LA-14450-PR Progress Report

Approved for public release; distribution is unlimited.

Emissions Inventory Report Summary for Los Alamos National Laboratory for Calendar Year 2010

Previous report in this unclassified series is LA-14430-SR.

Los Alamos National Laboratory, an affirmative action/ equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396.

This report was prepared as an account of work sponsored by an agency of the U.S. Government. Neither Los Alamos National Security, LLC, the U.S. Government nor any agency thereof, nor any of their employees make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by Los Alamos National Security, LLC, the U.S. Government, or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of Los Alamos National Security, LLC, the U.S. Government, or any agency thereof. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Emissions Inventory Report Summary for Los Alamos National Laboratory for Calendar Year 2010

Environmental Stewardship Group

CONTENTS

ABSTI	RACT	1
1.0	INTRODUCTION	1
1.1	REGULATORY BASIS	1
1.2	CONTENTS OF ANNUAL EMISSIONS INVENTORY SUBMITTAL	3
1.3	CONTENTS OF THE SEMI-ANNUAL TITLE V OPERATING PERMIT EMISSIONS REPORTS	3
2.0	REPORTED EMISSION SOURCES	4
2.1	POWER PLANT	4
2.2	SMALL BOILERS AND HEATERS.	
2.3	ASPHALT PLANT	7
2.4	Data Disintegrator	7
2.5	Degreasers	8
2.6	CARPENTER SHOP	8
2.7	OIL STORAGE TANKS	8
2.8	PERMITTED BERYLLIUM-MACHINING OPERATIONS	9
2.9	GENERATORS	9
2.10	COMBUSTION TURBINE	10
2.11	EMISSIONS FROM CHEMICAL USE ACTIVITIES.	10
2	11.1 VOC Emissions	11
2	11.2 HAP Emissions	12
2.12	Greenhouse Gas Emissions	13
2.12	.1 GREENHOUSE GAS EMISSIONS FROM RESEARCH AND DEVELOPMENT ACTIVITIES	13
2	12.2 Greenhouse Gas Emissions from Electrical Use	13
2.13	EMISSIONS SUMMARY BY SOURCE	13
3.0	REPORTING EXEMPTIONS	15
3.1	Boilers	15
3.2	GENERATORS	16
3.3	VOC EMISSIONS	17
3.4	HAP EMISSIONS	17
3.5	PAINTS	18
4.0	EMISSIONS SUMMARY	18
4.1	2010 EMISSIONS SUMMARY	18
4.2	Emission Trends and Title V Permit Limits	20
REFE	RENCES	23
Attac	hment A Emission Calculation Worksheets for Individual Emission Units	25
Attac	hment B 2010 Annual Emissions Inventory Submittal to NMED	57
	hment C 2010 Semi-annual Emissions Reports Submitted Under Title V Operating	
	t Requirements	117

Figures		
Figure 2.1-	1 TA-3 power plant.	6
Figure 2.11	-1 Example of a laboratory fume hood at LANL.	11
Figure 4.1-	1 Emissions of criteria pollutants by source in 2010.	20
_	2 Comparison of facility-wide annual reported emissions from 1999–2010	
_	3 VOC and HAP emissions from chemical use, 1999–2010.	
Tiguic 4.1-	5 voc and 11/11 chinssions from chemical use, 1777 2010	
Tables		
	Sources Included in LANL's 2010 Annual Emissions Inventory and Semi-annual	ıl
	Emissions Reports	
Table 2.6-1	Emissions for Carpenter Shops	
	-1 Summary of LANL 2010 Reported Emissions for Annual Emissions Inventory	
	-2 Summary of LANL 2010 Semi-annual Emissions as Reported Under Title V	17
1 aute 2.12-	Operating Permit Requirements	15
Table 2 2 1	Exemptions Applied for Chemical Use Activities	
	LANL Facility-Wide Criteria Pollutant Emissions for 2010	
Table 4.1-2	2 LANL HAP Emissions from Top Five Chemicals Used in 2010	19
A 02022220		
Acronyms AIRS	Aerometric Information Retrieval System	
AQB	Air Quality Bureau	
CAS	Chemical Abstracts Service	
CO	carbon monoxide	
CO_2	carbon dioxide	
EPA	U.S. Environmental Protection Agency	
FGR	flue gas recirculation	
HAP	hazardous air pollutant	
HCl	hydrochloric acid	
LANL	Los Alamos National Laboratory	
MSDS	material safety data sheet	
NMAC	New Mexico Administrative Code	
NMED	New Mexico Environment Department	
NO_x	nitrogen oxides	
PM	particulate matter	
$PM_{2.5}$	particulate matter with diameter less than 2.5 micrometers	
PM_{10}	particulate matter with diameter less than 10 micrometers	
PSD	Prevention of Significant Deterioration	
R&D	research and development	
SO_x	sulfur oxides	
SO_2	sulfur dioxide	
TA	Technical Area	
TSP	total suspended particulates	
VOC	volatile organic compound	

EMISSIONS INVENTORY REPORT SUMMARY FOR LOS ALAMOS NATIONAL LABORATORY FOR CALENDAR YEAR 2010

by

ENVIRONMENTAL STEWARDSHIP GROUP

ABSTRACT

Los Alamos National Laboratory (LANL) is subject to annual emissions reporting requirements for regulated air pollutants under Title 20 of the New Mexico Administrative Code, Chapter 2, Part 73 (20.2.73 NMAC), Notice of Intent and Emissions Inventory Requirements. The applicability of the requirements is based on the Laboratory's potential to emit 100 tons per year of suspended particulate matter, nitrogen oxides, carbon monoxide, sulfur oxides, or volatile organic compounds. Additionally, on April 30, 2004, LANL was issued a Title V Operating Permit from the New Mexico Environment Department/Air Quality Bureau, under 20.2.70 NMAC. This permit was modified and renewed on August 7, 2009. This Title V Operating Permit (Permit No. P100R1) includes emission limits and operating limits for all regulated sources of air pollution at LANL. The Title V Operating Permit also requires semi-annual emissions reporting for all sources included in the permit. This report summarizes both the annual emissions inventory reporting and the semi-annual emissions reporting for LANL for calendar year 2010. LANL's 2010 emissions are well below the emission limits in the Title V Operating Permit.

1.0 **INTRODUCTION**

1.1 Regulatory Basis

Los Alamos National Laboratory (LANL or the Laboratory) has reported on air pollutants generated from its operations since the 1970s when Air Quality Control Regulation 703, Registration of Air Contaminant Sources, was promulgated. According to the regulation, the Laboratory was required to register air pollutant sources that emitted more than 2,000 lb per year of any air contaminant. This regulatory requirement later evolved into Title 20 of the New Mexico Administrative Code, Chapter 2, Part 73 (20.2.73 NMAC), Notice of Intent and Emissions Inventory Requirements. The objective of the reporting requirement is to provide emissions data to the New Mexico Environment Department (NMED)/Air Quality Bureau (AQB) so its staff can determine whether LANL meets state and federal air pollutant standards.

Annual emissions inventory reporting requirements under 20.2.73 NMAC apply to any stationary source which

has been issued a construction permit under 20.2.72 NMAC;

- ▶ has been required to file a Notice of Intent under 20.2.73.200 NMAC; or
- > emits in excess of
 - o 1 ton per year of lead or
 - o 10 tons per year of
 - total suspended particulates (TSP);
 - particulate matter (PM) with diameter less than 10 micrometers (PM_{10});
 - PM with diameter less than 2.5 micrometers (PM_{2.5});
 - sulfur dioxide (SO₂);
 - nitrogen oxides (NO_x);
 - carbon monoxide (CO); or
 - volatile organic compounds (VOCs).

The annual emissions inventory must be submitted to NMED/AQB by April 1 of each year. However, for the 2010 reporting year, NMED extended the reporting deadline for LANL to April 15, 2011 because of technical problems with the online reporting tool. The NMED/AQB enters the data in the Aerometric Information Retrieval System (AIRS) (EPA 2008a). This nationwide system, administered by the U.S. Environmental Protection Agency (EPA), is used to help ensure ambient air quality standards are maintained and to track the state's air pollutant emissions. AIRS is a large air pollution database that contains information, requirements, and data on air pollution and air quality in the United States and various World Health Organization member countries. The program is operated by the EPA and state/local air pollution control agencies. The AIRS database tracks each state's progress towards achieving and maintaining National Ambient Air Quality Standards for criteria pollutants. The database is also used as a tool to help improve each state's air quality programs by enabling program members to access and compare past data and view data from other states.

Additionally, on April 30, 2004, LANL was issued a Title V Operating Permit from the NMED/AQB, under 20.2.70 NMAC. This permit was modified and renewed on August 7, 2009 (P100R1) from the NMED/AQB (NMED 2009b). A condition of the Title V Operating Permit is that LANL must submit semi-annual emissions reports to NMED documenting that emissions from all permitted sources are below permitted emission levels. Section 4.0 of the permit states:

Reports of actual emissions from permitted sources in Section 2.0 of the permit shall be submitted on a 6 month basis. The reports shall include a comparison of actual emissions that occurred during the reporting period with the facility-wide allowable emission limits specified in Section 2.11 of the permit. The reports shall be submitted within 90 days from the end of the reporting period. The reporting periods are January 1 through June 30, and July 1 through December 31. This condition is pursuant to 20.2.70.302.E.1 NMAC.

Therefore, in 2004 the Laboratory began submitting the semi-annual emissions reports as well as the annual emissions inventory. There are a few differences in which sources are included in the two emissions reports. These differences are explained in the following sections.

Furthermore, LANL submitted carbon dioxide (CO₂) and methane (CH₄) emissions from all stationary combustion sources in the Emissions Inventory Report as required by 20.2.87 NMAC, Greenhouse Gas Emissions Reporting (NMED 2009c), and in accordance with New Mexico's 2009 Greenhouse Mandatory Emissions Inventory Emissions Quantification Procedure. The estimated actual CO₂ and CH₄ emissions were reported for combustion sources, indirect sources (electricity use) and fugitive emissions from research and development activities in tons per year.

1.2 Contents of Annual Emissions Inventory Submittal

NMED requested that LANL submit annual emissions inventory data for 2010 via electronic format for entry into AIRS. The information required for submittal includes the following:

- company name, address, and physical location for the facility;
- facility contact information;
- signed certification statement by a responsible facility official; and
- specific information for each emission unit such as stack and exhaust parameters, type and efficiency of control equipment, schedule of operation, annual process or fuel combustion rates, and estimated actual emissions for 2010.

This annual emissions inventory submittal includes air pollutant data for PM, PM_{10} , CO, NO_x , sulfur oxides (SO_x) , VOCs, beryllium, hazardous air pollutants (HAPs), and aluminum.

For 2010, LANL is required to report PM_{2.5} emissions. LANL previously reported PM_{2.5} emissions at the request of NMED for 2006 and 2007. Further, ammonia is a precursor to PM_{2.5} formation. It contributes to the secondary aerosol formation of PM_{2.5} by combining with NO_x and SO_x to form ammonium nitrate and fine sulfate particles. LANL is also required to report emissions of ammonia for 2010.

In the 2010 annual emissions inventory submittal, LANL provided $PM_{2.5}$ emissions data for all combustion sources and other emission sources where $PM_{2.5}$ emission factors were readily available. In the absence of $PM_{2.5}$ emission factors, PM or PM_{10} emissions were assumed to be equivalent to $PM_{2.5}$. The Laboratory does not operate any emission units that are sources of ammonia emissions. Ammonia was included in the facility-wide emission estimates for chemical use.

The Laboratory's 2010 Emissions Inventory Report also includes direct CO₂ and CH4 emissions from stationary combustion sources, fugitive emissions from research and development activities and indirect emissions from electricity use in tons per year. This satisfies the Laboratory's reporting requirement under 20.2.87 NMAC, Greenhouse Gas Emissions Reporting (NMED 2009c).

1.3 Contents of the Semi-annual Title V Operating Permit Emissions Reports

The semi-annual Title V Operating Permit emissions reports include actual estimated emissions for the reporting period for each emission source or source category included in the Title V Operating Permit. For each source category, the actual emissions are compared with emission limits listed in the permit. The emissions are calculated using operating data from logbooks and records maintained on site. All emission calculations are consistent with calculation methods used for the annual emissions inventory.

The semi-annual emissions reports include a few source categories not included in the annual emissions inventory. The Laboratory requested emission limits in their Title V Operating Permit for two source categories that are considered insignificant sources for the annual emissions inventory. These source categories are 1) small boilers and heaters, and 2) stationary standby generators. LANL requested emission limits for these source categories to obtain federally enforceable limits that would keep the Laboratory under the major source threshold for Prevention of Significant Deterioration (PSD) applicability (20.2.74 NMAC). LANL's actual emissions from these insignificant sources have historically been very low; however, without federally enforceable limits on their operation, the potential to emit from these sources was quite high. To demonstrate that LANL is below the PSD applicability and is in compliance with the emission limits placed on these emission sources, LANL now must include these emissions in the semi-annual Title V Operating Permit emissions reports.

2.0 REPORTED EMISSION SOURCES

Table 2.0-1 shows the emission sources included in the Laboratory's 2010 annual emissions inventory (LANL 2010a) and the 2010 semi-annual emissions reports (LANL 2009 and 2010b). The source categories and the methodology used to calculate emissions are described in the following sections.

The following subsections describe emission sources included in the 2010 emissions inventory and semi-annual emissions reports and emission calculation methodology for each source type. A summary table of actual reported emissions by source is included in Section 2.12. Attachment A includes worksheets showing detailed emission calculations for individual emissions sources. A copy of the 2010 emissions inventory as submitted to NMED is presented in Attachment B. The 2010 semi-annual emissions reports are included as Attachment C.

2.1 Power Plant

The Laboratory operates a power plant at TA-3. The power plant produces steam for heating and electricity for much of the Laboratory when sufficient power from outside sources is not available. The heat produced from the power plant is used for comfort heat and hot water and to support facility processes. The power plant has three boilers that are fueled primarily with natural gas with No. 2 fuel oil as a backup. In the past, the Laboratory operated a second power plant at TA-21 and it was shut down in 2007

For the 2010 emissions inventory, NMED requested that emissions from natural gas and No. 2 fuel oil be reported separately for the boilers located at each of the power plants. The TA-3 power plant was originally included in LANL's emissions inventory as a single unit. When a modification to the plant was made in 2001, the TA-3 power plant was separated into three separate units for emissions reporting purposes. Because each of the three boilers has the capability of burning either natural gas or No. 2 fuel oil, the TA-3 power plant is now reported as six units (ID 24, ID 25, and ID 26 for the natural gas and ID 137, ID 138, and ID 141 for the No. 2 fuel).

Table 2.0-1 Sources Included in LANL's 2010 Annual Emissions Inventory and Semi-annual Emissions Reports

Included in Annual Emissions Inventory	Included in Semi-annual Emissions Reports	Comment
Power Plant (TA-3*)	Power Plant (TA-3)	n/a**
Boilers greater than 5 MMBTU/hr (14 units)	All small and large boilers and heaters (approximately 175 units)	Small boilers less than 5 MMBTU/hr are exempt from annual emissions inventory requirements (see Section 3.1), but are not exempt for greenhouse gas reporting
Asphalt Plant	Asphalt Plant	n/a
Degreasers	Degreasers	n/a
Carpenter Shops	Carpenter Shops	n/a
Permitted Beryllium Sources	Permitted Beryllium Sources	n/a
Facility-wide Chemical Use	Facility-wide Chemical Use	n/a
Process Generators	Process Generators and Stationary Standby Generators (approximately 45 units)	Stationary standby generators are exempt from annual emissions inventory requirements (see Section 3.2), but are not exempt for greenhouse gas reporting.
TA-3 Turbine	TA-3 Turbine	n/a

^{*}TA = Technical Area **n/a = Not Applicable

The 2010 emissions inventory reporting year used the updated emission factors for fuel oil for PM, PM_{10} , and $PM_{2.5}$ as described for the TA-3 power plant boilers.

Actual estimated emissions are calculated on the basis of metered fuel consumption and emission factors. The primary source of emission factors is AP-42, the EPA's Compilation of Air Pollutant Emission Factors (EPA 1998). However, emission factors from stack tests conducted at the TA-3 power plant when burning natural gas were also used, as appropriate.

The TA-3 power plant has historically been the largest source of NO_x emissions at the Laboratory. In 2002, a voluntary project to install pollution control equipment on the three boilers at the TA-3 power plant was completed. The three boilers were fitted with flue gas recirculation (FGR) equipment to reduce NO_x emissions. Stack testing for NO_x and CO was conducted before FGR equipment was installed and again after it was operational. Based on these stack test results, FGR reduced NO_x emissions by approximately 64%. In 2010, there was no new fuel delivered to the TA-3 power plant. Figure 2.1-1 shows a picture of the TA-3 power plant building and stacks.

For the 2010 Emissions Inventory Report, the Laboratory reported direct CO₂ and CH₄ emissions from the TA-3 power plant in tons per year. This satisfies the Laboratory's reporting requirement under 20.2.87 NMAC, Greenhouse Gas Emissions Reporting (NMED 2009c).

Figure 2.1-1 TA-3 power plant.

2.2 Small Boilers and Heaters

The Laboratory operates approximately 200 small boilers and heaters, used primarily for seasonal comfort heat. Most of the boilers are exempt from permitting requirements because of their small size and use as comfort boilers and are not included in the annual emissions inventory. The exemption analysis applied to boilers is discussed in Section 3.1 of this report. While most boilers are exempt from the annual emissions inventory, 160 boilers are being reported for direct CO₂ and CH₄ emissions, as required under 20.2.87 NMAC, Greenhouse Gas Emissions Reporting (NMED 2009c).

The boilers that are not exempt and reported in the 2010 annual emissions inventory include the following:

- three boilers at TA-48 (ID 8, ID 9, and ID 10);
- > two boilers at TA-53 (ID 11 and ID 12);
- > two boilers at TA-59 (ID 13 and ID 14);
- > two boilers at TA-55 (ID 29 and ID 30);
- one process-related boiler at TA-50 (ID 133);
- five boilers at CMRR (ID 90, ID 104, ID 105, ID 106, and ID 107);
- two boilers at TA-16 (ID 134 and ID 53); and
- \triangleright 160 boilers at various locations for CO₂ emissions only (ID 140).

All of the reported boilers burn natural gas. Operating logs of actual fuel used for the TA-55 and TA-50 boilers were used to quantify emissions from these units. Fuel use for all other boilers was estimated based on the total amount of natural gas used by the Laboratory minus the amount supplied to metered sources. The amount of natural gas left after subtracting out metered sources was apportioned to the various boilers based on their size. Since virtually all of the small boilers are seasonal boilers used for building heating, it was assumed they would all operate approximately the

same amount of time over the course of the year. Some emission factors were available from stack tests (TA-55), some were provided by the boiler manufacturer (Sellers Engineering Company), and the rest were taken from AP-42 (EPA 1998). Copies of spreadsheets showing fuel use and emission factors for each boiler are included in Attachment A.

For the semi-annual emissions reports, emissions from all small boilers and heaters are included as a source category. The Title V Operating Permit includes emissions limits for this group of emission sources. To estimate emissions, all unmetered fuel use was multiplied by AP-42 emission factors for small boilers burning natural gas (EPA 1998). Total emissions of each pollutant from all boilers and heaters in this source category were then summed and reported on the semi-annual emissions reports.

2.3 As phalt Plant

The TA-60 asphalt plant (ID 116) began operations in July 2005. This unit replaced the TA-3 asphalt plant, which has not operated since June 2003. The TA-3 asphalt plant was dismantled and removed in September 2003. Information on the amount of asphalt produced and the duration of daily operation at the TA-60 asphalt plant was provided as part of a monthly site support contractor data deliverable. The total asphalt produced in 2010 was 1,410 tons.

Per NMED request, direct CO₂ and CH₄ emissions from stationary combustion sources in tons per year are being reported for 2010. This satisfies the Laboratory's reporting requirement under 20.2.87 NMAC, Greenhouse Gas Emissions Reporting (NMED 2009c).

The emissions from the asphalt plant include criteria pollutants, HAPs and CO₂. None of the emissions were significant in regard to the overall Laboratory emissions. The largest pollutant emitted from the asphalt plant was CO at 1.6 tons per year.

2.4 Data Disintegrator

The data disintegrator is included in the 2010 emissions inventory as ID 89. Operation of this source started in August 2004. Emissions are calculated using the methodology described in the permit application dated June 23, 2003. Emissions of PM, PM_{10} , and $PM_{2.5}$ are calculated based on the number of boxes shredded, the amount of dust estimated to enter the exhaust (provided by the manufacturer), and the control efficiency of the cyclone and baghouse (also provided by the manufacturer). The permit application included $PM_{2.5}$ emission estimates. Therefore, an emission methodology had to be developed for the emission inventory reporting. No specific PM size distribution data were available. However, the manufacturer reported that dust into the exhaust would be in the size range of 5 to 20 μ m. Based on visual observation and engineering judgment, a particle size distribution in the exhaust was estimated as follows:

- PM_{2.5} 15%
- PM₁₀ 90%
- TSP 100%

The number of boxes of material shredded is provided on a monthly data deliverable from the site support contractor. The total number of boxes shredded at the data disintegrator in 2010 was 1,054.

2.5 Degreasers

The halogenated solvent cleaning machine at TA-55 has a capacity of 18 l and is registered with NMED/AQB as required under the National Emissions Standards for Hazardous Air Pollutants, 40 CFR 63 Subpart T, Halogenated Solvent Cleaning. The solvent used in the machine, trichloroethylene (Chemical Abstracts Service [CAS] No. 79-01-6), is a VOC and a HAP. This emission unit is included in the annual emissions inventory as ID 21. LANL uses a mass balance approach to estimate emissions. Logbooks are kept on the amount of solvent added and removed from the machine. Additionally, solvent levels in the machine are logged monthly. LANL has two additional halogenated solvent cleaning machines registered with NMED (ID 29 and ID 30). These units were not operational in 2010. The emissions from the TA-55 degreaser for this reporting period are 19.18 lbs or 0.01 tons per year. This source category is reported in both the annual emissions inventory and the semi-annual emissions reports.

2.6 Carpenter Shop

LANL operates a carpenter shop at TA-3 (ID 3) which was operated intermittently throughout the year. This carpenter shop was built before 1960 and is not subject to 20.2.72 NMAC construction permitting. However, LANL included carpenter shops in the Title V Operating Permit. Therefore, this source category is included in the annual emissions inventory as Area 3 and is included on the semi-annual emissions reports. Additionally, a carpenter shop located at TA-15 (ID 4) is included in the Operating Permit and began operations in June 2005.

Emissions from the carpenter shops were calculated based on the flow rate out of the cyclone, the estimated concentration of particulate in the exhaust, AP-42 emission factors, and the hours of operation of the cyclones.

In 2010, total operation of the TA-3 carpenter shop was 124.6 hrs and the total operation of the TA-15 carpenter shop was 65.9 hrs. The emissions for both shops can be found in Table 2.6-1.

Table 2.6-1 Emissions for Carpenter Shops

Carpenter Shop	PM ₁₀ (tons)	PM _{2.5} (tons)	TSP (tons)
TA-3	0.041	0.020	0.044
TA-15	0.017	0.008	0.018

2.7 Oil Storage Tanks

Two large diesel storage tanks are located at the TA-3 power plant for backup fuel to the boilers. Emissions from these tanks are estimated using software developed by EPA for estimating emissions from storage tanks (EPA 2008b). The TANKS 4.0 software requires inputs for tank parameters, site-specific meteorological conditions, and actual fuel throughputs.

The Laboratory included 15 storage tanks in its recently updated Title V permit application because they were subject to 40 CFR 60, Subpart Kb, New Source Performance Standards. Fourteen of the 15 tanks store mineral oil, scintillation oil, or dielectric oil, which all have vapor pressures of <0.01 mm

Hg. Applicability of Subpart Kb was modified by EPA in 2003 and these tanks are no longer subject to this regulation and were subsequently removed from the draft LANL Title V permit application.

Emissions from these smaller oil storage tanks were included for the first time in the 2002 annual emissions inventory. With agreement from NMED, emissions from the 14 tanks were summed and listed as one stack entry in the emissions inventory report due to the small quantity of emissions (email correspondence with Jim Shively, NMED/AQB, dated February 3, 2003). In 2010, NMED did not require emissions from these tanks to be included in the annual emissions inventory submittal as the emissions were insignificant. These tanks are also not included in the Title V Operating Permit semi-annual emissions reports.

2.8 Permitted Beryllium-Machining Operations

The Laboratory operates four permitted beryllium-machining operations that are subject to 40 CFR 61, Subpart C, and National Emission Standards for Beryllium. Emissions reported for the Beryllium Test Facility (ID 3) are from actual stack emissions measurements. Emissions for the Target Fabrication Facility (ID 2) are from initial compliance stack testing and are reported as permitted emission levels. In addition, emissions from the Plutonium Facility (ID 6) are reported at permitted emission levels. Foundry operations within the Plutonium Facility did not occur during this reporting period. Total emissions from all permitted beryllium operations are included in the semi-annual emissions reports.

2.9 Generators

LANL has four permitted generators (ID 56, ID 119, ID 120, and ID 135) with internal combustion engines located at TA-33 to support research activities. NMED issued a construction permit (Permit No. 2195-F) in October 2002 for installing the initial generator, and this unit is included in LANL's Title V Operating Permit. The unit first operated in May 2006. The unit (ID 56) operated for 65 hrs in 2010. Three more units were permitted in August 2007 at TA-33 (Permit No. 2195-P); they operated for a total of 115 hrs in 2010.

The Laboratory maintains approximately 37 stationary standby generators that are considered exempt sources under the Construction Permit regulations (20.2.72.202.b NMAC) and the annual emissions inventory requirements. However, the generators were included in the 2010 Emissions Inventory report in order to report CO₂ and CH₄ emissions in accordance with greenhouse gas regulations. These sources are also included in LANL's Title V Operating Permit with operating limits and emission limits. Therefore, these sources must be included in the semi-annual emissions reports. All stationary standby generators at LANL are exercised on a routine schedule to ensure they are operational and will function properly if needed. All units are equipped with hour meters to document how many hours they are used. The Laboratory maintains records on a semi-annual basis to document hour meter readings. The number of hours each generator is used in a reporting period is multiplied by AP-42 emission factors for diesel-fired internal combustion engines or natural-gas-fired internal combustion engines (EPA 1996). Emissions are then summed for each pollutant and reported on the semi-annual emissions reports for this source category. In addition, approximately 54 generators for CO₂ and CH₄ emissions are included in the Emissions Inventory report (ID 139).

2.10 Combustion Turbine

LANL has one combustion turbine located at the TA-3 power plant (ID 112). A revised construction permit was issued by NMED July 2004 to add the TA-3 combustion turbine as a new permitted source. This unit started operations in September 2007. Emission calculations are based on the initial stack compliance tests performed in 2007, AP-42, Tables 3.1-2a and 3.1-3, and information provided by the manufacturer. In 2010 this combustion turbine operated for 364.65 hours.

2.11 Emissions from Chemical Use Activities

The majority of the Laboratory's work is devoted to research and development (R&D) activities. Varying operating parameters, as well as amounts and types of chemicals, are used in these activities. R&D activities occur at virtually all technical areas within the Laboratory, typically in small quantities in laboratory settings. Figure 2.11-1 shows a typical laboratory at LANL where chemicals are used.

For the purposes of annual emissions inventory reporting, one equipment number has been assigned for all R&D chemical use (ID 7). Facility-wide chemical use emissions are reported on both the annual emissions inventory and the semi-annual emissions reports. The methods used to quantify emissions of VOC and HAPs from R&D activities are discussed below.

Figure 2.11-1 Example of a laboratory fume hood at LANL.

2.11.1 VOC Emissions

The Laboratory tracks chemical purchases through a facility-wide chemical tracking system called ChemLog. A download from the ChemLog inventory system was created that included all chemical containers added to LANL's inventory between January 1, 2010, and December 31, 2010. This dataset included 41,254separate line items of chemicals purchased.

The dataset was reviewed electronically to identify all VOCs purchased and received at LANL in 2010. With the exception of specific listed chemicals, VOCs are any compounds of carbon that participate in atmospheric photochemical reactions. VOCs include commonly used chemicals such as ethanol, methanol, trichloroethylene, and isopropanol. The general assumption used in estimating VOC emissions from chemical use is

Purchasing = Use = Emissions

From the dataset of chemicals purchased in 2010, certain categories of chemicals were separated and eliminated from the analysis. The classifications assigned and corresponding reasons (noted in parentheses) for exclusion of chemicals from inventory records are noted below.

- Solid materials (not a significant source of air emissions based on their low vapor pressure);
- Non-VOC materials as defined by 40 CFR 51.100 (specific chemicals in 40 CFR 51.100 are listed as having negligible photochemical reactivity and are exempt from the definition of VOC);
- Paints (paints were evaluated separately—see Section 3.5);
- Inorganic chemicals (inorganics are not compounds of carbon);
- Oils (not a significant source of air emissions based on low vapor pressure and primarily used for maintenance);
- Fuels used for combustion purposes (emissions from fuel combustion are reported for each combustion unit).
- Furthermore, the following categories of chemicals were eliminated based on guidance from NMED (letter from Mary Uhl, NMED/AQB, dated January 30, 2001):
- Container sizes of 1 lb or less;
- Chemicals with vapor pressures less than 10 mmHg;
- Chemicals used to calibrate equipment;
- Maintenance chemicals;
- Use of office equipment and products;
- Chemicals used for boiler water treatment operations;
- Chemicals used for oxygen scavenging (deaeration) of water; and
- Chemicals used in bench-scale chemical analysis.*

^{*}This exemption was applied only to biological research solutions. Otherwise, this exemption was not applied (see Table 3.3-1).

After elimination of chemicals and categories of chemicals listed above, the remaining chemical inventory records were matched with a list of known VOCs by CAS number. For mixtures (chemicals without CAS numbers), material safety data sheets (MSDSs) were reviewed to determine if any VOCs were present and, if so, to determine the associated percent volatile. As a conservative estimate, VOCs identified in ChemLog records were assumed to be 100% emitted to air. Estimated emissions of VOCs from chemical use in 2010 totaled 6.66 tons.

2.11.2 HAP Emissions

Section 112(b) of the 1990 Clean Air Act Amendments listed 188 unique HAPs identified for potential regulation by EPA. In 1995, caprolactam was delisted as a HAP, and methyl ethyl ketone was delisted in 2005. Of the remaining 187 listed HAPs, 17 are classes of compounds (e.g., nickel compounds). Use of the 187 listed chemicals in activities at the Laboratory was evaluated and quantified for the annual emissions inventory submittal to NMED.

The ChemLog inventory system 2010 dataset was analyzed to identify HAPs. The identification process was similar to that used for VOCs. Pure chemicals (i.e., chemicals with CAS numbers), classes of compounds, and mixtures were evaluated to determine if the chemicals themselves were HAPs or if they contained HAP constituents. For mixtures, MSDSs were reviewed to determine if any HAPs were present and, if so, to determine the associated HAP percentages. Listed below are certain chemical types or categories that were identified and removed from this analysis (refer to Section 2.11.1 and Table 3.3-1 for explanations on removal of these chemicals):

- > Paints;
- ➤ Oils:
- ➤ Maintenance chemicals:
- Chemicals used to calibrate equipment;
- Container sizes of 1 lb or less;
- > Chemicals used in bench-scale chemical analysis;
- Use of office equipment and products;
- > Chemicals used for boiler water treatment operations; and
- ➤ Chemicals used for oxygen scavenging (deaeration) of water.

Total HAP emissions were estimated by summing 1) pure HAP chemicals, 2) classes of compounds that are HAPs, and 3) the HAP constituents from mixtures. The resulting total amount of HAPs from chemical use reported for 2010 was 3.76 tons.

The HAP emissions reported generally reflect quantities procured in the calendar year. In a few cases procurement values and operational processes were further evaluated so that actual air emissions could be reported instead of procurement quantities. Additional analyses for certain metals and acids were performed and are described below.

HAP Metals

Purchases of beryllium, chromium, lead, manganese, mercury, and nickel compounds were evaluated to determine usage and potential air emissions. Several of the purchases were identified as laboratory

calibration standards containing only parts per million quantities of the metals. These were exempt from emissions inventory requirements because of their use as standards for calibrating laboratory equipment. Other purchasers of relatively large quantities of metal compounds that were contacted confirmed that the material was still in use or in storage and had not resulted in air emissions.

2.12 Greenhouse Gas Emissions

In order to satisfy the Laboratory's reporting requirement under 20.2.87 NMAC, Greenhouse Gas Emissions Reporting (NMED 2009c). The Laboratory's 2010 Emissions Inventory Report includes direct carbon dioxide and methane emissions from stationary combustion sources, fugitive emissions from research and development activities and indirect emissions from electricity use in tons per year. The carbon dioxide equivalents (CO₂e) for methane are also included. This means that the methane emissions are multiplied by 21 so it is equivalent to the emissions from carbon dioxide. Please view all the greenhouse gas emissions on Table 2.12-1.

2.12.1 Greenhouse Gas Emissions from Research and Development Activities

Vented and fugitive emissions were reported in the 2010 Annual Emissions Inventory for research and development activities around the Laboratory (ID 7). The emissions from chemical use were found by querying purchases of methane and carbon dioxide and assuming that they emitting 100% of their weight. This provides the very conservative estimates of 3.18 tons of carbon dioxide emissions and 1.27 tons (26.67 CO₂e)of methane emissions.

2.12.2 Greenhouse Gas Emissions from Electrical Use

Indirect emissions created from electrical use at LANL-owned properties and leased property were reported in the 2010 Annual Emissions Inventory. LANL makes up more than 2,000 individual facilities, including 47 technical areas with 8 million square feet under roof. The LANL owned properties released 254,356 tons of carbon dioxide. LANL also leases 396,623.6 sq ft of property, which emitted 4,477.84 tons of carbon dioxide.

2.13 Emissions Summary by Source

Table 2.12-1 provides a summary of LANL's 2010 actual emissions, as submitted for the annual emissions inventory. The table presents emissions by pollutant and by source, with a facility total at the bottom of the table. Attachment A provides detailed information on how emissions were calculated for each emission unit.

Table 2.12-1
Summary of LANL 2010 Reported Emissions for Annual Emissions Inventory

	NO _X (tons/yr)	SO _x (tons/yr)	PM ₁₀ (tons/yr)	PM _{2.5} (tons/yr)	CO (tons/yr)	VOC (tons/yr)	HAPs (tons/yr)	CO ₂ (tons/yr)	CH ₄ (tons/y)	CO ₂ e*** (tons/yr)
TA-3 Power Plant Boilers	13.210	0.139	1.731	1.731	9.110	1.252	0.430	24,776.33	0.047	0.987
Non-Exempt Boilers	6.60	0.042	0.593	0.593	4.834	0.386	0.13	7,544.9	0.142	2.982
Asphalt Plant	0.045	0.003	0.004	0.004	1.562	0.006	0.005	124.97	0.006	0.126
Data Disintegrator	n/a*	n/a	0.04	0.03	n/a	n/a	n/a	n/a	n/a	n/a
Degreaser	n/a	n/a	n/a	n/a	n/a	0.01	0.01	n/a	n/a	n/a
Carpenter Shops	n/a	n/a	0.058	0.028	n/a	n/a	n/a	n/a	n/a	n/a
R&D Chemical Use	n/a	n/a	n/a	n/a	n/a	6.66	3.76	n/a	n/a	n/a
TA-33 Generators	1.88	0.21	0.08	n/a	1.24	0.06	4.55E-04	114.12	0.005	0.105
TA-3 Turbine	1.972	0.137	0.265	0.265	0.410	0.086	0.054	4,246.94	0.080	1.68
Exempt Boilers (GHG** only)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	23,206.50	0.438	9.198
Stationary Standby Generators (GHG only)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	278.97	0.011	0.231
Electricity Use on LANL Owned Property (GHG only)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	253,211.07	3.370	70.77
Electricity Use on Leased Property (GHG only)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	4,457.68	0.059	1.239
R&D Fugitive/Venting (GHG only)	n/a	n/a	n/a	n/a	n/a	n/a	n/a	3.18	1.27	26.67
TOTAL	23.71	0.53	2.77	2.65	17.16	8.46	4.39	317,964.66	5.43	113.99

^{*} n/a = Not Applicable. ** GHG = greenhouse gas. *** CO_2e = Carbon Dioxide Equivalent from methane emissions

Table 2.12-2 provides a summary of 2010 emissions as reported on the semi-annual emissions reports required by the Title V Operating Permit. Attachment A provides detailed information on how emissions were calculated for each emission source category.

Table 2.12-2
Summary of LANL 2010 Semi-annual Emissions as Reported Under
Title V Operating Permit Requirements

	NO _x (tons/yr)	SO _x (tons/yr)	PM ₁₀ (tons/yr)	PM _{2.5} (tons/yr)	CO (tons/yr)	VOC (tons/yr)	HAPs (tons/yr)
TA-3 Power Plant Boilers	13.210	0.139	1.731	1.731	9.110	1.252	0.430
All Small Boilers & Heaters	27.93	0.17	2.214	2.214	22.753	1.56	0.534
Asphalt Plant	0.045	0.003	0.004	0.004	1.562	0.006	0.005
Data Disintegrator	n/a*	n/a	0.04	0.03	n/a	n/a	n/a
Degreaser	n/a	n/a	n/a	n/a	n/a	0.01	0.01
Carpenter Shops	n/a	n/a	0.058	0.028	n/a	n/a	n/a
R&D Chemical Use	n/a	n/a	n/a	n/a	n/a	6.66	3.76
Stationary Standby Generators	6.00	0.25	0.30	0.30	1.39	0.30	0.002
TA-33 Generators	1.88	0.24	0.08	n/a	1.24	0.06	4.55E-04
TA-3 Turbine	1.972	0.137	0.265	0.265	0.410	0.086	0.054
TOTAL	51.04	0.94	4.69	4.57	36.47	9.93	4.80

^{*} n/a = Not Applicable. ** Source category not included in Title V Operating Permit.

3.0 REPORTING EXEMPTIONS

Specific activities that are determined to be insignificant under NMED's Operating Permit program (20.2.70 NMAC) are exempt from reporting under the emissions inventory requirements (20.2.73.300 NMAC). NMED has designated exempt sources, activities, or thresholds in the following lists:

- List of Insignificant Activities, March 25, 2005 (NMED 2005), and
- List of Trivial Activities, January 10, 1996 (NMED 1996).

Laboratory sources and activities that qualify as insignificant or trivial as specified in these lists are not included in the annual emissions inventory. The following subsections of this report provide information and examples of the Laboratory's exempt activities as well as analyses performed to determine exempt status.

3.1 Boilers

The Laboratory's boiler inventory was evaluated against the List of Insignificant Activities (NMED 2005). Specifically, boilers were exempted from emissions inventory reporting requirements if they met one of the following requirements:

Fuel-burning equipment that uses gaseous fuel has a design rate less than or equal to 5M BTU/hr, and is used solely for heating buildings for personal comfort or for producing hot water for personal use, or

Any emissions unit . . . that has the potential to emit no more than **1 ton/yr** of any regulated pollutant

Any boiler that was not used exclusively for comfort heating or hot water was evaluated for the one ton per year exemption. For purposes of determining exemptions, boiler design ratings were used to estimate potential to emit. Any boiler not qualifying for one of these two exemptions is included in the annual emissions inventory with its own unique equipment number.

Although these exempt boilers are not required on the Emissions Inventory report, they are required for the Greenhouse Gas Emissions reporting. Per NMED request, direct CO₂ and CH₄ emissions from stationary combustion sources in tons per year are being reported for in 2010. This satisfies LANL's reporting requirement under 20.2.87 NMAC, Greenhouse Gas Emissions Reporting (NMED 2009c).

For the semi-annual emissions reports, emissions from all boilers and heaters were summed and reported for the entire source category.

3.2 Generators

The Laboratory maintains an inventory of approximately 73 portable generators. Portable generators are used at the Laboratory for temporary operations requiring remote power or to provide emergency backup power during power outages at various sites. The portable generators are fueled by gasoline and/or diesel fuel

In addition to portable generators, the Laboratory maintains and operates approximately 45 stationary standby generators. Stationary generators are used on standby (emergency) status to provide power to critical systems at the Laboratory during power outages. The stationary generators are fueled by natural gas, propane, gasoline, or diesel.

The insignificant activity exemptions applicable to the Laboratory's generators are the following:

- ➤ Portable engines and portable turbines that have a design capacity . . . less than or equal to
 - o 200-horsepower engine if fueled by diesel or natural gas, and
 - o 500-horsepower engine if fueled by gasoline.
- Emergency generators which on a temporary basis replace equipment used in normal operation, and which either have an allowable emission rate or potential to emit for each pollutant that is equal to or less than the equipment replaced, or which do not operate for a period exceeding 500 hr per calendar year.

On the basis of size, portable generators used for temporary power at remote locations are exempt from emissions inventory reporting requirements. Further, LANL's small portable generators are considered trivial activities and are not included in the Title V Operating Permit or semi-annual emissions reports. All stationary generators are designated as standby equipment under the Operating Permit Program and are used solely to provide emergency backup power for less than 500 hours per year. Therefore, they are considered insignificant sources and are also exempt from annual emissions inventory reporting requirements. However, the stationary standby generators were voluntarily included as a source category in the Title V Operating Permit and are included in the semi-annual emissions reports.

Direct CO₂ and CH₄ emissions from stationary combustion sources are being reported in 2010. Therefore, generators that are exempt for the Emissions Inventory report are now being declared in the Greenhouse Gas Emissions report, as required by 20.2.87 NMAC, Greenhouse Gas Emissions Reporting (NMED 2009c).

3.3 VOC Emissions

A number of insignificant and trivial activities were applicable for exempting materials from the VOC chemical use total in the emissions inventory. The basis of the exemptions and corresponding insignificant or trivial activities are explained in Table 3.3-1.

Fuels such as propane, kerosene, and acetylene were analyzed separately and are not listed in Table 3.3-1. When fuels are burned in an open flame, almost all of the fuels are consumed and VOC emissions are minimal. Emissions from fuel combustion are accounted for using emission factors for each fuel-burning unit.

Table 3.3-1 Exemptions Applied for Chemical Use Activities

-	Programme and the second secon					
Basis of Exemption	Activity Type	Activity				
Container sizes of 1 pound or less	Trivial	Paint or nonpaint materials dispensed from prepackaged aerosol cans of 16-oz. capacity or less.				
Chemicals with vapor pressures less than 10 mmHg	Insignificant	Any emissions unit, operation, or activity that handles or stores a liquid with vapor pressure less than 10 mmHg or in quantities less than 500 gal.				
Calibration chemicals	Trivial	Routine calibration and maintenance of laboratory equipment or other analytical instruments, including gases used as part of those processes.				
Maintenance chemicals and oils	Trivial	Activities that occur strictly for maintenance of grounds or buildings, including lawn care; pest control; grinding; cutting; welding; painting; woodworking; sweeping; general repairs; janitorial activities; plumbing; re-tarring roofs; installing insulation; steam-cleaning and water-washing activities; and paving of roads, parking lots, and other areas.				
		Activities for maintenance and repair of equipment, pollution-control equipment, or motor vehicles either inside or outside of a building.				
Use of office equipment and products	Trivial	Use of office equipment and products, not including printers or businesses primarily involved in photographic reproduction.				
Chemicals used for boiler water treatment	Trivial	Boiler water treatment operations, not including cooling towers.				
Chemicals used for oxygen scavenging	Trivial	Oxygen scavenging (deaeration of water).				
Chemicals used in bench-scale chemical analysis	Trivial	Bench-scale laboratory equipment used for physical or chemical analysis but not lab fume hoods or vents. <i>Note: This exemption was applied only to biological research solutions. Otherwise, this exemption was not applied.</i>				

3.4 HAP Emissions

The HAP chemical use exemption analysis, similar to the VOC chemical use exemption analysis, resulted in application of several of the same exemptions from NMED/AQB List of Insignificant Activities (NMED 2005) and List of Trivial Activities (NMED 1996) (refer to Table 3.3-1).

3.5 Paints

An analysis of VOC and HAP emissions resulting from painting activities at the Laboratory was performed to determine if certain exemptions apply. Paint information for 2010 was gathered from the ChemLog chemical inventory system. These records were evaluated for applicability of exemptions for trivial and insignificant activities.

The following exemptions from NMED/AQB Operating Permit Program List of Trivial Activities (NMED 1996) were used in the paint analysis:

- Activities that occur strictly for maintenance of grounds or buildings, including the following: lawn care; pest control; grinding; cutting; welding; painting; woodworking; sweeping; general repairs; janitorial activities; plumbing; re-tarring roofs; installing insulation; steam-cleaning and water-washing activities; and paving of roads, parking lots, and other areas.
- Activities for maintenance and repair of equipment, pollution control equipment, or motor vehicles either inside or outside of a building.
- Paint or nonpaint materials dispensed from prepackaged aerosol cans of 16 oz. or less capacity.

The amount of paint that did not qualify for a Trivial Activity totaled to 13,220 pounds (6.6 tons) which is above the two-ton emission limit for insignificant activities:

> Surface coating of equipment, including spray painting and roll coating, for sources with facility-wide total cleanup solvent and coating actual emissions of less than two tons per year.

In conclusion, painting materials that were used in the construction project at RLUOB were reported in the Semi-Annual Emissions Inventory Report for July through December 2010. The reported paint emissions for 2010 were 440.11 lbs (0.22 tons) of VOCs and 181.53 lbs (0.09 tons) of HAPs. After those paints were reported, there were 3,832 pounds (1.9 tons) of unclassified paint leftover, which then falls under the 2 ton limit, shown above.

4.0 EMISSIONS SUMMARY

4.1 2010 Emissions Summary

Table 4.1-1 presents facility-wide estimated actual emissions of criteria pollutants for 2010 as reported in the annual emissions inventory and the semi-annual emissions reports. In addition, the Title V Operating Permit emissions limits are included. Table 4.1-2 presents estimated actual emissions for HAPs from chemical use. Emission unit information and detailed emissions calculations are included in Attachment A. The 2010 emissions inventory report as submitted to NMED is presented in Attachment B. Attachment C includes semi-annual emissions reports for 2010.

Table 4.1-1
LANL Facility-Wide Criteria Pollutant Emissions for 2010

Pollutant	Estimated actual Emissions for Annual Emissions Reporting (tons/yr)	Estimated actual Emissions for Semi-annual Title V Operating Permit Reporting (tons/yr)	Title V Operating Permit Facility-Wide Emission Limits (tons/yr)
NO _x	17.1	51.0	245
SO _x	0.5	1.0	150
CO	12.4	36.5	225
PM	2.2	4.7	120
PM_{10}	2.2	4.7	120
$PM_{2.5}$	2.2	4.7	*
VOC	8.1	9.9	200
CO_2	317,964.66	n/a	**

^{*}No Title V Operating Permit facility-wide emission limits on PM_{2.5}.**No greenhouse gas emission limit and CO₂ values are in metric tonnes per year.

Table 4.1-2
LANL HAP Emissions from Top Five Chemicals Used in 2010

Pollutant	Chemical Use HAP Emissions* (tons/yr)
Top 5 HAPs	
Methyl chloroform (1,1,1- Trichloroethane)	1.44
Glycol ethers	0.41
Methanol	0.29
Methylene chloride (Dichloromethane)	0.23
HexaneAll other HAPs from Chemical Use	0.22
	2.21
Total HAPs	4.8

^{*}HAP emissions from combustion sources are included in the emissions reports, however, they are negligible and do not contribute significantly to facility-wide HAP emissions.

HAP emissions from combustion sources are included in the emissions reports, however, they are negligible and do not contribute significantly to facility-wide HAP emissions.

Figure 4.1-1 shows criteria air pollutant emissions by source for 2010, excluding the very small emissions sources such as the data disintegrator, asphalt plant, degreasers, and carpenter shop. As the figure shows, the TA-3 power plant and the sum of emissions from all small boilers and heaters were the largest sources of CO and NO_x emissions in 2010. R&D chemical use was the largest source of VOC emissions.

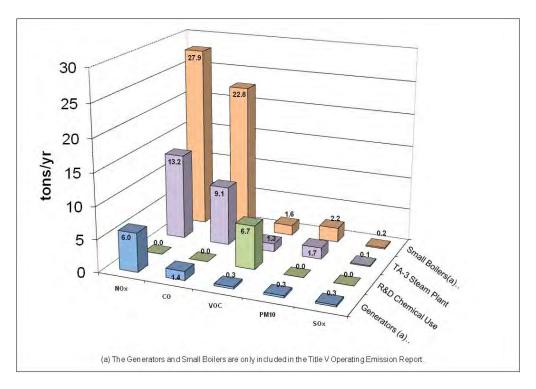


Figure 4.1-1 Emissions of criteria pollutants by source in 2010.

4.2 Emission Trends and Title V Permit Limits

A comparison of historical emissions to the facility-wide emission limits in the Title V Operating Permit is provided in this section. It should be noted that the facility-wide emission limits in the Operating Permit include emissions from some sources that are not included in the annual emissions inventory, most notably small (insignificant) boilers and emergency standby generators. However, historical data are only available for emission sources that were included in the annual emissions inventory submittals.

Figure 4.1-2 provides a comparison of the past 10 years' facility-wide emissions for criteria air pollutants as reported to NMED on the annual emissions inventory submittal. The facility-wide emission limits included in LANL's Title V Operating Permit are also shown on the graph.

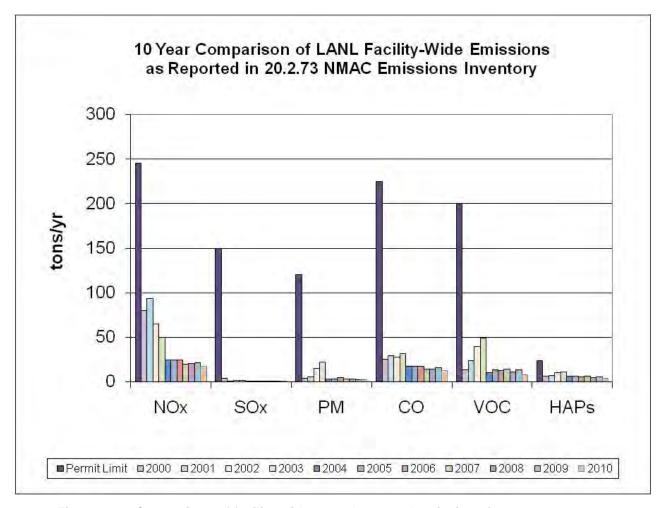
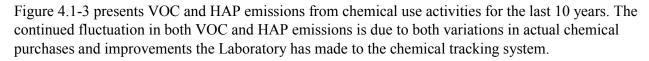



Figure 4.1-2 Comparison of facility-wide annual reported emissions from 1999–2010.

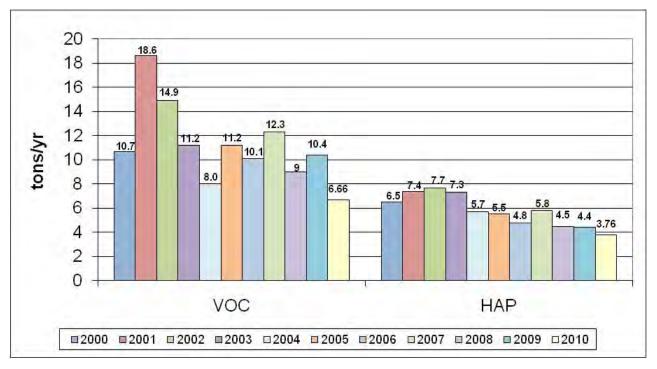


Figure 4.1-3 VOC and HAP emissions from chemical use, 1999–2010.

REFERENCES

- EPA (U.S. Environmental Protection Agency), 2008a. "Aerometric Information Retrieval System (AIRS)," http://www.epa.gov/enviro/html/airs/ (Accessed January 2010).
- EPA (U.S. Environmental Protection Agency), 2008b. "TANKS Emission Estimation Software," http://www.epa.gov/ttn/chief/software/tanks/ (Accessed January 2010).
- EPA (U.S. Environmental Protection Agency), 1998. "Compilation of Air Pollutant Emission Factors," AP-42, Fifth Edition, Section 1.4–Natural Gas Combustion, July 1998, and Section 1.3–Fuel Oil Combustion, http://www.epa.gov/ttn/chief/ap42/ (September 1998).
- EPA (U.S. Environmental Protection Agency), 1996. "Compilation of Air Pollutant Emission Factors," AP-42, Fifth Edition, Section 3.3–Gasoline and Diesel Industrial Engines, and Section 3.4–Large Stationary Diesel and All Stationary Dual-Fuel Engines, http://www.epa.gov/ttn/chief/ap42/ (October 1996).
- LANL (Los Alamos National Laboratory), 2010a. "2009 Emissions Inventory Report Submittal to the New Mexico Environment Department," LA-UR-10-04076 (June 2010).
- LANL (Los Alamos National Laboratory), 2010b. "Semi-Annual Emissions Report, July–December 2008," submitted to the New Mexico Environment Department, Los Alamos National Laboratory document LA-UR-10-01314(March 2010).
- LANL (Los Alamos National Laboratory), 2009a. "Semi-Annual Emissions Report, January–June 2008," submitted to the New Mexico Environment Department, Los Alamos National Laboratory document LA-UR-09-05204 (August 2009).
- NMED (New Mexico Environment Department, Air Quality Bureau), 2009b. "Clean Air Act, Title V Operating Permit No. P100R1" (August 2009).
- NMED (New Mexico Environment Department, Air Quality Bureau, Operating Permit Program), 2005. "List of Insignificant Activities under Title V Operating Permits," http://www.nmenv.state.nm.us/aqb/forms/InsignificantListTitleV.pdf (March 2005).
- NMED (New Mexico Environment Department, Air Quality Bureau, Operating Permit Program), 1996. "List of Trivial Activities under Title V Operating Permits," http://www.nmenv.state.nm.us/aqb/forms/TrivialListTitleV.pdf (January 1996).
- NMED (New Mexico Environment Department, Air Quality Bureau, Operating Permit Program), 2009c, "Greenhouse Gas Emission Reporting", Title 20, Ch. 2, Pt. 87 (2009).
- Federal Register, Vol. 74, No. 209, 2009c. "Default CO2 Emissions Factors and High Heat Values for Various Types if Fuel." 40 CFR Part 98, Subpart C, Table C-1. (October 2009).
- Federal Register, Vol. 74, No. 209, 2009d. "Default CH4 and NO2 Emissions Factors for Various Types if Fuel." 40 CFR Part 98, Subpart C, Table C-1. (October 2009).

Attachment A

Emission Calculation Worksheets For Individual Emission Unit

2010 Greenhouse Gas Emissions Summary

		Greenh	ouse Gases (in N	letric Tons)	1
		Carbon Dioxide	Methane (CH ₄)	Nitrous Oxide (N ₂ O)	
	Source	(CO ₂) Emissions	Emissions	Emissions	CO₂e
Combustion:	Asphalt Plant	124.97	0.0061	0.0012	125.48
	Boilers (all except Power Plant)	30,751.40	0.5800	0.0580	30,781.56
	Combustion Turbine	4,246.94	0.0801	0.0080	4,251.10
	Generators - Permitted	114.12	0.0046	0.0009	114.50
	- Stationary Standby	278.97	0.0111	0.0022	279.89
	- Portable	143.70	0.0058	0.0012	144.19
	Power Plant	24,776.33	0.4675	0.0468	24,800.65
	Total GHG Emissions from Combustion:	60,436.44	1.1552	0.1183	
CO ₂ Equiv	valents (CO₂e) from Combustion per gas:	60,436.44	24.2598	36.6725	1
Total C	O ₂ Equivalents (CO ₂ e) from Combustion:	60,497.37			-
Electricity Use:	LANL Owned Properties	253,211.07	3.3704	3.4650	254,356.00
	Leased Properties	4,457.68	0.0593	0.0610	4,477.84
To	otal GHG Emissions from Electricity Use:	257,668.76	3.4297	3.5260	
CO ₂ Eq	uivalents (CO₂e) from Electricity per gas:	257,668.76	72.0234	1,093.0580]
Total CO ₂	Equivalents (CO ₂ e) from Electricity Use:	258,833.84			
			•		
Vented & Fugitive:	Sanitary Wastewater Treatment Facility				0.00
	Vented & Fugitive (R&D)				0.00
Tota	I GHG Emissions from Venting/Fugitive:	0.00	0.0000	0.0000	
					1
CO ₂ Equivalents (CO ₂ e) from Venting/Fugitive per gas:		0.00	0.0000	0.0000]
Total CO ₂ I	Equivalents (CO ₂ e) fromVenting/Fugitive:	0.00			
	CO ₂ Equivalents (CO ₂ e) per gas at LANL:	318,105.20	96.28	1,129.73	1
	Total CO ₂ Equivalents (CO ₂ e) at LANL:	319,331.21	00.20	1,120.70	J
	2 (2-)	-,			

2010 TA-60 BDM Asphalt Plant

Data	Reviewed	By/	Date:
------	----------	-----	-------

	Data Entry			Data Entry	
Month	Asphalt Produced (Tons)	12-Month Rolling Total	Month	Asphalt Produced (Tons)	12-Month Rolling Total
January	16	1,278	July	146	1,385
February	89	1,305	August	47	1,372
March	92	1,272	September	55	1,286
April	246	1,452	October	158	1,412
May	202	1,487	November	70	1,424
June	280	1,273	December	9	1,410
6 mo. Total	925		6 mo. Total:	485	,

Tons/Asphalt Produced:	1,410
------------------------	-------

Annual Hours							
Month	Hours	Month	Hours				
Jan	0.0	Jul	19.57				
Feb	15.6	Aug	4.83				
Mar	11.8	Sep	7				
Apr	21.8	Oct	16.17				
May	26.5	Nov	11.4				
Jun	23.6	Dec	1.8				
Total:	99.2	Total:	60.8				

Annual Total (to date): 160 Hours

Hours are Limited to 4380 per Year.

Emission Calculations

Pollutant	Emission Factor (lbs/hr)	Annual Emissions (tons)	Emissions (tons) Jan-June	Emissions July-Dec (tons)	Reference
NOx	0.56	0.045	0.028	0.017	(b)
CO	19.53	1.562	0.968	0.594	(b)
PM	0.33	0.026	0.016	0.010	(b)
Pollutant	Emission Factor (lb/ton)	Annual Emissions (tons)	Emissions (tons) Jan-June	Emissions (tons) July-Dec	Reference
PM-10	0.006	0.004	0.003	0.001	(c)
PM-2.5	0.006	0.004	0.003	0.001	(c)
SOx	0.0046	0.003	0.002	0.001	(a)
VOC	0.0082	0.006	0.004	0.002	(a)
HAPs					
Acetaldehyde	0.00032	0.000	0.000	0.000	(d)
Benzene	0.00028	0.000	0.000	0.000	(d)
EthylBenzene	0.0022	0.002	0.001	0.001	(d)
Formaldehyde	0.00074	0.001	0.000	0.000	(d)
Napthalene	0.000036	0.0000	0.000	0.000	(d)
POM	0.00011	0.0001	0.000	0.000	(d)
Quinone	0.00027	0.000	0.000	0.000	(d)
Toluene	0.001	0.001	0.000	0.000	(d)
Xylene	0.0027	0.002	0.001	0.001	(d)
TOTAL HAPS	-	0.005	0.004	0.002	
EPCRA 313		tons	lbs./year		
Lead	8.90E-07	6.27E-07	0.0013		(e)
Sulfuric Acid	0.0046	3.24E-03	6.49		(f)
Mercury	4.10E-07	2.89E-07	0.0006		(e)
PACs	2.70E-08	1.90E-08	3.81E-05		(d)
Benzo(g,h,i) perylene	5.00E-10	3.53E-10	7.05E-07		(g)

Reference

- (a) AP-42, Sec. 11.1, *Hot Mix Asphalt Plants*, Table 11.1-5 & 11.1-6, Updated 4/2004
- **(b)** Calculated using stack test results performed on May 18, 2009 by TRC Air Mesurements. Pound per hour values were determined at a throughput rate of 45 tons/hour (the highest achievable rate during the test).
- (c) PM-10 emission factor is calculated as 64% of the PM emission factor, using the same ratio of PM to PM-10 as provided in AP-42 Table 11.1-1. No data provided for PM-2.5, assume same as PM-10.
- (d) AP-42, Table 11.1-9, Hot Mix Asphalt Plants, Updated 4/2004
- (e) AP-42, Table 11.1-11, Hot Mix Asphalt Plants, Updated 4/2004
- (f) Assume all SOx is converted to sulfuric acid
- (g) EPCRA PAC Guidance Document, EPA-260-B-01-03, June 2001, Table 2-3

2010 TA-3 & TA-15 Carpenter Shops

NMED ID -- TA-3 (AREA 3) and TA-15 (AREA 4)

TA-3	Data Entry	TA-3	Data Entry
	Hours of Operation ¹		Hours of Operation ¹
Month	TA-3	Month	TA-3
January	5.3	July	4.2
February	4.3	August	28.2
March	17.6	September	13.0
April	11.1	October	13.1
May	12.0	November	1.1
June	9.5	December	5.2
6 mo. Total	59.8	6 mo. Total:	64.8

TA-15	Data Entry	TA-15	Data Entry
	Hours of Operation ¹		Hours of Operation ¹
Month	TA-15	Month	TA-15
January	5.4	July	7.0
February	2.4	August	5.2
March	4.0	September	6.6
April	8.1	October	8.1
May	7.8	November	6.3
June	3.3	December	1.7
6 mo. Total	31.0	6 mo. Total:	34.9

Saws, drills, shaping and sanding equipment shall each not operate in excess of 4368 hours per year.

Reference

1. Based on information provided monthly by the shop foreman from each shop.

Reviewed By/Date:	

Carpenter Shop Emissions Calculations for 2010

ANNUAL EMISSIONS					PM F	Post Cyclone E	missions
	Operation Parameters		TSP Prior to Cyclone	TSP Post Cyclone	(tons/year)		
	Exhaust Flow (ft3/min)	Hours of ⁽³⁾ Operation (hr/yr)	(tons/year)	tons/yr	(PM) (PM > 40µm)	(PM 10) (PM 5-20 µm)	(PM 2.5) (PM <2.5 μm)
TA-3-38	2706	125	0.119	0.043	0.003	0.021	0.020
TA-15-563	2100	66	0.049	0.018	0.001	0.009	0.008
January throu	igh June Emis	sions			PM F	Post Cyclone E	missions
	Operation Pa	rameters	TSP Prior to Cyclone	TSP Post Cyclone		(tons)	
	Exhaust Flow (ft3/min)	Hours of ⁽³⁾ Operation (hr/period)	tons	tons	(PM) (PM > 40μm)	(PM 10) (PM 5-20 μm)	(PM 2.5) (PM <2.5 μm)
TA-3-38	2706	60	0.057	0.021	0.001	0.010	0.009
TA-15-563	2100	31	0.023	0.008	0.001	0.004	0.004
July through I	December Emi	ssions		•	PM F	Post Cyclone E	missions
	Operation Pa	rameters	TSP Prior to Cyclone	TSP Post Cyclone	(tons)		
	Exhaust ⁽¹⁾ Flow (ft3/min)	Hours of ⁽³⁾ Operation (hr/period)	tons	tons	(PM) (PM > 40µm)	(PM 10) (PM 5-20 μm)	(PM 2.5) (PM <2.5 μm)
TA-3-38	2706	65	0.062	0.023	0.002	0.011	0.010
TA-15-563	2100	35	0.026	0.009	0.001	0.005	0.004

Conversions:

lb/ton	lb/grain	min/hr	ton/lb
2000	0.00014	60	0.0005

Assumptions:

	Cyclone ⁽⁴⁾	% PM in Wood Dust Prior ⁽⁵⁾ to
	Efficiencies	Cyclone
PM < 2.5	0.45	0.30
PM 5-20 microns	0.65	0.50
PM > 40 microns	0.95	0.50

Post Cyclone Emission Factor:

grain/ft ³	(2)
0.03	

Shop Location Flow Rate

Maximum permitted exhaust flow rate is: TA-3-38 5000 cfm TA-15-563 5471 cfm

3.07 tpy of PM10 for the TA-3-38 shop **Allowable Emission Limits are:** 2.81 tpy of PM10 for the TA-15-563 shop

- References: 1.) Exhaust Rate calculated by Victor Martinez.
 - 2.) Emission Factor obtained from AP-42, Section 10.4 Woodworking Waste Collection Operations, post cyclone emissions, Table 10.4.1, February 1980.
 - 3.) Based on information provided monthly by the shop foreman.
 - 4.) K. Wark & C.F. Warner, Air Pollution Its Origin and Control, Table 5-9, pg 186 (1976).
 - **5.)** Emissions Inventory Improvement Program (EIIP) Uncontrolled Emission Factor Listing for Criteria Air Pollutants, Volume II: Chapter 14, July 2001 And AP-42 Appendix B, Section 10.5 Woodworking Waste Collection Operations: Belt Sander Hood Exhaust Cyclone.

Reviewed By/Date	
Reviewed By/Date	

	Data Entry		Data Entry
Month	Boxes ^(c) Shredded	Month	Boxes ^(c) Shredded
January	73	July	20
February	57	August	146
March	166	September	49
April	135	October	63
May	123	November	89
June	43	December	90
6 mo. Total:	597	6 mo. Total:	457

Annual Boxes:

1,054

Emission Calculations

	Emission ^(b) Factor	% in Exhaust ^(e)	Control ^(d) Efficiency (Cyclone)	Control ^(d) Efficiency (Baghouse)
PM 2.5	15%	15%	0%	95.0%
PM 10	15%	90%	75%	95.0%
TSP	15%	100%	75%	95.0%

Average Box Weight^(a) 45 Pounds

	Amount Processed (pounds)	PM-2.5 Emissions (pounds)	PM-2.5 Emissions (tons)	PM-10 Emissions (pounds)	PM-10 Emissions (tons)	TSP Emissions (pounds)	TSP Emissions (tons)
Annual	47,430	53.4	0.03	80.0	0.04	88.9	0.04
January - June	26,865	30.2	0.02	45.3	0.02	50.4	0.03
July - December	20,565	23.1	0.01	34.7	0.02	38.6	0.02

Reference

- (a). Estimated is 45 pounds. Information provided by shredding operations. Full box weight of tightly packed paper.
- (b). Emission Factor (percentage of material maximum box weight shredded that will enter into the exhaust) obtained from the manufacturer of the air handling system, AGET Manufacturing Co. 15% is also listed in the construction permit application.
- (c). Information provided by operations personnel.
- (d). Information on control equipment efficiencies was provided by the manufacturer (SEM) of the Data the shredding Disintegrator. Those values not given were extrapolated using manufacturer data. Efficiencies of 75% for the Cyclone and 95% for the bag house are 90% is PM10. listed in the construction permit application. (see cyclone efficiency tab for more info.)
 - (e). Manufacturer provided info that the dust into the exhaust would be in the size range of 5-20 um. Conservative assumption that 15% is PM2.5, and

TA-55-DG-1 Degreaser Emissions Jan-01-2010 through Dec-20-2010

Month Year	Emissions (lbs)
Jan-10	0.82
Feb-10	0
Mar-10	6.33
Apr-10	0.63
May-10	0
Jun-10	3.16
Jul-10	0
Aug-10	1.27
Sep-10	1.27
Oct-10	1.27
Nov-10	2.53
Dec-10	1.9
Total Emissions:	19.18

^{*}NA is displayed if data for the month is not available

Type: Cold Batch

TA: 55

Building:

Solvent: Trichloroethylene

	Permitted Generators								First Half 2010			Second Half 2010				
								Rea	ading	6 Month			12 Month			* Total
								2nd	half of	Reading		Hours	Reading		Hours	Run
TA	Bldg	ID#	Manufacture	Serial #	MODEL	KW	Fuel Type	previo	us year	Date	Reading	Run	Date	Reading	Run	Hours
33	290	G-0012	Kohler	375801	1600ROZD	1600	Diesel	Dec. 09	34.3	Jun-10	87.5	53.2	Dec-10	99.0	11.5	64.7
33	151	G-0007	Caterpillar	6PK01065	XQ225	225	Diesel	Dec. 09	3307.0	Jun-10	3393.0	86.0	Dec-10	3407.0	14	100.0
33	209	G-0008	Kohler	2025460	20EORZ	20	Diesel	Dec. 09	384.1	Jun-10	387.1	3.0	Dec-10	393.0	5.9	8.9
33	280	G-0010	Kohler	2025461	20EORZ	20	Diesel	Dec. 09	175.9	Jun-10	176.8	0.9	Dec-10	182.0	5.2	6.1

^{*} The 225 kW and the two 20 kW generators have a limit of 500 hours of operation per year. The 1600 kW unit is limited to 900 hours per year.

				First 6 N	Ionth Er	onth Emissions of 2010 Second 6 Month Emissions of 2010								
Permit ID	ID#	Unit	NOx (lbs)	CO (lbs)	SOx (lbs)	PM (lbs)	VOC (lbs)	HAPs (lbs)	NOx (lbs)	CO (lbs)	SOx (lbs)	PM (lbs)	VOC (lbs)	HAPs (lbs)
TA-33-G-1	G-0012	33-290	2298.2	1872.6	340.5	76.6	42.6	5.0E-01	496.8	404.8	73.6	16.6	9.2	1.1E-01
TA-33-G-4	G-0007	33-151	812.7	174.2	58.1	58.1	58.1	2.6E-01	132.3	28.4	9.5	9.5	9.5	4.3E-02
TA-33-G-2	G-0008	33-209	2.5	0.5	0.2	0.2	0.2	8.1E-04	5.0	1.1	0.4	0.4	0.4	1.6E-03
TA-33-G-3	G-0010	33-280	0.8	0.2	0.1	0.1	0.1	2.4E-04	4.4	0.9	0.3	0.3	0.3	1.4E-03
Permit ID	ID#	Unit	NOx (tons)	CO (tons)	SOx (tons)	PM (tons)	VOC (tons)	HAPs (tons)	NOx (tons)	CO (tons)	SOx (tons)	PM (tons)	VOC (tons)	HAPs (tons)
TA-33-G-1	G-0012	33-290	1.149	0.936	0.170	0.038	0.021	2.48E-04	0.248	0.202	0.037	0.008	0.005	5.35E-05
TA-33-G-4	G-0007	33-151	0.406	0.087	0.029	0.029	0.029	1.31E-04	0.066	0.014	0.005	0.005	0.005	2.13E-05
TA-33-G-2	G-0008	33-209	0.001	0.000	0.000	0.000	0.000	4.06E-07	0.002	0.001	0.000	0.000	0.000	7.98E-07
TA-33-G-3	G-0010	33-280	0.000	0.000	0.000	0.000	0.000	1.22E-07	0.002	0.000	0.000	0.000	0.000	7.03E-07

ANNUAL TOTALS (tons)

Pollutant	NOx	СО	SOx	PM	VOC	HAPs
TA-33-G-1	1.398	1.139	0.207	0.047	0.026	3.0E-04
TA-33-G-4	0.473	0.101	0.034	0.034	0.034	1.5E-04
TA-33-G-2	0.004	0.001	0.000	0.000	0.000	1.2E-06
TA-33-G-3	0.003	0.001	0.000	0.000	0.000	8.2E-07
Tons/Year	1.88	1.24	0.24	0.08	0.06	4.55E-04

Reviewed by / Date:	
---------------------	--

	NOx	CO	SOx	PM	PM ₁₀	VOC
EMISSION FACTORS	lb/kw-hr	lb/kw-hr	lb/kw-hr	lb/kw-hr	lb/kw-hr	lb/kw-hr
1600kw Generator (a)	0.027	0.022	0.004	0.0009	0.0009	0.0005
Small Diesel fired (b)	0.042	0.009	0.003	0.003	0.003	0.003

References:

447 kw is the size limit for determining large vs. small diesel fired generator. This information was taken from the operating permit application.

(a) Manufacturer supplied emission factors for NOx, CO, and VOCs. Emission factors for SOx, PM, and PM10 from AP-42, Table 3.3-1 & Table 3.4-1. The AP-42 (fifth edition) emissions factor uses units of lb/hp-hr. There are 1.341 hp-hrs in a kwh. Therefore, take pounds/hp-hr x 1.341 hp-hr/kwh to obtain the emission factor in lb/kwh.

(b) Emission factors for small diesel fired boilers were taken from AP-42 (fifth edition) Tables 3.3-1 and 3.3-2.

Emission Factors (lb/kwh)

Diesel (small)

Diesel (large)

Location

33-290

33-151

33-209

33-280

Total Emissions (lbs)

Tons/Half/HAP

Tons/year/HAP

Emission Factors fro

TA-33-G-1
(1600 kW Generator, 1500 kW Derated for Altitude)
12-Month Rolling kilowatt-hours

Month	Hour Meter Reading	Hours Operated	Rolling Total kw-hr	Month	Hour Meter Reading	Hours Operated	Rolling Total kw-hr
January	85.0	0.0	75,600	July	87.5	0.0	74,850
February	85.6	0.6	75,750	August	88.1	0.6	75,750
March	85.8	0.2	76,050	September	88.1	0.0	39,600
April	86.2	0.4	76,650	October	88.6	0.5	18,150
Мау	87.5	1.3	78,600	November	99.3	10.7	27,300
June	87.5	0.0	78,150	December	101.0	1.7	24,000

Generator is limited to 1,350,000 kWh/year

				HAPS	(lbs)								HAPS	S (lbs)
Ben	zene	Tolu	uene	Xyle	enes	1,3-Bu	tadiene	Forma	ldehyde	Acetal	dehyde	Acr	olein	Naphtl
3.19	E-06	1.40	E-06	9.73	E-07	1.34	E-07	4.03	E-06	2.62	E-06	3.16	E-07	2.90
2.65	E-06	9.60	E-07	6.59	E-07			2.69	E-07	8.61	E-08	2.69	E-08	4.44
1st Half	2nd Half	1st Half												
2.26E-01	4.88E-02	8.17E-02	1.77E-02	5.61E-02	1.21E-02	0.00E+00	0.00E+00	2.29E-02	4.96E-03	7.33E-03	1.58E-03	2.29E-03	4.95E-04	3.78E-02
6.17E-02	1.00E-02	2.70E-02	4.40E-03	1.88E-02	3.07E-03	2.58E-03	4.21E-04	7.80E-02	1.27E-02	5.07E-02	8.25E-03	6.11E-03	9.95E-04	5.60E-03
1.91E-04	3.76E-04	8.38E-05	1.65E-04	5.84E-05	1.15E-04	8.01E-06	1.58E-05	2.42E-04	4.76E-04	1.57E-04	3.09E-04	1.90E-05	3.73E-05	1.74E-05
5.74E-05	3.31E-04	2.51E-05	1.45E-04	1.75E-05	1.01E-04	2.40E-06	1.39E-05	7.25E-05	4.19E-04	4.72E-05	2.72E-04	5.69E-06	3.29E-05	5.21E-06
2.87E-01	5.95E-02	1.09E-01	2.24E-02	7.50E-02	1.54E-02	2.59E-03	4.50E-04	1.01E-01	1.85E-02	5.82E-02	1.04E-02	8.43E-03	1.56E-03	4.34E-02
1.44E-04	2.98E-05	5.44E-05	1.12E-05	3.75E-05	7.71E-06	1.30E-06	2.25E-07	5.06E-05	9.27E-06	2.91E-05	5.21E-06	4.21E-06	7.80E-07	2.17E-05
1.74	E-04	6.56	E-05	4.52	E-05	1.52	E-06	5.99	E-05	3.43	E-05	4.99	E-06	2.63

4.55E-04

om AP-42, Volume 1, Fifth Edition (Small Diesel Engines Table 3.3-2, Large Diesel Engines Table 3.4-4, Natural Gas 4-Stroke Engines Table 3.2-3)

nalene	P/	АН	HAP En	Generator nissions os)
E-07	5.74	E-07		
E-07	7.24	E-07		
2nd Half	1st Half	2nd Half	1st Half	2nd Half
8.17E-03	6.16E-02	1.33E-02	4.95E-01	1.07E-01
9.12E-04	1.11E-02	1.81E-03	2.62E-01	4.26E-02
3.42E-05	3.44E-05	6.77E-05	8.11E-04	1.60E-03
3.01E-05	1.03E-05	5.97E-05	2.43E-04	1.41E-03
9.15E-03	7.28E-02	1.53E-02	7.58E-01	1.53E-01
4.57E-06	3.64E-05	7.63E-06		
E-05	4.40	E-05		

									First 6	Month Re	adings	Second	6 Month R	Readings
							Previous		6 Month			Month		
							Reading	Previous	Reading		Hours	Reading		Hours
TA	Bldg	ID#	Manufacturer	MODEL	KW	Fuel Type	Date	Reading	Date	Reading	Run	Date	Reading	Run
3	40	G-0013	Onan Sons	1500DVE15R31374B	150	Diesel	Nov-09	17.2	Jun-10	26.0	8.8	Dec-10	32.0	6.0
3	440	G-0019	Cummins	500FDR5051	260	Diesel	Dec-09	121.8	Jun-10	121.8	0.0	Dec-10	121.8	0.0
3	440	G-0020	Cummins	DFGA-5005210	500	Diesel	Nov-09	113	Jun-10	121.0	8.0	Dec-10	126.7	5.7
3	1076	G-0022	Cummins	DGBB-5601289	35	Diesel	Nov-09	209.2	Jun-10	226.0	16.8	Dec-10	232.6	6.6
3	1400	G-0024	Cummins	DFEH-5699616	400	Diesel	Nov-09	68	Jun-10	159.0	91.0	Dec-10	164.0	5.0
3	1404	G-0023	Cummins	DFLC-5554001	1250	Diesel	Dec-09	440.4	Jun-10	466.0	25.6	Dec-10	503.0	37.0
3	1498	G-0017	Caterpillar	SR-4	600	Diesel	Nov-09	354	Jun-10	361.0	7.0	Dec-10	367.0	6.0
3	2322	G-0021	Onan Sons	DGDA-5005757	80	Diesel	Nov-09	373	Jun-10	379.0	6.0	Dec-10	389.3	10.3
16	980	G-0033	Cummins	KTA50-G2	1100	Diesel	Dec-09	350.4	Jun-10	362.7	12.3	Dec-10	383.0	20.3
16	1374	G-0032	Onan Sons	60ENA	60	Nat. Gas	Dec-09	1196	Jun-10	1230.0	34.0	Dec-10	1265.0	35.0
35	2	G-0034	Onan Sons	100DGDB	100	Diesel	Nov-09	115.5	Jun-10	115.5	0.0	Dec-10	115.5	0.0
35	402	G-0037	Cummins	DGCB-5674244	60	Diesel	Dec-09	240	Jun-10	267.0	27.0	Dec-10	289.0	22.0
43	1	G-0031	Cummins	4BT3.9-GC	50	Diesel	Nov-09	406.3	Jun-10	412.0	5.7	Dec-10	419.5	7.5
43	1	G-0030	Onan Sons	DVE	150	Diesel	Nov-09	727	Jun-10	764.0	37.0	Dec-10	795.0	31.0
46	335	G-0036	Onan Sons	300DEFCB	300	Diesel	Nov-09	1063.1	Jun-10	1154.0	90.9	Dec-10	1187.0	33.0
48	45	G-0043	Onan Sons	DFCB-5740130	300	Diesel	Nov-09	116.3	Jun-10	131.0	14.7	Dec-10	158.0	27.0
50	37	G-0039	Cummins	680FDR5059FF	500	Diesel	Nov-09	502.8	Jun-10	502.8	0.0	Dec-10	502.8	0.0
50	69	G-0040	Onan	DGDB4487482	100	Diesel	Dec-09	295.9	Jun-10	317.0	21.1	Dec-10	327.0	10.0
50	184	G-0044	Onan Sons	DGFA-568741	150	Diesel	Nov-09	306	Jun-10	353.0	47.0	Dec-10	376.0	23.0
50	188	G-0038	Onan Sons	L940563879	1250	Diesel	Nov-09	149	Jun-10	149.0	0.0	Dec-10	149.0	0.0
53	1	G-0004	Onan Sons	60ENA	60	Nat. Gas	Nov-09	1495	Jun-10	1561.0	66.0	Dec-10	1646.0	85.0
53	2	G-0005	Kato Eng.	Kamag-14	50	Diesel	Nov-09	194.6	Jun-10	194.6	0.0	Dec-10	194.7	0.1
53	3N	G-0011	Onan	15.0JC-18R	15	Propane	Nov-09	362.6	Jun-10	371.0	8.4	Dec-10	384.9	13.9
54	412	G-0045	Olympian	95M-07874-F	500	Diesel	Nov-09	348.9	Jun-10	349.1	0.2	Dec-10	349.1	0.0
55	5	G-0049	Kohler	100RZ71	100	Propane	Dec-09	121.7	Jun-10	130.5	8.8	Dec-10	137.0	6.5
55	8	G-0050	Delco/Detroit	E7014DD	600	Diesel	Dec-09	856.9	Jun-10	869.3	12.4	Dec-10	875.8	6.5
55	364	G-0051	Onan Sons	1250DFLC-4987	1250	Diesel	Dec-09	165.8	Jun-10	182.0	16.2	Dec-10	195.0	13.0
55	28	G-0047	Onan Sons	40DL6T	40	Diesel	Dec-09	94.8	Jun-10	102.1	7.3	Dec-10	112.0	9.9
55	47	G-0048	Onan Sons	1465	200	Diesel	Dec-09	592	Jun-10	599.9	7.9	Dec-10	603.2	3.3
55	142	G-0046	Cummins	DFEB-4963414	400	Diesel	Dec-09	143.7	Jun-10	150.7	7.0	Dec-10	158.0	7.3
55	440	G-0058	Cummins	DFLE-5754172	1500	Diesel	Dec-09	0	Jun-10	0.0	0.0	Dec-10	15.8	15.8
55	440	G-0059	Cummins	DFLE-5754172	1500	Diesel	Dec-09	0	Jun-10	0.0	0.0	Dec-10	15.0	15.0
55	440	G-0060	Cummins	DFLE-5754172	1500	Diesel	Dec-09	0	Jun-10	0.0	0.0	Dec-10	15.8	15.8
60	yard	G-0053	Cummins	DFHD-4964979	1000	Diesel	Nov-09	659	Jun-10	662.0	3.0	Dec-10	667.0	5.0
63	93	G-0054	Murphy	3166-0084	30	Diesel	Nov-09	716	Jun-10	716.0	0.0	Dec-10	716.0	0.0
64	1	G-0041	Onan Sons	250DVG	250	Diesel	Nov-09	191.4	Jun-10	198.3	6.9	Dec-10	204.0	5.7
69	33	G-0055	Cummins	DFLC-5568730	1250	Diesel	Nov-09	112.9	Jun-10	119.5	6.6	Dec-10	124.0	4.5

37 Generators TOTAL 603.6 **TOTAL** 492.7

N/R = Not Read First half average hours per unit 16.3 Second half average hours per unit 13.3

EMISSION FACTORS	NOx	CO	Sox ^(e)	PM	PM10	VOC
	lb/kw-hr	lb/kw-hr	lb/kw-hr	lb/kw-hr	lb/kw-hr	lb/kw-hr
Large Diesel fired (a)(b)	0.032	0.007	5.4E-04	0.001	0.001	0.001
Small Diesel fired (a)(c)	0.042	0.009	0.003	0.003	0.003	0.003
Natural Gas Fired ^(d)	0.008	0.013	2.0E-06	3.4E-05	3.2E-05	1.0E-04

References:

References:	
447	447 kw (600 hp) is the size limit for determining large vs. small diesel fired generator. This information was taken from the operating permit application and is also found in AP-42.
	ion), table 3.4-1,emissions factor uses units of lb/hp-hr. There are 1.341 hp-hrs in a kwh. /hp-hr x 1.341 hp-hr/kwh to obtain the emission factor in lb/kwh.
(b) Emission factors for and 3.4-4.	large diesel fired engines were taken from AP-42 (fifth edition) Tables 3.4-1, 3.4-2, 3.4-3,
(c) Emission factors for	small diesel fired engines were taken from AP-42 (fifth edition) Tables 3.3-1 and 3.3-2.
provides units of lb/MM lb/MMBTU x 3413 / 1 x between the Title V app	BTU. There are 3413 Btus in a kilowatt-hr (kwh) or 2.928 x 10-4 kwh per BTU. Therefore, take 10 ⁶ or lb/MMbtu /106/2.928 x 10 ⁻⁴ to obtain the emissions factor in lb/kwh. The differences slication emission factors and those listed here, are that the application used the 2-stroke table, a factors are for rich burn 4-stroke engines. Most generator engines have been verified with the be 4-stroke.
edition). The calculatio supplied to the generate hours (and associated I	Ox) emission factor for large diesel engines was calculated using AP-42 Table 3.4-1(fifth n requires the sulfur percent found in the fuel. It was verified in March of 2007, that future fuel ors around LANL will be Ultra Low Sulfur Diesel (ULSD) (Sulfur <=15 ppm). Due to the low ow fuel use) of most generators, the previous LANL tested fuel sulfur concentration of 0.05% for the rest of 2007 to allow for refueling of generators and use of the new ULSD. Calculation 8 * 2.2 = 5.4 x 10 ⁻⁴

Location	NOx (lb/yr)	CO (lb/yr)
3-40	55.4	11.9
3-440	0.0	0.0
3-440	128.0	28.0
3-1076	24.7	5.3
3-1400	1528.8	327.6
3-1404	1024.0	224.0
3-1498	134.4	29.4
3-2322	20.2	4.3
16-980	433.0	94.7
16-1374	16.3	26.5
35-2	0.0	0.0
35-402	68.0	14.6
43-1	12.0	2.6
43-1	233.1	50.0
46-335	1145.3	245.4
48-45	185.2	39.7
50-37	0.0	0.0
50-69	88.6	19.0
50-184	296.1	63.5
50-188	0.0	0.0
53-1	31.7	51.5
53-2	0.0	0.0
53-3N	1.0	1.6
54-412	3.2	0.7
55-5	7.0	11.4
55-8	238.1	52.1
55-364	648.0	141.8
55-28	12.3	2.6
55-47	66.4	14.2
55-142	117.6	25.2
60-yard	96.0	21.0
63-93	0.0	0.0
64-1	72.5	15.5
69-33	264.0	57.8
lbs/6 months	6950.8	1581.8
Tons/6 months	3.48	0.79

YEARLY TOTAL	NOx	СО
Tons/Year	6.00	1.39

irst 6 Montl	h Emission	s		Second 6 Month Emissions									
SOx (lb/yr)	PM (lb/yr)	VOC (lb/yr)	HAPs (lb/yr)	NOx (lb/yr)	CO (lb/yr)	SOx (lb/yr)	PM (lb/yr)	VOC (lb/yr)	HAPs (lb/yr)				
4.0	4.0	4.0	1.9E-02	37.8	8.1	2.7	2.7	2.7	1.2E-02				
0.0	0.0	0.0	0.0E+00	0.0	0.0	0.0	0.0	0.0	0.0E+00				
2.2	4.0	4.0	2.7E-02	91.2	20.0	1.5	2.9	2.9	1.7E-02				
1.8	1.8	1.8	8.2E-03	9.7	2.1	0.7	0.7	0.7	3.1E-03				
109.2	109.2	109.2	5.1E-01	84.0	18.0	6.0	6.0	6.0	2.7E-02				
17.3	32.0	32.0	2.2E-01	1480.0	323.8	25.0	46.3	46.3	2.7E-01				
2.3	4.2	4.2	2.8E-02	115.2	25.2	1.9	3.6	3.6	2.1E-02				
1.4	1.4	1.4	6.7E-03	34.6	7.4	2.5	2.5	2.5	1.1E-02				
7.3	13.5	13.5	9.2E-02	714.6	156.3	12.1	22.3	22.3	1.3E-01				
0.0	0.1	0.2	2.3E-01	16.8	27.3	0.0	0.1	0.2	2.4E-01				
0.0	0.0	0.0	0.0E+00	0.0	0.0	0.0	0.0	0.0	0.0E+00				
4.9	4.9	4.9	2.3E-02	55.4	11.9	4.0	4.0	4.0	1.8E-02				
0.9	0.9	0.9	4.0E-03	15.8	3.4	1.1	1.1	1.1	5.1E-03				
16.7	16.7	16.7	7.8E-02	195.3	41.9	14.0	14.0	14.0	6.3E-02				
81.8	81.8	81.8	3.8E-01	415.8	89.1	29.7	29.7	29.7	1.3E-01				
13.2	13.2	13.2	6.2E-02	340.2	72.9	24.3	24.3	24.3	1.1E-01				
0.0	0.0	0.0	0.0E+00	0.0	0.0	0.0	0.0	0.0	0.0E+00				
6.3	6.3	6.3	3.0E-02	42.0	9.0	3.0	3.0	3.0	1.4E-02				
21.2	21.2	21.2	9.9E-02	144.9	31.1	10.4	10.4	10.4	4.7E-02				
0.0	0.0	0.0	0.0E+00	0.0	0.0	0.0	0.0	0.0	0.0E+00				
0.0	0.1	0.4	4.5E-01	40.8	66.3	0.0	0.2	0.5	5.7E-01				
0.0	0.0	0.0	0.0E+00	0.2	0.0	0.0	0.0	0.0	6.8E-05				
0.0	0.0	0.0	1.3E-02	1.7	2.7	0.0	0.0	0.0	2.1E-02				
0.1	0.1	0.1	6.8E-04	0.0	0.0	0.0	0.0	0.0	0.0E+00				
0.0	0.0	0.1	8.8E-02	5.2	8.5	0.0	0.0	0.1	6.5E-02				
4.0	7.4	7.4	5.0E-02	124.8	27.3	2.1	3.9	3.9	2.3E-02				
10.9	20.3	20.3	1.4E-01	520.0	113.8	8.8	16.3	16.3	9.5E-02				
0.9	0.9	0.9	4.1E-03	16.6	3.6	1.2	1.2	1.2	5.4E-03				
4.7	4.7	4.7	2.2E-02	27.7	5.9	2.0	2.0	2.0	8.9E-03				
8.4	8.4	8.4	3.9E-02	122.6	26.3	8.8	8.8	8.8	3.9E-02				
1.6	3.0	3.0	2.0E-02	160.0	35.0	2.7	5.0	5.0	2.9E-02				
0.0	0.0	0.0	0.0E+00	0.0	0.0	0.0	0.0	0.0	0.0E+00				
5.2	5.2	5.2	2.4E-02	59.8	12.8	4.3	4.3	4.3	1.9E-02				
4.5	8.2	8.2	5.6E-02	180.0	39.4	3.0	5.6	5.6	3.3E-02				
330.5	373.4	373.9	2.7	5052.8	1188.8	171.6	220.5	221.1	2.0				
0.17	0.19	0.19	1.36E-03	2.53	0.59	0.09	0.11	0.11	1.01E-03				

SOx	PM	VOC	HAPs
0.25	0.30	0.30	0.002

Emission Factors (lb/kwh) Natural Gas Diesel (small) Diesel (large) Location 3-40 3-440 3-440 3-1076 3-1400	5.40 3.19 2.65 1st Half 4.21E-03 0.00E+00 1.06E-02 1.87E-03 1.16E-01 8.48E-02 1.11E-02 1.53E-03	E-06 E-06	1.91 1.40 9.60 1st Half 2.52E-03 0.00E+00 7.62E-03 1.12E-03 6.94E-02 6.10E-02
(lb/kwh) Natural Gas Diesel (small) Diesel (large) Location 3-40 3-440 3-440 3-1076 3-1400	5.40 3.19 2.65 1st Half 4.21E-03 0.00E+00 1.06E-02 1.87E-03 1.16E-01 8.48E-02 1.11E-02	E-06 E-06 2nd Half 2.87E-03 0.00E+00 7.55E-03 7.36E-04 6.37E-03 1.23E-01	1.91 1.40 9.60 1st Half 2.52E-03 0.00E+00 7.62E-03 1.12E-03 6.94E-02
Natural Gas Diesel (small) Diesel (large) Location 3-40 3-440 3-440 3-1076 3-1400	5.40 3.19 2.65 1st Half 4.21E-03 0.00E+00 1.06E-02 1.87E-03 1.16E-01 8.48E-02 1.11E-02	E-06 E-06 2nd Half 2.87E-03 0.00E+00 7.55E-03 7.36E-04 6.37E-03 1.23E-01	1.91 1.40 9.60 1st Half 2.52E-03 0.00E+00 7.62E-03 1.12E-03 6.94E-02
Diesel (small) Diesel (large) Location 3-40 3-440 3-440 3-1076 3-1400	3.19 2.65 1st Half 4.21E-03 0.00E+00 1.06E-02 1.87E-03 1.16E-01 8.48E-02 1.11E-02	E-06 E-06 2nd Half 2.87E-03 0.00E+00 7.55E-03 7.36E-04 6.37E-03 1.23E-01	1.40 9.60 1st Half 2.52E-03 0.00E+00 7.62E-03 1.12E-03 6.94E-02
Diesel (large) Location 3-40 3-440 3-440 3-1076 3-1400	2.65 1st Half 4.21E-03 0.00E+00 1.06E-02 1.87E-03 1.16E-01 8.48E-02 1.11E-02	E-06 2nd Half 2.87E-03 0.00E+00 7.55E-03 7.36E-04 6.37E-03 1.23E-01	9.60 1st Half 2.52E-03 0.00E+00 7.62E-03 1.12E-03 6.94E-02
3-40 3-440 3-440 3-1076 3-1400	1st Half 4.21E-03 0.00E+00 1.06E-02 1.87E-03 1.16E-01 8.48E-02 1.11E-02	2nd Half 2.87E-03 0.00E+00 7.55E-03 7.36E-04 6.37E-03 1.23E-01	1st Half 2.52E-03 0.00E+00 7.62E-03 1.12E-03 6.94E-02
3-40 3-440 3-440 3-1076 3-1400	4.21E-03 0.00E+00 1.06E-02 1.87E-03 1.16E-01 8.48E-02 1.11E-02	2.87E-03 0.00E+00 7.55E-03 7.36E-04 6.37E-03 1.23E-01	2.52E-03 0.00E+00 7.62E-03 1.12E-03 6.94E-02
3-440 3-440 3-1076 3-1400	0.00E+00 1.06E-02 1.87E-03 1.16E-01 8.48E-02 1.11E-02	0.00E+00 7.55E-03 7.36E-04 6.37E-03 1.23E-01	0.00E+00 7.62E-03 1.12E-03 6.94E-02
3-440 3-1076 3-1400	1.06E-02 1.87E-03 1.16E-01 8.48E-02 1.11E-02	7.55E-03 7.36E-04 6.37E-03 1.23E-01	7.62E-03 1.12E-03 6.94E-02
3-1076 3-1400	1.87E-03 1.16E-01 8.48E-02 1.11E-02	7.36E-04 6.37E-03 1.23E-01	1.12E-03 6.94E-02
3-1400	1.16E-01 8.48E-02 1.11E-02	6.37E-03 1.23E-01	6.94E-02
	8.48E-02 1.11E-02	1.23E-01	
	1.11E-02		6.10E-02
3-1404		9.54E-03	
3-1498	1.53E-03		8.00E-03
3-2322		2.63E-03	9.15E-04
16-980	3.59E-02	5.92E-02	2.58E-02
16-1374	1.10E-02	1.13E-02	3.89E-03
35-2	0.00E+00	0.00E+00	0.00E+00
35-402	5.16E-03	4.21E-03	3.09E-03
43-1	9.08E-04	1.19E-03	5.43E-04
43-1	1.77E-02	1.48E-02	1.06E-02
46-335	8.69E-02	3.15E-02	5.20E-02
48-45	1.41E-02	2.58E-02	8.40E-03
50-37	0.00E+00	0.00E+00	0.00E+00
50-69	6.72E-03	3.19E-03	4.02E-03
50-184	2.25E-02	1.10E-02	1.34E-02
50-188	0.00E+00	0.00E+00	0.00E+00
53-1	2.14E-02	2.75E-02	7.55E-03
53-2	0.00E+00	1.59E-05	0.00E+00
53-3N	6.80E-04	1.13E-03	2.40E-04
54-412	2.65E-04	0.00E+00	1.91E-04
55-5	4.75E-03	3.51E-03	1.68E-03
55-8	1.97E-02	1.03E-02	1.42E-02
55-364	5.37E-02	4.31E-02	3.86E-02
55-28	9.30E-04	1.26E-03	5.56E-04
55-47	5.03E-03	2.10E-03	3.01E-03
55-142	8.92E-03	9.30E-03	5.34E-03
60-yard	7.95E-03	1.33E-02	5.72E-03
63-93	0.00E+00	0.00E+00	0.00E+00
64-1	5.50E-03	4.54E-03	3.29E-03
69-33	2.19E-02	1.49E-02	1.57E-02
lbs	5.82E-01	4.45E-01	3.68E-01
Tons/Half/HAP	2.91E-04	2.23E-04	1.84E-04
Tons/year/HAP		E-04	2.69
Tons/Year Total	2.37E-03		

Emission Factors from AP-42, Volume 1, Fifth Edition (Sr

	HAPS	(lbs)										HAI	PS (Ibs)		
iene	Xyle	nes	1,3-Bu	tadiene	Formal	dehyde	Acetal	dehyde	Acro	olein	Napht	halene	1,1,2,2-Tetra	chloroethane	1,1,2-Trich
E-06	6.66		2.26	E-06	7.00	E-05		E-06	8.98	E-06	3.32	E-07	8.64E-08		5.23
E-06	9.73	E-07	1.34	E-07	4.03	E-06	2.62	E-06	3.16	E-07	2.90	2.90E-07			
E-07	6.591	E-07			2.69	E-07	8.61	E-08	2.69	E-08	4.44	E-07	•		
2nd Half	1st Half	2nd Half	1st Half												
1.26E-03	1.28E-03	8.76E-04	1.76E-04	1.20E-04	5.32E-03	3.63E-03	3.46E-03	2.36E-03	4.17E-04	2.84E-04	3.82E-04	2.61E-04			
0.00E+00															
2.74E-03	2.64E-03	1.88E-03	0.00E+00	0.00E+00	1.08E-03	7.68E-04	3.44E-04	2.45E-04	1.08E-04	7.67E-05	1.78E-03	1.27E-03			
3.23E-04	5.72E-04	2.25E-04	7.85E-05	3.08E-05	2.37E-03	9.31E-04	1.54E-03	6.05E-04	1.86E-04	7.30E-05	1.70E-04	6.69E-05			
2.79E-03	3.54E-02	1.95E-03	4.86E-03	2.67E-04	1.47E-01	8.06E-03	9.54E-02	5.24E-03	1.15E-02	6.32E-04	1.05E-02	5.79E-04			
4.44E-02	2.11E-02	3.05E-02	0.00E+00	0.00E+00	8.62E-03	1.25E-02	2.75E-03	3.98E-03	8.61E-04	1.24E-03	1.42E-02	2.05E-02			
3.45E-03	2.77E-03	2.37E-03	0.00E+00	0.00E+00	1.13E-03	9.70E-04	3.61E-04	3.10E-04	1.13E-04	9.69E-05	1.86E-03	1.60E-03			
1.15E-03	4.67E-04	8.02E-04	6.41E-05	1.10E-04	1.93E-03	3.32E-03	1.26E-03	2.16E-03	1.52E-04	2.60E-04	1.39E-04	2.39E-04			
2.14E-02	8.92E-03	1.47E-02	0.00E+00	0.00E+00	3.65E-03	6.02E-03	1.16E-03	1.92E-03	3.64E-04	6.01E-04	6.01E-03	9.91E-03			
4.00E-03	1.36E-03	1.40E-03	4.62E-03	4.76E-03	1.43E-01	1.47E-01	1.94E-02	2.00E-02	1.83E-02	1.89E-02	6.77E-04	6.96E-04	1.76E-04	1.81E-04	1.07E-04
0.00E+00															
1.84E-03	1.58E-03	1.28E-03	2.16E-04	1.76E-04	6.53E-03	5.32E-03	4.24E-03	3.46E-03	5.12E-04	4.17E-04	4.69E-04	3.82E-04			
5.24E-04	2.77E-04	3.65E-04	3.81E-05	5.01E-05	1.15E-03	1.51E-03	7.47E-04	9.82E-04	9.00E-05	1.18E-04	8.25E-05	1.09E-04			
6.50E-03	5.40E-03	4.53E-03	7.41E-04	6.21E-04	2.24E-02	1.87E-02	1.45E-02	1.22E-02	1.75E-03	1.47E-03	1.61E-03	1.35E-03			
1.38E-02	2.65E-02	9.64E-03	3.64E-03	1.32E-03	1.10E-01	3.99E-02	7.14E-02	2.59E-02	8.62E-03	3.13E-03	7.90E-03	2.87E-03			
1.13E-02	4.29E-03	7.88E-03	5.89E-04	1.08E-03	1.78E-02	3.26E-02	1.16E-02	2.12E-02	1.39E-03	2.56E-03	1.28E-03	2.35E-03			
0.00E+00															
1.40E-03	2.05E-03	9.73E-04	2.82E-04	1.34E-04	8.50E-03	4.03E-03	5.53E-03	2.62E-03	6.67E-04	3.16E-04	6.11E-04	2.90E-04			
4.82E-03	6.86E-03	3.36E-03	9.41E-04	4.61E-04	2.84E-02	1.39E-02	1.85E-02	9.04E-03	2.23E-03	1.09E-03	2.04E-03	9.99E-04			
0.00E+00															
9.72E-03	2.64E-03	3.40E-03	8.97E-03	1.15E-02	2.77E-01	3.57E-01	3.77E-02	4.86E-02	3.56E-02	4.58E-02	1.31E-03	1.69E-03	3.42E-04	4.41E-04	2.07E-04
6.98E-06	0.00E+00	4.87E-06	0.00E+00	6.68E-07	0.00E+00	2.02E-05	0.00E+00	1.31E-05	0.00E+00	1.58E-06	0.00E+00	1.45E-06			
3.97E-04	8.39E-05	1.39E-04	2.85E-04	4.72E-04	8.82E-03	1.46E-02	1.20E-03	1.99E-03	1.13E-03	1.87E-03	4.18E-05	6.91E-05			
0.00E+00	6.59E-05	0.00E+00	0.00E+00	0.00E+00	2.69E-05	0.00E+00	8.61E-06	0.00E+00	2.69E-06	0.00E+00	4.44E-05	0.00E+00			
1.24E-03	5.86E-04	4.33E-04	1.99E-03	1.47E-03	6.16E-02	4.55E-02	8.39E-03	6.19E-03	7.90E-03	5.84E-03	2.92E-04	2.16E-04			
3.74E-03	4.90E-03	2.57E-03	0.00E+00	0.00E+00	2.00E-03	1.05E-03	6.40E-04	3.36E-04	2.00E-04	1.05E-04	3.30E-03	1.73E-03			
1.56E-02	1.33E-02	1.07E-02	0.00E+00	0.00E+00	5.46E-03	4.38E-03	1.74E-03	1.40E-03	5.45E-04	4.37E-04	8.99E-03	7.21E-03			
5.53E-04	2.84E-04	3.85E-04	3.90E-05	5.29E-05	1.18E-03	1.60E-03	7.65E-04	1.04E-03	9.22E-05	1.25E-04	8.46E-05	1.15E-04			
9.22E-04	1.54E-03	6.42E-04	2.11E-04	8.81E-05	6.37E-03	2.66E-03	4.14E-03	1.73E-03	4.99E-04	2.09E-04	4.58E-04	1.91E-04			
4.08E-03	2.73E-03	2.84E-03	3.74E-04	3.90E-04	1.13E-02		7.33E-03		8.85E-04	9.22E-04	8.11E-04	8.46E-04			
4.80E-03	1.98E-03	3.30E-03	0.00E+00	0.00E+00	8.08E-04	1.35E-03	2.58E-04		8.07E-05	1.35E-04	1.33E-03	2.22E-03			
0.00E+00	0.00E+00	0.00E+00	0.00E+00		0.00E+00		0.00E+00		0.00E+00	0.00E+00	0.00E+00	0.00E+00			
1.99E-03	1.68E-03	1.39E-03	2.30E-04	1.90E-04	6.95E-03	5.74E-03	4.52E-03		5.45E-04	4.50E-04	5.00E-04	4.13E-04			
5.40E-03	5.44E-03	3.71E-03	0.00E+00		2.22E-03	1.52E-03	7.10E-04	4.84E-04	2.22E-04	1.51E-04	3.66E-03	2.50E-03			
1.70E-01	1.57E-01	1.12E-01	2.83E-02	2.33E-02	8.92E-01	7.46E-01	3.20E-01	1.86E-01	9.50E-02		7.06E-02	6.07E-02	5.18E-04	6.22E-04	3.14E-04
8.51E-05	7.84E-05	5.61E-05	1.42E-05	1.17E-05	4.46E-04	3.73E-04	1.60E-04	9.29E-05	4.75E-05	4.36E-05	3.53E-05	3.03E-05	2.59E-07	3.11E-07	1.57E-07
E-04	1.35	E-04	2.58	E-05	8.19	E-04	2.53	E-04	9.11	E-05	6.56	E-05	5.70	E-07	3.45

									HAPS (Ib	s)					
loroethane	1,3-Dichloropropene			Carbon Tetrachloride		enzene	Chloro			enzene		Dibromide		hanol	Methylene
E-08	4.34	E-08	6.0	5E-08	4.41	E-08	4.68E	E-08	8.47	E-08	7.27E-08		1.05	E-05	1.41
2nd Half	1st Half	2nd Half	1st Half	2nd Half	1st Half	2nd Half	1st Half	2nd Half	1st Half	2nd Half	1st Half	2nd Half	1st Half	2nd Half	1st Half
1.10E-04	8.85E-05	9.11E-05	1.23E-04	1.27E-04	8.99E-05	9.25E-05	9.55E-05	9.83E-05	1.73E-04	1.78E-04	1.48E-04	1.53E-04	2.13E-02	2.19E-02	2.87E-04
2.66E-04	1.72E-04	2.21E-04	2.39E-04	3.08E-04	1.74E-04	2.25E-04	1.85E-04	2.39E-04	3.35E-04	4.32E-04	2.88E-04	3.71E-04	4.14E-02	5.33E-02	5.57E-04
3.76E-04 1.88E-07	2.60E-04 1.30E-07		3.63E-04 1.81E-07	4.35E-04 2.18E-07	2.64E-04 1.32E-07	3.17E-04 1.59E-07	2.81E-04 1.40E-07		5.08E-04 2.54E-07	6.10E-04		5.24E-04	6.27E-02 3.14E-05	7.52E-02 3.76E-05	8.44E-04 4.22E-07
1.88E-07 E-07	1.30E-07 2.86			2.18E-07 9E-07	1.32E-07 2.91E		3.09E			E-07		2.62E-07)E-07		3.76E-05 E-05	9.29

				HAPS	(lbs)					
€ Chloride E-07	4.82 5.74	AH E-07 E-07 E-07		,		Toluene 1.91E-06		Chloride E-08	HAP En	Generator nissions os)
2nd Half	1st Half	2nd Half	1st Half	2nd Half	1st Half	2nd Half	1st Half	2nd Half	1st Half	2nd Half
	7.57E-04	5.16E-04							1.85E-02	1.22E-02
	0.00E+00	0.00E+00							0.00E+00	0.00E+00
	2.90E-03	2.06E-03							2.71E-02	1.66E-02
	3.37E-04	1.33E-04							8.25E-03	3.12E-03
	2.09E-02	1.15E-03							5.11E-01	2.70E-02
	2.32E-02	3.35E-02							2.17E-01	2.69E-01
	3.04E-03	2.61E-03							2.84E-02	2.10E-02
	2.75E-04	4.73E-04							6.73E-03	1.11E-02
	9.80E-03	1.62E-02							9.15E-02	1.30E-01
2.95E-04	9.82E-04	1.01E-03	8.29E-05	8.53E-05	3.89E-03	4.00E-03	5.00E-05	5.15E-05	2.30E-01	2.37E-01
	0.00E+00	0.00E+00							0.00E+00	0.00E+00
	9.30E-04	7.57E-04							2.27E-02	1.78E-02
	1.64E-04	2.15E-04							4.00E-03	5.07E-03
	3.18E-03	2.67E-03							7.79E-02	6.29E-02
	1.56E-02	5.68E-03							3.83E-01	1.34E-01
	2.53E-03	4.65E-03							6.19E-02	1.10E-01
	0.00E+00	0.00E+00							0.00E+00	0.00E+00
	1.21E-03	5.74E-04							2.96E-02	1.35E-02
	4.05E-03	1.98E-03							9.89E-02	4.66E-02
	0.00E+00	0.00E+00							0.00E+00	0.00E+00
7.18E-04	1.91E-03	2.46E-03	1.61E-04	2.07E-04	7.55E-03	9.72E-03	9.71E-05	1.25E-04	4.46E-01	5.74E-01
	0.00E+00	2.87E-06							0.00E+00	6.76E-05
	6.07E-05	1.00E-04							1.25E-02	2.08E-02
	7.24E-05	0.00E+00							6.77E-04	0.00E+00
	4.24E-04	3.13E-04							8.76E-02	6.47E-02
	5.39E-03	2.82E-03							5.03E-02	2.27E-02
	1.47E-02	1.18E-02							1.37E-01	9.46E-02
	1.68E-04	2.27E-04							4.10E-03	5.35E-03
	9.07E-04	3.79E-04							2.22E-02	8.92E-03
	1.61E-03	1.68E-03							3.93E-02	3.95E-02
	2.17E-03	3.62E-03							2.03E-02	2.91E-02
	0.00E+00	0.00E+00							0.00E+00	0.00E+00
	9.90E-04	8.18E-04							2.42E-02	1.93E-02
	5.97E-03	4.07E-03							5.58E-02	3.27E-02
1.01E-03	1.24E-01		2.44E-04	2.93E-04	1.14E-02	1.37E-02	1.47E-04	1.77E-04	2.71E+00	2.03E+00
5.07E-07	6.21E-05	5.12E-05	1.22E-07	1.46E-07	5.72E-06	6.86E-06	7.36E-08	8.83E-08		
E-07		E-04		E-07		E-05		E-07		
_ ••	0	_ • •	2.50	_ ••	0	_ ••		_ ••		

2010 Small Boilers Data Entry / Gas Use

				II Dollers I	Jala Lilli y	/ Gas Gs	-
		Metered	Boilers				
			er Gas Use CF) ^(c)	Total Ga	as Use ^(a)	Non- Metered Gas Use	
	Month	BHW-1B (B-602) ID (B-0016)	BHW-2B (B-603) ID (B-0017)	(MSCF)	(MMSCF)	(MMSCF)	12-Month Rolling Total for all Small Boilers (MMSCF) ^(e)
	January	1	1817	80,919	80.92	79.10	517.19
	February	0	2287	71,735	71.74	69.45	523.62
	March	795	996	67,008	67.01	65.22	529.31
λ	April	1682	0	50,387	,387 50.39 48.1		529.96
ıtr	May	1614	0	37,176	37.18	35.56	556.88
Entry	June	1548	0	30,050	30.05	28.50	567.63
	July	1278	0	24,420	24.42	23.14	576.61
Data	August	1244	0	12,779	12.78	11.54	575.24
_	September	525	0	12,619	12.62	12.09	567.67
	October	1598	561	43,896	43.90	41.74	569.69
	November	0	2401	67,458	67.46 65.06 56		581.72
	December	0	1622	66,925	66.93	65.30	565.37
-	TOTAL	10285	9684	565,372	565.37	545.40	Permit Limit = 870

	2010 Non Metered Boiler Pool Capacity:	303.5	MMBTU/hr ^(f)	
,	Estimated Gas-Use per MMBtu rating Jan-June:		1.08	MMscf/MMBtu/hr
	Estimated Gas-Use per MMBtu rating July-Dec:		0.72	MMscf/MMBtu/hr
	Estimated Gas-Use per MMBtu - Annual		1.80	MMscf/MMBtu/hr

Definitions: MMSCF= Million Standard Cubic Feet

MSCF = Thousand Standard Cubic Feet

Metered/Non-metered: Metered boilers are those units that have unit specific volumetric flow meters for the boiler(s) only.

	Gas Use Non-Metered ^(g) (MMSCF)												
										Insignificant			
AIRS Stack #	015	016	017	018	019	020	021	024	New	Units ^(h)			
Location:	TA-48-1	TA-48-1	TA-48-1	TA-53-365	TA-53-365	TA-59-1	TA-59-1	TA-16-1484	TA-50-2 ^(d)	Lab Wide			
Equipment ID:	BS-1	BS-2	BS-6	BHW-1	BHW-2	BHW-1	BHW-2	Plant 5	BS-1	Various			
Database ID:	B-0023	B-0024	B-0022	B-0042	B-0043	B-0006	B-0007	B-0093 & B-0092	B-0152				
Design Rate ⁽ⁱ⁾ (MMBTU/hr)	5.336	5.335	7.140	7.115	7.115	5.335	5.335	12.700	10.670	237			
Calculated Gas Use-Jan-June	5.741	5.740	7.682	7.654	7.654	5.740	5.740	13.664	11.480	255.438			
Calculated Gas Use-July-Dec	3.848	3.848	5.149	5.131	5.131	3.848	3.848	9.159	7.695	171.213			
Calculated Gas Use-Annual	9.590	9.588	12.831	12.785	12.785	9.588	9.588	22.822	19.175	426.651			

Reviewed By / Date:

Emissi	on Factors (I	b/MMscf)	
Criteria Pollutant	Small Uncontrolled Boilers ¹	TA-16 Low NOx Boilers ⁴	TA-55-6 Boilers ³
NOx	100	37.08	138
SOx	0.6	0.6	0.6
PM ²	7.6	7.6	14.2
PM-10 ²	7.6	7.6	14.2
PM-2.5 ²	7.6	7.6	14.2
co	84 5.5	37.08 5.5	38.2 5.98
HAPs ⁵	0.0	0.0	0.00
Arsenic	0.0002		
Benzene	0.0021		
BE	0.000012		
Cadmium	0.0011		
Chromium	0.0014		
Cobalt	0.000084		
Dichlorobenzene	0.0012		
Formaldehyde	0.075		
Hexane	1.8		
Lead	0.0005		
Mangenese	0.00038		
Mercury	0.00026		
Napthalene	0.00061		
Nickel	0.0021		
POM	0.000088		
Selenium	0.000024		
Toluene	0.0034		

References for Emission Factors

- (1) AP-42, 7/98, Section 1.4, Natural Gas Combustion, Small Boilers.
- (2) Emission factors for natural gas of PM-10 and PM-2.5 are roughly equal to those of PM, Natural Gas Combustion, Table 1.4-2
- (3) AP-42, 7/98, Section 1.4, Natural Gas Combustion, Small Boilers for SOx. Stack test on 3/00 for NOx. Otherwise, Emission factors from Sellers Engineering Co.
- (4) AP-42, 7/98, Section 1.4, Natural Gas Combustion, Small Boilers; Emission factors for NOx and CO from Sellers Engineering Co (low-NOx boilers).
- (5) All HAP emission factors from AP-42 7/98, Section 1.4, Natural Gas Combustion, Tables 1.4-3, 1.4-4

2010 Sm	all Boilers Emi		
	Total Em	issions (to	ns)
Pollutant	Annual Emissions (Includes Insignificant Sources)	Jan-June (Includes Insignificant Sources)	July-Dec (Includes Insignificant Sources)
Criteria			
NOx	27.930	16.638	11.292
SOx	0.170	0.101	0.068
PM	2.214	1.317	0.897
PM-10	2.214	1.317	0.897
PM-2.5	2.214	1.317	0.897
CO	22.753	13.599	9.154
VOC	1.560	0.930	0.629
HAPs			
Arsenic	5.65E-05	3.37E-05	2.28E-05
Benzene	5.94E-04	3.54E-04	2.40E-04
BE	3.39E-06	2.02E-06	1.37E-06
Cadmium	3.11E-04	1.86E-04	1.25E-04
Chromium	3.96E-04	2.36E-04	1.60E-04
Cobalt	2.37E-05	1.42E-05	9.58E-06
Dichlorobenzene	3.39E-04	2.02E-04	1.37E-04
Formaldehyde	2.12E-02	1.26E-02	8.55E-03
Hexane	5.09E-01	3.04E-01	2.05E-01
Lead	1.41E-04	8.43E-05	5.70E-05
Mangenese	1.07E-04	6.41E-05	4.33E-05
Mercury	7.35E-05	4.38E-05	2.97E-05
Napthalene	1.72E-04	1.03E-04	6.96E-05
Nickel	5.94E-04	3.54E-04	2.40E-04
POM	2.49E-05	1.48E-05	1.00E-05
Selenium	6.78E-06	4.05E-06	2.74E-06
Toluene	9.61E-04	5.73E-04	3.88E-04
TOTAL HAPS	0.534	0.318	0.215

The totals in this table include exempt, non-exempt, metered, and non-metered boilers (all boilers except Power Plant boilers).

REFERENCES

- (a) Information on non-metered boilers is provided as a data deliverable from KSL and contains all gas use at LANL minus those non-LANL sources which feed from the LANL main line and LANL sources that are individiually metered. Total Gas use does not include TA-3 Power Plant and TA-21 Steam Plant. All other sources are included in this total.
- (b) TA-16 Boilers include 2 boilers in plant 5. Gas use was difficult to obtain, so, the boilers were included in the "boiler pool" to determine gas use. Plant 6 has been taken off line and is not expected to be reused or boilers relocated. The removal of these boilers will be requested in the next operating permit revision.
- (c) TA-55 has two boilers with separate AIRs numbers. Each boiler has a gas meter. The gas use information is provided monthly by the TA-55 facility personnel and is included in the KSL data deliverable.
- (d) The TA-50-RLWTF boiler was added to EI as a new source in 2003. This boiler is owned and operated by a contractor and has been operated at LANL since mid-2000. Originally planned as a temporary source, but current plans are to keep operating for several more years. Therefore, decision was made to include in LANL's annual EI. Fuel use has not been tracked monthly. In 2010, the metered gas use was removed for the boiler and changed to non-metered. This was due to an evaporator system being added to the same gas line so usage would not be only for the boiler anymore.
- (e) The 12-month rolling average includes all gas use from all boilers listed in this spreadsheet. Boilers not included in this report due to their large size or design are TA-21 boilers & powerplant boilers at TA-3. A gas use limit of 870 MMscf/yr, 12-month rolling average is a permit limit in Section 2.4 of the LANL operating permit.
- (f) The non-metered boiler pool capacity is the sum of all active non-metered boilers design ratings (derated value, called design rating in boiler data base) in MMBTU. This number is used to estimate the gas use rate (total non-metered gas use divided by the non-metered boiler pool capacity number). This value is taken from the boilers database (Access) on the database drive on the cleanair server within ENV-EAQ.
- (g) The non-metered boilers gas use section provides estimates of gas use for each boiler. This is calculated using the non-metered gas rate, as discussed in reference (f). The individual boiler design rating is mutiplied by the gas use rate to provide the estimated gas used per reporting period (in MMSCF).
- (h) NMED List of Insignificant Activities (9/95), Item (3.) exempts fuel burning equipment which uses gaseous fuel, has a design rate less than or equal to 5 MMBTU/hr, and is used for heating buildings for personal comfort or for producing hot water for personal use. This value contains natural gas fired HVAC units as well as some NG heating units.
- (i) The design rate for boilers includes a correction for elevation. LANL is at approximately 7,500 feet above sea level. Corrections are made for atmospheric boilers using 4% reduction (derated) for each 1,000 feet above sea level (4% x 7.5 = 30%). For forced draft and power burner boilers, the reduction is half that of atmospheric at 15%. The correction is made using the boiler plate input rating minus the appropriate percentage.

Non-Exempt Boiler Emissions for Annual El Reporting (Tons/Year)

			•					<u>. </u>					
D II 4 4	AIRS 015	AIRS 016	AIRS 017	AIRS 018	AIRS 019	AIRS 020	AIRS 021	AIRS 024	AIRS 024	AIRS 037	AIRS 038	AIRS	
Pollutant	TA-48-1	TA-48-1	TA-48-1	TA-53-	TA-53-365	TA-59-1	TA-59-1	TA-16	TA-16	TA-55-6	TA-55-6	TA-50-2	
Criteria	BS-1	BS-2	BS-6	BHW-1	BHW-2	BHW-1	BHW-2	BS-1	BS-2	BHW-1B	BHW-2B	BS-1	Total
J. I. O. I.G.													rotar
NOx	0.479	0.479	0.642	0.639	0.639	0.479	0.479	0.212	0.212	0.710	0.668	0.959	6.597
SOx	0.003	0.003	0.004	0.004	0.004	0.003	0.003	0.003	0.003	0.003			
PM	0.036	0.036	0.049	0.049	0.049	0.036	0.036	0.043	0.043	0.073	0.069	0.073	0.593
PM-10	0.036	0.036	0.049	0.049	0.049	0.036	0.036	0.043	0.043	0.073			0.593
PM-2.5	0.036	0.036	0.049	0.049	0.049	0.036	0.036	0.043	0.043	0.073	0.069	0.073	0.593
CO	0.403	0.403	0.539	0.537	0.537	0.403	0.403	0.212	0.212	0.196			
VOC	0.026	0.026	0.035	0.035	0.035	0.026	0.026	0.031	0.031	0.031	0.029	0.053	0.386
HAPs													
Arsenic	9.59E-07	9.59E-07	1.28E-06	1.28E-06	1.28E-06	9.59E-07	9.59E-07	1.14E-06	1.14E-06	1.03E-06	9.68E-07	1.92E-06	1.39E-05
Benzene	1.01E-05	1.01E-05	1.35E-05	1.34E-05	1.34E-05	1.01E-05	1.01E-05	1.20E-05	1.20E-05	1.08E-05	1.02E-05	2.01E-05	1.46E-04
BE	5.75E-08	5.75E-08	7.70E-08	7.67E-08	7.67E-08	5.75E-08	5.75E-08	6.85E-08	6.85E-08	6.17E-08	5.81E-08	1.15E-07	8.32E-07
Cadmium	5.27E-06	5.27E-06	7.06E-06	7.03E-06	7.03E-06	5.27E-06	5.27E-06	6.28E-06	6.28E-06	5.66E-06	5.33E-06	1.05E-05	7.63E-05
Chromium	6.71E-06	6.71E-06	8.98E-06	8.95E-06	8.95E-06	6.71E-06	6.71E-06	7.99E-06	7.99E-06	7.20E-06	6.78E-06	1.34E-05	9.71E-05
Cobalt	4.03E-07	4.03E-07	5.39E-07	5.37E-07	5.37E-07	4.03E-07	4.03E-07	4.79E-07	4.79E-07	4.32E-07	4.07E-07	8.05E-07	5.83E-06
Dichlorobenzene	5.75E-06	5.75E-06	7.70E-06	7.67E-06	7.67E-06	5.75E-06	5.75E-06	6.85E-06	6.85E-06	6.17E-06	5.81E-06	1.15E-05	8.32E-05
Formaldehyde	3.60E-04	3.60E-04	4.81E-04	4.79E-04	4.79E-04	3.60E-04	3.60E-04	4.28E-04	4.28E-04	3.86E-04	3.63E-04	7.19E-04	5.20E-03
Hexane	8.63E-03	8.63E-03	1.15E-02	1.15E-02	1.15E-02	8.63E-03	8.63E-03	1.03E-02	1.03E-02	9.26E-03	8.72E-03	1.73E-02	1.25E-01
Lead	2.40E-06	2.40E-06	3.21E-06	3.20E-06	3.20E-06	2.40E-06	2.40E-06	2.85E-06	2.85E-06	2.57E-06	2.42E-06	4.79E-06	3.47E-05
Mangenese	1.82E-06	1.82E-06	2.44E-06	2.43E-06	2.43E-06	1.82E-06	1.82E-06	2.17E-06	2.17E-06	1.95E-06	1.84E-06	3.64E-06	2.64E-05
Mercury	1.25E-06	1.25E-06	1.67E-06	1.66E-06	1.66E-06	1.25E-06	1.25E-06	1.48E-06	1.48E-06	1.34E-06	1.26E-06	2.49E-06	1.80E-05
Napthalene	2.92E-06	2.92E-06	3.91E-06	3.90E-06	3.90E-06	2.92E-06	2.92E-06	3.48E-06	3.48E-06	3.14E-06	2.95E-06	5.85E-06	4.23E-05
Nickel	1.01E-05	1.01E-05	1.35E-05	1.34E-05	1.34E-05	1.01E-05	1.01E-05	1.20E-05	1.20E-05	1.08E-05	1.02E-05	2.01E-05	1.46E-04
POM	4.22E-07	4.22E-07	5.65E-07	5.63E-07	5.63E-07	4.22E-07	4.22E-07	5.02E-07	5.02E-07	4.53E-07	4.26E-07	8.44E-07	6.10E-06
Selenium	1.15E-07	1.15E-07	1.54E-07	1.53E-07	1.53E-07	1.15E-07	1.15E-07	1.37E-07	1.37E-07	1.23E-07	1.16E-07	2.30E-07	1.66E-06
Toluene	1.63E-05	1.63E-05	2.18E-05	2.17E-05	2.17E-05	1.63E-05	1.63E-05	1.94E-05	1.94E-05	1.75E-05	1.65E-05	3.26E-05	2.36E-04
TOTAL HAPS/Unit	9.05E-03	9.05E-03	1.21E-02	1.21E-02	1.21E-02	9.05E-03	9.05E-03	1.08E-02	1.08E-02	9.71E-03	9.14E-03	1.81E-02	0.13

EPCRA 313

Chemical	Amount	in Fuel ^a	Emissions from all Small Boilers ^b			
	Conc.	Pounds	Emission Factor (lbs/MMscf)	Emission (lbs)		
Lead ^c			5.0E-04	0.29		
Sulfuric Acid ^d			0.6	351.20		
Mercury ^c			2.6E-04	0.15		
PACs ^e			8.69E-07	5.09E-04		
Benzo(g,h,i) perylene ^c			1.20E-06	7.02E-04		

(a) Amount of EPCRA chemical in fuel is considered "otherwise used" for EPCRA 313 threshold determination

(b) Combustion compounds emitted are considered "manufactured" for EPCRA 313 threshold deteminations. Lead and mercury are lead compounds and mercury compounds.

(c) Emission Factors from AP-42, Section 1.4, Natural Gas Combustion, Tables 1.4-2, 1.4-3 and 1.4-4, July 1998

(d) Assume all SOx emissions are converted to sulfuric acid in the stack.

(e) EPCRA PAC Guidance Document, Table 2-3

			2010) Dai	y Tu	rbine	Gas	Use	(MC	F), 12	2 Mon	th Ro	olling	Total	Gas	Use	, & H	ours	of Op	erati	on			
	Já	an	Fe	eb	М	ar	A	pr	М	ay	Ju	ın	Ju	ly	Αι	ug	Se	ept	Od	ct	١	Vov	De	eC
	Gas		Gas		Gas		Gas		Gas		Gas		Gas		Gas		Gas		Gas		Gas		Gas	
Day	Use	Hrs	Use	Hrs	Use	Hrs	Use	Hrs	Use	Hrs	Use	Hrs	Use	Hrs	Use	Hrs	Use	Hrs	Use	Hrs	Use	Hrs	Use	Hrs
1	0	0	0	0	0	0	577	4.75	6	0	0	0	1083	5.1	0	0	0	0	0	0	981	4.3	7318	24
2	0	0	1	0	0	0	0	0	0	0	0	0	1097	5.6	0	0	0	0	0	0	0	0	6043	24
3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	253	4.2
4	0	0	0	0	0	0	0	0	7	0	36	0.3	0	0	1	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	62	0.6	36	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	9	0	0	0	17	0	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	0	0	1141	5.6	0	0	0	0	26	0	0	0	0	0
8	0	0	0	0	0	0	278	4.2	0	0	0	0	1147	5.7	0	0	0	0	80	0	0	0	0	0
9	0	0	0	0	30	0.7	894	5.2	0	0	0	0	42	0	46	0	0	0	0	0	0	0	278	1.8
10 11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 39	0	0	0	0	0	1018 0	6.2	0	0
12	0	0	0	0	0	0	17	0	0	0	0	0	1018	5.1	48	0	0	0	0	0.7	0	0	0	0
13	0	0	1	0	0	0	1428	6.3	0	0	0	0	1096	5.6	0	0	0	0	0	0	0	0	0	0
14	0	0	0	0	0	0	0	0	946	0.75	1128	5.62	982	5.6	0	0	2	0	0	4.2	0	0	0	0
15	0	0	0	0	32	0.4	20	0	0	0	1115	5.38	187	1.5	0	0	15	0	940	4.5	0	0	0	0
16	0	0	0	0	0	0.4	0	0	0	0	1086	5.42	1316	6.4	0	0	6	0	0	0	0	0	2196	9.2
17	0	0	0	0	0	0	0	0	96	0.5	1044	5.47	0	0	0	0	0	0	0	0	0	0	0	0
18	0	0	0	0	32	0.25	0	0	8	0.0	1050	5.17	0	0	0	0	0	0	1902	11.6	1233	5.6	0	0
19	0	0	0	0	0	0.23	0	0	21	0	0	0.17	0	0	0	0	0	0	5877	24	0	0	0	0
20	0	0	0	0	0	0	110	0.2	16	0	0	0	1099	5.6	0	0	0	0	5738	24	0	0	0	0
21	0	0	0	0	0	0	0	0	11	0	1039	5.25	0	0	0	0	0	0	5651	22	0	0	0	0
22	0	0	0	0	1387	4.7	0	0	0	0	1065	5.57	14	0	0	0	0	0	0	0	0	0	0	0
23	0	0	0	0	5	0	0	0	0	0	1080	5.5	14	0	0	0	0	0	0	0	0	0	0	0
24	0	0	0	0	0	0	16	0	0	0	1438	7.37	0	0	2	0	0	0	0	0	0	0	0	0
25	0	0	0	0	0	0	0	0	0	0	1103	5.65	0	0	0	0	0	0	0	0	0	0	0	0
26	0	0	0	0	0	0	0	0	901	4.4	0	0	1015	5.6	4	0	0	0	0	0	0	0	0	0
27	0	0	0	0	0	0	0	_	0	0	0	0	26	0	0	0	0	0	0	0	0	0	0	0
28	0	0	0	0	0	0	0	0	881	4.25	1148	5.42	926	4.3	0	0	5	0	0	1.2	0	0	0	0
29 30	0	0			0	0	0	0	0	0	1111 1198		20 0	0	0	0	12 18	0	0	0	0 3622	0 20.7	0	0
31	0	0			18	0	U	U	0	0	1130	5.95	0	0	0	0	10	U	0	0	JUZZ	20.1	0	0
SUM		0	2	0			3340	20.7	_		14677	73.5	12240		140	0	58	0	20214	_	6854	36.8	16088	
12-Mo. Rolling Gas Use (MCF)				622		142	169			340	343		464			584	444		592			1996	780	
Fir	rst Ha	lf Gas	Use:	22	487	MCF				Sec	cond H	alf Ga	s Use:	55	594	MCF			Annua	al Gas	Use:	78,081	MCF	
						NANA-				000					برما امیر									

Permit Limit (12 mo rolling): 646 MMscf or 646,000 MCF

Reviewed by/date:

2010 Combustion Turbine Emissions (Actual)

	Factors					
Pollutant		Unit	Emissions (7	Γons)	Reference	References:
Tollutarit		TA-3-2422	2 Combustio	n Turbine	1	
Criteria		Annual	Jan-June	July-Dec	1	(a) Values are from the initial compliance test (TRC -
NOx	50.5	1.972	0.568	1.404	а	October 22, 2007). Test shows average NOx as 11.29 lbs/hr and CO as 2.35 lbs/hr. These were divided by the
SOx	3.5	0.137	0.039	0.097	b	gas flow rate of 0.223620 MMscf/hr to get 50.48 lb/MMscf
PM	6.8	0.265	0.076	0.189	С	(rounded to 50.5) for NOx and 10.5 lb/MMscf for CO.
PM ₁₀	6.8	0.265	0.076	0.189	С	(
CO	10.5	0.410	0.118	0.292	а	(b) The SOx emission factor was taken from AP-42
VOC	2.2	0.086	0.025	0.061	d	Table 3.1-2a. The default value is used when percent
HAPs / TRI						sulfur is unknown (0.0034 lb/mmbtu). This is equivilant to
Acetaldehyde	4.12E-02	1.61E-03	4.63E-04	1.15E-03	e, f, g	converting the 2 grains per 100 scf to percent. The
Acrolein	6.59E-03	2.57E-04	7.41E-05	1.83E-04	e, f, g	0.0034 lb/mmbtu was converted to lb/mmscf by
Benzene	1.24E-02	4.83E-04	1.39E-04	3.44E-04		multiplying by 1030 btu/scf (the heat value of natural gas),
Benzo (a) anthracene	3.09E-03	1.21E-04	3.47E-05	8.59E-05	f, h	to provide 3.5 lb/mmscf.
1,3-Butadiene	4.43E-04	1.73E-05	4.98E-06	1.23E-05	e, f, g	(c) PM was calculated by taking the AP-42, Table 3.1-2a,
Cadmium	7.11E-03	2.77E-04	7.99E-05	1.98E-04		EF of 6.6E-3 lb/MMBtu and multiplying it by 1030 BTU/scf
Chromium	1.34E-02	5.23E-04	1.51E-04	3.72E-04	f, h	to get 6.8 lb/MMscf. PM10 was calculated the same as
Copper	7.11E-02	2.77E-03	7.99E-04	1.98E-03	f, h	PM, as most PM from natural gas combustion is less than
Ethylbenzene	3.30E-02	1.29E-03	3.71E-04	9.16E-04	e, f, g	1 micrometer.
Fluoranthene	1.24E-03	4.83E-05	1.39E-05	3.44E-05	f, h	(d) The VOC emission factor was taken from AP-42
Formaldehyde	7.31E-01	2.86E-02	8.22E-03	2.03E-02	e, f, g	Table 3.1-2a. The factor, 2.1 E-03 lb/mmbtu, was
Manganese	8.24E-02	3.22E-03	9.26E-04	2.29E-03		converted to lb/mmscf by multiplying by 1030 giving 2.2
Mercury	6.80E-03	2.65E-04	7.64E-05	1.89E-04		(e) These chemicals are HAPs
Napthalene	1.34E-03	5.23E-05	1.51E-05	3.72E-05	_	(f) These chemicals are EPCRA 313 listed chemicals.
Nickel	1.18E-01	4.62E-03	1.33E-03	3.29E-03	f, h	(g) Emission factor from AP-42, table 3.1-3 (lb/mmbtu).
PAH	2.27E-03	8.85E-05	2.55E-05	6.30E-05	e, f, g	This was multiplied by 1030 Btu/scf to provide the
Phenol	1.34E-02	5.23E-04	1.51E-04	3.72E-04	- , ,	lb./mmscf factor.
Propylene Oxide	2.99E-02	1.17E-03	3.36E-04	8.30E-04		(h) Emission factors from EPA FIRE database (SCC:
Toluene	1.34E-01	5.23E-03	1.51E-03	3.72E-03	, , ,	20300202 & 20200201). These values were also
Xylenes (isomers)	6.59E-02	2.57E-03	7.41E-04	1.83E-03	e, f, g	converted from lb/mmbtu to lb/mmscf.
TOTAL HAP	PS	5.37E-02	1.55E-02	3.82E-02		

The SCFH value (fuel flow rate) from the compliance test report (223620 SCFH or 223.6 MSCFH)

TA-3 Power Plant Fuel Use Totals 2010 (Data Entry)

			DATA I	ENTRY		•			
	Boiler # 1 (E	ower Plant ^b dgemoor Iron MMBTU/hr)	Boiler # 2 (Ed	ower Plant ^b dgemoor Iron MMBTU/hr)	Boiler # 3	ower Plant ^b (Union Iron MMBTU/hr)	Monthly Totals		
Month	Natural Gas (Mcf) ^a	Fuel Oil (gallons) ^a	Natural Gas (Mcf) ^a	Fuel Oil (gallons) ^a	Natural Gas (Mcf) ^a	Fuel Oil (gallons) ^a	Natural Gas (MMscf) ^a	Fuel Oil (gallons) ^a	
January	11,939	0	4,790	0	51,052	0	67.781	0	
February	16,120	0	19,450	110	23,763	0	59.333	110	
March	25,227	0	4,946	137	22,591	0	52.764	137	
April	1	0	433	164	37,552	0	37.986	164	
May	0	0	626	0	28,445	0	29.071	0	
June	0	0	430	0	17,192	0	17.622	0	
July	0	0	10,536	0	3,839	0	14.375	0	
August	0	0	18,340	0	1	278	18.341	278	
September	0	0	16,683	0	67	0	16.750	0	
October	20,214	0	9,901	0	2,230	0	32.345	0	
November	48,198	0	0	0	3,458	0	51.656	0	
December	27,746	0	15,258	0	14,376	0	57.380	0	
Annual Totals:	149,445	0	101,392	411	204,566	278	455.403	689	
Jan June	53,287	0	30,675	411	180,595	0	264.557	411	
July - Dec.	96,158	0	70,718	0	23,971	278	190.847	278	

	12-Mo. Rolling Total	12-Mo. Rolling Total
Month	Natural Gas (MMscf)	Fuel Oil (gallons)
January	493.4	1225
February	496.6	1335
March	496.9	979
April	490.8	869
May	489.5	814
June	483.5	814
July	476.4	704
August	478.4	927
September	472.9	927
October	465.7	927
November	467.1	927
December	455.4	689

For References, See "Emission Summary Sheet"

Data Reviewed By:

	Permit Limits:	2000 MMscf	500,000 gallons
--	----------------	------------	-----------------

12 Month Rolling Total for each Individual Boiler

	Boiler 1		Boil	er 2	Boiler 3		
Month	Natural Gas (MMscf)	Fuel Oil (gal.)	Natural Gas (MMscf)	Fuel Oil (gal.)	Natural Gas (MMscf)	Fuel Oil (gal.)	
January	164	329	146	238	183	658	
February	150	329	140	348	207	658	
March	156	329	115	485	226	165	
April	155	55	73	649	263	165	
May	155	55	44	649	291	110	
June	148	55	33	649	303	110	
July	127	55	43	649	306	0	
August	112	0	60	649	306	278	
September	106	0	77	649	291	278	
October	125	0	87	649	254	278	
November	170	0	87	649	211	278	
December	149	0	101	411	205	278	

Emissions by Boiler 2010

	Emission	Factor		Unit Emis		<u> </u>	Joner 20		nissions		Unit Emissions			
				Boiler #1, Stack 032 Boiler #2, Stack 033				Boiler #3, Stack 034						
Pollutant Criteria	Natural Gas (Ib/MMscf) ^(a)	Fuel Oil ^(f) Pounds/ 1000 gal	Annual Natl Gas (tons)	Annual Fuel Oil (tons)	Jan-June (gas&oil) (tons)	July-Dec (gas&oil) (tons)	Annual Natl Gas (tons)	Annual Fuel Oil (tons)	Jan-June (gas&oil) (tons)	July-Dec (gas&oil) (tons)	Annual Natl Gas (tons)	Annual Fuel Oil (tons)	Jan-June (gas&oil) (tons)	July-Dec (gas&oil) (tons)
NOx ^(c)	58	8.64	4.334	0.000	1.545	2.789	2.940	0.002	0.891	2.051	5.932	0.001	5.237	0.696
SOx ^(g)	0.6	7.4	0.045	0.000	0.016	0.029	0.030	0.002	0.011	0.021	0.061	0.001	0.054	0.008
PM ^(d)	7.6	3.3	0.568	0.000	0.202	0.365	0.385	0.001	0.117	0.269	0.777	0.000	0.686	0.092
PM-10 ^(d)	7.6	2.3	0.568	0.000	0.202	0.365	0.385	0.000	0.117	0.269	0.777	0.000	0.686	0.091
PM-2.5 ^(d)	7.6	1.55	0.568	0.000	0.202	0.365	0.385	0.000	0.117	0.269	0.777	0.000	0.686	0.091
CO ^(e)	40	5.0	2.989	0.000	1.066	1.923	2.028	0.001	0.615	1.414	4.091	0.001	3.612	0.480
VOC	5.5	0.2	0.411	0.0000	0.147	0.264	0.279	0.0000	0.084	0.194	0.563	0.000	0.497	0.066
HAPs ⁽ⁿ⁾														
Arsenic	0.0002	0.00055	1.49E-05	0.00E+00		9.62E-06	1.01E-05	1.13E-07	3.18E-06		2.05E-05	7.62E-08	1.81E-05	
Benzene	0.0021	-	1.57E-04	0.0		1.01E-04	1.06E-04	0.0	3.22E-05		2.15E-04	0.0		2.52E-05
Beryllium	0.000012	0.00041	8.97E-07	0.00E+00	3.20E-07		6.08E-07	8.45E-08	2.69E-07	4.24E-07		5.71E-08		
Cadmium	0.0011	0.00041	8.22E-05	0.00E+00	2.93E-05	5.29E-05	5.58E-05	8.45E-08	1.70E-05	3.89E-05			9.93E-05	
Chromium	0.0014	0.00041	1.05E-04	0.00E+00	3.73E-05	6.73E-05	7.10E-05	8.45E-08	2.16E-05	4.95E-05	1.43E-04	5.71E-08	1.26E-04	1.68E-05
Cobalt	0.000084	-	6.28E-06	0.0	2.24E-06	4.04E-06	4.26E-06	0.0	1.29E-06	2.97E-06	8.59E-06	0.0	7.58E-06	1.01E-06
Dichlorobenzene	0.0012	-	8.97E-05	0.0	3.20E-05	5.77E-05	6.08E-05	0.0	1.84E-05	4.24E-05	1.23E-04	0.0	1.08E-04	1.44E-05
Formaldehyde	0.075	0.048	5.60E-03	0.00E+00	2.00E-03	3.61E-03	3.80E-03	9.86E-06	1.16E-03	2.65E-03	7.67E-03	6.67E-06	6.77E-03	9.06E-04
Hexane	1.8	-	1.35E-01	0.0	4.80E-02	8.65E-02	9.13E-02	0.0	2.76E-02	6.36E-02	1.84E-01	0.0	1.63E-01	2.16E-02
Lead	0.0005	0.00123	3.74E-05	0.00E+00	1.33E-05	2.40E-05	2.53E-05	2.53E-07	7.92E-06	1.77E-05	5.11E-05	1.71E-07	4.51E-05	6.16E-06
Mangenese	0.00038	0.00082	2.84E-05	0.00E+00	1.01E-05	1.83E-05	1.93E-05	1.69E-07	6.00E-06	1.34E-05	3.89E-05	1.14E-07	3.43E-05	4.67E-06
Mercury ⁽¹⁾	0.00026	0.00041	1.94E-05	0.00E+00	6.93E-06		1.32E-05	8.45E-08	4.07E-06		2.66E-05	5.71E-08	2.35E-05	
Napthalene	0.00061	-	4.56E-05	0.0		2.93E-05		0.0		2.16E-05	6.24E-05	0.0	5.51E-05	
Nickel	0.0021	0.00041	1.57E-04	0.00E+00		1.01E-04			3.23E-05			5.71E-08		
POM	0.000088	0.0033	6.58E-06	0.00E+00			4.46E-06			3.11E-06		4.59E-07		
Selenium	0.000024	0.00206	1.79E-06	0.00E+00			1.22E-06		7.90E-07	8.49E-07		2.86E-07	2.17E-06	
Toluene	0.0034	-	2.54E-04	0.0		1.63E-04		0.0		1.20E-04	3.48E-04	0.0	3.07E-04	
TOTAL HAPS			1.41E-01	0.00E+00	5.03E-02	9.08E-02	9.57E-02	1.19E-05	2.90E-02	6.68E-02	1.93E-01	8.06E-06	1.71E-01	2.26E-02

For References, see Emission Summary.

12 Month Rolling Emissions 2010 (Tons)

Pollutant	TSP	PM10	NOx	СО	VOC	SO ₂
Permit Limit (tons/yr) 12-Month Rolling Total	8.4	8.2	60.2	41.3	5.6	7.9
January						
	1.877	1.876	14.312	9.870	1.357	0.153
February	1.889	1.889	14.406	9.935	1.366	0.154
March	1.890	1.889	14.413	9.939	1.366	0.153
April	1.866	1.866	14.236	9.817	1.350	0.150
May	1.862	1.861	14.200	9.793	1.346	0.150
June	1.839	1.838	14.026	9.673	1.330	0.148
July	1.811	1.811	13.817	9.529	1.310	0.146
August	1.819	1.819	13.878	9.570	1.316	0.147
September	1.799	1.798	13.719	9.461	1.301	0.145
October	1.771	1.771	13.510	9.317	1.281	0.143
November	1.777	1.776	13.550	9.345		_
December	1.732	1.731	13.210	9.110	1.252	0.139

Monthly Emission Totals (Tons)

Pollutant	TSP	PM10	NOx	CO	VOC	SO ₂
January	0.258	0.258	1.966	1.356	0.186	0.020
February	0.226	0.226	1.721	1.187	0.163	0.018
March	0.201	0.201	1.531	1.056	0.145	0.016
April	0.145	0.145	1.102	0.760	0.104	0.012
May	0.110	0.110	0.843	0.581	0.080	0.009
June	0.067	0.067	0.511	0.352	0.048	0.005
July	0.055	0.055	0.417	0.288	0.040	0.004
August	0.070	0.070	0.533	0.368	0.050	0.007
September	0.064	0.064	0.486	0.335	0.046	0.005
October	0.123	0.123	0.938	0.647	0.089	0.010
November	0.196	0.196	1.498	1.033	0.142	0.015
December	0.218	0.218	1.664	1.148	0.158	0.017
Annual Totals	1.732	1.731	13.210	9.110	1.252	0.139

Data Reviewed By:	

Emission Summary TA-3 Power Plant 2010

	Emission	Factor				Reference		Reference
Pollutant	Natural Gas	Fuel Oil ^f (lb/1000	Annual Emissions (Natural Gas + Fuel Oil) (tons)	Jan-June Emissions (Natural Gas + Fuel Oil) (tons)	July-Dec Emissions (Natural Gas + Fuel Oil) (tons)			 (a) AP-42, 7/98, Section. 1.4, Natural Gas Combustion, Tables 1.4-1, 1.4-2 (b) Fuel usage obtained from Jerry Gonzales (FWO-UI). Values are provided in a monthly data deliverable from KSL.
Criteria	(lb/MMscf) ^a	gal.)		(** -7	(11 17	Gas	Oil	
NOx	58	8.64	13.210	7.674	5.536	(c)	(c)	(c) Average of source tests conducted on all 3 boilers
SOx	0.6	7.4	0.139	0.081	0.058	(a)(j)	(g)(j)	September 2002 burning natural gas after FGR installed. Assumed FGR resulted in similar Nox
PM	7.6	3.3	1.732	1.006	0.726	(d)	(d)	reduction for oil.
PM-10	7.6	2.3	1.731	1.006	0.726	(d)	(d)	
PM-2.5	7.6	1.55	1.731	1.006	0.725	(d)	(d)	(d) All PM from natural gas is assumed <1μ, so PM-10,
CO	40		9.110	5.292		(b)	(g)	PM-2.5 and total PM have equal EFs, AP-42, Natural
voc	5.5	0.2	1.252	0.728		(b)	(i)	Gas Combustion, Table 1.4-2. The PM emission factor for fuel oil is the sum of filterable and condensable PM.
HAPs ⁿ								The state of the s
Arsenic	0.0002	0.00055	4.57E-05	2.66E-05	1.92E-05	(a)	(k)	(e) AP-42, 1/95, Section. 1.4, Natural Gas Combustion,
Benzene	0.0021	-	4.78E-04	2.78E-04		(c)		Table 1.4-2. Consistent with previous stack tests.
Beryllium	0.000012	0.00041	2.87E-06	1.67E-06	1.20E-06	(c)	(k)	
Cadmium	0.0011	0.00041	2.51E-04	1.46E-04	1.05E-04	(c)	(k)	(f) AP-42, 9/98, Section. 1.3, Fuel Oil Combustion,
Chromium	0.0014	0.00041	3.19E-04	1.85E-04	1.34E-04	(c)	(k)	Table 1.3-1 with Errata, Table 1.3-3, and Table 1.3-6.
Cobalt	0.000084	-	1.91E-05	1.11E-05	8.02E-06	(c)		1.3-0.
Dichlorobenzene	0.0012	-	2.73E-04	1.59E-04	1.15E-04	(c)		(g) Boilers>100 MMBtu/hr: SOx Emission Factor (SO ₂
Formaldehyde	0.075	0.048	1.71E-02	9.93E-03	7.16E-03	(c)	(k)	$\{142S\} + SO_3 \{5.7S\} = 147.7 * S (from AP-42, Table \}$
Hexane	1.8	-	4.10E-01	2.38E-01	1.72E-01	(c)		1.3-1 w/Errata) (S = weight % sulfur in oil)(Sulfur content per analysis on oil in tanks in August 01', no
Lead	0.0005	0.001233	1.14E-04	6.64E-05	4.79E-05	(c)	(k)	new oil delivered in 02'/03')
Manganese	0.00038	0.000822	8.68E-05	5.04E-05	3.64E-05	(c)	(k)	·
Mercury	0.00026	0.000411	5.93E-05	3.45E-05	2.49E-05	(i)(c)	(i)(k)	S(%)= 0.05
Napthalene	0.00061	-	1.39E-04	8.07E-05	5.82E-05	(c)		(h) HAP emission factors for natural gas from AP-42,
Nickel	0.0021	0.000411	4.78E-04	2.78E-04		(c)	(k)	Tables 1.4-3 an 1.4-4, for fuel oil from AP-42 Tables 1.3- 8 and 1.3-10.
POM	0.000088	0.0033	2.12E-05	1.23E-05		(c)	(k)	o and 1.5-10.
Selenium	0.000024	0.002055	6.17E-06	3.60E-06		(c)	(k)	
Toluene	0.0034	-	7.74E-04	4.50E-04		(c)		(i) AP-42, Table 1.4-2, 1.4-3, and 1.4-4, July 1998
TOTAL HAPS			4.30E-01	2.50E-01	1.80E-01			(2) A
EPCRA 313			= - :	lbs./year		()	(I) (I)	(j) Assume all SO ₃ is converted to sulfuric acid.
Lead	0.0005	0.00123	1.14E-04	0.229		(c)	(i)(k)	(IA AD 40 Ashlor 4.2.0 and 4.2.40 Contact to 4.222
Sulfuric Acid	0.60		1.37E-01	273.44		(e)(j)	(e)(h)	(k) AP-42, tables 1.3-9 and 1.3-10, September 1998.
Mercury PACs	0.00026 8.69E-07	0.00041 1.65E-05	5.93E-05 2.04E-07	0.119 4.07E-04		(c)	(i)(k)	(I) EPCRA PAC Guidance Document, Table 2-3.
Benzo(g,h,i) perylene						(f)(l)	(f)(l)	
	1.20E-06	2.26E-06	2.74E-07	5.48E-04		(i)(k)(c)	(f)	Reviewed By/Date:
Zinc	-	0.00055	1.89E-07	3.78E-04			(k)	

Attachment B

2010 Annual Emissions Inventory Submittal to NMED

Tuesday, March 15, 2011

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2010 Submittal (In Process)

Facility ID: 116

Designation: TA-60-BDM

Description: Asphalt Plant Dryer - Propane

Type: Asphalt Drum/Burner

SCC: Industrial Processes, Mineral

Products, Asphalt Concrete, Drum Mix Plant: Rotary Drum Dryer / Mixer, Natural Gas -

Fired

Supplemental Parameters

	Amount	Unit of Measure
Fuel Type:	Propane	
Input Materials Processed:	Asphalt (OUTPUT)	
Materials Consumed:	22212.0	gal/y
Fuel Heating Value:	91547.0	BTU/gal
Percent Sulfur of Fuel:	0.0	percent
Percent Ash of Fuel:	0.0	percent
Percent Carbon Content:	0.0	percent

Operating Detail

	Value
Operating Time in Hours per Day:	8
Operating Time in Days per Week:	5
Operating Time in Weeks per Year:	26
Operating Time in Hours per Year:	1040
Percent of Operation During Winter:	10
Percent of Operation During Spring:	30
Percent of Operation During Summer:	30
Percent of Operation During Fall:	30

Actual Pollutants

Poliutant	Amount	Unit of Measure	Calculation Method
Carbon Dioxide (from combustion):	124.97	metric tons/y	40 CFR 98 Subpart C
Carbon Monoxide:		tons/y	EPA emission factors (e.g., AP-42)
Lead:	0.0	tons/y	EPA emission factors (e.g., AP-42)
Methane (from combustion):	0.006	metric tons/y	
Nitrogen Dioxide:		tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (10 microns or less):		tons/y	Manufacturer Specification
Particulate Matter (2.5 microns or less):		tons/y	Manufacturer Specification
Particulate Matter (total suspended):		tons/y	Manufacturer Specification
Sulfur Dioxide:		tons/y	EPA emission factors (e.g., AP-42)

Volatile Organic Compounds (VOC): 0.006

tons/y

EPA emission factors (e.g., AP-42)

Subject Item Comments

Print Close

Tuesday, March 15, 2011

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2010 Submittal (In Process)

Facility ID: 2

Designation: TA-35-213

Description: Be Target Fabrication Facility - Machining TA-35-213

Type: Beryllium Work

SCC: Industrial Processes, Fabricated

Metal Products, Machining Operations, Specify Material**

Supplemental Parameters

Input Materials Processed:

Metal (INPUT)

Operating Detail

	Value
Operating Time in Hours per Day:	5
Operating Time in Days per Week:	7
Operating Time in Weeks per Year:	5 2
Operating Time in Hours per Year:	1920
Percent of Operation During Winter:	25
Percent of Operation During Spring:	2 5
Percent of Operation During Summer:	2 5
Percent of Operation During Fall:	25

Actual Pollutants

Pollutant	Amount	Unit of Measure	Calculation Method
Beryllium:	0.0	tons/y	Estimate
Particulate Matter (total suspended):		tons/y	Estimate

Subject Item Comments

For both beryllium and particulate emissions, the actual number reported is <1.98E-8 tons/year. However, the AEIR tool rounds the number to zero.

Print | Close

Tuesday, March 15, 2011

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2010 Submittal (In Process)

Facility ID: 3

Designation: TA-3-141

Description: Be Test Facility - Machining TA-3-141

Type: Beryllium Work

SCC: Industrial Processes, Fabricated

Metal Products, Machining Operations, Specify Material**

Supplemental Parameters

Input Materials Processed:

Metal (OUTPUT)

Operating Detail

	Value
Operating Time in Hours per Day:	24
Operating Time in Days per Week:	7
Operating Time in Weeks per Year:	52
Operating Time in Hours per Year:	8760
Percent of Operation During Winter:	25
Percent of Operation During Spring:	25
Percent of Operation During Summer:	25
Percent of Operation During Fall:	25

Actual Pollutants

Poliutant	Amount	Unit of Measure	Calculation Method
Beryllium:	0.0	tons/y	Engineer Calculation
Particulate Matter (total suspended):	0.0	tons/y	Engineer Calculation

Subject Item Comments

For both beryllium and particulate emissions, the actual number reported is <7.71 E-9 tons/year. However, the AEIR tool rounds the number to zero.

> Print Close

Tuesday, March 15, 2011

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2010 Submittal (In Process)

Facility ID: 6

Designation: TA-55-PF4 (a)

Plutonium Facility Beryllium

Description: machining, weld cutting /

dressing and metallography

Type: Beryllium Work

SCC: Industrial Processes, Fabricated

Metal Products, Machining Operations, Specify Material**

Supplemental Parameters

Input Materials Processed:

Metal (INPUT)

Operating Detail

	Value
Operating Time in Hours per Day:	5
Operating Time in Days per Week:	7
Operating Time in Weeks per Year:	52
Operating Time in Hours per Year:	1920
Percent of Operation During Winter:	25
Percent of Operation During Spring:	25
Percent of Operation During Summer:	25
Percent of Operation During Fall:	25

Actual Pollutants

Pollutant	Amount	Unit of Measure	Calculation Method
Beryllium:	0.0	tons/y	EPA emission factors (e.g., AP-42)

Subject Item Comments

For beryllium emissions, the actual number reported is <3.21E-6 tons/year. However, the AEIR tool rounds the number to zero.

Print | Close

Tuesday, March 15, 2011

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2010 Submittal (In Process)

Facility ID: 41

Designation: TA-3-66

Description: Sigma Facility-electroplating/metallography

Type: Beryllium Work

SCC: Industrial Processes, Fabricated

Metal Products, Abrasive

Cleaning of Metal Parts, Polishing

Supplemental Parameters

Input Materials Processed:

Metal (INPUT)

Operating Detail

	Value
Operating Time in Hours per Day:	8
Operating Time in Days per Week:	7
Operating Time in Weeks per Year:	, 52
Operating Time in Hours per Year:	2912
Percent of Operation During Winter:	25
Percent of Operation During Spring:	25
Percent of Operation During Summer:	25
Percent of Operation During Fall:	25
Cidena	

Actual Pollutants

Pollutant	Amount	Unit of Measure	Calculation Method
Beryllium:	0.0	tons/y	Design calculation

Subject Item Comments

Polishing/milling operations are conducted in an aqueous solution and melting/casting are exhausted through a HEPA filter. Emissions are negligible.

> Close Print

Tuesday, March 15, 2011

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2010 Submittal (In Process)

Facility ID: 8

Designation: TA-48-1-BS-1

Description: Boiler TA-48-1-BS-1

Type: Boiler

SCC: External Combustion Boilers,

Electric Generation, Natural Gas, Boilers < 100 Million Btu/hr

except Tangential

Supplemental Parameters

	Amount	Unit of Measure
Fuel Type:	Natural Gas	
Input Materials Processed:	Naturai Gas (INPUT)	
Materials Consumed:	9.59	MM SCF/y
Fuel Heating Value:	1026.0	MM BTU/MM SCF
Percent Sulfur of Fuel:	0.006	percent
Percent Ash of Fuel:	0.0	percent
Percent Carbon Content:	65.0	percent

Operating Detail

	Value
Operating Time in Hours per Day:	15
Operating Time in Days per Week:	7
Operating Time in Weeks per Year:	. 33
Operating Time in Hours per Year:	3465
Percent of Operation During Winter:	40
Percent of Operation During Spring:	20
Percent of Operation During Summer:	0
Percent of Operation During Fall:	40

Actual Pollutants

Pollutant	Amount	Unit of Measure	Calculation Method
Carbon Dioxide (from combustion):	521.6	metric tons/y	40 CFR 98 Subpart C
Carbon Monoxide:		tons/y	EPA emission factors (e.g., AP-42)
Hexane:	0.009	tons/y	EPA emission factors (e.g., AP-42)
Methane (from combustion):	0.01	metric tons/y	
Nitrogen Dioxide:		tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (10 microns or less):		tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (2.5 microns or less):		tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (total suspended):		tons/y	EPA emission factors (e.g., AP-42)
Sulfur Dioxide:		tons/y	EPA emission factors (e.g., AP-42)
Volatile Organic Compounds (VOC):	0.026	tons/y	EPA emission factors (e.g., AP-42)

Tuesday, March 15, 2011

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2010 Submittal (In Process)

Facility ID: 9

Designation: TA-48-1-BS-2

Description: Boiler TA-48-1-BS-2

Type: Boiler

SCC: External Combustion Boilers,

Electric Generation, Natural Gas,

Boilers < 100 Million Btu/hr

except Tangential

Supplemental Parameters

	Amount	Unit of Measure
Fuel Type:	Natural Gas	
Input Materials Processed:	Natural Gas (INPUT)	
Materials Consumed:	9.588	. MM SCF/y
Fuel Heating Value:	1026.0	MM BTU/MM SCF
Percent Sulfur of Fuel:	0.006	percent
Percent Ash of Fuel:	0.0	percent
Percent Carbon Content:	65.0	percent

Operating Detail

	Value
Operating Time in Hours per Day:	15
Operating Time in Days per Week:	7
Operating Time in Weeks per Year:	33
Operating Time in Hours per Year:	3465
Percent of Operation During Winter:	40
Percent of Operation During Spring:	20
Percent of Operation During Summer:	0
Percent of Operation During Fall:	40

Actual Pollutants

Pollutant	Amount	Unit of Measure	Calculation Method
Carbon Dioxide (from combustion):	521.5	metric tons/y	40 CFR 98 Subpart C
Carbon Monoxide:		tons/y	EPA emission factors (e.g., AP-42)
Hexane:	0.009	tons/y	EPA emission factors (e.g., AP-42)
Methane (from combustion):	0.01	metric tons/y	40 CFR 98 Subpart C
Nitrogen Dioxide:	0.479	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (10 microns or less):	0.036	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (2.5 microns or less):	_	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (total suspended):		tons/y	EPA emission factors (e.g., AP-42)
Sulfur Dioxide:	0.003	tons/y	EPA emission factors (e.g., AP-42)
Volatile Organic Compounds (VOC)	0.026	tons/y	EPA emission factors (e.g., AP-42)

Tuesday, March 15, 2011

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2010 Submittal (In Process)

Facility ID: 10

Designation: TA-48-1-BS-6

Description: Boiler TA-48-1-BS-6

Type: Boiler

SCC: External Combustion Boilers,

Electric Generation, Natural Gas,

Boilers < 100 Million Btu/hr

except Tangential

Supplemental Parameters

	Amount	Unit of Measure
Fuel Type:	Natural Gas	
Input Materials Processed:	Naturai Gas (INPUT)	
Materials Consumed:	12.831	MM SCF/y
Fuel Heating Value:	1026.0	MM BTU/MM SCF
Percent Sulfur of Fuel:	0.006	percent
Percent Ash of Fuel:	0.0	percent
Percent Carbon Content:	65.0	percent

Operating Detail

·	Value
Operating Time in Hours per Day:	15
Operating Time in Days per Week:	7
Operating Time in Weeks per Year:	33
Operating Time in Hours per Year:	3465
Percent of Operation During Winter:	40
Percent of Operation During Spring:	. 20
Percent of Operation During Summer:	0
Percent of Operation During Fall:	40

Pollutant	Amount	Unit of Measure	Calculation Method
Carbon Dioxide (from combustion):	697.9	metric tons/y	40 CFR 98 Subpart C
Carbon Monoxide:		tons/y	EPA emission factors (e.g., AP-42)
Formaldehyde:		tons/y	EPA emission factors (e.g., AP-42)
Hexane:	0.045	tons/y	EPA emission factors (e.g., AP-42)
Methane (from combustion):	0.013	metric tons/y	
Nitrogen Dioxide:		tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (10 microns or less):		tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (2.5 microns or less):		tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (total suspended):		tons/y	EPA emission factors (e.g., AP-42)
Sulfur Dioxide:		tons/y	EPA emission factors (e.g., AP-42)

Volatile Organic Compounds (VOC): 0.035

EPA emission factors (e.g., AP-42)

Subject Item Comments

Close Print

tons/y

Tuesday, March 15, 2011

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2010 Submittal (In Process)

Facility ID: 11

Designation: TA-53-365-BHW-1

Description: Boiler TA-53-365-BHW-1

Type: Boiler

SCC: External Combustion Boilers,

Electric Generation, Natural Gas, Boilers < 100 Million Btu/hr

except Tangential

Supplemental Parameters

	Amount	Unit of Measure
Fuel Type:	Natural Gas	
Input Materials Processed:	Natural Gas (INPUT)	
Materials Consumed:	12.785	MM SCF/y
Fuel Heating Value:	1026.0	MM BTU/MM SCF
Percent Sulfur of Fuel:	0.006	percent
Percent Ash of Fuel:	0.0	percent
Percent Carbon Content:	65.0	percent

Operating Detail

	Value
Operating Time in Hours per Day:	15
Operating Time in Days per Week:	7
Operating Time in Weeks per Year:	33
Operating Time in Hours per Year:	3465
Percent of Operation During Winter:	40
Percent of Operation During Spring:	20
Percent of Operation During Summer:	0
Percent of Operation During Fall:	40

Pollutant	Amount	Unit of Measure	Calculation Method
Carbon Dioxide (from combustion):	695.4	metric tons/y	40 CFR 98 Subpart C
Carbon Monoxide:		tons/y	EPA emission factors (e.g., AP-42)
Formaldehyde:	0.0	tons/y	EPA emission factors (e.g., AP-42)
Hexane:	0.012	tons/y	EPA emission factors (e.g., AP-42)
Methane (from combustion):	0.013	metric tons/y	40 CFR 98 Subpart C
Nitrogen Dioxide:		tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (10 microns or less):		tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (2.5 microns or less):		tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (total suspended):		tons/y	EPA emission factors (e.g., AP-42)
Sulfur Dioxide		tons/y	EPA emission factors (e.g., AP-42)

Volatile Organic Compounds (VOC): 0.035

35 tons/y

EPA emission factors (e.g., AP-42)

Subject Item Comments

Print Close

Tuesday, March 15, 2011

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2010 Submittal (In Process)

Facility ID: 12

Designation: TA-53-365-BHW-2

Description: Boiler TA-53-365-BHW-2

Type: Boiler

SCC: External Combustion Boilers,

Electric Generation, Natural Gas, Boilers < 100 Million Btu/hr

except Tangential

Supplemental Parameters

	Amount	Unit of Measure
Fuel Type:	Natural Gas	
Input Materials Processed:	Natural Gas (INPUT)	
Materials Consumed:	12.785	MM SCF/y
Fuel Heating Value:	1026.0	MM BTU/MM SCF
Percent Sulfur of Fuel:	0.006	percent
Percent Ash of Fuel:	0.0	percent
Percent Carbon Content:	65.0	percent

Operating Detail

	Value
Operating Time in Hours per Day:	. 15
Operating Time in Days per Week:	7
Operating Time in Weeks per Year:	33
Operating Time in Hours per Year:	3465
Percent of Operation During Winter:	40
Percent of Operation During Spring:	20
Percent of Operation During Summer:	0
Percent of Operation During Fall:	40

Pollutant	Amount	Unit of Measure	Calculation Method
Carbon Dioxide (from combustion):	695.4	metric tons/y	40 CFR 98 Subpart C
Carbon Monoxide:		tons/y	EPA emission factors (e.g., AP-42)
Formaldehyde:	0.0	tons/y	EPA emission factors (e.g., AP-42)
Hexane:	0.012	tons/y	EPA emission factors (e.g., AP-42)
Methane (from combustion):	0.013	metric tons/y	40 CFR 98 Subpart C
Nitrogen Dioxide:		tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (10 microns or less):	0.049	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (2.5 microns or less):		tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (total suspended)		tons/y	EPA emission factors (e.g., AP-42)
Sulfur Dioxide		tons/y	EPA emission factors (e.g., AP-42)

Volatile Organic Compounds (VOC): 0.035

tons/y

EPA emission factors (e.g., AP-42)

Subject Item Comments

Close Print

Tuesday, March 15, 2011

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2010 Submittal (In Process)

Facility ID: 13

Designation: TA-59-1-BHW-1

Description: Boiler TA-59-1-BHW-1

Type: Boiler

SCC: External Combustion Boilers,

Electric Generation, Natural Gas, Boilers < 100 Million Btu/hr

except Tangential

Supplemental Parameters

Amount	Unit of Measure
Natural Gas	
Natural Gas (INPUT)	
9.588	MM SCF/y
1026.0	MM BTU/MM SCF
0.006	percent
0.0	percent
65.0	percent
	Natural Gas Natural Gas (INPUT) 9.588 1026.0 0.006 0.0

Operating Detail

	Value
Operating Time in Hours per Day:	15
Operating Time in Days per Week:	7
Operating Time in Weeks per Year:	33
Operating Time in Hours per Year:	3465
Percent of Operation During Winter:	40
Percent of Operation During Spring:	20
Percent of Operation During Summer:	0
Percent of Operation During Fall:	40

Pollutant	Amount	Unit of Measure	Calculation Method
Carbon Dioxide (from combustion):	521.5	metric tons/y	40 CFR 98 Subpart C
Carbon Monoxide:	0.403	tons/y	EPA emission factors (e.g., AP-42)
Hexane:	0.009	tons/y	EPA emission factors (e.g., AP-42)
Methane (from combustion):	0.01	metric tons/y	40 CFR 98 Subpart C
Nitrogen Dioxide:	0.479	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (10 microns or less):	0.036	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (2.5 microns or less):	0.036	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (total suspended):	0.036	tons/y	EPA emission factors (e.g., AP-42)
Sulfur Dioxide:	0.003	tons/y	EPA emission factors (e.g., AP-42)
Volatile Organic Compounds (VOC):	0.026	tons/y	EPA emission factors (e.g., AP-42)

Tuesday, March 15, 2011

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2010 Submittal (In Process)

Facility ID: 14

Designation: TA-59-1-BHW-2 **Description:** Boiler 59-1-BHW-2

Type: Boiler

SCC: External Combustion Boilers,

Electric Generation, Natural Gas, Boilers < 100 Million Btu/hr

except Tangential

Supplemental Parameters

	Amount	Unit of Measure
Fuel Type:	Natural Gas	
Input Materials Processed:	Natural Gas (INPUT)	
Materials Consumed:	9.588	MM SCF/y
Fuel Heating Value:	1026.0	MM BTU/MM SCF
Percent Sulfur of Fuel:	0.006	percent
Percent Ash of Fuel:	0.0	percent
Percent Carbon Content:	65.0	percent

Operating Detail

	value
Operating Time in Hours per Day:	15
Operating Time in Days per Week:	7
Operating Time in Weeks per Year:	33
Operating Time in Hours per Year:	3465
Percent of Operation During Winter:	40
Percent of Operation During Spring:	20
Percent of Operation During Summer:	0
Percent of Operation During Fall:	40

Pollutant	Amount	Unit of Measure	Calculation Method
Carbon Dioxide (from combustion):	521.5	metric tons/y	40 CFR 98 Subpart C
Carbon Monoxide:	0.403	tons/y	EPA emission factors (e.g., AP-42)
Hexane:	0.009	tons/y	EPA emission factors (e.g., AP-42)
Methane (from combustion):	0.01	metric tons/y	40 CFR 98 Subpart C
Nitrogen Dioxide:	0.479	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (10 microns or less):	0.036	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (2.5 microns or less):	0.036	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (total suspended):	0.036	tons/y	EPA emission factors (e.g., AP-42)
Sulfur Dioxide:	0.003	tons/y	EPA emission factors (e.g., AP-42)
Volatile Organic Compounds (VOC):	0.026	tons/y	EPA emission factors (e.g., AP-42)

Tuesday, March 15, 2011

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2010 Submittal (In Process)

Facility ID: 24

Designation: TA-3-22-1

Description: Power Plant Boiler (pph, Natural Gas)

Type: Boiler

SCC: External Combustion Boilers,

Electric Generation, Natural Gas, Boilers > 100 Million Btu/hr

except Tangential

Supplemental Parameters

	Amount	Unit of Measure
Fuel Type:	Natural Gas	
Input Materials Processed:	Natural Gas (INPUT)	
Materials Consumed:	149.4	MM SCF/y
Fuel Heating Value:	1026.0	MM BTU/MM SCF
Percent Sulfur of Fuel:	0.006	percent
Percent Ash of Fuel:	0.0	percent
Percent Carbon Content:	65.0	percent

Operating Detail

	Value
Operating Time in Hours per Day:	24
Operating Time in Days per Week:	7
Operating Time in Weeks per Year:	52
Operating Time in Hours per Year:	8760
Percent of Operation During Winter:	30
Percent of Operation During Spring:	20
Percent of Operation During Summer:	20
Percent of Operation During Fall:	30

Pollutant	Amount	Unit of Measure	Calculation Method
Carbon Dioxide (from combustion):	8128.5	metric tons/y	40 CFR 98 Subpart C
Carbon Monoxide:	2.99	tons/y	EPA emission factors (e.g., AP-42)
Formaldehyde:	0.006	tons/y	EPA emission factors (e.g., AP-42)
Hexane:	0.14	tons/y	EPA emission factors (e.g., AP-42)
Methane (from combustion):	0.15	metric tons/y	40 CFR 98 Subpart C
Nitrogen Dioxide:	4.33	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (10 microns or less):	0.57	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (2.5 microns or less):		tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (total suspended):		tons/y	EPA emission factors (e.g., AP-42)

Sulfur Dioxide: 0.05 tons/y EPA emission factors (e.g., AP-42)
Toluene; (Methyl benzene): 0.0 tons/y EPA emission factors (e.g., AP-42)
Volatile Organic Compounds (VOC): 0.411 tons/y EPA emission factors (e.g., AP-42)

Subject Item Comments

Print Close

Tuesday, March 15, 2011

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2010 Submittal (In Process)

Facility ID: 25

Designation: TA-3-22-2

Description: Power Plant Boiler (pph, Natural Gas)

Type: Boiler

SCC: External Combustion Boilers,

Electric Generation, Natural Gas,

Boilers > 100 Million Btu/hr

except Tangential

Supplemental Parameters

l Parameters	Amount	Unit of Measure
Fuel Type: Input Materials Processed: Materials Consumed: Fuel Heating Value: Percent Sulfur of Fuel: Percent Ash of Fuel: Percent Carbon Content:	Natural Gas Natural Gas (INPUT) 101.4 1026.0 0.006 0.0 65.0	MM SCF/y MM BTU/MM SCF percent percent percent

Operating Detail

ilue
24
7
52
760
30
20
20
30

Actual Pollulants		Unit	Calculation
Pollutant	Amount	-	Method
Carbon Dioxide (from combustion)	5519.1	metric tons/y	40 CFR 98 Subpart C
Carbon Dioxide (Holli Collidation) Carbon Monoxide	2.03	tons/y	EPA emission factors (e.g., AP-42)
Formaldehyde		tons/y	EPA emission factors (e.g., AP-42)
Hexane		tons/y	EPA emission factors (e.g., AP-42)
Methane (from combustion)	: 0.1	metric tons/y	40 CFR 98 Subpart C
Nitrogen Dioxide		tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (10 microns or less)	: 0.39	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (2.5 microns or less)	0.39	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (total suspended)	0.39	tons/y	EPA emission factors (e.g., AP-42)

Sulfur Dioxide:

tons/y tons/y EPA emission factors (e.g., AP-42)

Volatile Organic Compounds (VOC):

0.28

0.03

EPA emission factors (e.g., AP-42)

Subject Item Comments

Print Close

Tuesday, March 15, 2011

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2010 Submittal (In Process)

Facility ID: 26

Designation: TA-3-22-3

Description: Power Plant Boiler (pph, Natural Gas)

Type: Boiler

SCC: External Combustion Boilers,

Electric Generation, Natural Gas, Boilers > 100 Million Btu/hr

except Tangential

Supplemental Parameters

a Farameters	Amount	Unit of Measure
Fuel Type:	Natural Gas	
Input Materials Processed:	Natural Gas (INPUT)	
Materials Consumed:	204.6	MM SCF/y
Fuel Heating Value:	1026.0	MM BTU/MM SCF
Percent Sulfur of Fuel:	0.006	percent
Percent Ash of Fuel:	0.0	percent
Percent Carbon Content:	65.0	percent

Operating Detail

	Value
Operating Time in Hours per Day:	24
Operating Time in Days per Week:	7
Operating Time in Weeks per Year:	52
Operating Time in Hours per Year:	8760
Percent of Operation During Winter:	30
Percent of Operation During Spring:	20
Percent of Operation During Summer:	20
Percent of Operation During Fall:	30

Actual Politicants			
Pollutant	Amount	Unit of Measure	Calculation Method
Carbon Dioxide (from combustion)	: 11128.7	metric tons/y	40 CFR 98 Subpart C
Carbon Monoxide		tons/y	EPA emission factors (e.g., Ar 12)
Formaldehyde	_	tons/y	EPA emission factors (e.g., AP-42)
Hexane		tons/y	EPA emission factors (e.g., AP-42)
Methane (from combustion)		metric tons/y	
Nitrogen Dioxide		tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (10 microns or less)		tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (2.5 microns or less)		tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (total suspended)	: 0.78	tons/y	EPA emission factors (e.g., AP-42)

Sulfur Dioxide: 0.061

tons/y

EPA emission factors (e.g., AP-42)

Volatile Organic Compounds (VOC): 0.56

tons/y

EPA emission factors (e.g., AP-42)

Subject Item Comments

Print Close

Tuesday, March 15, 2011

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2010 Submittal (In Process)

Facility ID: 29

Designation: TA-55-6-BHW-1

Description: Sellers Boiler TA-55-6-BHW-1

Type: Boiler

SCC: External Combustion Boilers,

Electric Generation, Natural Gas, Boilers < 100 Million Btu/hr

except Tangential

Supplemental Parameters

	Amount	Unit of Measure
Fuel Type:	Natural Gas	
Input Materials Processed:	Natural Gas (INPUT)	
Materials Consumed:	10.285	MM SCF/y
Fuel Heating Value:	1026.0	MM BTU/MM SCF
Percent Sulfur of Fuel:	0.006	percent
Percent Ash of Fuel:	0.0	percent
Percent Carbon Content:	65.0	percent

Operating Detail

Value
15
7
33
3465
40
20
0
40

Pollutant	Amount	Unit of Measure	Calculation Method
Carbon Dioxide (from combustion):	559.4	metric tons/y	40 CFR 98 Subpart C
Carbon Monoxide:		tons/y	Manufacturer Specification
Hexane:		tons/y	EPA emission factors (e.g., AP-42)
Methane (from combustion):	0.011	metric tons/y	
Nitrogen Dioxide:		tons/y	Actual stack test
Particulate Matter (10 microns or less):	_	tons/y	Manufacturer Specification
Particulate Matter (2.5 microns or less):	0,073	tons/y	Manufacturer Specification
Particulate Matter (total suspended):	0.073	tons/y	Manufacturer Specification
Sulfur Dioxide		tons/y	EPA emission factors (e.g., AP-42)
Volatile Organic Compounds (VOC)		tons/y	Manufacturer Specification

Tuesday, March 15, 2011

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2010 Submittal (In Process)

Facility ID: 30

Designation: TA-55-6-BHW-2

Description: Sellers Boiler TA-55-6-BHW-2

Type: Boiler

SCC: External Combustion Boilers,

Electric Generation, Natural Gas, Boilers < 100 Million Btu/hr

except Tangential

Supplemental Parameters

	Amount	Unit of Measure
Fuel Type:	Natural Gas	
Input Materials Processed:	Natural Gas (INPUT)	
Materials Consumed:	9.684	MM SCF/y
Fuel Heating Value:	1026.0	MM BTU/MM SCF
Percent Sulfur of Fuel:	0.006	percent
Percent Ash of Fuel:	0.0	percent
Percent Carbon Content:	65.0	percent

Operating Detail

	vaiue
Operating Time in Hours per Day:	15
Operating Time in Days per Week:	7
Operating Time in Weeks per Year:	33
Operating Time in Hours per Year:	3465
Percent of Operation During Winter:	40
Percent of Operation During Spring:	20
Percent of Operation During Summer:	0
Percent of Operation During Fall:	40

Pollutant	Amount	Unit of Measure	Calculation Method
Carbon Dioxide (from combustion):	526.7	metric tons/y	40 CFR 98 Subpart C
Carbon Monoxide:	0.185	tons/y	Manufacturer Specification
Formaldehyde:	0.0	tons/y	EPA emission factors (e.g., AP-42)
Hexane:	0.009	tons/y	EPA emission factors (e.g., AP-42)
Lead:	0.0	tons/y	Manufacturer Specification
Methane (from combustion):	0.01	metric tons/y	40 CFR 98 Subpart C
Nitrogen Dioxide:	0.668	tons/y	Actual stack test
Particulate Matter (10 microns or less):	0.069	tons/y	Manufacturer Specification
Particulate Matter (2.5 microns or less):	0.069	tons/y	Manufacturer Specification
Particulate Matter (total suspended):	0.069	tons/y	Manufacturer Specification

Sulfur Dioxide: 0.003

tons/y

EPA emission factors (e.g., AP-42)

Volatile Organic Compounds (VOC): 0.029

tons/y

Manufacturer Specification

Subject Item Comments

Close Print

Tuesday, March 15, 2011

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2010 Submittal (In Process)

Facility ID: 53

Designation: TA-16-1484-BS-2

Description: Low NOx Boiler TA-16-1484-BS-2

Type: Boiler

SCC: External Combustion Boilers, Commercial/Institutional, Natural Gas, < 10 Million Btu/hr

Supplemental Parameters

Amount	Unit of Measure
Natural Gas	
Natural Gas (INPUT)	
11.41	MM SCF/y
1026.0	MM BTU/MM SCF
0.006	percent
0.0	percent
65.0	percent
	Natural Gas Natural Gas (INPUT) 11.41 1026.0 0.006 0.00

Operating Detail

	Value
Operating Time in Hours per Day:	24
Operating Time in Days per Week:	7
Operating Time in Weeks per Year:	52
Operating Time in Hours per Year:	8760
Percent of Operation During Winter:	25
Percent of Operation During Spring:	25
Percent of Operation During Summer:	25
Percent of Operation During Fall:	25

Pollutant	Amount	Unit of Measure	Calculation Method
Carbon Dioxide (from combustion):	620.7	metric tons/y	40 CFR 98 Subpart C
Carbon Monoxide:	0.212	tons/y	Design calculation
Lead:	0.0	tons/y	Design calculation
Methane (from combustion):	0.012	metric tons/y	40 CFR 98 Subpart C
Nitrogen Dioxide:	0.212	tons/y	Design calculation
Particulate Matter (10 microns or less):	0.043	tons/y	Design calculation
Particulate Matter (2.5 microns or less):	0.043	tons/y	Design calculation
Particulate Matter (total suspended):		tons/y	Design calculation
Sulfur Dioxide:	0.003	tons/y	Design calculation
Volatile Organic Compounds (VOC):	0.031	tons/y	Design calculation

Tuesday, March 15, 2011

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2010 Submittal (In Process)

Facility ID: 90 Designation: B-1

Description: Boiler-CMRR

Type: Boiler

SCC: External Combustion Boilers, Commercial/Institutional, Natural Gas, < 10 Million Btu/hr

Supplemental Parameters

	Amount	Unit of Measure
Fuel Type:	Natural Gas	
Input Materials Processed:	Natural Gas (INPUT)	
Materials Consumed:	0.0	MM SCF/y
Fuel Heating Value:	0.0	MM BTU/MM SCF
Percent Sulfur of Fuel:	0.0	percent
Percent Ash of Fuel:	0.0	percent
Percent Carbon Content:	0.0	percent

Operating Detail

	Value
Operating Time in Hours per Day:	0
Operating Time in Days per Week:	0
Operating Time in Weeks per Year:	0
Operating Time in Hours per Year:	0
Percent of Operation During Winter:	0
Percent of Operation During Spring:	0
Percent of Operation During Summer:	0
Percent of Operation During Fall:	0

Actual Pollutants

Pollutant	Amount	Unit of Measure	Calculation Method
Carbon Dioxide (from combustion):	0.0	metric tons/y	40 CFR 98 Subpart C
Carbon Monoxide:	0.0	tons/y	Design calculation
Methane (from combustion):	0.0	metric tons/y	40 CFR 98 Subpart C
Nitrogen Dioxide:	0.0	tons/y	Design calculation
Particulate Matter (10 microns or less):	0.0	tons/y	Design calculation
Particulate Matter (total suspended):	0.0	tons/y	Design calculation
Sulfur Dioxide:	0.0	tons/y	Design calculation
Volatile Organic Compounds (VOC):	0.0	tons/y	Design calculation

Subject Item Comments

Tuesday, March 15, 2011

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2010 Submittal (In Process)

Facility ID: 104 Designation: B-2

Description: Boiler-CMRR

Type: Boiler

SCC: External Combustion Boilers, Commercial/Institutional, Natural Gas, < 10 Million Btu/hr

Supplemental Parameters

	Amount	Unit of Measure
Fuel Type:	Natural Gas	
Input Materials Processed:	Natural Gas (INPUT)	
Materials Consumed:	0.0	MM SCF/y
Fuel Heating Value:	0.0	MM BTU/MM SCF
Percent Sulfur of Fuel:	0.0	percent
Percent Ash of Fuel:	0.0	percent
Percent Carbon Content:	0.0	percent

Operating Detail

	Value
Operating Time in Hours per Day:	0
Operating Time in Days per Week:	0
Operating Time in Weeks per Year:	0
Operating Time in Hours per Year:	0
Percent of Operation During Winter:	0
Percent of Operation During Spring:	0
Percent of Operation During Summer:	0
Percent of Operation During Fall:	0

Actual Pollutants

Pollutant	Amount	Unit of Measure	Calculation Method
Carbon Dioxide (from combustion):	0.0	metric tons/y	40 CFR 98 Subpart C
Carbon Monoxide:	0.0	tons/y	EPA emission factors (e.g., AP-42)
Methane (from combustion):	0.0	metric tons/y	40 CFR 98 Subpart C
Nitrogen Dioxide:	0.0	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (10 microns or less):	0.0	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (total suspended):	0.0	tons/y	EPA emission factors (e.g., AP-42)
Sulfur Dioxide:	0.0	tons/y	EPA emission factors (e.g., AP-42)
Volatile Organic Compounds (VOC):	0.0	tons/y	EPA emission factors (e.g., AP-42)

Subject Item Comments

Tuesday, March 15, 2011

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2010 Submittal (In Process)

Facility ID: 105 Designation: B-3

Description: Boiler-CMRR

Type: Boiler

SCC: External Combustion Boilers, Commercial/Institutional, Natural Gas, < 10 Million Btu/hr

Supplemental Parameters

r Faramoters	Amount	Unit of Measure
Fuel Type:	Natural Gas	
Input Materials Processed:	Natural Gas (INPUT)	
Materials Consumed:	0.0	MM SCF/y
Fuel Heating Value:	0.0	MM BTU/MM SCF
Percent Sulfur of Fuel:	0.0	percent
Percent Ash of Fuel:	0.0	percent
Percent Carbon Content:	0.0	percent

Operating Detail

0	
Operating Time in Hours per Day:	
Operating Time in Days per Week:	
Operating Time in Weeks per Year:	
Operating Time in Hours per Year:	
Percent of Operation During Winter: 0	
Percent of Operation During Spring: 0	
Percent of Operation During Summer: 0	
Percent of Operation During Fall:	

Actual Pollutants

Pollutant	Amount	Unit of Measure	Calculation Method
Carbon Dioxide (from combustion)	0.0	metric tons/y	
Carbon Monoxide		tons/y	EPA emission factors (e.g., AP-42)
Methane (from combustion)	: 0.0	metric tons/y	40 CFR 98 Subpart C
Nitrogen Dioxide		tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (10 microns or less)	: 0.0	tons/y	EPA emission factors (e.g., AP-42) EPA emission factors (e.g., AP-42)
Particulate Matter (total suspended)		tons/y	EPA emission factors (e.g., AP-42)
Sulfur Dioxide		tons/y	EPA emission factors (e.g., AP-42)
Volatile Organic Compounds (VOC)	0.0	tons/y	ELM EUROPIOU (G.A.) (-)

Subject Item Comments

Tuesday, March 15, 2011

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2010 Submittal (In Process)

Facility ID: 106 Designation: B-4

Description: Boiler-CMRR

Type: Boiler

SCC: External Combustion Boilers, Commercial/Institutional, Natural Gas, < 10 Million Btu/hr

Supplemental Parameters

	Amount	Unit of Measure
Fuel Type:	Natural Gas	
Input Materials Processed:	Natural Gas (INPUT)	
Materials Consumed:	0.0	MM SCF/y
Fuel Heating Value:	0.0	MM BTU/MM SCF
Percent Sulfur of Fuel:	0.0	percent
Percent Ash of Fuel:	0.0	percent
Percent Carbon Content:	0.0	percent

Operating Detail

	Value
Operating Time in Hours per Day:	0
Operating Time in Days per Week:	0
Operating Time in Weeks per Year:	0
Operating Time in Hours per Year:	0
Percent of Operation During Winter:	0
Percent of Operation During Spring:	0
Percent of Operation During Summer:	0
Percent of Operation During Fall:	0

Actual Pollutants

Pollutant	Amount	Unit of Measure	Calculation Method
Carbon Dioxide (from combustion):	0.0	metric tons/y	40 CFR 98 Subpart C
Carbon Monoxide:	0.0	tons/y	EPA emission factors (e.g., AP-42)
Methane (from combustion):	0.0	metric tons/y	40 CFR 98 Subpart C
Nitrogen Dioxide:	0.0	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (10 microns or less):	0.0	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (total suspended):	0.0	tons/y	EPA emission factors (e.g., AP-42)
Sulfur Dioxide:	0.0	tons/y	EPA emission factors (e.g., AP-42)
Volatile Organic Compounds (VOC):	0.0	tons/y	EPA emission factors (e.g., AP-42)

Subject Item Comments

Tuesday, March 15, 2011

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2010 Submittal (In Process)

Facility ID: 107 Designation: B-5

Description: Boiler-CMRR

Type: Boiler

SCC: External Combustion Boilers, Commercial/Institutional, Natural Gas, < 10 Million Btu/hr

Supplemental Parameters

	Amount	Unit of Measure
Fuel Type:	Natural Gas	
Input Materials Processed:	Natural Gas (INPUT)	
Materials Consumed:	0.0	MM SCF/y
Fuel Heating Value:	0.0	MM BTU/MM SCF
Percent Sulfur of Fuel:	0.0	percent
Percent Ash of Fuel:	0.0	percent
Percent Carbon Content:	0.0	percent

Operating Detail

	Value
Operating Time in Hours per Day:	0
Operating Time in Days per Week:	0
Operating Time in Weeks per Year:	0
Operating Time in Hours per Year:	0
Percent of Operation During Winter:	0
Percent of Operation During Spring:	0
Percent of Operation During Summer:	0
Percent of Operation During Fall:	0

Actual Pollutants

Pollutant	Amount	Unit of Measure	Calculation Method
Carbon Dioxide (from combustion):	0.0	metric tons/y	40 CFR 98 Subpart C
Carbon Monoxide:		tons/y	EPA emission factors (e.g., AP-42)
Methane (from combustion):	0.0	metric tons/y	
Nitrogen Dioxide:		tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (10 microns or less):	0.0	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (total suspended):		tons/y	EPA emission factors (e.g., AP-42)
Sulfur Dioxide:		tons/y	EPA emission factors (e.g., AP-42)
Volatile Organic Compounds (VOC):	0.0	tons/y	EPA emission factors (e.g., AP-42)

Subject Item Comments

Tuesday, March 15, 2011

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2010 Submittal (In Process)

Facility ID: 133

Designation: TA-50-2-BS-1

Description: Superior Model M56-5-1500-S260

Type: Boiler

SCC: External Combustion Boilers,

Electric Generation, Natural Gas, Boilers < 100 Million Btu/hr

except Tangential

Supplemental Parameters

	Amount	Unit of Measure
Fuel Type:	Natural Gas	
Input Materials Processed:	Natural Gas (INPUT)	
Materials Consumed:	19.2	MM SCF/y
Fuel Heating Value:	1026.0	MM BTU/MM SCF
Percent Sulfur of Fuel:	0.006	percent
Percent Ash of Fuel:	0.0	percent
Percent Carbon Content:	65.0	percent

Operating Detail

	Value
Operating Time in Hours per Day:	24
Operating Time in Days per Week:	2
Operating Time in Weeks per Year:	1 2
Operating Time in Hours per Year:	576
Percent of Operation During Winter:	25
Percent of Operation During Spring:	25
Percent of Operation During Summer:	25
Percent of Operation During Fall:	. 25

Actual Pollutants

Pollutant	Amount	Unit of Measure	Calculation Method
Carbon Dioxide (from combustion):	1042.9	metric tons/y	40 CFR 98 Subpart C
Carbon Monoxide:		tons/y	EPA emission factors (e.g., AP-42)
Methane (from combustion):	0.02	metric tons/y	40 CFR 98 Subpart C
Nitrogen Dioxide:		tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (10 microns or less):	0.07	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (2.5 microns or less):		tons/y	EPA emission factors (e.g., AP-42)
Sulfur Dioxide:		tons/y	EPA emission factors (e.g., AP-42)
Volatile Organic Compounds (VOC):	0.053	tons/y	EPA emission factors (e.g., AP-42)

Subject Item Comments

Tuesday, March 15, 2011

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2010 Submittal (In Process)

Facility ID: 134

Designation: TA-16-1484-BS-1

Description: Low NOx Boiler TA-16-1484-BS-1

Type: Boiler

SCC: External Combustion Boilers, Commercial/Institutional, Natural Gas, < 10 Million Btu/hr

Supplemental Parameters

	Amount	Unit of Measure
Fuel Type:	Natural Gas	
Input Materials Processed:	Natural Gas (INPUT)	
Materials Consumed:	11.41	MM SCF/y
Fuel Heating Value:	1026.0	MM BTU/MM SCF
Percent Sulfur of Fuel:	0.006	percent
Percent Ash of Fuel:	0.0	percent
Percent Carbon Content:	65.0	percent

Operating Detail

	Value
Operating Time in Hours per Day:	24
Operating Time in Days per Week:	7
Operating Time in Weeks per Year:	52
Operating Time in Hours per Year:	8760
Percent of Operation During Winter:	25
Percent of Operation During Spring:	25
Percent of Operation During Summer:	25
Percent of Operation During Fall:	25

Pollutant	Amount	Unit of Measure	Calculation Method
Carbon Dioxide (from combustion):	620.7	metric tons/y	40 CFR 98 Subpart C
Carbon Monoxide:	0.212	tons/y	EPA emission factors (e.g., AP-42)
Lead:	0.0	tons/y	EPA emission factors (e.g., AP-42)
Methane (from combustion):	0.012	metric tons/y	40 CFR 98 Subpart C
Nitrogen Dioxide:	0.212	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (10 microns or less):	0.043	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (2.5 microns or less):	0.043	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (total suspended):	0.043	tons/y	EPA emission factors (e.g., AP-42)
Sulfur Dioxide:	0.003	tons/y	EPA emission factors (e.g., AP-42)
Volatile Organic Compounds (VOC):	0.031	tons/y	EPA emission factors (e.g., AP-42)

Tuesday, March 15, 2011

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2010 Submittal (In Process)

Facility ID: 137

Designation: TA-3-22-2

Description: Power Plant Boiler (pph, No. 2 fuel oil)

Type: Boiler

SCC: External Combustion Boilers,

Electric Generation, Distillate Oil,

Grades 1 and 2 Oil

Supplemental Parameters

, and motore	Amount	Unit of Measure
Fuel Type:	Di e sel	
Input Materials Processed:	Diesel (INPUT)	
Materials Consumed:	411.0	gal/y
Fuel Heating Value:	138.0	MM BTU/M gal
Percent Sulfur of Fuel:	0.05	percent
Percent Ash of Fuel:	0.01	percent
Percent Carbon Content:	83.0	percent

Operating Detail

	Value
Operating Time in Hours per Day:	24
Operating Time in Days per Week:	7
Operating Time in Weeks per Year:	52
Operating Time in Hours per Year:	8760
Percent of Operation During Winter:	30
Percent of Operation During Spring:	20
Percent of Operation During Summer:	20
Percent of Operation During Fall:	30
•	

Pollutant	Amount	Unit of Measure	Calculation Method
Carbon Dioxide (from combustion):	4.2	metric tons/y	40 CFR 98 Subpart C
Carbon Monoxide:		tons/y	EPA emission factors (e.g., AP-42)
Formaldehyde:	0.0	tons/y	EPA emission factors (e.g., AP-42)
Hexane	0.0	tons/y	EPA emission factors (e.g., AP-42)
Methane (from combustion):	0.0	metric tons/y	40 CFR 98 Subpart C
Nitrogen Dioxide		tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (10 microns or less)		tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (2.5 microns or less)		tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (total suspended)		tons/y	EPA emission factors (e.g., AP-42)
Sulfur Dioxide		tons/y	EPA emission factors (e.g., AP-42)

Volatile Organic Compounds (VOC):

0.0 tons/y

EPA emission factors (e.g., AP-42)

Subject Item Comments

Print Close

Tuesday, March 15, 2011

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2010 Submittal (In Process)

Facility ID: 138 Designation: TA-3-22-3

Description: Power Plant Boiler (pph, No. 2 fuel oil)

Type: Boiler

SCC: External Combustion Boilers, Electric Generation, Distillate Oil,

Grades 1 and 2 Oil

Supplemental Parameters

	Amount	Unit of Measure
Fuel Type:	Diesel	
Input Materials Processed:	Diesel (INPUT)	
Materials Consumed:	278.0	gal/y
Fuel Heating Value:	138.0	MM BTU/M gal
Percent Sulfur of Fuel:	0.05	percent
Percent Ash of Fuel:	0.01	percent
Percent Carbon Content:	83.0	percent

Operating Detail

	Value
Operating Time in Hours per Day:	24
Operating Time in Days per Week:	7
Operating Time in Weeks per Year:	52
Operating Time in Hours per Year:	8760
Percent of Operation During Winter:	30
Percent of Operation During Spring:	20
Percent of Operation During Summer:	20
Percent of Operation During Fall:	30

Amount	Unit of Measure	Calculation Method
2.1	metric tons/y	40 CFR 98 Subpart C
0.001	tons/y	EPA emission factors (e.g., AP-42)
0.0	tons/y	EPA emission factors (e.g., AP-42)
0.0	tons/y	EPA emission factors (e.g., AP-42)
0.0	metric tons/y	40 CFR 98 Subpart C
0.001	tons/y	EPA emission factors (e.g., AP-42)
0.0	tons/y	EPA emission factors (e.g., AP-42)
0.0	tons/y	EPA emission factors (e.g., AP-42)
0.0	tons/y	EPA emission factors (e.g., AP-42)
0.001	tons/y	EPA emission factors (e.g., AP-42)
	2.1 0.001 0.0 0.0 0.0 0.001 0.0 0.0	Amount of Measure 2.1 metric tons/y 0.001 tons/y 0.0 tons/y 0.0 tons/y 0.0 metric tons/y 0.001 tons/y 0.00 tons/y 0.00 tons/y 0.0 tons/y 0.0 tons/y 100 tons/y 100 tons/y 100 tons/y 100 tons/y 100 tons/y 100 tons/y

Volatile Organic Compounds (VOC):

0.0

tons/y

EPA emission factors (e.g., AP-42)

Subject Item Comments

Print Close

Tuesday, March 15, 2011

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2010 Submittal (In Process)

Facility ID: 140

Designation: BOILERS

Description: Boilers - GHG only

Type: Boiler

SCC: External Combustion Boilers,

Electric Generation, Natural Gas, Boilers < 100 Million Btu/hr

except Tangential

Supplemental Parameters

	Amount	Unit of Measure
Fuel Type:	Natural Gas	
Input Materials Processed:	Natural Gas (INPUT)	
Materials Consumed:	426.7	MM SCF/y
Fuel Heating Value:	1026.0	MM BTU/MM SCF
Percent Sulfur of Fuel:	0.006	percent
Percent Ash of Fuel:	0.0	percent
Percent Carbon Content:	65.0	percent

Operating Detail

	Value
Operating Time in Hours per Day:	24
Operating Time in Days per Week:	7
Operating Time in Weeks per Year:	52
Operating Time in Hours per Year:	8736
Percent of Operation During Winter:	25
Percent of Operation During Spring:	25
Percent of Operation During Summer:	25
Percent of Operation During Fall:	25

Actual Pollutants

	U	ПІГ	Calculation
Pollutant	Amount	of	Method
	Mea	asure	

Carbon Dioxide (from combustion): 23206.2 metric tons/y 40 CFR 98 Subpart C

Methane (from combustion): 0.438 metric tons/y Other publication reference

Subject Item Comments

This SI ID accounts for all of the CO2 and CH4 emissions from small boilers except for those that have their own SI ID.

Print Close

Tuesday, March 15, 2011

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2010 Submittal (In Process)

Facility ID: 141

Designation: TA-3-22-1

Description: Power Plant Boiler (pph, No. 2 fuel oil)

Type: Boiler

SCC: External Combustion Boilers,

Electric Generation, Natural Gas, Boilers > 100 Million Btu/hr

except Tangential

Supplemental Parameters

	Amount	Unit of Measure
Fuel Type:	Diesel	
Input Materials Processed:	Diesel (INPUT)	
Materials Consumed:	0.0	gal/y
Fuel Heating Value:	138.0	MM_BTU/M_gal
Percent Sulfur of Fuel:	0.05	percent
Percent Ash of Fuel:	0.01	percent
Percent Carbon Content:	83.0	percent

Operating Detail

	Value
Operating Time in Hours per Day:	24
Operating Time in Days per Week:	7
Operating Time in Weeks per Year:	52
Operating Time in Hours per Year:	8760
Percent of Operation During Winter:	30
Percent of Operation During Spring:	20
Percent of Operation During Summer:	20
Percent of Operation During Fall:	30

Actual Pollutants

Pollutant	Amount	Unit of Measure	Calculation Method
Carbon Dioxide (from combustion):	0.0	metric tons/y	40 CFR 98 Subpart C
Carbon Monoxide:	0.0	tons/y	EPA emission factors (e.g., AP-42)
Methane (from combustion):	0.0	metric tons/y	40 CFR 98 Subpart C
Nitrogen Dioxide:	0.0	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (10 microns or less):	0.0	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (total suspended):	0.0	tons/y	EPA emission factors (e.g., AP-42)
Sulfur Dioxide:	0.0	tons/y	EPA emission factors (e.g., AP-42)
Volatile Organic Compounds (VOC):	0.0	tons/y	EPA emission factors (e.g., AP-42)

Subject Item Comments

Tuesday, March 15, 2011

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2010 Submittal (In Process)

Facility ID: 56

Designation: TA-33-G-1

Description: Kohler Diesel Generator TA-33-G-1

Type: Internal combustion engine SCC: Internal Combustion Engines, Electric Generation, Distillate Oil

(Diesel), Reciprocating

Supplemental Parameters

	Amount	Unit of Measure
Fuel Type:	Diesel	
Input Materials Processed:	Diesel (INPUT)	
Materials Consumed:	9575.6	gal/y
Fuel Heating Value:	138.0	MM BTU/M gal
Percent Sulfur of Fuel:	0.001	percent
Percent Ash of Fuel:	0.01	percent
Percent Carbon Content:	83.0	percent

Operating Detail

	Value
Operating Time in Hours per Day:	4
Operating Time in Days per Week:	1
Operating Time in Weeks per Year:	16
Operating Time in Hours per Year:	64
Percent of Operation During Winter:	25
Percent of Operation During Spring:	25
Percent of Operation During Summer:	25
Percent of Operation During Fall:	25

Pollutant	Amount	Unit of Measure	Calculation Method
Carbon Dioxide (from combustion):	97.73	metric tons/y	40 CFR 98 Subpart C
Carbon Monoxide:		tons/y	Design calculation
Lead:	0.0	tons/y	EPA emission factors (e.g., AP-42)
Methane (from combustion):	0.004	metric tons/y	40 CFR 98 Subpart C
Nitrogen Dioxide:		tons/y	Design capacity
Particulate Matter (10 microns or less):	0.047	tons/y	Design calculation
Particulate Matter (2.5 microns or less):		tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (total suspended):		tons/y	EPA emission factors (e.g., AP-42)
Sulfur Dioxide:		tons/y	EPA emission factors (e.g., AP-42)
Volatile Organic Compounds (VOC):	0.026	tons/y	EPA emission factors (e.g., AP-42)

Tuesday, March 15, 2011

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2010 Submittal (In Process)

Facility ID: 119

Designation: TA-33-G-2

Description: Kohler Diesel Generator TA-33-G-2

Type: Internal combustion engine SCC: Internal Combustion Engines, Electric Generation, Distillate Oil

(Diesel), Reciprocating

Supplemental Parameters

	Amount	Unit of Measure
Fuel Type:	Diesel	
Input Materials Processed:	Diesel (INPUT)	
Materials Consumed:	15.1	gal/y
Fuel Heating Value:	138.0	MM BTU/MM SCF
Percent Sulfur of Fuel:	0.001	percent
Percent Ash of Fuel:	0.01	percent
Percent Carbon Content:	83.0	percent

Operating Detail

	Value
Operating Time in Hours per Day:	1
Operating Time in Days per Week:	3
Operating Time in Weeks per Year:	3
Operating Time in Hours per Year:	9
Percent of Operation During Winter:	25
Percent of Operation During Spring:	25
Percent of Operation During Summer:	25
Percent of Operation During Fall:	25

Pollutant	Amount	Unit of Measure	Calculation Method
Carbon Dioxide (from combustion):	0.15	metric tons/y	40 CFR 98 Subpart,C
Carbon Monoxide:	0.001	tons/y	Design calculation
Methane (from combustion):	0.0	metric tons/y	40 CFR 98 Subpart C
Nitrogen Dioxide:	0.004	tons/y	Design calculation
Particulate Matter (10 microns or less):	0.0	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (total suspended):	0.0	tons/y	EPA emission factors (e.g., AP-42)
Sulfur Dioxide:	0.0	tons/y	EPA emission factors (e.g., AP-42)
Volatile Organic Compounds (VOC):	0.0	tons/y	EPA emission factors (e.g., AP-42)
Subject Item Comments			

Tuesday, March 15, 2011

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2010 Submittal (In Process)

Facility ID: 120

Designation: TA-33-G-3

Description: Kohler Diesel Generator TA-33-G-3

Type: Internal combustion engine SCC: Internal Combustion Engines,

Industrial, Natural Gas,

Reciprocating

Supplemental Parameters

	Amount	Unit of Measure
Fuel Type:	Diesel	
Input Materials Processed:	Diesel (INPUT)	
Materials Consumed:	10.4	gal/y
Fuel Heating Value:	138.0	MM BTU/MM SCF
Percent Sulfur of Fuel:	0.001	percent
Percent Ash of Fuel:	0.01	percent
Percent Carbon Content:	83.0	percent

Operating Detail

	Value
Operating Time in Hours per Day:	1
Operating Time in Days per Week:	2
Operating Time in Weeks per Year:	3
Operating Time in Hours per Year:	6
Percent of Operation During Winter:	25
Percent of Operation During Spring:	25
Percent of Operation During Summer:	25
Percent of Operation During Fall:	25

Pollutant	Amount	Unit of Measure	Calculation Method
Carbon Dioxide (from combustion):	0.11	metric tons/y	40 CFR 98 Subpart C
Carbon Monoxide:		tons/y	Design calculation
Methane (from combustion):	0.0	metric tons/y	40 CFR 98 Subpart C
Nitrogen Dioxide:		tons/y	Design calculation
Particulate Matter (10 microns or less):		tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (total suspended):		tons/y	EPA emission factors (e.g., AP-42)
Sulfur Dioxide:		tons/y	EPA emission factors (e.g., AP-42)
Volatile Organic Compounds (VOC):	0.0	tons/y	EPA emission factors (e.g., AP-42)
Subject Item Comments			

Tuesday, March 15, 2011

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2010 Submittal (In Process)

Facility ID: 135

Designation: TA-33-G-4

Description: Caterpillar Diesel Generator TA-33-G-4

Type: Internal combustion engine SCC: Internal Combustion Engines,

Industrial, Natural Gas, 4-cycle

Rich Burn

Supplemental Parameters

	Amount	Unit of Measure
Fuel Type:	Diesel	
Input Materials Processed:	Diesel (INPUT)	
Materials Consumed:	1580.0	gal/y
Fuel Heating Value:	138.0	MM BTU/M gal
Percent Sulfur of Fuel:	0.001	percent
Percent Ash of Fuel:	0.01	percent
Percent Carbon Content:	83.0	percent

Operating Detail

Value
5
2
10
100
25
25
25
25

Pollutant	Amount	Unit of Measure	Calculation Method
Carbon Dioxide (from combustion):	16.13	metric tons/y	40 CFR 98 Subpart C
Carbon Monoxide:	0.1	tons/y	Design calculation
Methane (from combustion):	0.001	metric tons/y	40 CFR 98 Subpart C
Nitrogen Dioxide:		tons/y	Design calculation
Particulate Matter (10 microns or less):	0.034	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (total suspended):		tons/y	EPA emission factors (e.g., AP-42)
Sulfur Dioxide:		tons/y	EPA emission factors (e.g., AP-42)
Volatile Organic Compounds (VOC):	0.034	tons/y	EPA emission factors (e.g., AP-42)
Subject Item Comments			

Tuesday, March 15, 2011

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2010 Submittal (In Process)

Facility ID: 139

Designation: GENERATORS

Description: Generators - GHG only

Type: Internal combustion engine
SCC: Internal Combustion Engines,
Electric Generation, Distillate Oil

(Diesel), Reciprocating

Supplemental Parameters

	Amount	Unit of Measure
Fuel Type:	Diesel	
Input Materials Processed:	Diesel (INPUT)	
Materials Consumed:	40248.0	gal/y
Fuel Heating Value:	138.0	MM BTU/M gal
Percent Sulfur of Fuel:	0.001	percent
Percent Ash of Fuel:	0.01	percent
Percent Carbon Content:	83.0	percent

Operating Detail

	Value
Operating Time in Hours per Day:	24
Operating Time in Days per Week:	7
Operating Time in Weeks per Year:	52
Operating Time in Hours per Year:	8736
Percent of Operation During Winter:	25
Percent of Operation During Spring:	25
Percent of Operation During Summer:	25
Percent of Operation During Fall:	25

Actual Pollutants

Pollutant	Amount	Մnit of	Calculation
Pollutarit	Amount	Measure	Method

Carbon Dioxide (from combustion): 424.08 metric tons/y 40 CFR 98 Subpart C

Methane (from combustion): 0.017 metric tons/y Other publication reference

Subject Item Comments

This SI ID accounts for all CO2 and CH4 emissions from generators except for those generators that have their own SI ID.

Print Close

Tuesday, March 15, 2011

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2010 Submittal (In Process)

Facility ID: 21

Designation: TA-55-DG-1

Description: Degreaser - Ultrasonic Cold Batch TA-55-4

Type: Parts Washer

SCC: Petroleum and Solvent

Evaporation, Organic Solvent Evaporation, Degreasing, Trichloroethylene: General

Degreasing Units

Supplemental Parameters

Input Materials Processed:

Solvents: All (INPUT)

Operating Detail

	, Value
Operating Time in Hours per Day:	4
Operating Time in Days per Week:	1
Operating Time in Weeks per Year:	52
Operating Time in Hours per Year:	208
Percent of Operation During Winter:	25
Percent of Operation During Spring:	25
Percent of Operation During Summer:	25
Percent of Operation During Fall:	25

Actual Pollutants

Unit Calculation Amount of **Pollutant** Method Measure TCE; (Trichloroethylene); (Trichloroethene): Material balance 0.01 tons/y

Subject Item Comments

Print Close

Tuesday, March 15, 2011

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2010 Submittal (In Process)

Facility ID: 3

Designation: TA-3-38

Description: Carpenter Shop - General Construction

Type: Processing

SCC: Industrial Processes, Pulp and

Paper and Wood Products, Miscellaneous Wood Working Operations, Sanding/Planning

Operations: Specify

Supplemental Parameters

Input Materials Processed:

Wood (INPUT)

Operating Detail

•	Value
Operating Time in Hours per Day:	12
Operating Time in Days per Week:	.7
Operating Time in Weeks per Year:	52
Operating Time in Hours per Year:	4368
Percent of Operation During Winter:	20
Percent of Operation During Spring:	30
Percent of Operation During Summer:	30
Percent of Operation During Fall:	20

Actual Pollutants

Pollutant	Amount	Unit of Measure	Calculation Method
Particulate Matter (10 microns or less):	0.041	• •	EPA emission factors (e.g., AP-42)
Particulate Matter (2.5 microns or less):	0.02	. ,	EPA emission factors (e.g., AP-42)
Particulate Matter (total suspended):	0.044	tons/y	EPA emission factors (e.g., AP-42)
Subject Item Comments			

Close Print

Tuesday, March 15, 2011

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2010 Submittal (In Process)

Facility ID: 4

Designation: TA-15-563

Description: Carpenter Shop - Test Stands

Type: Processing

SCC: Industrial Processes, Pulp and

Paper and Wood Products, Miscellaneous Wood Working Operations, Sanding/Planning

Operations: Specify

Supplemental Parameters

Input Materials Processed:

Wood (INPUT)

Operating Detail

•	Value
Operating Time in Hours per Day:	12
Operating Time in Days per Week:	· 7
Operating Time in Weeks per Year:	52
Operating Time in Hours per Year:	4368
Percent of Operation During Winter:	20
Percent of Operation During Spring:	30
Percent of Operation During Summer:	30
Percent of Operation During Fall:	20

Actual Pollutants

Pollutant	Amount	of Measure	Calculation Method
Particulate Matter (10 microns or less):	0.017	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (2.5 microns or less):	800.0	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (total suspended):	0.018	tons/y	EPA emission factors (e.g., AP-42)
Subject Item Comments			

Print Close

Tuesday, March 15, 2011

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2010 Submittal (In Process)

Facility ID: 7

Designation: LANL-FW-CHEM

Description: R & D Activities - Labwide (031)

Type: Research/Testing SCC: Industrial Processes,

Photographic Equipment/Health Care/Laboratories, Laboratories, Bench Scale Reagents: Research

Supplemental Parameters
Operating Detail

	Value
Operating Time in Hours per Day:	24
Operating Time in Days per Week:	7
Operating Time in Weeks per Year:	52
Operating Time in Hours per Year:	8760
Percent of Operation During Winter:	25
Percent of Operation During Spring:	25
Percent of Operation During Summer:	25
Percent of Operation During Fall:	25

Actual Pollutants

Pollutant	Amount	Unit of Measure	Calculation Method
Acetaldehyde; (Ethyl aldehyde):	0.0	tons/y	Material balance
Acetonitrile; (Methyl cyanide):	0.0	tons/y	Material balance
Acetophenone:	0.0	tons/y	Material balance
Acrylamide:	0.0	tons/y	Material balance
Acrylic acid:	0.0	tons/y	Material balance
Acrylonitrile:	0.0	tons/y	Material balance
Ammonia:	0.0	tons/y	Material balance
Aniline:	0.0	tons/y	Material balance
Antimony:	0.0	tons/y	Material balance
Antimony compounds:	0.0	tons/y	Material balance
Arsenic Compounds:	0.0	tons/y	Material balance
Велгене	0.0	tons/y	Material balance
Benzyl Chloride:	0.0	tons/y	Material balance
Biphenyl:	0.0	tons/y	Material balance
Bromoform; (Tribromomethane):	0.0	tons/y	Material balance
Butadiene(1,3-):	0.0	tons/y	Material balance
Cadmium:	0.0	tons/y	Material balance
Cadmium compounds:	0.0	tons/y	Material balance
Carbon Dioxide (fugitives):	3.18	metric tons/y	40 CFR 98 Subpart C
Carbon Disulfide:	0.0	tons/y	Material balance
Carbon tetrachloride; (Tetrachoromethane):	: 0.0	tons/y	Material balance
Carbonyl sulfide:	0.0	tons/y	Material balance
Catechol (Pyrocatechol):	0.0	tons/y	Material balance
Chlorine	0.0	tons/y	Material balance
Chloroacetic Acid	0.0	tons/y	Material balance

```
Materiai balance
                                                                                       tons/y
                                       Chlorobenzene(Phenyl Chloride):
                                                                             0.0
                                                                                                   Material balance
                                       Chloroform; (Trichloromethane):
                                                                                       tons/y
                                                                             0.0
                                                                                                   Material balance
                                                                                       tons/y
                                                               Chromium:
                                                                             0.0
                                                                                                   Material balance
                                                                                       tons/y
                                                                              0.0
                                                      Cobalt Compounds:
                                                                                                   Material balance
                                                                             0.0
                                                                                       tons/y
                                         Cresol(m-); (Methylphenol, 3-):
                                                                                                   Material balance
                                                                                       tons/y
                                                                 Cumene:
                                                                              0.0
                                                                                                   Material balance
                                                    Cyanide compounds:
                                                                              0.0
                                                                                       tons/y
                                                                                                   Material balance
                               Dibutylphthalate; (Di-n-butyl phthalate):
                                                                                       tons/y
                                                                              0.0
                                                                                                   Material balance
                                                                                        tons/y
                                                                              0,0
                                                         Diethanolamine:
                                                                                                   Material balance
                                                                                        tons/y
                                                                              0.0
                                                        Dimethyl Sulfate:
                                                                                                   Material balance
                                                                                        tons/y
                                                                              0.0
                                                    Dimethyl formamide:
                                                                                                   Material balance
                                                Dimethylhydrazine(1,1-):
                                                                              0.0
                                                                                        tons/y
                                                                                                    Material balance
                                   Dioxane(1,4-) (1,4-Diethyleneoxide):
                                                                              0.0
                                                                                        tons/y
                                                                                                    Material balance
                                                                                        tons/y
                         Epichlorohydrin; (1-Chloro-2,3-epoxypropane):
                                                                              0.0
                                                                                                    Material balance
                                                                              0.0
                                                                                        tons/y
                               Epoxybutane(1,2-) (1,2-Butylene oxide):
                                                                                                    Material balance
                                                                                        tons/y
                                                                              0.0
                                                            Ethyl Acrylate:
                                                                                                    Material balance
                                          Ethyl chloride; (Chloroethane):
                                                                              0.0
                                                                                        tons/y
                                                                                                    Material balance
                                                                                        tons/y
                                                                              0.0
                                                          Ethylene Glycol:
                                                                                                    Material balance
                                                                                        tons/y
                      Ethylene dibromide; (EDB); (1.2-Dibromoethane):
                                                                              0.0
                                                                              0.0
                                                                                        tons/y
                                                                                                    Material balance
                                                           Formaldehyde:
                                                                                                    Material balance
                                                                                        tons/y
                                                                              0.0
                                                             Glycol Ethers:
                                                                                                    Material balance
                                             Hexachlorocyclopentadiene:
                                                                              0.0
                                                                                        tons/y
                                                                                        tons/y
                                                                                                    Material balance
                                             Hexamethylphosphoramide:
                                                                              0.0
                                                                                                    Material balance
                                                                                        tons/y
                                                                   Hexane:
                                                                              0.0
                                                                                                    Material balance
                                                                                        tons/y
                                                                              0.0
                                                                Hydrazine:
                                                                                                    Material balance
                                                                               0.0
                                                                                        tons/y
                                                  Hydrochloric acid (HCI):
                                                                                                    Material balance
                                                                                        tons/y
                                  Hydrofluoric Acid; (Hydrogen fluoride):
                                                                               0.0
                                                                                                    Material balance
                                                            Hydroquinone:
                                                                                        tons/y
                                                                               0.0
                                                                                                    Material balance
                                                                                        tons/y
                                                                               0.0
                                           Iodomethane (Methyl iodide):
                                                                                                     Material balance
                                                                               0.0
                                                                                         tons/y
                                                         Lead Compounds:
                                                                                                     Material balance
                                                                                         tons/y
                                                                               0.0
                                                               Manganese:
                                                                                                     Material balance
                                                                                         tons/y
                                                  Manganese compounds:
                                                                               0.0
                                                                                                     Material balance
                                                                                         tons/y
                                                                               0.0
                                                     Mercury compounds:
                                                                                     metric tons/y 40 CFR 98 Subpart C
                                                      Methane (fugitives):
                                                                              1.27
                                                                                                     Material balance
                                               Methanol; (Methyl alcohol):
                                                                               0.0
                                                                                         tons/y
                                                                                                     Material balance
                                                                               0.0
                                                                                         tons/y
                              Methyl Ethyl Ketone; (MEK); (2-Butanone):
                                                                                                     Material balance
                                                                                         tons/y
                                                                               0.0
                                                      Methyl Methacrylate:
                                                                                                     Material balance
                                                                                         tons/y
                                       Methyl bromide; (Bromomethane):
                                                                               0.0
                                                                                                     Material balance
                                       Methyl chloride; (Chloromethane):
                                                                               0.0
                                                                                         tons/y
                                                                                                     Material balance
                                                                                         tons/y
             Methyl isobutyl ketone; (Hexone); (4-Methyl-2-pentanone):
                                                                               0.0
                                                                                         tons/y
                                                                                                     Material balance
                                                                               0.0
                                                    Methyl tert butyl ether:
                                                                                                     Material balance
                                                                                         tons/y
                                                                               0.0
                                  Methylene chloride; (Dichloromethane):
                                                                                                     Material balance
Methylenebiphenyl isocyanate; (MDI); (Diphenylmethane diisocyanate):
                                                                               0.0
                                                                                         tons/y
                                                                                                     Material balance
                                                                                         tons/y
                                                                               0.0
                                                              Naphthalene:
                                                                                                     Material balance
                                                                                         tons/y
                                                                     Nickel:
                                                                               0.0
                                                                               0.0
                                                                                         tons/y
                                                                                                     Material balance
                                                        Nickel compounds:
                                                                                                     Material balance
                                                                                         tons/y
                                                                                0.0
                                           Nitrobenzene; (nitro-Benzene):
                                                                                                     Material balance
                                         Nitrophenol(4-); (p-Nitrophenol):
                                                                               0.0
                                                                                         tons/y
 PCE; (Perchloroethylene); (Tetrachloroethylene); (Tetrachloroethene):
                                                                                          tons/y
                                                                                                     Material balance
                                                                                0.0
                                                                                                     Material balance
                                                                                          tons/y
                                                                                0.0
                                                                                                     Material balance
                             Phenylenediamine(p-); (Phenylenediamine):
                                                                                0.0
                                                                                          tons/y
                                                                                                     Material balance
                                                                                          tons/y
                                                                 Phosphine:
                                                                                0.0
                                                                                                     Material balance
                                                                                0.0
                                                                                          tons/y
                                                               Phosphorus:
                                                                                                      Material balance
                                                        Phthalic anhydride:
                                                                                0.0
                                                                                          tons/y
```

Polycylic Organic Matter:	0.0	tons/y	Material balance
Propylene oxide:	0.0	tons/y	Material balance
Selenium:	0.0	tons/y	Material balance
Selenium compounds:	0.0	tons/y	Material balance
Styrene:	0.0	tons/y	Material balance
TCE; (Trichloroethylene); (Trichloroethene):	0.0	tons/y	Material balance
Tetrachloroethane(1,1,2,2-):	0.0	tons/y	Material balance
Titanium tetrachloride:	0.0	tons/y	Material balance
Toluene diisocyanate(2,4-):	0.0	tons/y	Material balance
Toluene; (Methyl benzene):	0.0	tons/y	Material balance
Total HAP:	3.73	tons/y	Material balance
Trichloroethane(1,1,1-) (Methyl Chloroform):	1.44	tons/y	Material balance
Trichloroethane(1,1,2-):	0.0	tons/y	Material balance
Triethylamine:	0.0	tons/y	Material balance
Trimethylpentane(2,2,4-):	0.0	tons/y	Material balance
Urethane; (Ethyl carbamate):	0.0	tons/y	Material balance
Vinyl acetate; (Vinyl acetate monomer):	0.0	tons/y	Material balance
Volatile Organic Compounds (VOC):	6.66	tons/y	Material balance
Xylene(m-); (1,3-Dimethylbenzene); (meta-Xylene):	0.0	tons/y	Material balance
Xylene(o-); (1,2-Dimethylbenzene); (ortho-Xylene):	0.0	tons/y	Material balance
Xylenes (total); (Xylol):	0.0	tons/y	Material balance
bis(2-ethylhexyl) phthalate; (Di-2-ethylhexyl phthalate); (DEHP):	0.0	tons/y	Material balance

Subject Item Comments

The calculation method for Methane and Carbon Dioxide should be "Material Balance". However, the AEIR tool currently does not have that option for GHG pollutants.

Print | Close

Tuesday, March 15, 2011

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2010 Submittal (In Process)

Facility ID: 89

Designation: TA-52-11

Description: Data Disintegrator/industrial Shredder

Type: Shredder

SCC: Industrial Processes, Pulp and

Paper and Wood Products, Miscellaneous Paper Products,

Other Not Classified

Supplemental Parameters

Input Materials Processed:

Paper (INPUT)

Operating Detail

	Value
Operating Time in Hours per Day:	7
Operating Time in Days per Week:	5
Operating Time in Weeks per Year:	52
Operating Time in Hours per Year:	1820
Percent of Operation During Winter:	25
Percent of Operation During Spring:	25
Percent of Operation During Summer:	25
Percent of Operation During Fall:	25

Actual Pollutants

Pollutant	Amount	Unit of Measure	Calculation Method
Particulate Matter (10 microns or less):	0.04		Manufacturer Specification
Particulate Matter (2.5 microns or less):	0.03	tons/y	Manufacturer Specification
Particulate Matter (total suspended):		tons/y	Manufacturer Specification
Subject Item Comments			

Print | Close

Tuesday, March 15, 2011

Agency ID: 856

Facility Name: Los Alamos National Laboratory

Organization Name: U.S. Department of Energy National Nuclear Security Administration

Submittal Status: 2010 Submittal (In Process)

Facility ID: 112

Designation: TA-3-22-CT-1

Description: Combustion Turbine

Type: Turbine

SCC: Internal Combustion Engines,

Electric Generation, Natural Gas,

Turbine

Supplemental Parameters

•	Amount	Unit of Measure
Fuel Type:	Natural Gas	
Input Materials Processed:	Natural Gas (INPUT)	
Materials Consumed:	78.1	MM SCF/y
Fuel Heating Value:	1026.0	MM BTU/MM SCF
Percent Sulfur of Fuel:	0.006	percent
Percent Ash of Fuel:	0.0	percent
Percent Carbon Content:	65.0	percent

Operating Detail

	Value
Operating Time in Hours per Day:	5
Operating Time in Days per Week:	4
Operating Time in Weeks per Year:	12
Operating Time in Hours per Year:	240
Percent of Operation During Winter:	25
Percent of Operation During Spring:	25
Percent of Operation During Summer:	25
Percent of Operation During Fall:	25

Actual Pollutants

Pollutant	Amount	Unit of Measure	Calculation Method
Carbon Dioxide (from combustion):	4246.9	metric tons/y	40 CFR 98 Subpart C
Carbon Monoxide:	0.41	tons/y	EPA emission factors (e.g., AP-42)
Lead:	0.0	tons/y	EPA emission factors (e.g., AP-42)
Methane (from combustion):	0.08	metric tons/y	40 CFR 98 Subpart C
Nitrogen Dioxide:	1.97	tons/y	Actual stack test
Particulate Matter (10 microns or less):	0.27	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (2.5 microns or less):	0.27	tons/y	EPA emission factors (e.g., AP-42)
Particulate Matter (total suspended):	0.27	tons/y	EPA emission factors (e.g., AP-42)
Sulfur Dioxide:	0.14	tons/y	EPA emission factors (e.g., AP-42)
Volatile Organic Compounds (VOC):	0.09	tons/y	EPA emission factors (e.g., AP-42)

Los Alamos National Laboratory's 2010 Greenhouse Gas Emissions Totals

Facility Greenhouse Emissions Totals in CO ₂ e	322,502.7 metric tons
Total for Combustion Sources in CO ₂ e	60,497.4 metric tons
Carbon Dioxide Vented emisions (process and fugitive emissions) in CO ₂ e	3.2 metric tons
Methane Vented emisions (process and fugitive emissions) in ${\rm CO}_{2}{\rm e}$	26.7 metric tons

Los Alamos National Laboratory's 2010 Example Equations for Greenhouse Gas Calculations

Asphalt Plant

CO₂ Example

 $(22,212 \text{ gal}) * (91,547 \text{ BTU/gal}) * (61.46 \text{ kg CO}_2/\text{MMBTU}) * (1 \text{ MMBTU/1000000 BTU}) * (1 \text{ metric ton } / 1000 \text{ kg}) = 124.97 \text{ metric tons of CO}_2$ Fuel Use (gal/yr) * Heat Content (BTU/gal) * Emission Factor (kg CO₂/MMBTU) * (1 MMBTU/1000000 BTU) * (1 metric ton / 1000 kg) = metric ton CO₂/year ID 116

CH4 Example

(22,212 gal) * (91,547 BTU/gal) * (0.003 kg CH4/MMBTU) * (1 MMBTU/1000000 BTU) * (1 metric ton / 1000 kg) = 0.006 metric tons of CH4 Fuel Use (gal/yr) * Heat Content (BTU/gal) * Emission Factor (kg CH4/MMBTU) * (1 MMBTU/1000000 BTU) * (1 metric ton / 1000 kg) = metric ton CH4/year ID 116

Power Plant/Boiler

CO₂ Example

Natural gas use (MMSCF/ year) * High Heat Value of nat, gas (MMBTU/MMSCF) * Emission Factor (kg CO2/MMBTU) * 1 metric ton/1000 kg = metric tons CO2 / year (149.4 MMSCFlyr) * (1026 MMBTU/MMSCF) * (53.02 kgCO₂/MMBTU) * (1 metric ton/1000 kg) = 8,128.5 metric tons of CO₂ / year (411 gallons/yr) * (0.138 MMBTU/gal) * (73.96 kg CO_2 /MMBTU) * (1 metric ton/1000 kg) = 4.2 metric tons CO_2 / year Fuel Oil Use (gallons/year) * MMBTU/gallon * Emission Factor (kg CO₂/MMBTU) * 1 metric ton/1000 kg = metric tons CO₂ / year ID 137 ID 24

CH4 Example

Natural gas use (MMSCF/ year) * High Heat Value of nat. gas (MMBTU/MMSCF) * Emission Factor (kg CH4/MMBTU) * 1 metric ton/1000 kg = metric tons CH4 / year (149.4 MMSCF/yr) * (1026 MMBTU/MMSCF) * (0.001 kg CH₄/MMBTU) * (1 metric ton/1000 kg) = 0.153 metric tons of CH₄ / year (411 gallons/yr) * (0.138 MIMBTU/gal) * (0.003 kg CH₄/MIMBTU) * (1 metric ton/1000 kg) = 1.7E-04 metric tons CH₄ / year Fuel Oil Use (gallons/year) * MMBTU/gallon * Emission Factor (kg CH4/MMBTU) * 1 metric ton/1000 kg = metric tons CH4/ year ID 137 ID 24

Combustion Turbine CO² Example

Natural gas use (MMSCF/year) * High Heat Value of nat. gas (MMBTU/NMSCF) * Emission Factor (kg CO₂/MMBTU) * metric ton/1000 kg = metric tons CO₂ / year (78.081 MMSCF/year) * (1026 MMBTU/MMSCF) * (53.02 kg CO₂/MMBTU) * (1 metric ton/1000 kg) = 4246.9 metric tons CO₂ / year 10 112

CH₄ Example

Natural gas use (MMSCF/year) * High Heat Value of nat. gas (MMBTU/MMSCF) * Emission Factor (kg CH4/MMBTU) * 1 metric ton/1000 kg = metric tons CH4 / year (78.081 MMSCF/year) * (1026 MMBTU/MMCF) * (0.001 kg CH4/MMBTU) * (1 metric ton/1000 kg) = 0.08 metric tons CH4 / year ID 112

Generator

CO₂ Example

(9.575.6 gal.) vear (9.575.6 gal.) (0.138 MMBTU/gal) (0.575.6 gal.) (0.575.6 gal.)Fuel Use (gal./year) * High Heat Value (MMBTU/gal) * Emission Factor (kg CO2/gal.) * (1 metric ton /1000 kg) = metric tons CO2 / year ID 56

CH₄ Example

(9,575.6 gal./year) * (0.138 MMBTU/gal) * (0.003 kg $CH_4/MMBTU$) * (1 metric ton/1000 kg) = 0.004 metric tons $CH_4/$ year ID 56

Fuel Use (gal./year) * High Heat Value (MMBTU/gal) * Emission Factor (kg CH₄/gal.) * (1 metric ton/1000 kg) = metric tons CH₄/ year

Vented and Fugitive Emissions

Research and Development Activities	metric tons	CO ₂ e metric tons
CO ₂ Fugitive Emissions	3.18	3.18
CH ₄ Fugitive Emissions	1.27	26.67

Indirect Emissions

Electricity Use	CO ₂ e metric tons
LANL Property	254,356.00
Leased Space	4,477.84
Total	261,975.54

Attachment C

2010 Semi-Annual Emissions Reports Submitted Under Title V Operating Permit Requirements

Associate Directorate for ESH&Q P.O. Box 1663, MS K491 Los Alamos, New Mexico 87545 505-667-4218/Fax 505-665-3811

Compliance Reporting Manager Compliance & Enforcement Section New Mexico Environment Department Air Quality Bureau 1301 Siler Road, Building B Santa Fe, NM 87507

IDEA ID NO. 856 – LOS ALAMOS NATIONAL LABORATORY (LANL) OPERATING PERMIT NO: P100R1 SEMI-ANNUAL EMISSIONS REPORT – JANUARY 1, 2010 TO JUNE 30, 2010

Dear Compliance Reporting Manager:

Enclosed is Los Alamos National Laboratory's (LANL) Semi-Annual Emissions report for the period January 1, 2010 through June 30, 2010. This report is required by permit condition 4.1 and is submitted within 90 days from the end of the reporting period as required by permit condition 4.3.

The semi-annual emissions report includes actual emissions from permitted sources included in section 2.0 of LANL's Operating Permit. Emissions are also reported from insignificant boiler and generator sources. These sources are included to demonstrate that LANL has not exceeded Prevention of Significant Deterioration (PSD) applicability thresholds. In this report, actual emissions are listed along with the emission limits for ease in comparing and verifying compliance. No annual emission limits were exceeded during this reporting period.

Should you have any questions or comments regarding the information provided in this report, please contact Steve Story at (505) 665-2169.

Sincerely,

J. Chris Cantwell

Associate Director, ESH&Q

Title V Semi-Annual Emissions Report for Permit P100R1 January 1, 2010 - June 30, 2010

Emission Reporting Requirements

4.0 Reporting

Conditions of 4.0 are pursuant to 20.2.70.302.E NMAC.

- 4.1 Reports of actual emissions from permitted sources in Section 2.0 shall be submitted on a 6 month basis. Reports shall not include emissions from insignificant activities. Emission estimates of criteria pollutants NOx, CO, SO2, PM and VOCs shall not include fugitive emissions. Emission estimates of HAPs shall include fugitive emissions. The reports shall include a comparison of actual emissions that occurred during the reporting period with the facility-wide allowable emission limits specified in Section 2.11 of this permit.
- 4.3 The report required by Condition 4.1 shall be submitted within 90 days from the end of the reporting period. The semiannual report required by Condition 4.2 shall be submitted within 45 days from the end of the reporting period. The reporting periods are January 1st to June 30th and July 1st to December 31st. This condition is pursuant to 20.2.70.302.E.1 NMAC.

Specific Emissions Reports:

2.1 Asphalt Production

2.1.2 Emission Limits

Emission		Allo	wable Emission L	imits	
Unit	NOx	SO ₂	PM	CO	VOC
TA-60-BDM	95.0 tpy	50.0 tpy	0.04 gr/dscf 33.8 lbs/hr 95.0 tpy	95.0 tpy	95.0 tpy

Reporting Requirement

2.1.6.1 Reports shall be submitted in accordance with conditions 4.1 and 4.2. (1)

4.1 Reports of actual emissions from permitted sources in Section 2.0 shall be submitted on a 6 month basis. Reports shall not include emissions from insignificant activities. Emission estimates of criteria pollutants NOx, CO, SO₂, PM and VOCs shall not include fugitive emissions. Emission estimates of HAPs shall include fugitive emissions. The reports shall include a comparison of actual emissions that occurred during the reporting period with the facility-wide allowable emission limits specified in Section 2.11 of this permit.

 $^{(1)}$ Condition 4.2 refers to submitting a Semi-Annual Monitoring report which LANL submitted on July 29, 2010, Tracking Number SBR20100009.

Has this reporting requirement been met during this reporting period with a separate reporting submittal? Answer Yes or No below.

Yes Date report submitted: Tracking Number:

No Provide comments and identify any supporting documentation as an attachment.

Asphalt Plant TA-60-BDM	January - June Emissions (tons)	July - December Emissions (tons)	Annual Emissions (tons)	Permit Limits (Condition 2.1.2) (tons per year)
NOx	0.029			95.0
SO ₂	0.002			50.0
PM	0.017			95.0
CO	1.005			95.0
VOC	0.004			95.0
HAPs	0.004			No Source Permit Limit

2.2 Beryllium Activities

2.2.2 Emission Limits

Source	Allowable Emission Limits		
	Beryllium	Aluminum	
Sigma Facility TA-3-66	10 gm/24 hr	Not Applicable	
Beryllium Technology Facility TA-3-141	0.35 gm/24 hr 3.5 gm/yr	Not Applicable	

Source	Allowable Emission Limits		
	Beryllium	Aluminum	
Target Fabrication Facility TA-35-213	1.8 x 10 ⁻⁰⁴ gm/hr 0.36 gm/yr	Not Applicable	
Plutonium Facility TA-55-PF4			
Machining Operation	0.12 gm/24 hr 2.99 gm/yr	0.12 gm/24 hr 2.99 gm/yr	
Foundry Operation	3.49 x 10 ⁻⁵ gm/24 hr 8.73 x 10 ⁻⁴ gm/yr	3.49 x 10 ⁻⁵ gm/24 hr 8.73 x 10 ⁻⁴ gm/yr	

Reporting Requirement

- 2.2.6 Reports shall be submitted in accordance with conditions 4.1 and 4.2.⁽¹⁾
- 4.1 Reports of actual emissions from permitted sources in Section 2.0 shall be submitted on a 6 month basis. Reports shall not include emissions from insignificant activities. Emission estimates of criteria pollutants NOx, CO, SO₂, PM and VOCs shall not include fugitive emissions. Emission estimates of HAPs shall include fugitive emissions. The reports shall include a comparison of actual emissions that occurred during the reporting period with the facility-wide allowable emission limits specified in Section 2.11 of this permit.

 $^{(1)}$ Condition 4.2 refers to submitting a Semi-Annual Monitoring report which LANL submitted on July 29, 2010, Tracking Number SBR20100009.

Has this reporting requirement been met during this reporting period with a separate reporting submittal? Answer Yes or No below.

Yes or No be	low.		
☐ Yes	Date report submitted:	Tracking Number:	
X No	Provide comments and identify any supp	orting documentation as an attachment.	
Comments:	Continued on the next page		

2.2 Beryllium Activities - continued

Comments:

Source	Pollutant	January - June Emissions	July - December Emissions	Annual Emissions	Permit Limits (Condition 2.2.2)
Beryllium Test Facility TA-3-141 ⁽¹⁾	Beryllium (grams)	< 0.0033			3.5 gm/yr
Target Fabrication Facility TA-35-213 ⁽²⁾	Beryllium (grams)	< 0.00944			0.36 gm/yr
Plutonium Facility TA-55-PF4	Beryllium (grams)	< 1.495			2.99 gm/yr
Machining Operation ⁽³⁾	Aluminum (grams)	< 1.495			2.99 gm/yr
Plutonium Facility TA-55-PF4	Beryllium (grams)	0			8.73 x 10 ⁻⁴ gm/yr
Foundry Operation ⁽⁴⁾	Aluminum (grams)	0			8.73 x 10 ⁻⁴ gm/yr
Beryllium Total	Beryllium Total ⁽⁵⁾ (tons) =				
Aluminum Tota	al (tons) =	< 1.65E-06			

Notes: ⁽¹⁾ Emission values shown for the Beryllium Test Facility are from actual stack emission measurements which are submitted to NMED quarterly. ⁽²⁾ Emissions for the Target Fabrication Facility are from initial compliance testing of that source and calculated based on a conservative assumption of 8 hour work days. Log books were checked to verify that work days were much less than 8 hours. ⁽³⁾ Emissions for the Plutonium Facility are calculated based on permitted throughputs. Log books were checked to verify that throughputs were much less than permitted values. ⁽⁴⁾ The Plutonium Facility foundry operations did not operate in the first 6 months of 2010. ⁽⁵⁾ The Sigma Facility listed in section 2.2 of the permit does not require reporting in the Semi-Annual Emissions Report.

2.3 Boilers and Heaters

2.3.2 Emission Limits

Source	Allowable Emission Limits					
All Boilers	NO_x	CO	PM or PM ₁₀	SO ₂	VOC	
and Heaters ¹	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)	
	80	80	50	50	50	

¹Excludes TA-3-22 Power Plant addressed in Condition 2.9

Reporting Requirement

- 2.3.6.1 Reports shall be submitted in accordance with conditions 4.1 and 4.2.⁽¹⁾
- 4.1 Reports of actual emissions from permitted sources in Section 2.0 shall be submitted on a 6 month basis. Reports shall not include emissions from insignificant activities. Emission estimates of criteria pollutants NOx, CO, SO₂, PM and VOCs shall not include fugitive emissions. Emission estimates of HAPs shall include fugitive emissions. The reports shall include a comparison of actual emissions that occurred during the reporting period with the facility-wide allowable emission limits specified in Section 2.11 of this permit.

Has this reporting requirement been met during this reporting period with a separate reporting submittal? Answer Yes or No below.

Yes	Date report submitted:	Tracking Number:	

No Provide comments and identify any supporting documentation as an attachment.

Comments:

Boilers and Heaters	January - June Emissions (tons)	July - December Emissions (tons)	Annual Emissions (tons)	Permit Limits (Condition 2.3.2) (tons per year)
NOx	16.62			80
SO ₂	0.10			50
PM	1.32			50
PM-10	1.32			50
CO	13.59			80
VOCs	0.93			50
HAPs	0.32		1	No Source Limit

Note: The emissions shown in this table include significant and insignificant sources. This section does not include the TA-3-22 Power Plant boilers. These can be found under Section 2.9 of this report.

 $^{^{(1)}}$ Condition 4.2 refers to submitting a Semi-Annual Monitoring report which LANL submitted on July 29, 2010, Tracking Number SBR20100009.

2.4 Carpenter Shops

2.4.2 Emission Limits

Source	Allowable Emission Limits
	PM_{10} (tp y)
TA-15-563	2.81
TA-3-38	3.07

Reporting Requirement

- 2.4.6.1 Reports shall be submitted in accordance with conditions 4.1 and $4.2.^{(1)}$
- 4.1 Reports of actual emissions from permitted sources in Section 2.0 shall be submitted on a 6 month basis. Reports shall not include emissions from insignificant activities. Emission estimates of criteria pollutants NOx, CO, SO₂, PM and VOCs shall not include fugitive emissions. Emission estimates of HAPs shall include fugitive emissions. The reports shall include a comparison of actual emissions that occurred during the reporting period with the facility-wide allowable emission limits specified in Section 2.11 of this permit.
- (1) Condition 4.2 refers to submitting a Semi-Annual Monitoring report which LANL submitted on July 29, 2010, Tracking Number SBR20100009.

Has this reporting requirement been met during this reporting period with a separate reporting submittal? Answer Yes or No below.

Yes	Date report submitted:	Tracking Number:	

No Provide comments and identify any supporting documentation as an attachment.

Shop	Pollutant	January - June Emissions (tons)	July - December Emissions (tons)	Annual Emissions (tons)	Permit Limits (Condition 2.4.2) (tons per year)	
TA-3-38	PM ₁₀	0.019			3.07	
TA-15-563	PM ₁₀	0.008			2.81	

2.5 Chemical Usage

2.5.2 Emission Limits

2.5.3.1 The contribution of VOC and/or HAPs emissions from chemical usage shall not cause the exceedence of the corresponding facility-wide limit listed below:

200 tons per year of facility-wide VOCs 8 tons per year of individual facility-wide HAP 24 tons per year of total facility-wide HAPs

Reporting Requirement

2.5.5.1 Reports shall be submitted in accordance with conditions 4.1 and 4.2. (1)

4.1 Reports of actual emissions from permitted sources in Section 2.0 shall be submitted on a 6 month basis. Reports shall not include emissions from insignificant activities. Emission estimates of criteria pollutants NOx, CO, SO₂, PM and VOCs shall not include fugitive emissions. Emission estimates of HAPs shall include fugitive emissions. The reports shall include a comparison of actual emissions that occurred during the reporting period with the facility-wide allowable emission limits specified in Section 2.11 of this permit.

⁽¹⁾ Condition 4.2 refers to submitting a Semi-Annual Monitoring report which LANL submitted on July 29, 2010, Tracking Number SBR20100009.

Has this reporting requirement been met during this reporting period with a separate reporting submittal? Answer Yes or No below.

Yes	Date report submitted:	Tracking Numbe
-----	------------------------	----------------

No Provide comments and identify any supporting documentation as an attachment.

Chemical Usage LANL-FW-CHEM	January - June Emissions (tons)	July - December Emissions (tons)	Annual Emissions (tons)	Permit Limits (Condition 2.5.3.1)
VOCs	3.3			Causa limita safas
HAPs	2.4			Source limits refer to facility-wide
Highest Individual HAP for the first 6 months of 2010 (Methyl Chloroform)	1.4			limits.

2.6 Degreasers

2.6.2 Emission Limits

2.6.2.1 The contribution of VOC and/or HAP emissions from chemical usage shall not cause the exceedence of the corresponding facility-wide limit listed below:

200 tons per year of facility-wide VOCs 8 tons per year of an individual facility-wide HAP 24 tons per year of total facility-wide HAPs

Reporting Requirement

2.6.6.3 Reports shall be submitted in accordance with conditions 4.1 and 4.2.⁽¹⁾

4.1 Reports of actual emissions from permitted sources in Section 2.0 shall be submitted on a 6 month basis. Reports shall not include emissions from insignificant activities. Emission estimates of criteria pollutants NOx, CO, SO₂, PM and VOCs shall not include fugitive emissions. Emission estimates of HAPs shall include fugitive emissions. The reports shall include a comparison of actual emissions that occurred during the reporting period with the facility-wide allowable emission limits specified in Section 2.11 of this permit.

(1) Condition 4.2 refers to submitting a Semi-Annual Monitoring report which LANL submitted on July 29, 2010, Tracking Number SBR20100009.

Has this reporting requirement been met during this reporting period with a separate reporting submittal? Answer Yes or No below.

Yes	Date report submitted:	Tracking Number:
-----	------------------------	------------------

No Provide comments and identify any supporting documentation as an attachment.

Degreaser TA-55-DG-1	January - June Emissions (tons)	July - December Emissions (tons)	Annual Emissions (tons)	Permit Limits (Condition 2.6.2.1) (tons per year)
VOCs	0.005			Source limits refer to facility-wide
HAPs	0.005			limits. (See Facility Emissions Table on Page 1)

2.7 Internal Combustion Sources

2.7.2 Emission Limits

Source		Allowable Emission Limits										
	NO	NO_x^1 CO VOC SO_x^2 TSP PM_{10}							ſ ₁₀			
	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy
TA-33-G-1	40.3	18.1	33.7	15.2	0.7	0.3	5.5	2.5	1.4	0.6	1.4	0.6
TA-33-G-2	0.83	0.21	0.2	0.1	0.1	3						
TA-33-G-3	0.83	0.21	0.2	0.1	0.1							
TA-33-G-4	9.33	2.33	5.7	1.4	0.75	0.2	0.62	0.16				

- 1 Nitrogen dioxide emissions include all oxides of nitrogen expressed as NO₂.
- 2 Sulfur dioxide emissions include all oxides of sulfur expressed as SO₂
- 3 "--" indicates the emission rate is less than 0.05 pph or 0.05 tpy and limits are not required for this permit.

Reporting Requirement

- 2.7.6.1 Reports shall be submitted in accordance with conditions 4.1 and 4.2.⁽¹⁾
- 4.1 Reports of actual emissions from permitted sources in Section 2.0 shall be submitted on a 6 month basis. Reports shall not include emissions from insignificant activities. Emission estimates of criteria pollutants NOx, CO, SO₂, PM and VOCs shall not include fugitive emissions. Emission estimates of HAPs shall include fugitive emissions. The reports shall include a comparison of actual emissions that occurred during the reporting period with the facility-wide allowable emission limits specified in Section 2.11 of this permit.

 $^{(1)}$ Condition 4.2 refers to submitting a Semi-Annual Monitoring report which LANL submitted on July 29, 2010, Tracking Number SBR20100009.

Has this reporting requirement been met during this reporting period with a separate reporting submittal? Answer Yes or No below.

ſ	Yes	Date report submitted:	Tracking Number

No Provide comments and identify any supporting documentation as an attachment.

Comments:

Generator TA-33-G-1 January - June Emissions (tons)		July - December Emissions (tons)	Annual Emissions (tons)	Permit Limits (Condition 2.7.2) (tons per year)
NOx	1.149			18.1
SO _X	0.170			2.5
TSP	0.038			0.6
PM ₁₀	0.038			0.6
CO	0.936			15.2
VOC	0.021	•		0.3
HAPs	2.48E-04			No Source Limit

Continued on the next page.

2.7 Internal Combustion Sources - continued

Comments:

Generator TA-33-G-2	Fmissions		Annual Emissions (tons)	Permit Limits (Condition 2.7.2) (tons per year)
NOx	0.001			0.21
SO _X	0.000			Not Required
TSP	0.000			Not Required
PM ₁₀	0.000			Not Required
СО	0.000			0.1
VOC 0.000				Not Required
HAPs	4.06E-07			No Source Limit

Note: This generator only ran for 3.0 hours during the first six months of 2010.

Generator TA-33-G-3 January - June Emissions (tons)		July - December Emissions (tons)	Annual Emissions (tons)	Permit Limits (Condition 2.7.2) (tons per year)
NOx	0.000			0.21
SO _X	0.000			Not Required
TSP	0.000			Not Required
PM ₁₀	0.000			Not Required
CO	0.000			0.1
VOC 0.000				Not Required
HAPs	1.22E-07			No Source Limit

Note: This generator ran less than an hour during the first 6 months of 2010.

Generator TA-33-G-4	Fmissions		Annual Emissions (tons)	Permit Limits (Condition 2.7.2) (tons per year)
NOx	0.406			2.33
SO _X	0.029			0.16
TSP	0.029			Not Required
PM ₁₀	0.029			Not Required
CO	0.087	•		1.4
VOC 0.029		•		0.2
HAPs	1.31E-04	•		No Source Limit

Continued on the next page.

2.7 Internal Combustion Sources - continued

Comments:

Stationary Standby Generators January - June Emissions (tons)		July - December Emissions (tons)	Annual Emissions (tons)	Permit Limits
NOx	3.48			
SOx	0.17			
TSP	0.19			No Source Specific Emission Limits for
PM ₁₀	0.19			Standby
СО	0.79			Generators
VOC	0.19			55576.676
HAPs	0.001			

Note: Standby Generators are insignificant sources.

2.8 Data Disintegrator

2.8.2 Emission Limits

Source		Allowable Emission Limits									
TA-52-11	TSP (pph)	TSP (tpy)	PM10 (pph)	PM10 (tpy)							
	2.3	9.9	2.3	9.9							

PM10 and TSP emissions limits shown in above Table are after controls.

Reporting Requirement

2.8.6.1 Reports shall be submitted in accordance with conditions 4.1 and $4.2.^{(1)}$

4.1 Reports of actual emissions from permitted sources in Section 2.0 shall be submitted on a 6 month basis. Reports shall not include emissions from insignificant activities. Emission estimates of criteria pollutants NOx, CO, SO₂, PM and VOCs shall not include fugitive emissions. Emission estimates of HAPs shall include fugitive emissions. The reports shall include a comparison of actual emissions that occurred during the reporting period with the facility-wide allowable emission limits specified in Section 2.11 of this permit.

(1) Condition 4.2 refers to submitting a Semi-Annual Monitoring report which LANL submitted on July 29, 2010, Tracking Number SBR20100009.

Has this reporting requirement been met during this reporting period with a separate reporting submittal? Answer Yes or No below.

☐ Yes	Date report submitted:	Tracking Number:	

No Provide comments and identify any supporting documentation as an attachment.

Data Disintegrator TA-52-11 January - June Emissions (tons)		July - December Emissions (tons)	Annual Emissions (tons)	Permit Limits (Condition 2.8.2) (tons per year)
TSP	0.03			9.9
PM10	0.02			9.9

2.9 Power Plant at Technical Area 3 (TA-3-22)

2.9.2 Emission Limits

Source	Allowable Emission Limits												
	NOx		CO		SOx		TSP		PM ₁₀		VOC		
	Gas	Oil	Gas	Oil	Gas	Oil	Gas	Oil	Gas	Oil	Gas	Oil	
TA-3-22-1 (lb/hr)	10.2	11.3	7.0	6.5	1.1	9.6	1.3	4.3	1.3	3.0	1.0	0.3	
TA-3-22-2 (lb/hr)	10.2	11.3	7.0	6.5	1.1	9.6	1.3	4.3	1.3	3.0	1.0	0.3	
TA-3-22-3 (lb/hr)	10.2	11.3	7.0	6.5	1.1	9.6	1.3	4.3	1.3	3.0	1.0	0.3	
Boilers Individually (tpy)	35.9 N/A		N/A		N	A	N/	Α	N	/A			
Boilers Combined ¹ (tpy)	60.2		41.3		7.9		8.4		8.2		5.6		

15J				100	Allowa	ble Er	nission	Limi	ts			
Source	NOx		СО		SOx		TSP		PM ₁₀		VOC	
	Gas	Oil	Gas	Oil	Gas	Oil	Gas	Oil	Gas	Oil	Gas	Oil
TA-3-22 CT- 1 (lb/hr)	23.8		170.9		1.4		1.6		1.6		1.0	
TA-3-22 CT- 1 (tpy) ^{1,2} 33.2		3.2	19.8		1.9		2.3		2.3			
TA-3-22 CT-1 (ppm)		mv @	N	/A	N/A		N/A		N/A		N/A	

Annual emission limits are 12-month rolling totals. This is pursuant to NSR Permit 2195B-M1R2,

Reporting Requirement

 $2.9.6.1\;$ Reports shall be submitted in accordance with conditions 4.1 and $4.2.^{(1)}$

4.1 Reports of actual emissions from permitted sources in Section 2.0 shall be submitted on a 6 month basis. Reports shall not include emissions from insignificant activities. Emission estimates of criteria pollutants NOx, CO, SO₂, PM and VOCs shall not include fugitive emissions. Emission estimates of HAPs shall include fugitive emissions. The reports shall include a comparison of actual emissions that occurred during the reporting period with the facility-wide allowable emission limits specified in Section 2.11 of this

Has this reporting requirement been met during this reporting period with a separate reporting submittal? Answer

Yes or No below		, F	
Yes	Date report submitted:	Tracking Number:	
X No Pr	ovide comments and identify any supporti	ng documentation as an attachment.	
Comments:	Continued on the next page		

Table 2.1, Note 7.
"-" notation implies emission rates less than or equal to 0.5 tpy.

^{*} N/A means not applicable.

⁽¹⁾ Condition 4.2 refers to submitting a Semi-Annual Monitoring report which LANL submitted on July 29, 2010, Tracking Number SBR20100009.

2.9 Power Plant at Technical Area 3 (TA-3-22) - Continued

Boilers TA-3-22-1, TA-3-22-2, TA-3-22-3	January - June Emissions (tons)	July - December Emissions (tons)	Annual Emissions (tons)	Permit Limit (Condition 2.9.2) (tons per year)
NOx	7.67			60.2
SO ₂	0.08			7.9
TSP	1.01			8.4
PM ₁₀	1.01			8.2
СО	5.29	•		41.3
VOC	0.73			5.6
HAPs	0.25			No Source Limit

Boiler	Pollutant	January - June Emissions (tons)	July - December Emissions (tons)	Annual Emissions (tons)	Permit Limit (Condition 2.9.2) (tons per year)
TA-3-22-1	NOx	1.55			35.9
TA-3-22-2	NOx	0.89			35.9
TA-3-22-3	NOx	5.24	•		35.9

Combustion Turbine TA-3-22 CT-1	January - June Emissions (tons)	July - December Emissions (tons)	Annual Emissions (tons)	Permit Limit (Condition 2.9.2) (tons per year)
NOx	0.57			33.2
SO ₂	0.04			1.9
TSP	0.08			2.3
PM ₁₀	0.08			2.3
CO	0.12			19.8
VOC	0.03			No TPY Limit
HAPs	0.02			No Source Limit

2 10	O On on Descriptor	
	0 Open Burning	
2.10.2	.2 Emission Limits	
	10.2.1 The contribution of HAP emissions from open burnin the corresponding facility-wide limit listed below:	g shall not cause the exceedance
	8 tons per year of an individual facility-wide HAP 24 tons per year of total facility-wide HAPs	
	porting Requirement .5.1 Reports shall be submitted in accordance with conditions 4.1	I.
4.1	Reports of actual emissions from permitted sources in Section 2 Reports shall not include emissions from insignificant activities NOx, CO, SO ₂ , PM and VOCs shall not include fugitive emissions. The reports shall include a comparist the reporting period with the facility-wide allowable emission be permit.	s. Emission estimates of criteria pollutants ions. Emission estimates of HAPs shall son of actual emissions that occurred during
	this reporting requirement been met during this reporting period v or No below.	with a separate reporting submittal? Answer
	Yes Date report submitted:	Tracking Number:
	1 Date report submitted:	
х	No Provide comments and identify any supporting documents	mentation as an attachment.
Com	nments:	
	nments: open burning activities took place in the first 6 months of 2010.	

2.11 Facility Wide Emission Limits

2.11.1 Emission Limits

Total Allowable Criteria Pollutant and HAP Emission Limits

Pollutant	Emission Limit (tons per year)
Nitrogen Oxides (NO _x)	245
Carbon Monoxide (CO)	225
Volatile Organic Compounds (VOCs)	200
Sulfur Dioxide (SO ₂)	150
Particulate Matter (PM)	120
Hazardous Air Pollutants (HAPs)	24 combined / 8 individual

Reporting Requirement

Reports of actual emissions from permitted sources in Section 2.0 shall be submitted on a 6 month basis. Reports shall not include emissions from insignificant activities. Emission estimates of criteria pollutants NOx, CO, SO₂, PM and VOCs shall not include fugitive emissions. Emission estimates of HAPs shall include fugitive emissions. The reports shall include a comparison of actual emissions that occurred during the reporting period with the facility-wide allowable emission limits specified in Section 2.11 of this permit.

Has this reporting requirement been met	during this	reporting period	l with a	separate r	eporting s	submittal?	Answer
Yes or No below							

☐ Yes	Date report submitted:	Tracking Number:	

$oxed{X}$ No Provide comments and identify any supporting documentation as an attachment.

Pollutant	January - June Emissions (tons)	July - December Emissions (tons)	2009 Annual Emissions (tons)	Facility Wide Permit Limits (Condition 2.11.1) (tons per year)
Nitrogen Oxides	29.9			245
Sulfur Dioxide	0.6			150
Particulate Matter	2.7			120
Carbon Monoxide	21.8			225
Volatile Organic Compounds	5.2			200
Hazardous Air Pollutants	3.0			24 combined
Highest Individual HAP (Methyl Chloroform)	1.4			8 individual

Title V Semi-Annual Emissions Report for Permit P100R1 July 1, 2010 - December 31, 2010

Emission Reporting Requirements

4.0 Reporting

Conditions of 4.0 are pursuant to 20.2.70.302.E NMAC.

- 4.1 Reports of actual emissions from permitted sources in Section 2.0 shall be submitted on a 6 month basis. Reports shall not include emissions from insignificant activities. Emission estimates of criteria pollutants NOx, CO, SO2, PM and VOCs shall not include fugitive emissions. Emission estimates of HAPs shall include fugitive emissions. The reports shall include a comparison of actual emissions that occurred during the reporting period with the facility-wide allowable emission limits specified in Section 2.11 of this permit.
- 4.3 The report required by Condition 4.1 shall be submitted within 90 days from the end of the reporting period. The semiannual report required by Condition 4.2 shall be submitted within 45 days from the end of the reporting period. The reporting periods are January 1st to June 30th and July 1st to December 31st. This condition is pursuant to 20.2.70.302.E.1 NMAC.

Specific Emissions Reports:

2.1 Asphalt Production

2.1.2 Emission Limits

Emission		Allo	wable Emission L	imits	
Unit	NOx	SO ₂	PM	CO	VOC
TA-60-BDM	95.0 tpy	50.0 tpy	0.04 gr/dscf 33.8 lbs/hr 95.0 tpy	95.0 tpy	95.0 tpy

Reporting Requirement

2.1.6.1 Reports shall be submitted in accordance with conditions 4.1 and 4.2.⁽¹⁾

4.1 Reports of actual emissions from permitted sources in Section 2.0 shall be submitted on a 6 month basis. Reports shall not include emissions from insignificant activities. Emission estimates of criteria pollutants NOx, CO, SO₂, PM and VOCs shall not include fugitive emissions. Emission estimates of HAPs shall include fugitive emissions. The reports shall include a comparison of actual emissions that occurred during the reporting period with the facility-wide allowable emission limits specified in Section 2.11 of this permit.

(1) Condition 4.2 refers to submitting a Semi-Annual Monitoring report which LANL submitted on February 11, 2011, Tracking Number SBR20110003.

Has this reporting requirement been met during this reporting period with a separate reporting submittal? Answer Yes or No below.

Yes	Date report submitted:	Tracking Number:	

No Provide comments and identify any supporting documentation as an attachment.

Asphalt Plant TA-60-BDM	January - June Emissions (tons)	July - December Emissions (tons)	Annual Emissions (tons)	Permit Limits (Condition 2.1.2) (tons per year)
NOx	0.029	0.017	0.046	95.0
SO ₂	0.002	0.001	0.003	50.0
PM	0.017	0.010	0.027	95.0
CO	1.005	0.594	1.599	95.0
VOC	0.004	0.002	0.006	95.0
HAPs	0.004	0.002	0.006	No Source Permit Limit

2.2 Beryllium Activities

2.2.2 Emission Limits

Source	Allowable Emission Limits		
	Beryllium	Aluminum	
Sigma Facility TA-3-66	10 gm/24 hr	Not Applicable	
Beryllium Technology Facility TA-3-141	0.35 gm/24 hr 3.5 gm/yr	Not Applicable	

Source	Allowable Emission Limits	
	Beryllium	Aluminum
Target Fabrication Facility TA-35-213	1.8 x 10 ⁻⁰⁴ gm/hr 0.36 gm/yr	Not Applicable
Plutonium Facility TA-55-PF4		
Machining Operation	0.12 gm/24 hr 2.99 gm/yr	0.12 gm/24 hr 2.99 gm/yr
Foundry Operation	3.49 x 10 ⁻⁵ gm/24 hr 8.73 x 10 ⁻⁴ gm/yr	3.49 x 10 ⁻⁵ gm/24 hr 8.73 x 10 ⁻⁴ gm/yr

Reporting Requirement

- 2.2.6 Reports shall be submitted in accordance with conditions 4.1 and $4.2.^{(1)}$
- 4.1 Reports of actual emissions from permitted sources in Section 2.0 shall be submitted on a 6 month basis. Reports shall not include emissions from insignificant activities. Emission estimates of criteria pollutants NOx, CO, SO₂, PM and VOCs shall not include fugitive emissions. Emission estimates of HAPs shall include fugitive emissions. The reports shall include a comparison of actual emissions that occurred during the reporting period with the facility-wide allowable emission limits specified in Section 2.11 of this permit.

(1) Condition 4.2 refers to submitting a Semi-Annual Monitoring report which LANL submitted on February 11, 2011, Tracking Number SBR 20110003.

Hacking Number SBR20110003.				
	0 1	rting period with a separate reporting submittal? Answer		
Yes or No be	elow.			
☐ Yes	Date report submitted:	Tracking Number:		
X No Provide comments and identify any supporting documentation as an attachment.				
Comments:	Continued on the next page			

2.2 Beryllium Activities - continued

Comments:

Comments.								
Source	Pollutant	January - June Emissions	July - December Emissions	Annual Emissions	Permit Limits (Condition 2.2.2)			
Beryllium Test Facility TA-3-141 ⁽¹⁾	Beryllium (grams)	< 0.0033	< 0.0033	< 0.007	3.5 gm/yr			
Target Fabrication Facility TA-35-213 ⁽²⁾	Beryllium (grams)	< 0.00944	< 0.009	< 0.018	0.36 gm/yr			
Plutonium Facility TA-55-PF4	Beryllium (grams)	< 1.495	< 1.41	< 2.91	2.99 gm/yr			
Machining Operation ⁽³⁾	Aluminum (grams)	< 1.495	< 1.41	< 2.91	2.99 gm/yr			
Plutonium Facility TA-55-PF4	Beryllium (grams)	0	0	0.00	8.73 x 10 ⁻⁴ gm/yr			
Foundry Operation ⁽⁴⁾	Aluminum (grams)	0	0	0.00	8.73 x 10 ⁻⁴ gm/yr			
Beryllium Total	⁽⁵⁾ (tons) =	< 1.66E-06	< 1.57E-06	< 3.23E-06				
Aluminum Tota	Aluminum Total (tons) =		< 1.55E-06	< 3.30E-06				

Notes: ⁽¹⁾ Emission values shown for the Beryllium Test Facility are from actual stack emission measurements which are submitted to NMED quarterly. ⁽²⁾ Emissions for the Target Fabrication Facility are from initial compliance testing of that source and calculated based on a conservative assumption of 8 hour work days. Log books were checked to verify that work days were much less than 8 hours. ⁽³⁾ Emissions for the Plutonium Facility are calculated based on permitted throughputs. Log books were checked to verify that throughputs were much less than permitted values. ⁽⁴⁾ The Plutonium Facility foundry operations did not operate in 2010. ⁽⁵⁾ The Sigma Facility listed in section 2.2 of the permit does not require reporting in the Semi-Annual Emissions Report.

2.3 Boilers and Heaters

2.3.2 Emission Limits

Source	Allowable Emission Limits							
All Boilers	NO_x	CO	PM or PM ₁₀	SO ₂	VOC			
and Heaters ¹	(tpy)	(tpy)	(tpy)	(tpy)	(tpy)			
	80	80	50	50	50			

¹Excludes TA-3-22 Power Plant addressed in Condition 2.9

Reporting Requirement

- 2.3.6.1 Reports shall be submitted in accordance with conditions 4.1 and 4.2.⁽¹⁾
- 4.1 Reports of actual emissions from permitted sources in Section 2.0 shall be submitted on a 6 month basis. Reports shall not include emissions from insignificant activities. Emission estimates of criteria pollutants NOx, CO, SO₂, PM and VOCs shall not include fugitive emissions. Emission estimates of HAPs shall include fugitive emissions. The reports shall include a comparison of actual emissions that occurred during the reporting period with the facility-wide allowable emission limits specified in Section 2.11 of this permit.

Has this reporting requirement been met during this reporting period with a separate reporting submittal? Answer Yes or No below.

☐ Yes	Date report submitted:	Tracking Number:
1	Date report submitted:	Tracking runnocr.

No Provide comments and identify any supporting documentation as an attachment.

Comments:

Boilers and Heaters	January - June Emissions (tons)	July - December Emissions (tons) Annual Emissions (tons)		Permit Limits (Condition 2.3.2) (tons per year)	
NOx	16.64	11.29	27.93	80	
SO ₂	0.10	0.07	0.17	50	
PM	1.32	0.90	2.22	50	
PM-10	1.32	0.90	2.22	50	
CO	13.60	9.15	22.75	80	
VOCs	0.93	0.63	1.56	50	
HAPs	0.32	0.22	0.54	No Source Limit	

Note: The emissions shown in this table include significant and insignificant sources. This section does not include the TA-3-22 Power Plant boilers. These can be found under Section 2.9 of this report.

⁽¹⁾ Condition 4.2 refers to submitting a Semi-Annual Monitoring report which LANL submitted on February 11, 2011, Tracking Number SBR20110003.

2.4 Carpenter Shops

2.4.2 Emission Limits

Source	Allowable Emission Limits
Source	PM_{10} (tpy)
TA-15-563	2.81
TA-3-38	3.07

Reporting Requirement

- 2.4.6.1 Reports shall be submitted in accordance with conditions 4.1 and $4.2.^{(1)}$
- 4.1 Reports of actual emissions from permitted sources in Section 2.0 shall be submitted on a 6 month basis. Reports shall not include emissions from insignificant activities. Emission estimates of criteria pollutants NOx, CO, SO₂, PM and VOCs shall not include fugitive emissions. Emission estimates of HAPs shall include fugitive emissions. The reports shall include a comparison of actual emissions that occurred during the reporting period with the facility-wide allowable emission limits specified in Section 2.11 of this permit.
- (1) Condition 4.2 refers to submitting a Semi-Annual Monitoring report which LANL submitted on February 11, 2011, Tracking Number SBR20110003.

Has this reporting requirement been met during this reporting period with a separate reporting submittal? Answer Yes or No below.

Tes of 110 below.		
Vos	Data vanaut auhmittad	Tuo dring Namhan
Yes	Date report submitted:	Tracking Number:

No Provide comments and identify any supporting documentation as an attachment.

Shop	Pollutant	January - June Emissions (tons)	July - December Emissions (tons)	Annual Emissions (tons)	Permit Limits (Condition 2.4.2) (tons per year)	
TA-3-38	PM ₁₀	0.019	0.021	0.040	3.07	
TA-15-563	PM ₁₀	0.008	0.009	0.017	2.81	

2.5 Chemical Usage

2.5.2 Emission Limits

2.5.3.1 The contribution of VOC and/or HAPs emissions from chemical usage shall not cause the exceedence of the corresponding facility-wide limit listed below:

200 tons per year of facility-wide VOCs 8 tons per year of individual facility-wide HAP 24 tons per year of total facility-wide HAPs

Reporting Requirement

2.5.5.1 Reports shall be submitted in accordance with conditions 4.1 and 4.2.⁽¹⁾

4.1 Reports of actual emissions from permitted sources in Section 2.0 shall be submitted on a 6 month basis. Reports shall not include emissions from insignificant activities. Emission estimates of criteria pollutants NOx, CO, SO₂, PM and VOCs shall not include fugitive emissions. Emission estimates of HAPs shall include fugitive emissions. The reports shall include a comparison of actual emissions that occurred during the reporting period with the facility-wide allowable emission limits specified in Section 2.11 of this permit.

 $^{(1)}$ Condition 4.2 refers to submitting a Semi-Annual Monitoring report which LANL submitted on February 11, 2011, Tracking Number SBR20110003..

Has this reporting requirement been met during this reporting period with a separate reporting submittal? Answer Yes or No below.

☐ Yes	Date report submitted:	Tracking Number:
-------	------------------------	------------------

No Provide comments and identify any supporting documentation as an attachment.

Chemical Usage LANL-FW-CHEM	January - June Emissions (tons)	July - December Emissions (tons)	Annual Emissions (tons)	Permit Limits (Condition 2.5.3.1)
VOCs	3.3	3.4	6.7	
HAPs	2.4	1.3	3.7	
Highest Individual HAP for the first 6 months of 2010 (Methyl Chloroform)	1.4	0.0	1.4	Source limits refer to facility-wide limits.
Highest Individual HAP for the second 6 months of 2010 (Glycol Ethers)	0.1	0.3	0.4	

2.6 Degreasers

2.6.2 Emission Limits

2.6.2.1 The contribution of VOC and/or HAP emissions from chemical usage shall not cause the exceedence of the corresponding facility-wide limit listed below:

200 tons per year of facility-wide VOCs 8 tons per year of an individual facility-wide HAP 24 tons per year of total facility-wide HAPs

Reporting Requirement

2.6.6.3 Reports shall be submitted in accordance with conditions 4.1 and 4.2.⁽¹⁾

4.1 Reports of actual emissions from permitted sources in Section 2.0 shall be submitted on a 6 month basis. Reports shall not include emissions from insignificant activities. Emission estimates of criteria pollutants NOx, CO, SO₂, PM and VOCs shall not include fugitive emissions. Emission estimates of HAPs shall include fugitive emissions. The reports shall include a comparison of actual emissions that occurred during the reporting period with the facility-wide allowable emission limits specified in Section 2.11 of this permit.

⁽¹⁾ Condition 4.2 refers to submitting a Semi-Annual Monitoring report which LANL submitted on February 11, 2011, Tracking Number SBR20110003.

Has this reporting requirement been met during this reporting period with a separate reporting submittal? Answer Yes or No below.

Yes Date report submitted:

Tracking Number:

No Provide comments and identify any supporting documentation as an attachment.

Degreaser TA-55-DG-1	Emissions		-DG-1 Emissions December Emissions		Annual Emissions (tons)	Permit Limits (Condition 2.6.2.1) (tons per year)
VOCs	0.005	0.004	0.009	Source limits refer to facility-wide		
HAPs	0.005	0.004	0.009	limits. (See Facility Emissions Table on Page 1)		

2.7 Internal Combustion Sources

2.7.2 Emission Limits

Source		Allowable Emission Limits										
	NO	O_x^{-1}	C	O	V	OC	SC	$O_{\mathbf{x}}^{2}$	TS	SP	PN	ſ ₁₀
	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy	pph	tpy
TA-33-G-1	40.3	18.1	33.7	15.2	0.7	0.3	5.5	2.5	1.4	0.6	1.4	0.6
TA-33-G-2	0.83	0.21	0.2	0.1	0.1	3						
TA-33-G-3	0.83	0.21	0.2	0.1	0.1							
TA-33-G-4	9.33	2.33	5.7	1.4	0.75	0.2	0.62	0.16				

- 1 Nitrogen dioxide emissions include all oxides of nitrogen expressed as NO₂.
- 2 Sulfur dioxide emissions include all oxides of sulfur expressed as SO₂
- 3 "--" indicates the emission rate is less than 0.05 pph or 0.05 tpy and limits are not required for this permit.

Reporting Requirement

- 2.7.6.1 Reports shall be submitted in accordance with conditions 4.1 and 4.2.⁽¹⁾
- 4.1 Reports of actual emissions from permitted sources in Section 2.0 shall be submitted on a 6 month basis. Reports shall not include emissions from insignificant activities. Emission estimates of criteria pollutants NOx, CO, SO₂, PM and VOCs shall not include fugitive emissions. Emission estimates of HAPs shall include fugitive emissions. The reports shall include a comparison of actual emissions that occurred during the reporting period with the facility-wide allowable emission limits specified in Section 2.11 of this permit.

(1) Condition 4.2 refers to submitting a Semi-Annual Monitoring report which LANL submitted on February 11, 2011, Tracking Number SBR20110003.

Has this reporting requirement been met during this reporting period with a separate reporting submittal? Answer Yes or No below.

Γ	Yes	Date report submitted:	Tracking Number:

No Provide comments and identify any supporting documentation as an attachment.

Comments:

Generator TA-33-G-1	January - June Emissions (tons)	July - December Emissions (tons)	Annual Emissions (tons)	Permit Limits (Condition 2.7.2) (tons per year)	
NOx	1.149	0.248	1.398	18.1	
SO _X	0.170	0.037	0.207	2.5	
TSP	0.038	0.008	0.047	0.6	
PM ₁₀	0.038	0.008	0.047	0.6	
СО	0.936	0.202	1.139	15.2	
VOC	0.021	0.005	0.026	0.3	
HAPs	2.48E-04	5.35E-05	3.01E-04	No Source Limit	

Continued on the next page.

2.7 Internal Combustion Sources - continued

Comments:

Generator TA-33-G-2	January - June Emissions (tons)	July - December Emissions (tons)	Annual Emissions (tons)	Permit Limits (Condition 2.7.2) (tons per year)
NOx	0.001	0.002	0.003	0.21
SO _X	0.000	0.000	0.000	Not Required
TSP	0.000	0.000	0.000	Not Required
PM ₁₀	0.000	0.000	0.000	Not Required
СО	0.000	0.001	0.001	0.1
VOC	0.000	0.000	0.000	Not Required
HAPs	4.06E-07	7.98E-07	1.20E-06	No Source Limit

Note: This generator only ran for 3.0 hours during the first six months of 2010 and 5.9 hours during the second six months.

Generator TA-33-G-3	January - June Emissions (tons)	July - December Emissions (tons)	Annual Emissions (tons)	Permit Limits (Condition 2.7.2) (tons per year)
NOx	0.000	0.002	0.002	0.21
SO _X	0.000	0.000	0.000	Not Required
TSP	0.000	0.000	0.000	Not Required
PM ₁₀	0.000	0.000	0.000	Not Required
CO	0.000	0.000	0.000	0.1
VOC	0.000	0.000	0.000	Not Required
HAPs	1.22E-07	7.03E-07	8.25E-07	No Source Limit

Note: This generator ran less than an hour during the first 6 months of 2010 and 5.2 hours during the second six months.

Generator TA-33-G-4	January - June Emissions (tons)	July - December Emissions (tons)	Annual Emissions (tons)	Permit Limits (Condition 2.7.2) (tons per year)
NOx	0.406	0.066	0.472	2.33
SO _X	0.029	0.005	0.034	0.16
TSP	0.029	0.005	0.034	Not Required
PM ₁₀	0.029	0.005	0.034	Not Required
CO	0.087	0.014	0.101	1.4
VOC	0.029	0.005	0.034	0.2
HAPs	1.31E-04	2.13E-05	1.52E-04	No Source Limit

Continued on the next page.

2.7 Internal Combustion Sources - continued

Comments:

Stationary Standby Generators	January - June Emissions (tons)	July - December Emissions (tons)	Annual Emissions (tons)	Permit Limits
NOx	3.48	2.53	6.01	
SOx	0.17	0.09	0.26	
TSP	0.19	0.11	0.30	No Source Specific Emission Limits for
PM ₁₀	0.19	0.11	0.30	Standby
CO	0.79	0.59	1.38	Generators
VOC	0.19	0.11	0.30	23
HAPs	0.001	0.001	0.002	

Note: Standby Generators are insignificant sources.

2.8 Data Disintegrator

2.8.2 Emission Limits

Source	Allowable Emission Limits							
TA-52-11	TSP (pph) TSP (tpy) PM10 (pph) PM10 (tp							
	2.3	9.9	2.3	9.9				

PM10 and TSP emissions limits shown in above Table are after controls.

Reporting Requirement

2.8.6.1 Reports shall be submitted in accordance with conditions 4.1 and $4.2.^{(1)}$

4.1 Reports of actual emissions from permitted sources in Section 2.0 shall be submitted on a 6 month basis. Reports shall not include emissions from insignificant activities. Emission estimates of criteria pollutants NOx, CO, SO₂, PM and VOCs shall not include fugitive emissions. Emission estimates of HAPs shall include fugitive emissions. The reports shall include a comparison of actual emissions that occurred during the reporting period with the facility-wide allowable emission limits specified in Section 2.11 of this permit.

⁽¹⁾ Condition 4.2 refers to submitting a Semi-Annual Monitoring report which LANL submitted on February 11, 2011, Tracking Number SBR20110003.

Has this reporting requirement been met during this reporting period with a separate reporting submittal? Answer Yes or No below.

Yes	Date report submitted:	Tracking Number:	

No Provide comments and identify any supporting documentation as an attachment.

Data Disintegrator TA-52-11	January - June Emissions (tons)	missions December Fmissions		Permit Limits (Condition 2.8.2) (tons per year)	
TSP	0.03	0.02	0.05	9.9	
PM10	0.02	0.02	0.04	9.9	

2.9 Power Plant at Technical Area 3 (TA-3-22)

2.9.2 Emission Limits

i Australia	Allowable Emissio							ission Limits					
Source	NOx	C	0	S	SOx		TSP		I ₁₀	VOC			
	Gas	Oil	Gas	Oil	Gas	Oil	Gas	Oil	Gas	Oil	Gas	Oil	
TA-3-22-1 (lb/hr)	10.2	11.3	7.0	6.5	1.1	9.6	1.3	4.3	1.3	3.0	1.0	0.3	
TA-3-22-2 (lb/hr)	10.2	11.3	7.0	6.5	1.1	9.6	1.3	4.3	1.3	3.0	1.0	0.3	
TA-3-22-3 (lb/hr)	10.2	11.3	7.0	6.5	1.1	9.6	1.3	4.3	1.3	3.0	1.0	0.3	
Boilers Individually (tpy)	35	5.9	N	/ A	N	/A	N	A	N/	Α	N	/A	
Boilers Combined ¹ (tpy)	60	0.2	41	1.3	7	.9	8.	.4	8,	2	5	.6	

15J		Allowable Emission Limits											
Source	NOx C		0	S	Ox	TS	SP	PM	[₁₀	V	OC		
	Gas	Oil	Gas	Oil	Gas	Oil	Gas	Oil	Gas	Oil	Gas	Oil	
TA-3-22 CT- 1 (lb/hr)	23.8		170.9		1.4		1.	6	1.	6	1	.0	
TA-3-22 CT- 1 (tpy) ^{1,2}	33.2		19.8		1.9		1.9 2.3		2.3				
TA-3-22 CT-1 (ppm)	25 ppmv @ 15% O ₂		N/A		N/A		N/A N/A N/A N/A		N/A		A	N/A	

Annual emission limits are 12-month rolling totals. This is pursuant to NSR Permit 2195B-M1R2,

Reporting Requirement

 $2.9.6.1\,$ Reports shall be submitted in accordance with conditions $4.1\,$ and $4.2.^{(1)}\,$

4.1 Reports of actual emissions from permitted sources in Section 2.0 shall be submitted on a 6 month basis. Reports shall not include emissions from insignificant activities. Emission estimates of criteria pollutants NOx, CO, SO₂, PM and VOCs shall not include fugitive emissions. Emission estimates of HAPs shall include fugitive emissions. The reports shall include a comparison of actual emissions that occurred during the reporting period with the facility-wide allowable emission limits specified in Section 2.11 of this permit.

(1) Condition 4.2 refers to submitting	a Semi-Annual Monitoring repor	t which LANL submitted o	n February 11, 2011,
Tracking Number SBR 20110003			

Tracking Number S	BR20110003.		
Has this reporting	requirement been met during this reporting	g period with a separate reporting submittal? Answer	
Yes or No below.			
Yes	Date report submitted:	Tracking Number:	
X No Pro	vide comments and identify any support	ing documentation as an attachment.	
Comments:	Continued on the next page		

Table 2.1, Note 7.

"-" notation implies emission rates less than or equal to 0.5 tpy.

^{*} N/A means not applicable.

2.9 Power Plant at Technical Area 3 (TA-3-22) - Continued

Boilers TA-3-22-1, TA-3-22-2, TA-3-22-3	January - June Emissions (tons)	July - December Emissions (tons)	Annual Emissions (tons)	Permit Limit (Condition 2.9.2) (tons per year)
NOx	7.67	5.54	13.21	60.2
SO ₂	0.08	0.06	0.14	7.9
TSP	1.01	0.73	1.74	8.4
PM ₁₀	1.01	0.73	1.74	8.2
CO	5.29	3.82	9.11	41.3
VOC	0.73	0.52	1.25	5.6
HAPs	0.25	0.18	0.43	No Source Limit

Boiler	Pollutant	January - June Emissions (tons)	July - December Emissions (tons)	Annual Emissions (tons)	Permit Limit (Condition 2.9.2) (tons per year)
TA-3-22-1	NOx	1.55	2.79	4.34	35.9
TA-3-22-2	NOx	0.89	2.05	2.94	35.9
TA-3-22-3	NOx	5.24	0.70	5.94	35.9

Combustion Turbine TA-3-22 CT-1	January - June Emissions (tons)	July - December Emissions (tons)	Annual Emissions (tons)	Permit Limit (Condition 2.9.2) (tons per year)
NOx	0.57	1.40	1.97	33.2
SO ₂	0.04	0.10	0.14	1.9
TSP	0.08	0.19	0.27	2.3
PM ₁₀	0.08	0.19	0.27	2.3
CO	0.12	0.29	0.41	19.8
VOC	0.03	0.06	0.09	No TPY Limit
HAPs	0.02	0.04	0.06	No Source Limit

2.10	10 Open Burning	
2.10.	0.2 Emission Limits	
	.10.2.1 The contribution of HAP emissions from open be f the corresponding facility-wide limit listed below:	urning shall not cause the exceedance
	8 tons per year of an individual facility-wide HAP 24 tons per year of total facility-wide HAPs	
_	eporting Requirement 0.5.1 Reports shall be submitted in accordance with conditio	ns 4.1.
4.1	Reports of actual emissions from permitted sources in Sec Reports shall not include emissions from insignificant act NOx, CO, SO ₂ , PM and VOCs shall not include fugitive e include fugitive emissions. The reports shall include a cor the reporting period with the facility-wide allowable emissipermit.	ivities. Emission estimates of criteria pollutants emissions. Emission estimates of HAPs shall nparison of actual emissions that occurred during
	s this reporting requirement been met during this reporting per s or No below.	riod with a separate reporting submittal? Answer
	7	
	Yes Date report submitted:	Tracking Number:
x	No Provide comments and identify any supporting a comment of the comment	documentation as an attachment
	= -:-	uocumentation as an attachment.
	mments:	
	open burning activities took place in 2010.	

2.11 Facility Wide Emission Limits

2.11.1 Emission Limits

Total Allowable Criteria Pollutant and HAP Emission Limits

Pollutant	Emission Limit (tons per year)
Nitrogen Oxides (NO _x)	245
Carbon Monoxide (CO)	225
Volatile Organic Compounds (VOCs)	200
Sulfur Dioxide (SO ₂)	150
Particulate Matter (PM)	120
Hazardous Air Pollutants (HAPs)	24 combined / 8 individual

Reporting Requirement

4.1 Reports of actual emissions from permitted sources in Section 2.0 shall be submitted on a 6 month basis. Reports shall not include emissions from insignificant activities. Emission estimates of criteria pollutants NOx, CO, SO₂, PM and VOCs shall not include fugitive emissions. Emission estimates of HAPs shall include fugitive emissions. The reports shall include a comparison of actual emissions that occurred during the reporting period with the facility-wide allowable emission limits specified in Section 2.11 of this permit.

Has this reporting requirement been met	during this	reporting period	l with a	separate r	eporting s	submittal?	Answer
Yes or No below							

	Yes	Date report submitted:	Tracking Number:
--	-----	------------------------	------------------

No Provide comments and identify any supporting documentation as an attachment.

Pollutant	January - June Emissions (tons)	July - December Emissions (tons)	2010 Annual Emissions (tons)	Facility Wide Permit Limits (Condition 2.11.1) (tons per year)
Nitrogen Oxides	29.9	21.1	51.0	245
Sulfur Dioxide	0.6	0.4	1.0	150
Particulate Matter	2.7	2.0	4.7	120
Carbon Monoxide	21.8	14.7	36.5	225
Volatile Organic Compounds	5.2	4.7	9.9	200
Hazardous Air Pollutants	3.0	1.8	4.8	24 combined
Highest Individual HAP (Methyl Chloroform)	1.4	0.0	1.4	8 individual

This report has been reproduced directly from the best available copy. It is available electronically on the Web (http://www.doe.gov/bridge).

Copies are available for sale to U.S. Department of Energy employees and contractors from:
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831
(865) 576-8401

Copies are available for sale to the public from: National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161 (800) 553-6847

