0.000
EU07090G32R174	10/9/2007	WG-07733-EE	0.01	0.028	0.000	4.55	0.05		0.000
EF07090G32R110a	10/9/2007	WG-07855-EE	0.03	0.027	0.000	4.41	0.08		0.000
EU07090G32R110a	10/9/2007	WG-07855-EE	0.03	0.025	0.000	4.07	0.06	0.015	0.000
EF07090G32R120a	10/9/2007	WG-07855-EE	0.05	0.030	0.001	4.82	0.09	0.018	0.001
EU07090G32R120a	10/9/2007	WG-07855-EE	0.05	0.030	0.001	4.78	0.12	0.018	0.000
EF07090G32R175	10/9/2007	WG-07734-EE	0.04	0.029	0.001	4.66	0.11	0.027	0.001
EU07090G32R175	10/9/2007	WG-07734-EE	0.03	0.026	0.000	4.25	0.07	0.016	0.000
EF07090G32R176	10/9/2007	WG-07735-EE	0.03	0.028	0.000	4.54	0.08	0.018	0.000
EU07090G32R176	10/9/2007	WG-07735-EE	0.01	0.028	0.000	4.51	0.01	0.017	0.000
EF07090G32R177	10/11/2007	WG-07736-EE	0.00	0.029	0.000	4.75	0.01	0.017	0.000
EU07090G32R177	10/11/2007	WG-07736-EE	0.00	0.028	0.000	4.65	0.03	0.016	0.000
EU07090G32R101-EQB	10/11/2007	WG-07852-EE	0.00	0.001		0.14	0.00	0.005	0.000

SAMPLE ID	DATE RECEIVED	ER/RRES-WQH	Mo rslt	stdev (Mo)	Na rsit	stdev (Na)	Ni rslt	stdev (Ni)	NO2(ppm)
EF07090G32R161	10/9/2007	WG-07709-EE	0.003	0.000	10.5	0.2	0.001	,	0.01
EU07090G32R161	10/9/2007	WG-07709-EE	0.005	0.000	10.6	0.1	0.001	0.000	
EF07090G32R162	10/9/2007	WG-07713-EE	0.004	0.000	10.5	0.0	0.001	0.000	0.01
EU07090G32R162	10/9/2007	WG-07713-EE	0.003	0.000	10.3	0.1	0.001		
EF07090G32R163	10/9/2007	WG-07714-EE	0.002	0.000	10.8	0.1	0.001		0.01
EU07090G32R163	10/9/2007	WG-07714-EE	0.003	0.000	10.4	0.0	0.001		
EF07090G32R164	10/9/2007	WG-07715-EE	0.002	0.000	10.5	0.0	0.001		0.01
EU07090G32R164	10/9/2007	WG-07715-EE	0.003	0.000	10.9	0.1	0.001	0.000	
EF07090G32R165	10/9/2007	WG-07716-EE	0.002	0.000	10.3	0.1	0.002	0.000	0.01
EU07090G32R165	10/9/2007	WG-07716-EE	0.003	0.000	10.2	0.0	0.003	0.000	
EF07090G32R166	10/9/2007	WG-07717-EE	0.003	0.000	10.4	0.1	0.001		0.01
EU07090G32R166	10/9/2007	WG-07717-EE	0.003	0.000	10.9	0.2	0.001		
EF07090G32R167	10/9/2007	WG-07718-EE	0.003	0.000	10.6	0.1	0.001		0.01
EU07090G32R167	10/9/2007	WG-07718-EE	0.003	0.000	11.1	0.2	0.001	0.000	
EF07090G32R168	10/9/2007	WG-07719-EE	0.002	0.000	10.8	0.0	0.001	0.000	0.01
EU07090G32R168	10/9/2007	WG-07719-EE	0.002	0.000	10.5	0.2	0.002	0.000	
EF07090G32R110	10/9/2007	WG-07856-EE	0.002	0.000	11.7	0.2	0.001	0.000	0.01
EU07090G32R110	10/9/2007	WG-07856-EE	0.003	0.000	11.0	0.1	0.003	0.001	
EF07090G32R120	10/9/2007	WG-07856-EE	0.002	0.000	11.3	0.2	0.002	0.001	0.01
EU07090G32R120	10/9/2007	WG-07856-EE	0.002	0.000	10.8	0.1	0.002	0.001	
EU07090G32R101-FB	10/9/2007	WG-07856-EE	0.001		0.19	0.00	0.001		0.01
EF07090G32R169	10/9/2007	WG-07720-EE	0.002	0.000	10.9	0.0	0.002	0.001	0.01
EU07090G32R169	10/9/2007	WG-07720-EE	0.002	0.000	11.0	0.2	0.003	0.001	
EF07090G32R170	10/9/2007	WG-07721-EE	0.002	0.000	10.5	0.1	0.002	0.001	0.01
EU07090G32R170	10/9/2007	WG-07721-EE	0.003	0.000	10.4	0.0	0.002	0.000	
EF07090G32R171	10/9/2007	WG-07725-EE	0.002	0.000	10.0	0.1	0.001	0.000	0.01
EU07090G32R171	10/9/2007	WG-07725-EE	0.002	0.000	10.1	0.1	0.002	0.000	
EF07090G32R172	10/9/2007	WG-07731-EE	0.002	0.000	10.8	0.1	0.001		0.01
EU07090G32R172	10/9/2007	WG-07731-EE	0.002	0.000	10.8	0.1	0.001		
EF07090G32R173	10/9/2007	WG-07732-EE	0.002	0.000	11.5	0.1	0.001		0.01
EU07090G32R173	10/9/2007	WG-07732-EE	0.002	0.000	10.9	0.0	0.001	0.000	
EF07090G32R174	10/9/2007	WG-07733-EE	0.002	0.000	11.1	0.0	0.001		0.01
EU07090G32R174	10/9/2007	WG-07733-EE	0.002	0.000	10.9	0.1	0.001		
EF07090G32R110a	10/9/2007	WG-07855-EE	0.002	0.000	10.8	0.1	0.001		0.01
EU07090G32R110a	10/9/2007	WG-07855-EE	0.002	0.000	10.1	0.1	0.001	0.000	
EF07090G32R120a	10/9/2007	WG-07855-EE	0.002	0.000	11.8	0.2	0.001		0.01
EU07090G32R120a	10/9/2007	WG-07855-EE	0.002	0.000	11.9	0.2	0.001	0.000	
EF07090G32R175	10/9/2007	WG-07734-EE	0.002	0.000	11.5	0.2	0.002	0.000	0.01
EU07090G32R175	10/9/2007	WG-07734-EE	0.002	0.000	10.5	0.1	0.001	0.000	
EF07090G32R176	10/9/2007	WG-07735-EE	0.002	0.000	10.8	0.2	0.002	0.000	0.01
EU07090G32R176	10/9/2007	WG-07735-EE	0.002	0.000	10.7	0.1	0.002	0.000	
EF07090G32R177	10/11/2007	WG-07736-EE	0.002	0.000	12.1	0.1	0.001	0.000	0.01
EU07090G32R177	10/11/2007	WG-07736-EE	0.002	0.000	11.8	0.0	0.002	0.000	
EU07090G32R101-EQB	10/11/2007	WG-07852-EE	0.001		0.93	0.01	0.001		0.01

SAMPLE ID	DATE RECEIVED	ER/RRES-WQH	NO2-N rsit	NO2-N (U)	NO-3 ppm	NO-3-N rslt	NO-3-N (U)	C2O4 rslt	C2O4 (U)
EF07090G32R161	10/9/2007	WG-07709-EE	0.003	`ú	4.43	1.000	` /	0.01	Ú
EU07090G32R161	10/9/2007	WG-07709-EE							
EF07090G32R162	10/9/2007	WG-07713-EE	0.003	U	4.48	1.011		0.01	U
EU07090G32R162	10/9/2007	WG-07713-EE		_	-	-			
EF07090G32R163	10/9/2007	WG-07714-EE	0.003	U	4.45	1.006		0.01	U
EU07090G32R163	10/9/2007	WG-07714-EE		_	-				
EF07090G32R164	10/9/2007	WG-07715-EE	0.003	U	4.48	1.012		0.01	U
EU07090G32R164	10/9/2007	WG-07715-EE							
EF07090G32R165	10/9/2007	WG-07716-EE	0.003	U	4.41	0.995		0.01	U
EU07090G32R165	10/9/2007	WG-07716-EE							
EF07090G32R166	10/9/2007	WG-07717-EE	0.003	U	4.42	0.998		0.01	U
EU07090G32R166	10/9/2007	WG-07717-EE							
EF07090G32R167	10/9/2007	WG-07718-EE	0.003	U	4.38	0.988		0.01	U
EU07090G32R167	10/9/2007	WG-07718-EE							
EF07090G32R168	10/9/2007	WG-07719-EE	0.003	U	4.41	0.995		0.01	U
EU07090G32R168	10/9/2007	WG-07719-EE							
EF07090G32R110	10/9/2007	WG-07856-EE	0.003	U	4.49	1.014		0.01	U
EU07090G32R110	10/9/2007	WG-07856-EE							
EF07090G32R120	10/9/2007	WG-07856-EE	0.003	U	4.51	1.017		0.01	U
EU07090G32R120	10/9/2007	WG-07856-EE							
EU07090G32R101-FB	10/9/2007	WG-07856-EE	0.003	U	0.01	0.002	U	0.01	U
EF07090G32R169	10/9/2007	WG-07720-EE	0.003	U	4.31	0.974		0.01	U
EU07090G32R169	10/9/2007	WG-07720-EE							
EF07090G32R170	10/9/2007	WG-07721-EE	0.003	U	4.51	1.017		0.01	U
EU07090G32R170	10/9/2007	WG-07721-EE							
EF07090G32R171	10/9/2007	WG-07725-EE	0.003	U	4.47	1.010		0.01	U
EU07090G32R171	10/9/2007	WG-07725-EE							
EF07090G32R172	10/9/2007	WG-07731-EE	0.003	U	4.49	1.014		0.01	U
EU07090G32R172	10/9/2007	WG-07731-EE							
EF07090G32R173	10/9/2007	WG-07732-EE	0.003	U	4.45	1.004		0.01	U
EU07090G32R173	10/9/2007	WG-07732-EE							
EF07090G32R174	10/9/2007	WG-07733-EE	0.003	U	4.43	1.000		0.01	U
EU07090G32R174	10/9/2007	WG-07733-EE							
EF07090G32R110a	10/9/2007	WG-07855-EE	0.003	U	4.38	0.989		0.01	U
EU07090G32R110a	10/9/2007	WG-07855-EE							
EF07090G32R120a	10/9/2007	WG-07855-EE	0.003	U	4.56	1.029		0.01	U
EU07090G32R120a	10/9/2007	WG-07855-EE							
EF07090G32R175	10/9/2007	WG-07734-EE	0.003	U	4.55	1.026		0.01	U
EU07090G32R175	10/9/2007	WG-07734-EE							
EF07090G32R176	10/9/2007	WG-07735-EE	0.003	U	4.55	1.027		0.01	U
EU07090G32R176	10/9/2007	WG-07735-EE					-		
EF07090G32R177	10/11/2007	WG-07736-EE	0.003	U	4.49	1.014	-	0.01	U
EU07090G32R177	10/11/2007	WG-07736-EE							
EU07090G32R101-EQB	10/11/2007	WG-07852-EE	0.003	U	0.03	0.007		0.01	U

SAMPLE ID	DATE RECEIVED	ER/RRES-WQH	Pb rslt	stdev (Pb)	Hq	PO4(-3) rslt	PO4(-3) (U)	Rb rslt	stdev (Rb)
EF07090G32R161	10/9/2007	WG-07709-EE	0.0003	0.0000	8.18	0.02	. , , , ,	0.003	0.000
EU07090G32R161	10/9/2007	WG-07709-EE	0.0027	0.0001	8.18			0.003	0.000
EF07090G32R162	10/9/2007	WG-07713-EE	0.0015	0.0000	8.13	0.01		0.003	0.000
EU07090G32R162	10/9/2007	WG-07713-EE	0.0007	0.0000	8.13			0.003	0.000
EF07090G32R163	10/9/2007	WG-07714-EE	0.0002	0.0000	8.12	0.02		0.003	0.000
EU07090G32R163	10/9/2007	WG-07714-EE	0.0011	0.0000	8.12			0.003	0.000
EF07090G32R164	10/9/2007	WG-07715-EE	0.0002		8.11	0.02		0.003	0.000
EU07090G32R164	10/9/2007	WG-07715-EE	0.0008	0.0000	8.11			0.003	0.000
EF07090G32R165	10/9/2007	WG-07716-EE	0.0003	0.0000	8.14	0.01		0.003	0.000
EU07090G32R165	10/9/2007	WG-07716-EE	0.0011	0.0001	8.14			0.003	0.000
EF07090G32R166	10/9/2007	WG-07717-EE	0.0003	0.0000	8.12	0.02		0.003	0.000
EU07090G32R166	10/9/2007	WG-07717-EE	0.0007	0.0000	8.12			0.003	0.000
EF07090G32R167	10/9/2007	WG-07718-EE	0.0003	0.0000	8.10	0.01		0.003	0.000
EU07090G32R167	10/9/2007	WG-07718-EE	0.0012	0.0000	8.10			0.003	0.000
EF07090G32R168	10/9/2007	WG-07719-EE	0.0003	0.0001	8.11	0.02		0.004	0.001
EU07090G32R168	10/9/2007	WG-07719-EE	0.0005	0.0001	8.11			0.004	0.001
EF07090G32R110	10/9/2007	WG-07856-EE	0.0005	0.0001	8.07	0.01	U	0.005	0.001
EU07090G32R110	10/9/2007	WG-07856-EE	0.0025	0.0009	8.07			0.006	0.002
EF07090G32R120	10/9/2007	WG-07856-EE	0.0008	0.0003	8.13	0.01	U	0.006	0.002
EU07090G32R120	10/9/2007	WG-07856-EE	0.0012	0.0003	8.13			0.005	0.001
EU07090G32R101-FB	10/9/2007	WG-07856-EE	0.0002		5.91	0.01	U	0.001	
EF07090G32R169	10/9/2007	WG-07720-EE	0.0003	0.0002	8.10	0.01	U	0.006	0.002
EU07090G32R169	10/9/2007	WG-07720-EE	0.0026	0.0009	8.10			0.006	0.002
EF07090G32R170	10/9/2007	WG-07721-EE	0.0003	0.0001	8.11	0.01		0.006	0.002
EU07090G32R170	10/9/2007	WG-07721-EE	0.0012	0.0002	8.11			0.004	0.001
EF07090G32R171	10/9/2007	WG-07725-EE	0.0002		8.02	0.01		0.004	0.000
EU07090G32R171	10/9/2007	WG-07725-EE	0.0009	0.0002	8.02			0.005	0.001
EF07090G32R172	10/9/2007	WG-07731-EE	0.0002		8.02	0.02		0.003	0.000
EU07090G32R172	10/9/2007	WG-07731-EE	0.0004	0.0000	8.02			0.003	0.000
EF07090G32R173	10/9/2007	WG-07732-EE	0.0002		8.03	0.01	U	0.003	0.000
EU07090G32R173	10/9/2007	WG-07732-EE	0.0005	0.0000	8.03			0.004	0.000
EF07090G32R174	10/9/2007	WG-07733-EE	0.0002		8.01	0.01	U	0.003	0.000
EU07090G32R174	10/9/2007	WG-07733-EE	0.0003	0.0000	8.01			0.003	0.000
EF07090G32R110a	10/9/2007	WG-07855-EE	0.0002		7.99	0.02		0.004	0.000
EU07090G32R110a	10/9/2007	WG-07855-EE	0.0004	0.0000	7.99			0.003	0.000
EF07090G32R120a	10/9/2007	WG-07855-EE	0.0002		7.99	0.02		0.004	0.000
EU07090G32R120a	10/9/2007	WG-07855-EE	0.0005	0.0000	7.99			0.004	0.000
EF07090G32R175	10/9/2007	WG-07734-EE	0.0003	0.0000	7.99	0.02		0.003	0.000
EU07090G32R175	10/9/2007	WG-07734-EE	0.0003	0.0000	7.99			0.004	0.000
EF07090G32R176	10/9/2007	WG-07735-EE	0.0002		8.00	0.01		0.003	0.000
EU07090G32R176	10/9/2007	WG-07735-EE	0.0003	0.0000	8.00			0.003	0.000
EF07090G32R177	10/11/2007	WG-07736-EE	0.0002		8.07	0.01	U	0.004	0.000
EU07090G32R177	10/11/2007	WG-07736-EE	0.0002	0.0000	8.07		·	0.003	0.000
EU07090G32R101-EQB	10/11/2007	WG-07852-EE	0.0002	0.0000		0.01	U	0.001	

SAMPLE ID	DATE RECEIVED	ER/RRES-WQH	S2- rslt	S2- (U)	Sb rslt	stdev (Sb)	Se rslt	stdev (Se)	Si rslt
EF07090G32R161	10/9/2007	WG-07709-EE			0.001		0.001		30.5
EU07090G32R161	10/9/2007	WG-07709-EE	0.006	U	0.001		0.001		29.4
EF07090G32R162	10/9/2007	WG-07713-EE			0.001		0.001		29.5
EU07090G32R162	10/9/2007	WG-07713-EE	0.006	U	0.001		0.001		29.8
EF07090G32R163	10/9/2007	WG-07714-EE			0.001		0.001		30.1
EU07090G32R163	10/9/2007	WG-07714-EE	0.006	U	0.001		0.001		29.4
EF07090G32R164	10/9/2007	WG-07715-EE			0.001		0.001	0.000	29.9
EU07090G32R164	10/9/2007	WG-07715-EE	0.006	U	0.001		0.001	0.000	30.7
EF07090G32R165	10/9/2007	WG-07716-EE			0.001		0.001		29.2
EU07090G32R165	10/9/2007	WG-07716-EE	0.006	U	0.001		0.001		29.6
EF07090G32R166	10/9/2007	WG-07717-EE			0.001		0.001		29.6
EU07090G32R166	10/9/2007	WG-07717-EE	0.006	U	0.001		0.001		30.7
EF07090G32R167	10/9/2007	WG-07718-EE			0.001		0.001		30.1
EU07090G32R167	10/9/2007	WG-07718-EE	0.006	U	0.001		0.001		30.1
EF07090G32R168	10/9/2007	WG-07719-EE			0.001		0.001	0.000	30.3
EU07090G32R168	10/9/2007	WG-07719-EE	0.006	U	0.001		0.001	0.000	29.0
EF07090G32R110	10/9/2007	WG-07856-EE			0.001		0.002	0.001	31.9
EU07090G32R110	10/9/2007	WG-07856-EE	0.006	U	0.001		0.002	0.001	30.0
EF07090G32R120	10/9/2007	WG-07856-EE			0.001		0.002	0.001	31.0
EU07090G32R120	10/9/2007	WG-07856-EE	0.006	U	0.001		0.002	0.001	29.2
EU07090G32R101-FB	10/9/2007	WG-07856-EE	0.006	U	0.001		0.001		0.17
EF07090G32R169	10/9/2007	WG-07720-EE			0.001		0.002	0.001	30.2
EU07090G32R169	10/9/2007	WG-07720-EE	0.006	U	0.001		0.003	0.001	29.9
EF07090G32R170	10/9/2007	WG-07721-EE			0.001		0.003	0.001	30.2
EU07090G32R170	10/9/2007	WG-07721-EE	0.006	U	0.001		0.001	0.000	29.8
EF07090G32R171	10/9/2007	WG-07725-EE			0.001		0.001	0.000	28.7
EU07090G32R171	10/9/2007	WG-07725-EE	0.006	U	0.001		0.002	0.001	28.4
EF07090G32R172	10/9/2007	WG-07731-EE			0.001		0.001		30.4
EU07090G32R172	10/9/2007	WG-07731-EE	0.006	U	0.001		0.001		30.0
EF07090G32R173	10/9/2007	WG-07732-EE	0.006	U	0.001		0.001		31.2
EU07090G32R173	10/9/2007	WG-07732-EE	0.006	U	0.001		0.001		30.3
EF07090G32R174	10/9/2007	WG-07733-EE			0.001		0.001		30.4
EU07090G32R174	10/9/2007	WG-07733-EE	0.006	U	0.001		0.001		30.2
EF07090G32R110a	10/9/2007	WG-07855-EE			0.001		0.001		29.7
EU07090G32R110a	10/9/2007	WG-07855-EE	0.006	U	0.001		0.001		27.4
EF07090G32R120a	10/9/2007	WG-07855-EE			0.001		0.001		32.2
EU07090G32R120a	10/9/2007	WG-07855-EE	0.006	U	0.001		0.001		32.3
EF07090G32R175	10/9/2007	WG-07734-EE			0.001		0.001		31.5
EU07090G32R175	10/9/2007	WG-07734-EE	0.006	U	0.001		0.001	0.000	28.9
EF07090G32R176	10/9/2007	WG-07735-EE			0.001		0.001	0.000	30.3
EU07090G32R176	10/9/2007	WG-07735-EE	0.006	U	0.001		0.001		30.1
EF07090G32R177	10/11/2007	WG-07736-EE			0.001		0.001	0.000	31.0
EU07090G32R177	10/11/2007	WG-07736-EE	0.006	U	0.001		0.001		30.4
EU07090G32R101-EQB	10/11/2007	WG-07852-EE	0.006	U	0.001		0.001		1.20

SAMPLE ID	DATE RECEIVED	ER/RRES-WQH	stdev (Si)	SiO2 rslt	stdev (SiO2)	Sn rslt	stdev (Sn)	SO4(-2) rslt	Sr rslt
EF07090G32R161	10/9/2007	WG-07709-EE	0.1	65.2	0.2	0.001	0.000	7.24	0.092
EU07090G32R161	10/9/2007	WG-07709-EE	0.2	62.8	0.3	0.012	0.000		0.090
EF07090G32R162	10/9/2007	WG-07713-EE	0.2	63.2	0.4	0.009	0.000	4.24	0.090
EU07090G32R162	10/9/2007	WG-07713-EE	0.4	63.7	0.9	0.003	0.000		0.089
EF07090G32R163	10/9/2007	WG-07714-EE	0.4	64.5	0.8	0.001	0.000	7.26	0.092
EU07090G32R163	10/9/2007	WG-07714-EE	0.1	63.0	0.2	0.005	0.000		0.089
EF07090G32R164	10/9/2007	WG-07715-EE	0.1	64.1	0.2	0.001		7.20	0.089
EU07090G32R164	10/9/2007	WG-07715-EE	0.3	65.8	0.6	0.004	0.000		0.092
EF07090G32R165	10/9/2007	WG-07716-EE	0.3	62.4	0.6	0.001	0.000	7.21	0.088
EU07090G32R165	10/9/2007	WG-07716-EE	0.0	63.4	0.0	0.004	0.000		0.087
EF07090G32R166	10/9/2007	WG-07717-EE	0.2	63.4	0.3	0.002	0.000	7.21	0.088
EU07090G32R166	10/9/2007	WG-07717-EE	0.7	65.8	1.5	0.004	0.000		0.093
EF07090G32R167	10/9/2007	WG-07718-EE	0.1	64.5	0.1	0.002	0.000	7.19	0.089
EU07090G32R167	10/9/2007	WG-07718-EE	0.2	64.3	0.4	0.007	0.000		0.090
EF07090G32R168	10/9/2007	WG-07719-EE	0.3	64.9	0.7	0.001	0.000	7.18	0.090
EU07090G32R168	10/9/2007	WG-07719-EE	0.6	62.1	1.4	0.002	0.000		0.086
EF07090G32R110	10/9/2007	WG-07856-EE	0.4	68.3	0.9	0.001	0.000	0.04	0.095
EU07090G32R110	10/9/2007	WG-07856-EE	0.5	64.3	1.1	0.005	0.000		0.089
EF07090G32R120	10/9/2007	WG-07856-EE	0.6	66.3	1.3	0.001	0.000	7.25	0.092
EU07090G32R120	10/9/2007	WG-07856-EE	0.3	62.4	0.7	0.003	0.000		0.087
EU07090G32R101-FB	10/9/2007	WG-07856-EE	0.00	0.37	0.00	0.001		7.15	0.001
EF07090G32R169	10/9/2007	WG-07720-EE	0.2	64.6	0.5	0.001		7.12	0.088
EU07090G32R169	10/9/2007	WG-07720-EE	0.6	63.9	1.3	0.004	0.000		0.088
EF07090G32R170	10/9/2007	WG-07721-EE	0.3	64.6	0.6	0.001		7.15	0.088
EU07090G32R170	10/9/2007	WG-07721-EE	0.1	63.7	0.2	0.003	0.000		0.088
EF07090G32R171	10/9/2007	WG-07725-EE	0.4	61.3	0.9	0.001		7.06	0.083
EU07090G32R171	10/9/2007	WG-07725-EE	0.1	60.8	0.1	0.001	0.000		0.082
EF07090G32R172	10/9/2007	WG-07731-EE	0.1	65.1	0.2	0.001		7.12	0.087
EU07090G32R172	10/9/2007	WG-07731-EE	0.3	64.2	0.5	0.001	0.000		0.088
EF07090G32R173	10/9/2007	WG-07732-EE	0.2	66.9	0.5	0.001		7.08	0.089
EU07090G32R173	10/9/2007	WG-07732-EE	0.1	64.8	0.2	0.001			0.088
EF07090G32R174	10/9/2007	WG-07733-EE	0.2	65.0	0.4	0.001		7.06	0.087
EU07090G32R174	10/9/2007	WG-07733-EE	0.1	64.6	0.3	0.001			0.086
EF07090G32R110a	10/9/2007	WG-07855-EE	0.1	63.6	0.1	0.001		7.86	0.083
EU07090G32R110a	10/9/2007	WG-07855-EE	0.5	58.7	1.0	0.001			0.077
EF07090G32R120a	10/9/2007	WG-07855-EE	0.5	68.8	1.2	0.001		7.99	0.091
EU07090G32R120a	10/9/2007	WG-07855-EE	0.8	69.0	1.7	0.001			0.090
EF07090G32R175	10/9/2007	WG-07734-EE	0.9	67.3	2.0	0.001		8.06	0.086
EU07090G32R175	10/9/2007	WG-07734-EE	0.2	61.8	0.3	0.001			0.079
EF07090G32R176	10/9/2007	WG-07735-EE	0.6	64.8	1.3	0.001		8.09	0.084
EU07090G32R176	10/9/2007	WG-07735-EE	0.2	64.5	0.5	0.001			0.083
EF07090G32R177	10/11/2007	WG-07736-EE	0.4	66.3	8.0	0.001		8.02	0.088
EU07090G32R177	10/11/2007	WG-07736-EE	0.3	65.1	0.6	0.001			0.086
EU07090G32R101-EQB	10/11/2007	WG-07852-EE	0.01	2.57	0.02	0.001		0.02	0.002

SAMPLE ID	DATE RECEIVED	ER/RRES-WQH	stdev (Sr)	Th rslt	stdev (Th)	Ti rslt	stdev (Ti)	TI rslt	stdev (TI)
EF07090G32R161	10/9/2007	WG-07709-EE	0.000	0.001	-	0.002		0.001	
EU07090G32R161	10/9/2007	WG-07709-EE	0.001	0.001		0.002		0.001	
EF07090G32R162	10/9/2007	WG-07713-EE	0.000	0.001		0.002		0.001	
EU07090G32R162	10/9/2007	WG-07713-EE	0.001	0.001		0.002		0.001	
EF07090G32R163	10/9/2007	WG-07714-EE	0.001	0.001		0.002		0.001	
EU07090G32R163	10/9/2007	WG-07714-EE	0.001	0.001		0.002		0.001	
EF07090G32R164	10/9/2007	WG-07715-EE	0.000	0.001		0.002		0.001	
EU07090G32R164	10/9/2007	WG-07715-EE	0.000	0.001		0.002		0.001	
EF07090G32R165	10/9/2007	WG-07716-EE	0.001	0.001		0.002		0.001	
EU07090G32R165	10/9/2007	WG-07716-EE	0.001	0.001		0.002		0.001	
EF07090G32R166	10/9/2007	WG-07717-EE	0.001	0.001		0.002		0.001	
EU07090G32R166	10/9/2007	WG-07717-EE	0.002	0.001		0.002		0.001	
EF07090G32R167	10/9/2007	WG-07718-EE	0.000	0.001		0.002		0.001	
EU07090G32R167	10/9/2007	WG-07718-EE	0.001	0.001		0.002		0.001	
EF07090G32R168	10/9/2007	WG-07719-EE	0.001	0.001		0.002		0.001	
EU07090G32R168	10/9/2007	WG-07719-EE	0.002	0.001		0.002		0.001	
EF07090G32R110	10/9/2007	WG-07856-EE	0.002	0.001		0.002		0.001	
EU07090G32R110	10/9/2007	WG-07856-EE	0.002	0.001		0.002		0.001	
EF07090G32R120	10/9/2007	WG-07856-EE	0.002	0.001		0.002		0.001	
EU07090G32R120	10/9/2007	WG-07856-EE	0.001	0.001		0.002		0.001	
EU07090G32R101-FB	10/9/2007	WG-07856-EE		0.001		0.002		0.001	
EF07090G32R169	10/9/2007	WG-07720-EE	0.000	0.001		0.002		0.001	
EU07090G32R169	10/9/2007	WG-07720-EE	0.002	0.001		0.002		0.001	
EF07090G32R170	10/9/2007	WG-07721-EE	0.001	0.001		0.002		0.001	
EU07090G32R170	10/9/2007	WG-07721-EE	0.000	0.001		0.002		0.001	
EF07090G32R171	10/9/2007	WG-07725-EE	0.001	0.001		0.002		0.001	
EU07090G32R171	10/9/2007	WG-07725-EE	0.001	0.001		0.002		0.001	
EF07090G32R172	10/9/2007	WG-07731-EE	0.001	0.001		0.002		0.001	
EU07090G32R172	10/9/2007	WG-07731-EE	0.001	0.001		0.002		0.001	
EF07090G32R173	10/9/2007	WG-07732-EE	0.001	0.001		0.002		0.001	
EU07090G32R173	10/9/2007	WG-07732-EE	0.000	0.001		0.002		0.001	
EF07090G32R174	10/9/2007	WG-07733-EE	0.000	0.001		0.002		0.001	
EU07090G32R174	10/9/2007	WG-07733-EE	0.001	0.001		0.002		0.001	
EF07090G32R110a	10/9/2007	WG-07855-EE	0.002	0.001		0.002		0.001	
EU07090G32R110a	10/9/2007	WG-07855-EE	0.000	0.001		0.002		0.001	
EF07090G32R120a	10/9/2007	WG-07855-EE	0.002	0.001		0.002		0.001	
EU07090G32R120a	10/9/2007	WG-07855-EE	0.001	0.001		0.002		0.001	
EF07090G32R175	10/9/2007	WG-07734-EE	0.002	0.001		0.002		0.001	
EU07090G32R175	10/9/2007	WG-07734-EE	0.001	0.001		0.002		0.001	
EF07090G32R176	10/9/2007	WG-07735-EE	0.001	0.001		0.002		0.001	
EU07090G32R176	10/9/2007	WG-07735-EE	0.001	0.001		0.002		0.001	
EF07090G32R177	10/11/2007	WG-07736-EE	0.001	0.001		0.002		0.001	
EU07090G32R177	10/11/2007	WG-07736-EE	0.000	0.001		0.002		0.001	
EU07090G32R101-EQB	10/11/2007	WG-07852-EE	0.000	0.001		0.002	ĺ	0.001	

SAMPLE ID	DATE RECEIVED	ER/RRES-WQH	U rslt	stdev (U)	V rslt	stdev (V)	Zn rslt	stdev (Zn)	TDS (ppm)
EF07090G32R161	10/9/2007	WG-07709-EE	0.0008	0.0000	0.004	0.000	0.019	0.001	215
EU07090G32R161	10/9/2007	WG-07709-EE	0.0009	0.0000	0.004	0.000	0.038	0.002	196
EF07090G32R162	10/9/2007	WG-07713-EE	0.0008	0.0000	0.004	0.000	0.029	0.000	207
EU07090G32R162	10/9/2007	WG-07713-EE	0.0009	0.0000	0.004	0.000	0.033	0.000	195
EF07090G32R163	10/9/2007	WG-07714-EE	0.0009	0.0000	0.004	0.000	0.021	0.000	212
EU07090G32R163	10/9/2007	WG-07714-EE	0.0008	0.0000	0.004	0.000	0.030	0.000	195
EF07090G32R164	10/9/2007	WG-07715-EE	0.0009	0.0000	0.005	0.000	0.017	0.000	213
EU07090G32R164	10/9/2007	WG-07715-EE	0.0009	0.0000	0.005	0.000	0.030	0.001	199
EF07090G32R165	10/9/2007	WG-07716-EE	0.0009	0.0000	0.004	0.000	0.019	0.000	209
EU07090G32R165	10/9/2007	WG-07716-EE	0.0009	0.0000	0.004	0.000	0.026	0.001	194
EF07090G32R166	10/9/2007	WG-07717-EE	0.0009	0.0000	0.004	0.000	0.019	0.001	210
EU07090G32R166	10/9/2007	WG-07717-EE	0.0009	0.0000	0.004	0.000	0.025	0.001	198
EF07090G32R167	10/9/2007	WG-07718-EE	0.0009	0.0000	0.005	0.000	0.019	0.001	212
EU07090G32R167	10/9/2007	WG-07718-EE	0.0009	0.0000	0.004	0.000	0.026	0.001	197
EF07090G32R168	10/9/2007	WG-07719-EE	0.0012	0.0002	0.006	0.001	0.018	0.000	211
EU07090G32R168	10/9/2007	WG-07719-EE	0.0011	0.0002	0.006	0.001	0.021	0.001	192
EF07090G32R110	10/9/2007	WG-07856-EE	0.0013	0.0003	0.007	0.002	0.019	0.002	211
EU07090G32R110	10/9/2007	WG-07856-EE	0.0017	0.0006	0.009	0.003	0.025	0.001	196
EF07090G32R120	10/9/2007	WG-07856-EE	0.0016	0.0005	0.009	0.003	0.020	0.001	215
EU07090G32R120	10/9/2007	WG-07856-EE	0.0014	0.0002	0.007	0.002	0.023	0.002	195
EU07090G32R101-FB	10/9/2007	WG-07856-EE	0.0002		0.001		0.001		9
EF07090G32R169	10/9/2007	WG-07720-EE	0.0017	0.0007	0.009	0.004	0.018	0.001	211
EU07090G32R169	10/9/2007	WG-07720-EE	0.0017	0.0005	0.009	0.003	0.022	0.000	194
EF07090G32R170	10/9/2007	WG-07721-EE	0.0016	0.0006	0.009	0.004	0.014	0.000	209
EU07090G32R170	10/9/2007	WG-07721-EE	0.0011	0.0002	0.006	0.001	0.024	0.000	193
EF07090G32R171	10/9/2007	WG-07725-EE	0.0012	0.0002	0.006	0.001	0.013	0.001	207
EU07090G32R171	10/9/2007	WG-07725-EE	0.0014	0.0003	0.007	0.001	0.019	0.000	190
EF07090G32R172	10/9/2007	WG-07731-EE	0.0009	0.0000	0.004	0.000	0.014	0.001	211
EU07090G32R172	10/9/2007	WG-07731-EE	0.0010	0.0000	0.005	0.000	0.019	0.000	194
EF07090G32R173	10/9/2007	WG-07732-EE	0.0010	0.0000	0.005	0.000	0.017	0.000	214
EU07090G32R173	10/9/2007	WG-07732-EE	0.0009	0.0000	0.005	0.000	0.018	0.001	195
EF07090G32R174	10/9/2007	WG-07733-EE	0.0009	0.0000	0.004	0.000	0.013	0.000	210
EU07090G32R174	10/9/2007	WG-07733-EE	0.0009	0.0000	0.004	0.000	0.016	0.001	194
EF07090G32R110a	10/9/2007	WG-07855-EE	0.0008	0.0000	0.004	0.000	0.014	0.000	214
EU07090G32R110a	10/9/2007	WG-07855-EE	0.0009	0.0000	0.004	0.000	0.015	0.001	191
EF07090G32R120a	10/9/2007	WG-07855-EE	0.0009	0.0000	0.004	0.000	0.015	0.001	218
EU07090G32R120a	10/9/2007	WG-07855-EE	0.0009	0.0000	0.004	0.000	0.017	0.001	200
EF07090G32R175	10/9/2007	WG-07734-EE	0.0009	0.0000	0.004	0.000	0.017	0.001	215
EU07090G32R175	10/9/2007	WG-07734-EE	0.0008	0.0000	0.004	0.000	0.015	0.000	191
EF07090G32R176	10/9/2007	WG-07735-EE	0.0009	0.0000	0.004	0.000	0.014	0.001	212
EU07090G32R176	10/9/2007	WG-07735-EE	0.0009	0.0000	0.004	0.000	0.020	0.004	193
EF07090G32R177	10/11/2007	WG-07736-EE	0.0009	0.0000	0.004	0.000	0.013	0.001	220
EU07090G32R177	10/11/2007	WG-07736-EE	0.0008	0.0000	0.003	0.000	0.016	0.001	201
EU07090G32R101-EQB	10/11/2007	WG-07852-EE	0.0002		0.001		0.001		6

SAMPLE ID	DATE RECEIVED	ER/RRES-WQH	Cations	Anions	Balance	Status	
EF07090G32R161	10/9/2007	WG-07709-EE	1.72	2.10	-0.10	completed	
EU07090G32R161	10/9/2007	WG-07709-EE				completed	
EF07090G32R162	10/9/2007	WG-07713-EE	1.69	1.98	-0.08	completed	
EU07090G32R162	10/9/2007	WG-07713-EE				completed	
EF07090G32R163	10/9/2007	WG-07714-EE	1.70	2.41	-0.17	completed	
EU07090G32R163	10/9/2007	WG-07714-EE				completed	
EF07090G32R164	10/9/2007	WG-07715-EE	1.73	1.98	-0.07	completed	
EU07090G32R164	10/9/2007	WG-07715-EE				completed	
EF07090G32R165	10/9/2007	WG-07716-EE	1.71	2.05	-0.09	completed	
EU07090G32R165	10/9/2007	WG-07716-EE				completed	
EF07090G32R166	10/9/2007	WG-07717-EE	1.70	2.05	-0.09	completed	
EU07090G32R166	10/9/2007	WG-07717-EE				completed	
EF07090G32R167	10/9/2007	WG-07718-EE	1.73	2.03	-0.08	completed	
EU07090G32R167	10/9/2007	WG-07718-EE				completed	
EF07090G32R168	10/9/2007	WG-07719-EE	1.73	2.40	-0.16	completed	
EU07090G32R168	10/9/2007	WG-07719-EE				completed	
EF07090G32R110	10/9/2007	WG-07856-EE	1.84	2.27	-0.10	completed	
EU07090G32R110	10/9/2007	WG-07856-EE				completed	
EF07090G32R120	10/9/2007	WG-07856-EE	1.80	2.05	-0.07	completed	
EU07090G32R120	10/9/2007	WG-07856-EE				completed	
EU07090G32R101-FB	10/9/2007	WG-07856-EE	0.01	0.18	-0.85	completed	
EF07090G32R169	10/9/2007	WG-07720-EE	1.75	2.27	-0.13	completed	
EU07090G32R169	10/9/2007	WG-07720-EE				completed	
EF07090G32R170	10/9/2007	WG-07721-EE	1.66	2.39	-0.18	completed	
EU07090G32R170	10/9/2007	WG-07721-EE				completed	
EF07090G32R171	10/9/2007	WG-07725-EE	1.65	1.94	-0.08	completed	
EU07090G32R171	10/9/2007	WG-07725-EE				completed	
EF07090G32R172	10/9/2007	WG-07731-EE	1.70	2.02	-0.09	completed	
EU07090G32R172	10/9/2007	WG-07731-EE				completed	
EF07090G32R173	10/9/2007	WG-07732-EE	1.77	1.94	-0.05	completed	
EU07090G32R173	10/9/2007	WG-07732-EE				completed	
EF07090G32R174	10/9/2007	WG-07733-EE	1.71	2.02	-0.08	completed	
EU07090G32R174	10/9/2007	WG-07733-EE				completed	
EF07090G32R110a	10/9/2007	WG-07855-EE	1.69	2.03	-0.09	completed	re named
EU07090G32R110a	10/9/2007	WG-07855-EE				completed	re named
EF07090G32R120a	10/9/2007	WG-07855-EE	1.78	1.97	-0.05	completed	re named
EU07090G32R120a	10/9/2007	WG-07855-EE				completed	re named
EF07090G32R175	10/9/2007	WG-07734-EE	1.73	1.97	-0.06	completed	
EU07090G32R175	10/9/2007	WG-07734-EE				completed	
EF07090G32R176	10/9/2007	WG-07735-EE	1.67	1.97	-0.08	completed	
EU07090G32R176	10/9/2007	WG-07735-EE				completed	
EF07090G32R177	10/11/2007	WG-07736-EE	1.77	2.05	-0.07	completed	
EU07090G32R177	10/11/2007	WG-07736-EE				completed	
EU07090G32R101-EQB	10/11/2007	WG-07852-EE	0.09			completed	