Approved for public release; distribution is unlimited.

U.S. Department of Energy Report 2000 LANL Radionuclide Air Emissions

Los Alamos National Laboratory is operated by the University of California for the United States Department of Energy under contract W-7405-ENG-36.

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the Regents of the University of California, the United States Government nor any agency thereof, nor any of their employees make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the Regents of the University of California, the United States Government, or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the Regents of the University of California, the United States Government, or any agency thereof. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Issued: August 2001

U.S. Department of Energy Report 2000 LANL Radionuclide Air Emissions

Keith W. Jacobson

U.S. Department of Energy Report

2000 LANL Radionuclide Air Emissions

Site Name: Los Alamos National Laboratory

Location: County of Los Alamos, New Mexico

Operations Office Information:

Office: Los Alamos Area Office

Address: U.S. Department of Energy

Los Alamos Area Office

Los Alamos, NM 87544

Contact: Joseph C. Vozella

Phone: (505) 665-5027

Site Information:

Operator: University of California

Address: Los Alamos National Laboratory

PO Box 1663

Los Alamos, NM 87545

Contact: Douglas M. Stavert

Phone: (505) 665-8855

Compliance Assessment:

2000 EDE: 0.64 mrem

TABLE OF CONTENTS

ABSTRACT	1
PREFACE	3
EXECUTIVE SUMMARY	5
SECTION I. FACILITY INFORMATION	9
Name and Location of Facility	9
List of Radioactive Materials Used at LANL	
Handling and Processing of Radioactive Materials at LANL Technical Areas	9
SECTION II. AIR EMISSIONS DATA	15
Point Sources	15
Nonpoint Sources	
Radionuclide Emissions	
Pollution Controls	
SECTION III. DOSE ASSESSMENT	23
Description of Dose Calculations	
Development of Source Term	
Tritium Emissions	
Radioactive Particle Emissions	
Vapor Form Emissions	
Gaseous Mixed Activation Products (GMAP)	
Summary of Input Parameters	
Public Receptors	
Point Source Emissions Modeling	
LANSCE Fugitive Emission Modeling	
TA-18 Nonpoint Emission Modeling	
Radionuclides Not Included in CAP88	
Environmental Data	
LANSCE Monthly Assessments	
Highest EDE Determination	
Compliance Assessment	
SECTION IV. CONSTRUCTIONS AND MODIFICATIONS	61
Constructions and Modifications	
Nontraditional In-Situ Vitrification near PRS 21-018A	
SECTION V. ADDITIONAL INFORMATION	62
Unplanned Releases	
•	
Environmental Monitoring	
REFERENCES	65

LIST OF TABLES

Table 1.	40-61.94(b)(4-5) Release Point Data	15
Table 2.	40-61.94(b)(6) Distances from Monitored Release Points to Nearest Receptor	20
Table 3.	40-61.94(b)(7) User-Supplied Data—Monitored Stack Parameters	25
Table 4.	69.94(b)(7) User-Supplied Data—Monitored Stack Parameters—	
	NM state Plane coordinates (NAD'83)	26
Table 5.	40-61.94(b)(7) User Supplied Data—Highest Offsite Dose Location for Monitored	
	Release Points	27
Table 6.	40-61.94(b)(7) User Supplied Data—Other Input Parameters	28
Table 7.	40-61.94(b)(7) User Supplied Data—Wind Frequency Arrays	29
Table 8.	40-61.94(b)(7) User-Supplied Data—Population Array	42
Table 9.	40-61.94(b)(7) User-Supplied Data—Radionuclide Emissions	43
Table 10.	40-61.94(b)(7) User-Supplied Data—Modeling Parameters for	
	LANL Nonpoint Sources	46
Table 11.	40-61.94(b)(7) User-Supplied Data—Radionuclides Not Included in CAP88	47
Table 12.	40-61.94(b)(7) User-Supplied Data—Supplemental Dose Factors	48
Table 13.	FFCA and Air Sampler Environmental Data	51
Table 14.	FFCA Analytical Completeness Summary—Air Sampler Operation	52
Table 15.	LANSCE Monthly Assessments and Summary	57
Table 16.	40-61.92 Effective Dose Equivalent at Selected Public Locations	58
Table 17.	61.92 Highest Effective Dose Equivalent Summary	59
	LIST OF FIGURES	
_	Location of Los Alamos National Laboratory	
Figure 2.	Location of Los Alamos National Laboratory Technical Areas by Number	11
Figure 3.	Locations of air sampling stations used for nonpoint source compliance	49

LIST OF ACRONYMS

AIRNET Los Alamos National Laboratory Air Monitoring Network

CAB Citizens' Advisory Board

CMR Chemistry and Metallurgy Research (building)

CR/MS catalytic reactor and molecular sieve bed

DOE Department of Energy
EDE effective dose equivalent

EPA Environmental Protection Agency
ESIDNUM exhaust stack identification number

FFCA Federal Facilities Compliance Agreement

GMAP gaseous mixed activation products
HEPA high-efficiency particulate air (filter)

ISV in situ vitrification

LANL Los Alamos National Laboratory

LANSCE Los Alamos Neutron Science Center

LSC liquid scintillation counting
ND no detectable (emissions)

NESHAP National Emissions Standards for Hazardous Air Pollutants

P/VAP particulate/vapor activation products
PEDE potential effective dose equivalent

PSR Proton Storage Ring

RAMROD Radioactive Materials Research Operations Demonstration

TA technical area (at Los Alamos National Laboratory)

WETF Weapons Engineering Tritium Facility

U.S. DEPARTMENT OF ENERGY REPORT 2000 LANL RADIONUCLIDE AIR EMISSIONS

by

Keith W. Jacobson

ABSTRACT

Presented herein is the Laboratory-wide certified report regarding radioactive effluents released into the air by Los Alamos National Laboratory (LANL) in CY 2000. This information is required under the Clean Air Act and is being reported to the U.S. Environmental Protection Agency (EPA). Included in this report are the effluents released during the Cerro Grande wildfire during mid-May, an event that despite its impact on LANL operations, did not affect the Laboratory's monitoring and data-quality objectives required for National Emissions Standards for Hazardous Air Pollutants (NESHAPs) compliance. The highest effective dose equivalent (EDE) to an off-site member of the public was calculated using EPA-specified procedures described in this report. For 2000, that dose was 0.64 mrem.

UNCLASSIFIED

PREFACE

In 1990, the Clean Air Act was amended to add radionuclides to the National Emissions Standards for Hazardous Air Pollutants (NESHAPs). Specifically, a new subsection (H) of 40 CFR 61 established an annual limit on the impact to the public attributable to emissions of radionuclides from U.S. Department of Energy Facilities (DOE), such as the Los Alamos National Laboratory (LANL). As part of the new NESHAP regulations, LANL must also submit an annual report to the U.S. Environmental Protection Agency (EPA) headquarters and the regional office in Dallas by June 30th. This report includes results of monitoring at LANL and the dose calculations for the calendar year, 2000.

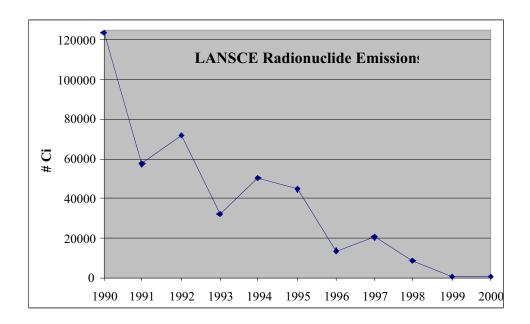
EXECUTIVE SUMMARY

Presented is the Laboratory-wide certified report regarding radioactive effluents released into the air by LANL in 2000. This information is required under the Clean Air Act and is being reported to the U.S. EPA. The highest effective dose equivalent (EDE) to an off-site member of the public was calculated using procedures specified by the U.S. EPA and described in this report. The "Rad-NESHAPs" section of LANL's Air Quality Group (ESH-17) prepared this report.

To comply with the Radionuclide-NESHAP regulation, LANL monitors radionuclide emissions at 30 release points or stacks. Also, the Air Quality group uses a network of air samplers around LANL to monitor airborne levels of radionuclides. In addition, LANL maintains and operates meteorological monitoring systems.

The highest effective dose equivalent (EDE) to any member of the public at any off-site location where there is residence, school, business or office, for CY2000, was 0.64 mrem. This location was a business office located at 2470 East Gate Drive, on the northeastern boundary of LANL. This location differs from the highest off-site dose for 1999, which was a business office at the Los Alamos County landfill. This change was due to increases in airborne effluents from a linear particle accelerator located at the Los Alamos Neutron Science Center (LANSCE) near the northeastern boundary of LANL. Doses reported to the U.S. EPA for the past six years are shown in the following table. The U.S. EPA annual dose limit is 10 mrem.

Six Year Summary of NESHAPs Dose Assessment for LANL


Year	EDE (mrem)	Highest EDE location
1995	5.05	2470 East Gate Dr
1996	1.93	2470 East Gate Dr
1997	3.51	2470 East Gate Dr
1998	1.72	2470 East Gate Dr
1999	0.32	County Landfill Office
2000	0.64	2470 East Gate Dr

Because of operational changes at the accelerator facility, radionuclide emissions have been decreasing from LANSCE for the past few years. Also in 1995, an additional emissions control system was implemented to reduce total emissions. In previous years, emissions from LANSCE (shown below) have contributed to over 90% of the total offsite dose. In 2000, the contribution was down to 60% of the total value. Future emissions from LANSCE are expected to remain near or slightly above the CY 2000 level.

In May 2000, Laboratory operations were impacted by the Cerro Grande wildfire, which began on May 4th and was not completely contained until early June. Despite the interruption caused by the fire and the subsequent general shutdown of LANL, the Laboratory's Rad-NESHAPs

program was able to meet all of the monitoring and data quality objectives required for compliance.

From May 10th to May 15th, the Cerro Grande wildfire burned out of control along the boundaries and into the interior of LANL. The Air Quality group conducted special sampling during this period to evaluate the potential for increased airborne emissions. Samples collected during the wildfire showed a significant increase in gross airborne alpha and beta activity. Further analysis of the samples showed that the radionuclides lead-210, bismuth-210. and polonium-210, which are radon decay products, to be the cause of the increase. Increased resuspension caused by the fire served as the enhanced source of these naturally occurring radionuclides.

Approximate LANSCE Radionuclide Emissions for the Past Ten Years

It is estimated that the wildfire (photo, below) burned on and over 7,500 to 7,700 acres on LANL. The fire burned across many old disposal sites and open ground testing sites. The Air Quality group is collecting data on those sites with suspected radionuclide contamination that were affected by the wildfire. Upon completion of the data study, the Air Quality group will calculate the potential releases, atmospheric transport, and subsequent human exposure due to radionuclides released by the Cerro

Grande wildfire. It should be noted that onsite and perimeter air sampling did not detect higher than normal concentrations of man made radionuclides, such as tritium or plutonium, during or after the fireⁱ.

Also in 2000, the Air Quality group identified the need for a new air-sampling site for the compliance network; and the need to relocate an existing sampler to meet data quality objectives. Consequently a new sampler was added at the TA-3 Research

Satellite Photo of Smoke Plume from the Cerro Grande Wildfire on the Evening of May 10, 2000.

ⁱLA-UR 01-1169; Measurements of Radioactive Air Contaminants during the Cerro Grande Fire using the Los Alamos National Laboratory's Air Monitoring Network (AIRNET); March 2001; Craig F. Eberhart, Ernest S. Gladney, Jean M. Dewart, David H. Kraig, Michael W. McNaughton, Alice R. Baumann, C. Jake Martinez, and Angelique M. Luedeker, Air Quality Group, Los Alamos National Laboratory, Los Alamos, NM 87545

Park, and another (similar to that shown below) was added to replace the Los Alamos Shell station site. Additional discussion of these two changes is provided in the Environmental Data section of the report that begins on page 15.

This report describes the Rad-NESHAP program and compliance activities at LANL and in addition, contains tables of data required for reporting purposes; of these, Table 16 provides doses calculated at various public locations around LANL, and Table 17 summarizes the different LANL contributions to the total highest dose for CY2000.

Air Monitoring Station on LANL Property

SECTION I. FACILITY INFORMATION

61.94(b)(1): Name and Location of Facility

Los Alamos National Laboratory (LANL or the Laboratory) and the associated residential areas of Los Alamos and White Rock are located in Los Alamos County, in north-central New Mexico, approximately 100 km (60 mi.) north-northeast of Albuquerque and 40 km (25 mi.) northwest of Santa Fe (Figure 1).

61.94(b)(2): List of Radioactive Materials Used at LANL

Since the Laboratory's inception in 1943, its primary mission has been nuclear weapons research and development. Programs include weapons development, magnetic and inertial fusion, nuclear fission, nuclear safeguards and security, and laser isotope separation. There is also basic research in the areas of physics, chemistry, and engineering that supports such programs, and in biology that complements and draws upon basic research in the physical sciences.

The primary facilities involved in emissions of radioactivity are outlined in this section. The facility locations are designated by technical area and building. For example, the facility designation TA-3-29 is Building 29 at Technical Area 3 (see Figure 2 showing the technical areas at LANL). Potential radionuclide release points are listed in several tables that follow. Some of the sources described below are characterized as nonpoint. Beginning in 1995, air-sampling results from LANL's air-sampling network (AIRNET) were used, with EPA approval, to calculate off-site impacts due to diffuse and fugitive emissions of radioactive particles and tritium oxide from nonpoint sources.

Radioactive materials used at LANL include weapons grade plutonium, heat-source plutonium, enriched uranium, depleted uranium, and tritium. Also, a variety of materials is generated through the process of activation; consequent emissions occur as gaseous mixed activation products (GMAP), and other activation products occur in particulate and vapor form (P/VAP).

The radionuclides emitted from point sources at LANL in the calendar year (CY) 2000 are listed in subsequent tables. Tritium is released as tritium oxide and elemental tritium. Plutonium contains traces of ²⁴¹Am, a transformation product of ²⁴¹Pu. Some of the uranium emissions are from open-air explosive tests involving depleted uranium. GMAP emissions include ⁴¹Ar, ¹⁰C, ¹¹C, ¹³N, ¹⁶N, ¹⁴O, and ¹⁵O. Various radionuclides such as ¹⁹³Hg and ¹⁹⁷Hg make up the majority of the P/VAP emissions.

61.94(b)(3): Handling and Processing of Radioactive Materials at LANL Technical Areas

The primary facilities responsible for radiological airborne emissions follow. Additional descriptions of LANL technical areas can be found in the annual site environmental report for LANL. More thorough descriptions of LANL operations can be found in the annual yearbooks published by LANL's Site-Wide Issues Program Office, the most recent being the "SWEIS 1999 Yearbook".

TA-3-29: Programs conducting chemical and metallurgical research are located in this facility. Principal radionuclides are isotopes of plutonium and uranium

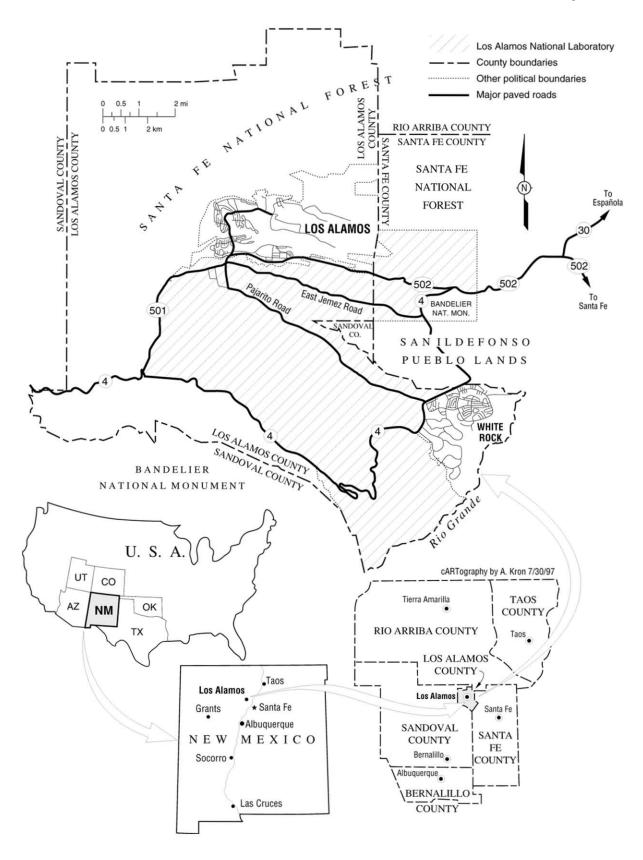


Figure 1. Location of Los Alamos National Laboratory

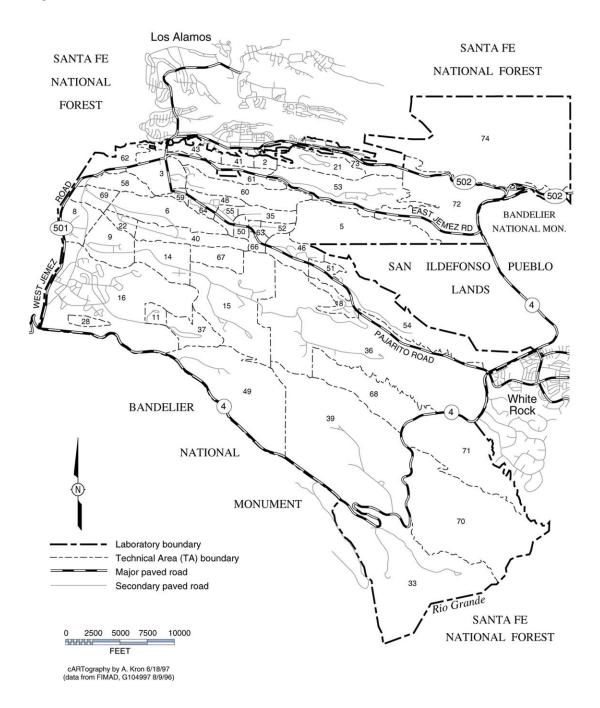


Figure 2. Location of Los Alamos National Laboratory Technical Areas, by Number

- **TA-3-35:** The facility houses a 5,000-ton capacity press that has been used in the metalworking of radioactive materials. Note that stack monitoring at this facility was discontinued in 2000.
- **TA-3-102:** This machine shop is used for the metalworking of radioactive materials, primarily depleted uranium.
- **TA-15-PHERMEX and TA-36:** These facilities conduct open-air explosive tests involving depleted uranium.
- **TA-15-312-DAHRT:** Construction on this new facility for conducting high-explosive driven experiments was recently completed.
- TA-16-205-WETF: This facility is located in Buildings 205 and 205A in the southeast section of TA-16. Building 205 is specifically designed and built to process tritium safely and to meet user needs and specifications. The operations at WETF are divided into two categories: tritium processing and activities that support tritium processing. Examples of tritium-processing operations include repackaging tritium into smaller quantities and repackaging tritium and other gases to user-specified pressures. Other operations include reacting tritium with other materials to form compounds and analyzing the effects of tritium.
- TA-21-155 and TA-21-209: These facilities also conduct operations involving tritium. Programs include testing of tritium control systems for the nuclear fusion program (TA-21-155), preparation of targets containing tritium for laser-fusion research, and the handling of tritium for defense programs. In addition, operations to recover tritium from old equipment are being conducted at TA-21-209.

- **TA-18:** This nuclear facility studies the behavior of critical assemblies of nuclear materials. Some of the assemblies are used as a source of fission neutrons for experimental purposes, resulting in a diffuse source of ⁴¹Ar emissions.
- **TA-21:** Many of the facilities at this decommissioned radiochemistry site are undergoing decontamination, demolition, and disposal. Some of these operations may contribute to diffuse releases of uranium and plutonium into the air.
- **TA-33-86 and TA-41-4:** These buildings were formerly used as tritium-handling facilities. Current emissions primarily result from residual tritium contamination and cleanup operations.
- TA-48-1: The principal activities carried out in this facility are radiochemical separations in support of the medical radioisotope production program, the Yucca Mountain program, nuclear chemistry experiments, and geochemical and environmental research. These separations involve nCi to Ci (hot cell) amounts of radioactive materials and use a wide range of analytical chemical separation techniques, such as ion exchange, solvent extraction, mass spectroscopy, plasma emission spectroscopy, and ion chromatography.
- **TA-50-1:** This waste management site consists of a low-level liquid waste treatment plant. Also, there is a wastewater outfall from TA-50-1 that results in a diffuse source of airborne tritium.
- **TA-50-37:** This controlled air incinerator was decommissioned in 1996 and is no longer active. It has been remodeled to house

the Radioactive Materials Research Operations Demonstration (RAMROD) project.

TA-50-69: This waste management site consists of a waste characterization and reduction facility.

TA-53: This technical area houses the Los Alamos Neutron Science Center (LANSCE), a linear particle accelerator complex. The accelerator is used to conduct research in stockpile stewardship, radiobiology, materials science, and isotope production, among other areas. LANSCE consists of the Manuel Lujan Neutron Scattering Center, the Proton Storage Ring, the Weapons Neutron Research facilities, the Proton Radiography facility, and the high-intensity beam line (Line A).

The facility accelerates protons and hydrogen ions to an energy of 800 MeV into target materials such as graphite and tungsten to produce neutrons and other subatomic particles. The design current of the accelerator is approximately 1000 microamperes. The primary high-intensity beam line (Line A) and medical isotope production facility did not operate in 2000. Medium-intensity beam (100 microamp) operations to the Proton Storage Ring (PSR) and the Manuel Lujan Neutron Scattering Center were conducted from July to December of 2000. Low-intensity beam (up to 10 microamps) operations to the PSR, the Weapons Neutron Research facility and the Proton Radiography facility were conducted throughout most of 2000.

Airborne radioactive emissions result from the proton beams and secondary particles passing through and activating air molecules in the target cells, beam stop, and surrounding areas. The majority of the emissions are short-lived activation products such as ¹¹C, ¹³N, and ¹⁵O. Most of the activated air is vented through the main stacks: however, a fraction of the activated air becomes a fugitive emission from the target areas. In addition, there are three wastewater lagoons at TA-53 that have received radioactive liquid effluents from the accelerator; however, none of these lagoons received wastewater in 2000, and the old lagoon facility is being remedied. Two new solar evaporative basins were constructed and began operation in 1999 to evaporate wastewater from the accelerator. Evaporation of water from these facilities can result in a diffuse source of airborne tritium.

TA-54: This waste management site consists of active and inactive shallow land burial sites for solid waste and is the primary storage area for mixed and transuranic radioactive waste. Area G at TA-54 is a known source of diffuse emissions of tritium vapor. Resuspension of soil contaminated with low levels of plutonium/americium has also created a diffuse source. Shipments of transuranic waste for disposal at the Waste Isolation Pilot Plant began in 1999 and continued in 2000.

TA-55-4: As discussed in the January 1999 *Site-Wide Environmental Impact Statement for Continued Operation of the Los Alamos National Laboratory*, this plutonium facility is slated for a plutonium pit production mission as well as for continuing in its traditional role of housing research-and-development applications in chemical and metallurgical processes for recovering, purifying, and converting

plutonium and other actinides.² A wide range of activities that include the heating, dissolution, forming, welding, etc., of special nuclear materials is conducted. Additional activities include developing the means to safely ship, receive, handle, and store nuclear materials, as well as to manage the wastes and residues produced by TA-55 operations.

SECTION II. AIR EMISSIONS DATA

61.94(b)(4): Point Sources

Sampled and unsampled point sources at LANL are listed in Table 1. The point sources are identified using an eight-digit identification number for each exhaust stack (ESIDNUM); the first two digits represent

the LANL technical area, the next four digits the building area, and the last two digits the stack number. Also listed in Table 1 are type, number, and efficiency of the effluent controls used on the release points. Each stage of the high-efficiency particulate air (HEPA) exhaust filters is tested at least once every 12 months. The performance criteria for HEPA filter systems are a maximum penetration of 5×10^{-4} for one

Table 1. 40-61.94(b)(4-5) Release Point Data

		Control	Number of	Control	
ESIDNUM	Location	Description	Effluent	Efficiency	Monitored
03001608	TA-03-16	none	0	0%	
03001609	TA-03-16	none	0	0%	
03001614	TA-03-16	none	0	0%	
03001616	TA-03-16	none	0	0%	
03001621	TA-03-16	none	0	0%	
03001641	TA-03-16	none	0	0%	
03002913	TA-03-29-1	unkown	0	0%	
03002914	TA-03-29-2	HEPA	2	99.95% each	$\sqrt{}$
03002915	TA-03-29-2	HEPA	2	99.95% each	$\sqrt{}$
03002919	TA-03-29-3	Aerosol 95	1	80%	$\sqrt{}$
03002920	TA-03-29-3	Aerosol 95	1	80%	$\sqrt{}$
03002921	TA-03-29-3	none	0	0%	
03002923	TA-03-29-4	FARR 30/30	1	~ 20%	$\sqrt{}$
03002924	TA-03-29-4	FARR 30/30	1	~ 20%	$\sqrt{}$
03002928	TA-03-29-5	HEPA	2	99.95% each	$\sqrt{}$
03002929	TA-03-29-5	HEPA	2	99.95% each	$\sqrt{}$
03002932	TA-03-29-7	HEPA	2	99.95% each	$\sqrt{}$
03002933	TA-03-29-7	HEPA	2	99.95% each	$\sqrt{}$
03002937	TA-03-29-V	HEPA	2	99.95% each	$\sqrt{}$
03002944	TA-03-29-9	RIGA-Flow 22	0 1	80%	$\sqrt{}$
03002945	TA-03-29-9	RIGA-Flow 22	0 1	80%	$\sqrt{}$
03002946	TA-03-29-9	RIGA-Flow 22	0 1	80%	$\sqrt{}$
03003401	TA-03-34	none	0	0%	
03003435	TA-03-34	none	0	0%	
03003501	TA-03-35	HEPA	1	99.95%	
03003999	TA-3-39	none	0	0%	

Table 1. 40-61.94(b)(4-5) Release Point Data (continued)

		Control	Number of		
ESIDNUM	Location	Description	Effluent	Efficiency	Monitored
03004025	TA-03-40	HEPA	1	99.95%	
03006601	TA-03-66	none	0	0%	
03006602	TA-03-66	none	0	0%	
03006603	TA-03-66	none	0	0%	
03006604	TA-03-66	none	0	0%	
03006605	TA-03-66	none	0	0%	
03006626	TA-03-66	HEPA	1	99.95%	
03006643	TA-03-66	none	0	0%	
03010222	TA-03-102	HEPA	1	99.95%	$\sqrt{}$
03010225	TA-03-102	HEPA	1	99.95%	
03014110	TA-03-141	none	0	0%	
03169801	TA-03-1698	none	0	0%	
09002103	TA-09-21	none	0	0%	
09003201	TA-09-32	none	0	0%	
15044699	TA-15-446	none	0	0%	
16020504	TA-16-205	CR/MS	1	>99%	$\sqrt{}$
16020599	TA-16-205	none	0	0%	
16024801	TA-16-248	none	0	0%	
18012701	TA-18-127	none	0	0%	
18016801	TA-18-168	none	0	0%	
21000507	TA-21-5	HEPA	2	99.95% each	
21002S00	TA-21-2S	HEPA	1	99.95%	
21015001	TA-21-150	HEPA	1	99.95%	
21015505	TA-21-155	CR/MS	1	>99%	
21020901	TA-21-209	CR/MS	1	>99%	
21021301	TA-21-213	none	0	0%	
21025704	TA-21-257	none	0	0%	
21041899	TA-21-418	none	0	0	

Table 1. 40-61.94(b)(4-5) Release Point Data (continued)

		Control	Number of	Control	
ESIDNUM	Location	Description	Effluent	Efficiency	Monitored
33008606	TA-33-86	none	0	0%	$\sqrt{}$
35021305	TA-35-213	none	0	0%	
35021308	TA-35-213	none	0	0%	
41000104	TA-41-1	HEPA	2	99.95% each	
41000417	TA-41-4	none	0	0%	$\sqrt{}$
43000102	TA-43-1	none	0	0%	
43000109	TA-43-1	none	0	0%	
43000110	TA-43-1	none	0	0%	
43000112	TA-43-1	none	0	0%	
43000113	TA-43-1	none	0	0%	
43000134	TA-43-1	none	0	0%	
46002401	TA-46-24	none	0	0%	
46003101	TA-46-31	none	0	0%	
46003125	TA-46-31	none	0	0%	
46003141	TA-46-31	none	0	0%	
46004106	TA-46-41	none	0	0%	
46015405	TA-46-154	none	0	0%	
46015810	TA-46-158	none	0	0%	
48000107	TA-48-1	HEPA/Charcoa	ıl 2	99.95% each	$\sqrt{}$
48000111	TA-48-1	none	0	0%	
48000115	TA-48-1	none	0	0%	
48000135	TA-48-1	none	0	0%	
48000145	TA-48-1	none	0	0%	
48000154	TA-48-1	HEPA	2	99.95% each	$\sqrt{}$
48000160	TA-48-1	HEPA	1	99.95%	$\sqrt{}$
48000199	TA-48-1	HEPA	1	99.95%	
48004501	TA-48-45	none	0	0%	
50000102	TA-50-1	HEPA	1	99.95% each	$\sqrt{}$

Table 1. 40-61.94(b)(4-5) Release Point Data (continued)

		Control	Number of	Control	
ESIDNUM	Location	Description	Effluent	Efficiency	Monitored
50000201	TA-50-2	none	0	0%	
50003701	TA-50-37	HEPA	2	99.95% each	$\sqrt{}$
50006901	TA-50-69	HEPA	1	99.95%	
50006902	TA-50-69	HEPA	1	99.95%	
50006903	TA-50-69	HEPA	2	99.95% each	$\sqrt{}$
50018500	TA-50-185	HEPA	1	99.95%	
53000303	TA-53-3	HEPA	1	99.95%	$\sqrt{}$
53000702	TA-53-7	HEPA	1	99.95%	$\sqrt{}$
53000799	TA-53-7	none	0	0%	
53036599	TA-53-365	none	0	0%	
53109010	TA-53-1090	none	0	0%	
54003300	TA-54-33	HEPA	1	99.95%	
54003601	TA-54-36	HEPA	1	99.95%	
54022601	TA-54-226	none	0	0%	
54028101	TA-54-281	HEPA	1	99.95%	
54100110	TA-54-1001	none	0	0%	
55000415	TA-55-4	HEPA	4	99.95% each	$\sqrt{}$
55000416	TA-55-4	HEPA	4	99.95% each	$\sqrt{}$
59000104	TA-59-1	none	0	0%	
59000114	TA-59-1	none	0	0%	
59000121	TA-59-1	none	0	0%	
59000122	TA-59-1	none	0	0%	
59000123	TA-59-1	none	0	0%	
59000124	TA-59-1	none	0	0%	
59000125	TA-59-1	none	0	0%	
59000126	TA-59-1	none	0	0%	
59000127	TA-59-1	none	0	0%	
59000130	TA-59-1	none	0	0%	

stage and 2.5×10^{-7} for two stages in series, in which penetration equals concentration of aerosol downstream of the air cleaner divided by concentration upstream.

The distance between each of 30 monitored point sources and the nearest receptor is provided in Table 2. The nearest receptor can be a residence, school, business, or office. In this report, the nearest receptor is defined as the public receptor most impacted by a given release point; that is, the air dispersion pattern is taken into account to determine the nearest or critical receptor location. The distance to the nearest milkproducing farm is 20 km east of the Laboratory's eastern boundary; the nearest farms producing meat and vegetables adjoin the Laboratory's eastern boundary, about 4 km from the main exhaust stack at LANSCE. More detailed agricultural information can be found in a supplemental LANL report.³ At this time, LANL is not using this site-specific agricultural data in the CAP88 model; preprogrammed or default values for New Mexico are utilized for the number of beef and milk cattle and for agricultural productivity.

In addition to 30 monitored release points, approximately 40 unmonitored release points—distributed over more than 30 LANL buildings—are included in Table 1. Under 40 CFR 61.93(b)(4)(i), sampling of these release points is not required because each release point has a potential effective dose equivalent of less than 0.1 mrem/yr. at the critical receptor. However, in order to verify that emissions from unmonitored point sources remain low, LANL conducts periodic confirmatory measurements in the form of the Radioactive Materials Usage Survey. The purpose of the Usage Survey is to collect and analyze radioactive materials

usage and process information for the monitored and unmonitored point sources at LANL.

Guided by Appendix D of 40 CFR 61, we have used data collected from the facilities in conjunction with engineering calculations and other methods to develop conservative emissions estimates from unmonitored point sources. Estimated potential effective dose equivalents (PEDEs) are calculated by modeling these emissions estimates using the EPA-approved CAP88 dose modeling software. A comprehensive survey of all of LANL's monitored and unmonitored point sources is conducted annually or biannually. Results of the 2000 Usage Survey can be found in the report 2000 Radioactive Materials Usage Survey for Point Sources.4 The Laboratory has established administrative requirements to evaluate all potential new sources. These requirements are established for the review of new Laboratory activities and projects to ensure that air quality regulatory requirements will be met before the activity or project begins.⁵

Nonpoint Sources

There are a variety of nonpoint sources within the 111 square kilometers of land occupied by LANL. Nonpoint sources can occur as diffuse or large-area sources or as leaks or fugitive emissions from facilities. Examples of nonpoint sources of airborne radionuclides include surface impoundments, shallow land burial sites, open burn sites, firing sites, outfalls, container storage areas, unvented buildings, waste-treatment areas, solid-waste management units, and tanks. The Laboratory measures annual average ambient concentrations of important airborne

Table 2. 40-61.94(b)(6) Distances from Monitored Release Points to Nearest Receptor

ESIDNUM	Nearest Receptor (m)	Receptor Direction
03002914	731	NE
03002915	732	NE
03002919	836	NNE
03002920	835	NNE
03002923	845	NE
03002924	846	NE
03002928	936	NE
03002929	937	NE
03002932	856	NNE
03002933	855	NNE
03002937	870	NE
03002944	937	NNE
03002945	939	NNE
03002946	938	NNE
03010222	1060	NE
16020504	778	SSW
21015505	680	NNW
21020901	712	NNW
33008606	977	WSW
41000417	197	N
48000107	750	NNE
48000154	751	NNE
48000160	764	NNE
50000102	1183	N
50003701	1171	N
50006903	1186	N
53000303	800	NNE
53000702	944	NNE
55000415	1016	NNE
55000416	1089	NNE

radionuclides (other than activated gases) at a number of potential receptor locations, as described below.

Beginning in 1995, LANL began summarizing the potential impacts of nonpoint sources by analyzing and reporting air concentration measurements collected at 17 ambient air-sampling sites around the Laboratory. Previously, LANL had estimated emissions from the most significant nonpoint sources and determined the impacts using EPA's dose assessment computer program. The Laboratory and EPA negotiated this new method of assessing nonpoint sources as part of a Federal Facility Compliance Agreement (FFCA).⁶ Results of the air-sampling analysis are provided in Section III of this report. There were no unusual radionuclide readings measured at the air-sampling stations in 2000.

Radionuclide Emissions

Radionuclides released from sampled point sources, along with the annual release rate for each radionuclide, are documented in Table 9 (on pages 43 to 45). No detectable emissions are denoted as ND.

Pollution Controls

At Los Alamos National Laboratory, the most common type of filtration, for emission control purposes, is the high efficiency particulate air (HEPA) filter. HEPA filters are constructed of submicrometer glass fibers that are pressed and glued into a compact, paper-like, pleated media. The paper media

is folded alternately over corrugated separators and mounted into a metal or wood frame in eight standard sizes and airflow capacities. A Type I nuclear grade HEPA filter is capable of removing 99.97% of 0.3 mm particles at rated airflow. Other types of filters used in ventilation systems are Aerosol 95, RIGA-FLOW 220, and FARR 30/30. These units are typically used as prefilters in HEPA filtration systems. These filters are significantly less efficient than HEPA filters and are typically used for collecting particulate matter larger than 5 um. The above-mentioned filters are only effective for particulates. When the contaminant of concern is in the form of a gas, activated charcoal beds are used. Charcoal beds collect the gas contaminant through an adsorption process in which the gas comes in contact with the charcoal and adheres to its surface. The charcoal can be coated with different types of materials to make the adsorption process more efficient for different types of contaminants. Typically, charcoal beds can achieve an efficiency of 98% capture with a resident time of 0.25 seconds.

Tritium effluent controls are generally composed of a catalytic reactor and a molecular sieve bed (CR/MS). Tritium-contaminated effluent is passed through a catalyst that converts elemental tritium (HT) into tritium oxide (HTO). This HTO is then collected as water on a molecular sieve bed. This process can be repeated until the tritium level is at, or below, the desired level. The effluent is then vented through the stack.

SECTION III. DOSE ASSESSMENT

61.94(b)(7): Description of Dose Calculations

Effective dose equivalent (or dose) calculations for point sources, unsampled point sources, and nonpoint gaseous activation products from LANSCE and TA-18 were performed with the mainframe CAP88 version of AIRDOS. This procedure included using PREPAR to prepare the input file to AIRDOS and using the DARTAB preprocessor to prepare the dose conversion factor input file for DARTAB. The calculations used dose conversion factors taken from the RADRISK database that was distributed along with the CAP88 programs.⁷ Verification of the CAP88 code was performed regularly by running the EPA test cases originally distributed with the mainframe version.8

Development of Source Term

Tritium Emissions

Tritium emissions from the Laboratory's tritium facilities are measured using a collection device known as a bubbler. This device enables the Laboratory to determine not only the total amount of tritium released but also whether it is in the elemental (HT) or oxide (HTO) form. The bubbler operates by pulling a continuous sample of air from the stack, which is then "bubbled" through three sequential vials containing ethylene glycol. The ethylene glycol collects the water vapor from the sample of air, including any tritium that is part of a water molecule (tritium oxide or HTO). After "bubbling" through these three vials, essentially all HTO is removed from the air, leaving elemental tritium or HT. The sample, containing the

elemental tritium, is then passed through a palladium catalyst that converts the elemental tritium to HTO. The sample is pulled through three additional vials containing ethylene glycol, which collects the newly formed HTO. The amount of HTO and HT is determined by analyzing the ethylene glycol for the presence of tritium using liquid scintillation counting (LSC). Although LANL's measurement device can distinguish the presence of HTO from HT. all emissions of tritium are assumed to be HTO for modeling the off-site dose. Because HTO contributes approximately 20,000 times more dose than an equivalent amount of HT, this is a conservative measure that further ensures that the dose to an off-site receptor is not underestimated.

Tritium emissions from LANSCE (which do not require monitoring under 40 CFR 61.93(b)(4)(i)) are determined using a silica gel sampler. A sample of stack air is suctioned through a cartridge containing silica gel. The silica gel collects the water vapor from the air, including any HTO. The water is distilled from the sample, and the amount of HTO is determined by analyzing the water using LSC. Because the primary source for tritium at LANSCE is activated water, sampling for only HTO is appropriate. These results are also corrected using the absolute humidity measured in the stack.

Radioactive Particle Emissions

Emissions of radioactive particulate matter, generated by operations at facilities such as the Chemistry and Metallurgy Research (CMR) Building and TA-55, are sampled using a glass-fiber filter. A continuous sample of stack air is suctioned through the filter, where small particles of radioactive material are captured. These samples are analyzed weekly using gross

alpha/beta counting and gamma spectroscopy to identify any increase in emissions and to identify short-lived radioactive materials. Every six months, LANL combines these samples for subsequent analysis at an off-site Laboratory. These composite samples are analyzed to determine the total activity of materials such as uranium-234/235/238, plutonium-238/239/240, and americium-241. These data are then combined with estimates of sampling losses and stack and sample flows to calculate emissions. For the case of radionuclides that have short-lived daughters, LANL includes these progeny in the source term. For example, the analytical laboratory measures the parent radionuclide uranium-238, and its short-lived progeny (thorium-234 and protactinium-234m) are assumed to be in equilibrium with uranium-238.

Vapor Form Emissions

Vapor emissions, generated by LANSCE operations and by hot cell activities at CMR and TA-48, are sampled using a charcoal filter or canister. A continuous sample of stack air is pulled through a charcoal filter where vaporous emissions of radionuclides are adsorbed. The amount and identity of the radionuclide(s) present on the filter are determined through the use of gamma spectroscopy. This information is then used to calculate emissions. Radionuclides of this type include gallium-68, germanium-68, bromine-82, and mercury-197.

Gaseous Mixed Activation Products (GMAP)

GMAP emissions, resulting from activities at LANSCE, are measured using near real-time monitoring data. A sample of stack air is suctioned through an ionization chamber that measures the total amount of radioactivity in the sample. Specific

radioisotopes are identified through the use of gamma spectroscopy and decay curves. This information is then used to calculate emissions. Radionuclides of this type include carbon-11, nitrogen-13, and oxygen-15.

Summary of Input Parameters

Effective dose equivalents to potential receptors were calculated for all radioactive air emissions from sampled LANL point sources. Input parameters for these point sources are provided in Table 3. The geographic locations of the release points, given in NM State Plane coordinates, are provided in Table 4. The relationships of receptor locations to the individual release points are provided in Table 5. The nearest receptor location is different for each point source. However, because the majority of the yearly dose has historically been caused by LANSCE emissions, the LANSCE critical receptor location has historically been the maximum dose location for all Laboratory emissions. This location is a business office approximately 800 meters north-northeast of the LANSCE stack. Emissions and doses from LANSCE are calculated on a monthly basis during beam operations to ensure continued compliance with the 10 mrem/yr. standard

Other site-specific parameters and the sources of these data are provided in Table 6. The LANL Air Quality Group operates an on-site network of meteorological monitoring towers. Data gathered from the tower monitors are summarized and formatted for input to the CAP88 program. For 2000, data from four different towers were used for the air dispersion modeling; the tower data most representative of the release point is applied. Copies of the meteorological data files used for the 2000 dose assessment are provided in Table 7.

Table 3. 40-61.94(b)(7) User-Supplied Data—Monitored Stack Parameters

				Nearest Meteorological
ESIDNUM	Height (m)	Diameter (m)	Exit Velocity (m/s)	Tower
03002914	15.9	1.07	6.60	TA-6
03002915	15.9	1.05	24.35	TA-6
03002919	15.9	1.07	28.63	TA-6
03002920	15.9	1.07	6.76	TA-6
03002923	15.9	1.07	23.03	TA-6
03002924	15.9	1.06	15.52	TA-6
03002928	15.9	1.05	21.40	TA-6
03002929	15.9	1.07	22.91	TA-6
03002932	15.9	1.07	19.61	TA-6
03002933	15.9	1.06	18.83	TA-6
03002937	16.8	0.20	16.32	TA-6
03002944	16.5	1.52	11.29	TA-6
03002945	16.5	1.52	8.20	TA-6
03002946	16.5	1.88	5.30	TA-6
03010222	13.4	0.91	1.32	TA-6
16020504	18.3	0.46	21.35	TA-6
21015505	29.9	0.79	8.71	TA-53
21020901	22.9	1.22	11.39	TA-53
33008606	23.4	0.61	12.09	TA-49
41000417	30.8	1.52	2.34	TA-6
48000107	13.4	0.30	20.86	TA-6
48000154	13.1	0.91	7.07	TA-6
48000160	12.4	0.38	10.90	TA-6
50000102	15.5	1.82	13.03	TA-6
50003701	12.4	0.91	7.23	TA-6
50006903	10.5	0.31	4.60	TA-6
53000303	33.5	0.90	12.37	TA-53
53000702	13.1	0.91	9.58	TA-53
55000415	9.5	0.93	7.51	TA-6
 55000416	9.5	0.94	11.38	TA-6

Table 4. 69.94(b)(7) User-Supplied Data—Monitored Stack Parameters—NM state Plane coordinates (NAD'83)

ESIDNUM	Easting	Northing
03002914	1,619,176	1,772,806
03002915	1,619,171	1,772,805
03002919	1,619,252	1,772,350
03002920	1,619,257	1,772,352
03002923	1,618,691	1,772,719
03002924	1,618,686	1,772,718
03002928	1,618,774	1,772,265
03002929	1,618,767	1,772,265
03002932	1,619,268	1,772,267
03002933	1,619,272	1,772,269
03002937	1,618,966	1,772,397
03002944	1,618,987	1,772,121
03002945	1,618,977	1,772,120
03002946	1,618,982	1,772,121
03010222	1,618,354	1,772,074
16020504	1,609,447	1,760,866
21015505	1,633,757	1,774,182
21020901	1,633,991	1,774,175
33008606	1,638,721	1,740,076
41000417	1,626,190	1,774,437
48000107	1,623,591	1,770,693
48000154	1,623,744	1,770,650
48000160	1,623,613	1,770,638
50000102	1,626,157	1,769,086
50003701	1,625,757	1,769,109
50006903	1,625,579	1,769,065
53000303	1,638,133	1,771,546
53000702	1,638,057	1,771,054
55000415	1,624,870	1,769,742
55000416	1,624,675	1,769,550

Table 5. User Supplied Data—Highest Offsite Dose Location for Monitored Release Points (meters)

ESIDNUM	Associated Meteorlogical	Distance to LANL Highest Dose Location	Direction to LANL Highest Dose Location
03002914	TA-06	5,981	E
03002915	TA-06	5,983	E
03002919	TA-06	5,969	E
03002920	TA-06	5,967	E
03002923	TA-06	6,130	E
03002924	TA-06	6,132	E
03002928	TA-06	6,116	E
03002929	TA-06	6,118	E
03002932	TA-06	5,966	E
03002933	TA-06	5,965	E
03002937	TA-06	6,054	E
03002944	TA-06	6,055	E
03002945	TA-06	6,057	E
03002946	TA-06	6,057	E
03010222	TA-06	6,249	E
16020504	TA-06	9,799	ENE
21015505	TA-53	1,525	E
21020901	TA-53	1,453	E
33008606	TA-54	10,362	N
41000417	TA-53	3,832	E
48000107	TA-06	4,730	ENE
48000154	TA-06	4,694	ENE
48000160	TA-06	4,733	ENE
50000102	TA-06	4,131	ENE
50003701	TA-06	4,242	ENE
50006903	TA-06	4,297	ENE
53000303	TA-53	800	NNE
53000702	TA-53	944	NNE
55000415	TA-53	4,434	ENE
55000416	TA-53	4,508	ENE

Table 6. 40-61.94(b)(7) User Supplied Data—Other Input Parameters

Description	Value	Units	CAP88	Reference
		•	variable name	
Annual rainfall rate	45.3	cm/y	RR	Bowen (1990)
Lid height	1525	m	LIPO	Holzworth (1972)
Annual median temp	281.9	K	TA	Bowen (1990)
E-vertical temperature gradient	0.02	K/m	TG	EPA (1995)
F-vertical temperature gradient	0.035	K/m	TG	EPA (1995)
G-vertical temperature gradient	0.035	K/m	TG	EPA (1995)
Food supply fraction - local vegetables	0.076		F1V	EPA (1989)
Food supply fraction - vegetable regional	0.924		F2V	EPA (1989)
Food supply fraction - vegetable imported	0		F3V	EPA (1989)
Food supply fraction - meat local	0.008		F1B	EPA (1989)
Food supply fraction - meat regional	0.992		F2B	EPA (1989)
Food supply fraction - meat imported	0		F3B	EPA (1989)
Food supply fraction - milk local	0		F1M	EPA (1989)
Food supply fraction - milk regional	1		F2M	EPA (1989)
Food supply fraction - milk imported	0		F3M	EPA (1989)
Ground surface roughness factor	0.5		GSCFAC	EPA (1989)

Brent M. Bowen, "Los Alamos Climatology," Los Alamos National Laboratory report LA-11735-MS (1990).

George C. Holzworth, "Mixing Heights, Wind Speeds, and Potential for Urban Air Pollution throughout the Contiguous United States," U.S. Environmental Protection Agency Office of Air Programs report (1972).

U.S. Environmental Protection Agency, "User's Guide for the Industrial Source Complex (ISC3) Dispersion Models Volume II - Description of Model Algorithms," EPA-454/B-95-003b (1995).

U.S. Environmental Protection Agency, "Risk Assessments Methodology, Environmental Impact Statement, NESHAPS for Radionuclides, Background Information Document - Volume 1," EPA/520/189-005 (1989).

Table 7. 40-61.94(b)(7) User Supplied Data—Wind Frequency Arrays

CAP88 Input Data for 2000 TA-6 Meteorological Tower

1	1	0.000830	.000460	.000030	.000000	.000000	.00000
1	2	0.001270	.000400	.000000	.000000	.000000	.00000
1	3	0.003030	.001570	.000000	.000000	.000000	.00000
1	4	0.005930	.003550	.000030	.000000	.000000	.00000
1	5	0.008860	.005120	.000000	.000000	.000000	.00000
1	6	0.007010	.007660	.000000	.000000	.000000	.00000
1	7	0.006390	.009010	.000000	.000000	.000000	.00000
1	8	0.004540	.008710	.000190	.000000	.000000	.00000
1	9	0.002780	.004140	.000060	.000000	.000000	.00000
1	10	0.001610	.001390	.000060	.000000	.000000	.00000
1	11	0.000960	.000710	.000000	.000000	.000000	.00000
1	12	0.000560	.001020	.000060	.000000	.000000	.00000
1	13	0.000560	.000430	.000000	.000000	.000000	.00000
1	14	0.000310	.000650	.000030	.000000	.000000	.00000
1	15	0.000280	.000520	.000120	.000000	.000000	.00000
1	16	0.000560	.000990	.000060	.000000	.000000	.00000
2	1	0.000310	.000590	.000120	.000000	.000000	.00000
2	2	0.000460	.000860	.000060	.000000	.000000	.00000
2	3	0.000740	.001510	.000030	.000000	.000000	.00000
2	4	0.001640	.002900	.000000	.000000	.000000	.00000
2	5	0.002470	.004480	.000000	.000000	.000000	.00000
2	6	0.001730	.004110	.000090	.000000	.000000	.00000
2	7	0.001330	.005060	.000090	.000000	.000000	.00000
2	8	0.001570	.007350	.000710	.000000	.000000	.00000
2	9	0.001270	.006240	.001170	.000000	.000000	.00000
2	10	0.000560	.001910	.001570	.000000	.000000	.00000
2	11	0.000120	.001080	.000930	.000030	.000000	.00000
2	12	0.000120	.000710	.000620	.000090	.000000	.00000
2	13	0.000090	.000340	.000280	.000000	.000000	.00000
2	14	0.000090	.000620	.000280	.000000	.000000	.00000
2	15	0.000090	.000900	.000710	.000000	.000000	.00000
2	16	0.000190	.000710	.000490	.000030	.000000	.00000
3	1	0.000490	.001170	.000430	.000000	.000000	.00000
3	2	0.001170	.002010	.001300	.000090	.000000	.00000
3	3	0.001450	.004110	.001390	.000060	.000000	.00000
3	4	0.002100	.005530	.000340	.000000	.000000	.00000
3	5	0.002560	.005930	.000280	.000000	.000000	.00000
3	6	0.001850	.003490	.000120	.000000	.000000	.00000

Table 7. 40-61.94(b)(7) User-Supplied Data – Wind Frequency Arrays (continued)

CAP88 Input Data for 2000 TA-6 Meteorological Tower

3	7	0.001480	.005400	.000310	.000000	.000000	.00000
3	8	0.002560	.011640	.004010	.000030	.000000	.00000
3	9	0.001940	.017840	.015030	.000190	.000000	.00000
3	10	0.000990	.010710	.010310	.000340	.000000	.00000
3	11	0.000490	.003520	.004910	.000340	.000000	.00000
3	12	0.000400	.002840	.005990	.000560	.000000	.00000
3	13	0.000190	.001910	.002930	.000280	.000000	.00000
3	14	0.000120	.001230	.002930	.000150	.000000	.00000
3	15	0.000280	.001640	.005430	.000590	.000000	.00000
3	16	0.000340	.001610	.001850	.000060	.000000	.00000
4	1	0.007500	.006950	.001230	.000250	.000000	.00000
4	2	0.007290	.008860	.004410	.000460	.000000	.00000
4	3	0.005190	.006170	.001050	.000060	.000000	.00000
4	4	0.004850	.003610	.000190	.000000	.000000	.00000
4	5	0.004410	.002220	.000150	.000000	.000000	.00000
4	6	0.003920	.001510	.000090	.000000	.000000	.00000
4	7	0.003210	.001850	.000060	.000030	.000000	.00000
4	8	0.005620	.004570	.001570	.000090	.000000	.00000
4	9	0.009570	.019110	.006270	.000430	.000000	.00000
4	10	0.008950	.030250	.008920	.001020	.000030	.00000
4	11	0.006790	.023490	.008270	.001480	.000520	.00000
4	12	0.005680	.013980	.007690	.003890	.000090	.00000
4	13	0.004540	.010220	.014910	.007930	.000650	.00000
4	14	0.003920	.009260	.018920	.012100	.002220	.00065
4	15	0.005870	.013610	.014850	.004510	.000710	.00022
4	16	0.005590	.008610	.002220	.000250	.000000	.00000
5	1	0.005090	.003830	.000000	.000000	.000000	.00000
5	2	0.003240	.002280	.000000	.000000	.000000	.00000
5	3	0.001790	.000960	.000000	.000000	.000000	.00000
5	4	0.001200	.000340	.000000	.000000	.000000	.00000
5	5	0.001700	.000060	.000000	.000000	.000000	.00000
5	6	0.001050	.000090	.000000	.000000	.000000	.00000
5	7	0.001080	.000120	.000000	.000000	.000000	.00000
5	8	0.001790	.000280	.000000	.000000	.000000	.00000
5	9	0.003520	.002190	.000000	.000000	.000000	.00000
5	10	0.005370	.006540	.000000	.000000	.000000	.00000
5	11	0.005800	.013120	.000030	.000000	.000000	.00000
5	12	0.004540	.018000	.000030	.000000	.000000	.00000
5	13	0.003490	.013340	.000740	.000000	.000000	.00000
5	14	0.002960	.006880	.002190	.000000	.000000	.00000
5	15	0.003830	.021950	.000340	.000000	.000000	.00000
5	16	0.005800	.010680	.000000	.000000	.000000	.00000
6	1	0.007100	.001820	.000000	.000000	.000000	.00000

Table 7. 40-61.94(b)(7) User-Supplied Data – Wind Frequency Arrays (continued)

CAP88 Input Data for 2000 TA-6 Meteorological Tower

6	2	0.003740	.000340	.000000	.000000	.000000	.00000	
6	3	0.001790	.000120	.000000	.000000	.000000	.00000	
6	4	0.001230	.000000	.000000	.000000	.000000	.00000	
6	5	0.000590	.000000	.000000	.000000	.000000	.00000	
6	6	0.000400	.000000	.000000	.000000	.000000	.00000	
6	7	0.000560	.000030	.000000	.000000	.000000	.00000	
6	8	0.001080	.000030	.000000	.000000	.000000	.00000	
6	9	0.002070	.000090	.000000	.000000	.000000	.00000	
6	10	0.004170	.000680	.000000	.000000	.000000	.00000	
6	11	0.005930	.002070	.000000	.000000	.000000	.00000	
6	12	0.007380	.009110	.000000	.000000	.000000	.00000	
6	13	0.006850	.023550	.000250	.000000	.000000	.00000	
6	14	0.006880	.026270	.000900	.000000	.000000	.00000	
6	15	0.008300	.011850	.000000	.000000	.000000	.00000	
6	16	0.007720	.004070	.000000	.000000	.000000	.00000	

Table 7. 61.94(b)(7) User Supplied Data—Wind Frequency Arrays—continued

CAP88 Input Data for 2000 TA-49 Meteorological Tower

1	1	0.000320	.000110	.000000	.000000	.000000	.00000
1	2	0.001030	.000170	.000000	.000000	.000000	.00000
1	3	0.000920	.000290	.000000	.000000	.000000	.00000
1	4	0.001750	.001030	.000000	.000000	.000000	.00000
1	5	0.002670	.001890	.000000	.000000	.000000	.00000
1	6	0.002070	.002470	.000000	.000000	.000000	.00000
1	7	0.002210	.002350	.000000	.000000	.000000	.00000
1	8	0.001350	.001690	.000000	.000000	.000000	.00000
1	9	0.000980	.001090	.000000	.000000	.000000	.00000
1	10	0.000460	.008000.	.000000	.000000	.000000	.00000
1	11	0.000430	.000320	.000000	.000000	.000000	.00000
1	12	0.000290	.000230	.000000	.000000	.000000	.00000
1	13	0.000260	.000140	.000000	.000000	.000000	.00000
1	14	0.000170	.000170	.000030	.000000	.000000	.00000
1	15	0.000110	.000200	.000030	.000000	.000000	.00000
1	16	0.000230	.000170	.000000	.000000	.000000	.00000
2	1	0.000060	.000090	.000000	.000000	.000000	.00000
2	2	0.000140	.000260	.000000	.000000	.000000	.00000
2	3	0.000290	.000460	.000000	.000000	.000000	.00000
2	4	0.000490	.000890	.000000	.000000	.000000	.00000
2	5	0.000890	.002270	.000000	.000000	.000000	.00000
2	6	0.000400	.002470	.000000	.000000	.000000	.00000
2	7	0.000490	.002010	.000030	.000000	.000000	.00000
2	8	0.000430	.001520	.000000	.000000	.000000	.00000
2	9	0.000170	.001460	.000000	.000000	.000000	.00000
2	10	0.000170	.000720	.000000	.000000	.000000	.00000
2	11	0.000030	.000490	.000030	.000000	.000000	.00000
2	12	0.000060	.000400	.000000	.000000	.000000	.00000
2	13	0.000140	.000260	.000060	.000000	.000000	.00000
2	14	0.000030	.000370	.000060	.000000	.000000	.00000
2	15	0.000060	.000060	.000000	.000000	.000000	.00000
2	16	0.000060	.000110	.000000	.000000	.000000	.00000
3	1	0.000170	.000260	.000030	.000000	.000000	.00000
3	2	0.000260	.000490	.000110	.000000	.000000	.00000
3	3	0.000230	.001180	.000090	.000000	.000000	.00000
3	4	0.000720	.002870	.000060	.000000	.000000	.00000
3	5	0.000770	.006480	.000060	.000000	.000000	.00000
3	6	0.000660	.005140	.000090	.000000	.000000	.00000
3	7	0.000490	.004560	.000260	.000000	.000000	.00000

Table 7. 40-61.94(b)(7) User Supplied Data—Wind Frequency Arrays (continued)

CAP88 Input Data for 2000 TA-49 Meteorological Tower

3	9	0.000400	.005570	.000920	.000000	.000000	.00000
3	10	0.000430	.001950	.000720	.000000	.000000	.00000
3	11	0.000320	.000860	.000230	.000000	.000000	.00000
3	12	0.000140	.000660	.000490	.000000	.000000	.00000
3	13	0.000090	.000720	.001000	.000200	.000000	.00000
3	14	0.000060	.000830	.001690	.000110	.000000	.00000
3	15	0.000090	.000340	.000230	.000000	.000000	.00000
3	16	0.000140	.000370	.000090	.000000	.000000	.00000
4	1	0.004050	.007520	.004020	.002150	.000060	.00000
4	2	0.004020	.009040	.004330	.002270	.000090	.00000
4	3	0.003500	.011990	.005940	.000690	.000140	.00000
4	4	0.003530	.010760	.004190	.000260	.000030	.00000
4	5	0.002350	.008520	.002350	.000060	.000000	.00000
4	6	0.001980	.005390	.001610	.000260	.000030	.00000
4	7	0.002150	.005570	.002300	.000400	.000140	.00000
4	8	0.002350	.008350	.008840	.002930	.000170	.00003
4	9	0.003440	.024390	.049320	.026190	.000980	.00000
4	10	0.004050	.020080	.029580	.013400	.000980	.00014
4	11	0.002900	.011070	.014890	.007860	.001690	.00029
4	12	0.002750	.008490	.011220	.008090	.002410	.00032
4	13	0.002380	.009210	.014520	.008920	.001430	.00003
4	14	0.002470	.008290	.016070	.009640	.000980	.00020
4	15	0.003440	.006940	.009900	.007750	.000830	.00017
4	16	0.002810	.008180	.006340	.003930	.000690	.00003
5	1	0.002700	.011500	.006110	.000000	.000000	.00000
5	2	0.002730	.006020	.001920	.000000	.000000	.00000
5	3	0.001920	.003360	.000860	.000000	.000000	.00000
5	4	0.001690	.001150	.000320	.000000	.000000	.00000
5	5	0.001350	.000950	.000030	.000000	.000000	.00000
5	6	0.000920	.000920	.000090	.000000	.000000	.00000
5	7	0.000950	.000660	.000110	.000000	.000000	.00000
5	8	0.001090	.001380	.000720	.000000	.000000	.00000
5	9	0.001720	.007030	.003240	.000000	.000000	.00000
5	10	0.002900	.017820	.004500	.000000	.000000	.00000
5	11	0.002270	.018850	.008000	.000000	.000000	.00000
5	12	0.002180	.010930	.005050	.000000	.000000	.00000
5	13	0.001920	.008750	.003100	.000000	.000000	.00000
5	14	0.002440	.009750	.008350	.000000	.000000	.00000
5	15	0.002500	.010700	.005340	.000000	.000000	.00000
5	16	0.002900	.008090	.002780	.000000	.000000	.00000
6	1	0.005140	.011560	.001950	.000000	.000000	.00000
6	2	0.004330	.001780	.000090	.000000	.000000	.00000
6	3	0.002380	.000340	.000030	.000000	.000000	.00000

Table 7. 40-61.94(b)(7) User Supplied Data—Wind Frequency Arrays (continued)

CAP88 Input Data for 2000 TA-49 Meteorological Tower

6	4	0.001380	.000060	.000000	.000000	.000000	.00000	
6	5	0.001030	.000140	.000000	.000000	.000000	.00000	
6	6	0.000860	.000170	.000000	.000000	.000000	.00000	
6	7	0.001180	.000260	.000030	.000000	.000000	.00000	
6	8	0.001150	.000630	.000060	.000000	.000000	.00000	
6	9	0.001920	.002180	.000140	.000000	.000000	.00000	
6	10	0.002440	.004850	.000340	.000000	.000000	.00000	
6	11	0.003440	.009320	.000770	.000000	.000000	.00000	
6	12	0.003900	.016980	.002500	.000000	.000000	.00000	
6	13	0.002520	.022260	.006770	.000000	.000000	.00000	
6	14	0.003070	.013970	.007890	.000000	.000000	.00000	
6	15	0.004390	.012190	.004050	.000000	.000000	.00000	
6	16	0.005080	.021750	.011130	.000000	.000000	.00000	

Table 7. 40-61.94(b)(7) User Supplied Data—Wind Frequency Arrays (continued)

CAP88 Input Data for 2000 TA-53 Meteorological Tower

1	1	0.000900	.000320	.000000	.000000	.000000	.00000
1	2	0.002050	.000400	.000000	.000000	.000000	.00000
1	3	0.004570	.001420	.000000	.000000	.000000	.00000
1	4	0.005760	.004170	.000000	.000000	.000000	.00000
1	5	0.005410	.005350	.000000	.000000	.000000	.00000
1	6	0.003560	.004830	.000000	.000000	.000000	.00000
1	7	0.003010	.002980	.000030	.000000	.000000	.00000
1	8	0.002810	.002340	.000030	.000000	.000000	.00000
1	9	0.001620	.001360	.000000	.000000	.000000	.00000
1	10	0.000720	.000780	.000000	.000000	.000000	.00000
1	11	0.000580	.000430	.000000	.000000	.000000	.00000
1	12	0.000320	.000380	.000000	.000000	.000000	.00000
1	13	0.000290	.000320	.000030	.000000	.000000	.00000
1	14	0.000520	.000380	.000000	.000000	.000000	.00000
1	15	0.000380	.000460	.000090	.000000	.000000	.00000
1	16	0.000520	.000320	.000000	.000000	.000000	.00000
2	1	0.000140	.000120	.000000	.000000	.000000	.00000
2	2	0.000430	.000460	.000000	.000000	.000000	.00000
2	3	0.001210	.001300	.000000	.000000	.000000	.00000
2	4	0.001420	.003530	.000000	.000000	.000000	.00000
2	5	0.001010	.004510	.000000	.000000	.000000	.00000
2	6	0.000670	.003960	.000000	.000000	.000000	.00000
2	7	0.000670	.002660	.000000	.000000	.000000	.00000
2	8	0.000610	.002050	.000000	.000000	.000000	.00000
2	9	0.000550	.001300	.000000	.000000	.000000	.00000
2	10	0.000200	.000750	.000030	.000000	.000000	.00000
2	11	0.000090	.000520	.000000	.000000	.000000	.00000
2	12	0.000030	.000400	.000030	.000000	.000000	.00000
2	13	0.000030	.000400	.000060	.000000	.000000	.00000
2	14	0.000140	.000290	.000170	.000000	.000000	.00000
2	15	0.000120	.000400	.000090	.000000	.000000	.00000
2	16	0.000140	.000140	.000000	.000000	.000000	.00000
3	1	0.000200	.000430	.000170	.000000	.000000	.00000
3	2	0.000870	.001100	.000350	.000000	.000000	.00000
3	3	0.001590	.003180	.000400	.000000	.000000	.00000
3	4	0.001790	.006880	.000200	.000000	.000000	.00000
3	5	0.000950	.007690	.000290	.000000	.000000	.00000
3	6	0.000640	.005730	.000320	.000000	.000000	.00000
3	7	0.000780	.004830	.000030	.000000	.000000	.00000

Table 7. 40-61.94(b)(7) User Supplied Data—Wind Frequency Arrays (continued)

CAP88 Input Data for 2000 TA-53 Meteorological Tower

3	8	0.000780	.005610	.000230	.000000	.000000	.00000
3	9	0.000720	.005180	.000950	.000000	.000000	.00000
3	10	0.000430	.002370	.000380	.000000	.000000	.00000
3	11	0.000170	.001100	.000460	.000030	.000000	.00000
3	12	0.000090	.001190	.000550	.000000	.000000	.00000
3	13	0.000200	.001300	.001420	.000030	.000000	.00000
3	14	0.000120	.000720	.001620	.000000	.000000	.00000
3	15	0.000140	.000400	.000840	.000030	.000000	.00000
3	16	0.000230	.000350	.000170	.000000	.000000	.00000
4	1	0.007290	.007900	.005840	.003070	.000460	.00000
4	2	0.006680	.009520	.006190	.002550	.000290	.00000
4	3	0.005580	.009890	.003270	.000430	.000030	.00000
4	4	0.004980	.009520	.001710	.000060	.000000	.00000
4	5	0.003820	.006600	.000950	.000000	.000000	.00000
4	6	0.003470	.005120	.000930	.000170	.000000	.00000
4	7	0.003010	.005060	.001680	.000200	.000000	.00000
4	8	0.003470	.011690	.008850	.002690	.000430	.00003
4	9	0.003910	.020830	.035030	.009200	.000140	.00000
4	10	0.004050	.020450	.038790	.014030	.000780	.00012
4	11	0.002690	.014960	.019790	.009340	.001240	.00035
4	12	0.002780	.008560	.014120	.007170	.001620	.00000
4	13	0.003270	.009230	.017360	.005350	.001130	.00003
4	14	0.003240	.008040	.014000	.005700	.000610	.00012
4	15	0.003410	.005580	.007230	.004450	.000720	.00014
4	16	0.005440	.004800	.004570	.002080	.000550	.00003
5	1	0.005640	.009920	.002600	.000000	.000000	.00000
5	2	0.004430	.006510	.002170	.000000	.000000	.00000
5	3	0.003500	.003070	.001010	.000000	.000000	.00000
5	4	0.002340	.001760	.000140	.000000	.000000	.00000
5	5	0.002430	.001420	.000000	.000000	.000000	.00000
5	6	0.001760	.000840	.000060	.000000	.000000	.00000
5	7	0.001620	.001330	.000030	.000000	.000000	.00000
5	8	0.001530	.002080	.000400	.000000	.000000	.00000
5	9	0.001710	.007380	.003040	.000000	.000000	.00000
5	10	0.002080	.021260	.018340	.000000	.000000	.00000
5	11	0.002490	.025950	.013940	.000000	.000000	.00000
5	12	0.002780	.015910	.013650	.000000	.000000	.00000
5	13	0.002660	.013390	.009690	.000000	.000000	.00000
5	14	0.003210	.009370	.003070	.000000	.000000	.00000
5	15	0.003620	.005870	.002720	.000000	.000000	.00000
5	16	0.004600	.008970	.002370	.000000	.000000	.00000
6	1	0.003960	.001530	.000140	.000000	.000000	.00000
6	2	0.004920	.001650	.000030	.000000	.000000	.00000

Table 7. 40-61.94(b)(7) User Supplied Data—Wind Frequency Arrays (continued)

CAP88 Input Data for 2000 TA-53 Meteorological Tower

6	3	0.003500	.001070	.000000	.000000	.000000	.00000	
6	4	0.003360	.000930	.000000	.000000	.000000	.00000	
6	5	0.003440	.000230	.000000	.000000	.000000	.00000	
6	6	0.003210	.000290	.000000	.000000	.000000	.00000	
6	7	0.003010	.000750	.000000	.000000	.000000	.00000	
6	8	0.003210	.001270	.000000	.000000	.000000	.00000	
6	9	0.003930	.003410	.000000	.000000	.000000	.00000	
6	10	0.004600	.005440	.000140	.000000	.000000	.00000	
6	11	0.003960	.003880	.000120	.000000	.000000	.00000	
6	12	0.003040	.006390	.001040	.000000	.000000	.00000	
6	13	0.003100	.008130	.002080	.000000	.000000	.00000	
6	14	0.003070	.006250	.000290	.000000	.000000	.00000	
6	15	0.004340	.002720	.000000	.000000	.000000	.00000	
6	16	0.003730	.002290	.000030	.000000	.000000	.00000	

Table 7. 40-61.94(b)(7) User Supplied Data—Wind Frequency Arrays (continued)

CAP88 Input Data for 2000 TA-54 Meteorological Tower

1	1	0.000600	.000170	.000000	.000000	.000000	.00000
1	2	0.001180	.000860	.000000	.000000	.000000	.00000
1	3	0.002210	.002520	.000000	.000000	.000000	.00000
1	4	0.005500	.005530	.000000	.000000	.000000	.00000
1	5	0.009230	.010520	.000000	.000000	.000000	.00000
1	6	0.008660	.008400	.000000	.000000	.000000	.00000
1	7	0.005880	.005130	.000000	.000000	.000000	.00000
1	8	0.003700	.004240	.000000	.000000	.000000	.00000
1	9	0.002210	.002750	.000000	.000000	.000000	.00000
1	10	0.001090	.002150	.000090	.000000	.000000	.00000
1	11	0.000860	.000460	.000000	.000000	.000000	.00000
1	12	0.000460	.000570	.000030	.000000	.000000	.00000
1	13	0.000370	.000320	.000000	.000000	.000000	.00000
1	14	0.000260	.000230	.000000	.000000	.000000	.00000
1	15	0.000230	.000170	.000030	.000000	.000000	.00000
1	16	0.000290	.000260	.000000	.000000	.000000	.00000
2	1	0.000090	.000060	.000000	.000000	.000000	.00000
2	2	0.000230	.000430	.000000	.000000	.000000	.00000
2	3	0.000800	.002440	.000000	.000000	.000000	.00000
2	4	0.000950	.004160	.000170	.000000	.000000	.00000
2	5	0.000660	.003350	.000200	.000030	.000000	.00000
2	6	0.000630	.002210	.000170	.000030	.000000	.00000
2	7	0.000600	.001890	.000000	.000000	.000000	.00000
2	8	0.000720	.002030	.000000	.000000	.000000	.00000
2	9	0.000290	.002610	.000110	.000000	.000000	.00000
2	10	0.000140	.002010	.000030	.000000	.000000	.00000
2	11	0.000110	.000370	.000000	.000000	.000000	.00000
2	12	0.000110	.000460	.000030	.000000	.000000	.00000
2	13	0.000030	.000490	.000090	.000000	.000000	.00000
2	14	0.000110	.000200	.000110	.000000	.000000	.00000
2	15	0.000110	.000110	.000030	.000000	.000000	.00000
2	16	0.000110	.000170	.000030	.000000	.000000	.00000
3	1	0.000140	.000540	.000030	.000000	.000000	.00000
3	2	0.000370	.002090	.000260	.000000	.000000	.00000
3	3	0.000830	.006880	.000720	.000000	.000000	.00000
3	4	0.001290	.005620	.001030	.000000	.000000	.00000
3	5	0.000890	.002090	.000340	.000000	.000000	.00000
3	6	0.000490	.001200	.000140	.000030	.000000	.00000

Table 7. 61.94(b)(7) User-Supplied Data – Wind Frequency Arrays (continued)

CAP88 Input Data for 2000 TA-54 Meteorological Tower

CAI	1 00 1	nput Data 10	1 2000 1 A-3	4 MICICOLOIO	gicai Towci		
3	7	0.000400	.001830	.000200	.000000	.000000	.00000
3	8	0.000720	.003810	.000630	.000000	.000000	.00000
3	9	0.000630	.006680	.002440	.000000	.000000	.00000
3	10	0.000570	.005070	.001830	.000000	.000000	.00000
3	11	0.000320	.001920	.000570	.000000	.000000	.00000
3	12	0.000260	.000660	.001490	.000060	.000000	.00000
3	13	0.000110	.001180	.003350	.000200	.000000	.00000
3	14	0.000200	.000890	.004010	.000340	.000000	.00000
3	15	0.000230	.000260	.000690	.000000	.000000	.00000
3	16	0.000090	.000260	.000140	.000000	.000000	.00000
4	1	0.006420	.005070	.003270	.002780	.000140	.00000
4	2	0.006130	.010460	.006510	.002210	.000320	.00000
4	3	0.004470	.014850	.005760	.000370	.000030	.00000
4	4	0.003900	.005040	.000830	.000090	.000000	.00000
4	5	0.002120	.001230	.000060	.000000	.000000	.00000
4	6	0.002690	.000690	.000030	.000090	.000000	.00000
4	7	0.002120	.001660	.000690	.000140	.000000	.00000
4	8	0.001400	.003070	.003980	.002810	.000140	.00000
4	9	0.002780	.010370	.024390	.009630	.000200	.00000
4	10	0.002810	.022560	.051730	.019660	.008000	.00003
4	11	0.003980	.014700	.020060	.009030	.000970	.00046
4	12	0.003580	.009940	.009770	.005160	.001150	.00000
4	13	0.004670	.008170	.008600	.003380	.000320	.00000
4	14	0.005620	.006910	.009540	.002150	.000260	.00000
4	15	0.005420	.007310	.007850	.002550	.000060	.00000
4	16	0.005960	.005730	.003840	.001430	.000110	.00000
5	1	0.006190	.007370	.001230	.000000	.000000	.00000
5	2	0.003700	.004160	.002030	.000000	.000000	.00000
5	3	0.002290	.002240	.000400	.000000	.000000	.00000
5	4	0.001430	.001200	.000000	.000000	.000000	.00000
5	5	0.000830	.000200	.000000	.000000	.000000	.00000
5	6	0.000570	.000090	.000000	.000000	.000000	.00000
5	7	0.000570	.000320	.000000	.000000	.000000	.00000
5	8	0.001090	.000540	.000000	.000000	.000000	.00000
5	9	0.001150	.002550	.000430	.000000	.000000	.00000
5	10	0.001810	.010320	.007340	.000000	.000000	.00000
5	11	0.002030	.014930	.013530	.000000	.000000	.00000
5	12	0.003210	.010920	.001780	.000000	.000000	.00000
5	13	0.004900	.016140	.001200	.000000	.000000	.00000
5	14	0.008170	.017940	.000400	.000000	.000000	.00000
5	15	0.009140	.026880	.000370	.000000	.000000	.00000
5	16	0.009490	.011580	.000770	.000000	.000000	.00000
6	1	0.004840	.007620	.000170	.000000	.000000	.00000

Table 7. 61.94(b)(7) User-Supplied Data – Wind Frequency Arrays (continued)

CAP88 Input Data for 2000 TA-54 Meteorological Tower

6	2	0.003500	.003470	.000110	.000000	.000000	.00000
6	3	0.002120	.001030	.000000	.000000	.000000	.00000
6	4	0.000720	.000060	.000000	.000000	.000000	.00000
6	5	0.000230	.000000	.000000	.000000	.000000	.00000
6	6	0.000090	.000000	.000000	.000000	.000000	.00000
6	7	0.000200	.000030	.000000	.000000	.000000	.00000
6	8	0.000400	.000090	.000000	.000000	.000000	.00000
6	9	0.000520	.000690	.000060	.000000	.000000	.00000
6	10	0.001460	.004380	.000290	.000000	.000000	.00000
6	11	0.002150	.011780	.001600	.000000	.000000	.00000
6	12	0.003440	.021240	.002980	.000000	.000000	.00000
6	13	0.007570	.025450	.001400	.000000	.000000	.00000
6	14	0.010950	.015080	.000000	.000000	.000000	.00000
6	15	0.009200	.024130	.000200	.000000	.000000	.00000
6	16	0.004960	.011980	.001290	.000000	.000000	.00000

The Air Quality Group also inputs population array data to the CAP88 program. The data file represents a 16-sector polartype array, with 20 radial distances for each sector. Population arrays are developed for each release point using U.S. Census data, updated with annual projections. An example of the population array used for the LANSCE facility is provided in Table 8. For agricultural array input, LANL is currently using the default values in CAP88. Finally, the radionuclide inputs for the point sources monitored in 2000 are provided in Table 9.

Public Receptors

Compliance with the annual dose standard is determined by calculating the highest effective dose equivalent to any member of the public at any off-site point where there is a residence, school, business, or office. Late in the calendar year, a visual tour of the laboratory vicinity was completed to identify new locations inhabited by the public; that is, new off-site public receptors that had not existed in the year previous to this assessment. Some new businesses and residences were noted in the 2000 tour. In this report, the nearest off-site point is defined to be the area of public inhabitation where the highest off-site dose occurs for a given emissions source. For the 2000 compliance assessment, LANL-wide doses were evaluated at the nearest off-site point for each monitored emissions stack, as well as at a number of additional key locations.

Point Source Emissions Modeling

The CAP88 program was used to calculate doses from both the monitored and unmonitored point sources at LANL. The CAP88 program uses on-site meteorological data to calculate atmospheric dispersion and transport of the radioactive effluents. There

are a number of radionuclides monitored in LANL effluents that are not included in the dose factor database used by CAP88.8 For the substantial GMAP effluents such as ¹⁰C, ¹⁶N, and ¹⁴O, LANL uses a revised set of CAP88 database files to which the required dose factors have been added. For other effluents such as ⁶⁸Ga, ⁶⁸Ge, ⁸²Br, ¹⁹⁷Hg, etc., LANL uses the CAP88 code to calculate environmental concentrations of these radionuclides at the receptor locations and then applies an appropriate dose factor to estimate dose.

LANSCE Fugitive Emission Modeling

Some of the gaseous mixed activation products (GMAP) created at the accelerator target cells migrate into room air and into the environment. These fugitive sources are continuously monitored throughout the beam-operating period. In 2000, approximately 140 Ci of ¹¹C and 6 Ci of ⁴¹Ar were released from LANSCE as fugitive emissions. This source was modeled as an area source, using CAP88 and meteorological data coinciding with the LANSCE run cycle. Fugitive effluents were modeled from two areas at LANSCE; additional source information is provided in Table 10.

TA-18 Nonpoint Emission Modeling

This site consists of a variety of nuclear assemblies that are operated at near-critical conditions. During the near-critical operations, neutrons are generated that, in turn, activate argon atoms in the air surrounding the assembly. Operations conducted in 2000 were evaluated for their potential to create ⁴¹Ar gas. In 2000, approximately 0.8 Ci of ⁴¹Ar was generated,

Projected 1999-2000 Population within 80 km of Los Alamos National Laboratory

Table 8. 40-61.94(b)(7) User-Supplied Data – Population Array

							Dista	nce from	TA53 (k	m)						
Direction	0.8-1.0	1.0-1.5	1.5-2.0	2.0-2.5	2.5-3.0	3.0-3.5	3.5-4.0	4.0-5.0	5.0-6.0	6.0-7.0	7.0-8.0	8.0-10	10-20	20-30	30-40	40-80
N	6	17	55	26	51	80	92	137	0	0	0	0	17	107	1113	1647
NNW	5	16	47	227	166	88	254	274	20	0	0	0	8	23	306	546
NW	5	11	20	56	315	379	205	669	409	388	52	0	2	28	58	1194
WNW	0	6	9	15	67	207	808	1034	1843	2581	714	0	0	29	34	2888
W	0	0	3	8	13	17	94	161	16	0	0	0	8	71	321	156
WSW	0	8	10	10	7	6	3	0	0	0	0	1	8	40	444	2622
SW	0	9	4	0	0	0	0	0	0	0	1	3	3	0	0	2643
SSW	0	5	0	0	0	0	0	0	0	0	0	32	3	944	1410	65977
S	0	5	0	0	0	0	0	0	0	0	0	18	6	18	164	3695
SSE	0	6	0	0	0	0	0	0	0	331	216	308	52	320	5829	2805
SE	0	2	0	0	0	0	0	0	0	1527	3266	556	0	1064	75112	8463
ESE	0	0	0	0	0	1	0	0	0	0	0	10	12	723	8286	3094
E	0	0	0	0	0	0	0	0	0	0	1	0	1769	4215	410	546
ENE	1	0	0	0	0	0	0	0	0	0	0	0	2327	4805	4104	3332
NE	4	9	2	0	0	0	0	0	0	0	0	0	1441	16913	2988	6898
NNE	6	17	51	7	37	31	24	23	0	0	0	0	16	2791	458	1139

Table 9. 40-61.94(b)(7) User-Supplied Data—Radionuclide Emissions

ESID Number	Nuclide	Emissions (Ci)
03002914	Pu-238	3.02E-09
03002915	Pu-239	5.02E-08
03002915	Am-241	2.61E-08
03002919	Pu-239	5.87E-07
03002919	Pu-238	1.26E-06
03002919	Am-241	7.80E-08
03002920	Pu-239	7.54E-08
03002920	Pu-238	1.13E-08
03002920	Am-241	3.27E-08
03002923	U-238	1.74E-07
03002923	U-235	1.28E-07
03002923	U-234	3.72E-06
03002923	Th-234	1.74E-07
03002923	Th-231	1.28E-07
03002923	Pu-239	1.14E-08
03002923	Pu-238	7.34E-09
03002923	Pa-234m	1.74E-07
03002923	Am-241	6.62E-09
03002924	U-234	2.72E-06
03002924	Th-228	1.26E-07
03002924	Pu-239	1.37E-08
03002924	Pu-238	9.93E-08
03002924	Am-241	1.50E-08
03002928	Pu-239	1.52E-07
03002928	Pu-238	9.57E-07
03002928	Am-241	2.65E-08
03002929	Pu-238	4.94E-09
03002932	None Detected	None
03002933	None Detected	None
03002937	None Detected	None
03002944	None Detected	None
03002945	None Detected	None
03002946	Pu-239	1.75E-08

Table 9. 40-61.94(b)(7) User-Supplied Data—Radionuclide Emissions (continued)

ESIDNUM	Nuclide	Emissions (Ci)
03010222	U-238	1.32E-09
03010222	U-235	1.91E-09
03010222	U-234	5.33E-08
03010222	Th-234	1.32E-09
03010222	Th-231	1.91E-09
03010222	Th-230	1.18E-09
03010222	Pa-234m	1.32E-09
16020504	H-3(HTO)	2.18E+02
16020504	H-3(Gas)	3.90E+01
21015505	H-3(HTO)	1.51E+02
21015505	H-3(Gas)	2.46E+01
21020901	H-3(HTO)	5.13E+02
21020901	H-3(Gas)	2.50E+02
33008606	H-3(HTO)	1.01E+03
33008606	H-3(Gas)	1.47E+02
41000417	H-3(HTO)	5.60E+00
41000417	H-3(Gas)	6.62E-01
48000107	Se-75	1.36E-04
48000107	Ge-68	8.14E-03
48000107	Ga-68	8.14E-03
48000107	Br-77	2.82E-05
48000107	As-74	2.79E-05
48000107	As-73	4.37E-05
48000154	None Detected	None
48000160	Se-75	5.33E-06
48000160	Ge-68	8.07E-06
48000160	Ga-68	8.07E-06
50000102	Th-230	5.27E-08
50000102	Pu-238	9.78E-09
50003701	None Detected	None
50006903	None Detected	None
53000303 53000303	H-3(HTO) C-11	5.99E-01 8.32E+00
53000303	C-11 C-10	8.68E-01
53000303	Ar-41	1.01E-01

Table 9. 40-61.94(b)(7) User-Supplied Data—Radionuclide Emissions (continued)

ESIDNUM	Nuclide	Emissions (Ci)
52000702	0.15	0.115.01
53000702	O-15	9.11E+01
53000702	O-14	4.06E-01
53000702	N-16	1.70E-02
53000702	N-13	2.77E+01
53000702	Hg-197	1.04E-01
53000702	Hg-195m	2.01E-02
53000702	Hg-193	8.02E-01
53000702	H-3(HTO)	2.32E+00
53000702	C-11	5.40E+02
53000702	C-10	1.44E-01
53000702	Br-82	4.19E-03
53000702	Br-76	2.59E-04
53000702	As-73	2.21E-05
53000702	Ar-41	2.30E+01
55000415	Pu-239	9.52E-08
55000415	Pu-238	4.69E-09
55000416	Pu-239	2.30E-06
55000416	Pu-238	1.01E-07
55000416	H-3(HTO)	3.11E-01
55000416	H-3(Gas)	6.14E+00
55000416	Am-241	3.30E-07

LA-13839-MS

Table 10. 40-61.94(b)(7) User-Supplied Data—Modeling Parameters for LANL Nonpoint Sources

LANL Air Activation Sources

Source	Radionuclide	Emission (Ci)	Area of source (m²)	Distance to LANL Maximum Dose Location (m)	Direction to LANL Maximum Dose Location
TA-53-	Ar-41	0.8	484	774	NNE
Switchyard	C-11	19.8	484	774	NNE
TA-53-1L	Ar-41	4.9	1.0	943	NNE
Service Area	C-11	117.9	1.0	943	NNE
TA-18	Ar-41	0.8	31,400	3,894	NNE

and the dose was evaluated with CAP88. Additional source information is provided in Table 10.

Radionuclides Not Included in CAP88

Some of the radionuclides detected in LANL air effluents are not included in the CAP88 library of exposure-to-dose conversion factors. As previously mentioned, LANL added dose coefficients to the CAP88 data files for three routinely emitted radionuclides: ¹⁰C, ¹⁶N, and ¹⁴O. Because of the unique emissions from LANSCE and other facilities, other radionuclides not included in CAP88 are emitted on an infrequent basis. Examples of such radionuclides detected in LANL air effluents during 2000 are included in Table 9 and are listed separately in Table 11.

To calculate the dose from these particular radionuclides, LANL uses several methods. LANL uses the mainframe version of CAP88

to calculate the air concentration at the receptor location of interest. In most cases, the air concentration can then be converted into a dose by applying the conversions given in Table 2 of Appendix E of 40 CFR 61, which has a more extensive list of radionuclides than CAP88.9 In some cases, LANL obtains exposure-to-dose conversion factors from other sources, such as EPA's Federal Guidance Reports. 10,11 Dose conversion factors used for radionuclides not included in CAP88 but found in LANL air effluents during 2000 are provided in Table 12.

At the LANL-wide maximum dose location for 2000, the total estimated dose arising from emissions of radionuclides not included in the CAP88 library was about 0.01 mrem. This number is included in the total annual dose. The LANL Air Quality Group has informed the Regional Office of

Table 11. 40-61.94(b)(7) User-Supplied Data—Radionuclide Not Included in CAP88

		Radionuclide	Emissions	Dose at LANL	Dose at Facility Receptor
Source	ESIDNUM		(Ci)	Receptor	(mrom)
Source	ESIDNUM		(Ci)	(mrem)	(mrem)
TA-48-1-7	48000107	As-73	4.37E-05	3.55E-07	4.27E-06
		As-74	2.79E-05	1.14E-06	1.36E-05
		Br-77	2.82E-05	5.95E-08	7.14E-07
		Ga-68	8.14E-03	8.02E-07	9.67E-06
		Ge-68	8.14E-03	3.65E-03	4.40E-02
		Se-75	1.36E-04	7.06E-05	8.82E-04
TA48-1-60	48000160	Ga-68	8.07E-06	8.02E-10	1.03E-08
		Ge-68	8.07E-06	3.65E-06	4.70E-05
		Se-75	5.33E-06	2.82E-06	3.65E-05
TA-53-7-2	53000702	As-73	2.21E-05	1.82E-06	1.82E-06
		Br-76	2.59E-04	1.87E-06	1.87E-06
		C-10	1.44E-01	7.26E-06	7.26E-06
		Hg-193	8.02E-01	6.31E-04	6.31E-04
		Hg-195m	2.01E-02	1.87E-04	1.87E-04
		Hg-197	1.04E-01	1.12E-03	1.12E-03
		N-16	1.70E-02	1.43E-12	1.43E-12
		O-14	4.06E-01	6.06E-03	6.06E-03

the U.S. EPA of the various steps and methods used to calculate the doses from such radionuclides.¹²

Environmental Data

The net annual average ambient concentration of airborne radionuclides measured at 19 air sampling stations (Figure 3) is calculated by subtracting an appropriate background concentration value. In CY 2000 two new station locations were added to the network; these were station #66 at the Los Alamos Inn, and

#67 at the TA-3 Research Park. Station 66 is a replacement for Station #7, Shell Station. In late 1999/early 2000 a three-story apartment building was constructed directly south and within 25 meters of Station #7. The apartment building prevents Station #7 from having an unrestricted airflow from the Laboratory to the station. A replacement location was selected, Station #66, approximately 250 m to the southeast, on the edge of Los Alamos canyon. This location maintains the spatial coverage provided by station #7 for Laboratory diffuse emissions. Station #66 began operation in April 2000.

Table 12. 40-61.94(b)(7) User-Supplied Data—Supplemental Dose Factors

Radionuclide	Ci per m3 per 10 mrem	Reference	
As-73	1.10E-11	EPA (1989)	
As-74	2.20E-12	EPA (1989)	
Br-76	1.23E-10	LANL (2000)	
Br-77	4.20E-11	EPA (1989)	
C-10	1.13E-11	DOE (1998)	
Ga-68	9.10E-10	LANL (2000)	
Ge-68	2.00E-13	LANL (2000)	
Hg-193	2.96E-09	LANL (2001)	
Hg-195m	2.20E-10	LANL (2001)	
Hg-197	8.30E-11	EPA (1989)	
N-16	3.43E-12	DOE (1998)	
O-14	5.29E-12	DOE (1998)	
Se-75	1.70E-13	EPA (1989)	

U.S. Environmental Protection Agency, "National Emission Standards for Emissions of Radionuclides other than Radon from Department of Energy Facilities," Code of Federal Regulations, Title 40, Part 61.90, Table 2 of Appendix E to Subpart H (1989).

Department of Energy, letter to Mr. George P. Brozowski, U.S. Environmental Protection Agency Region 6 from Mr. Steve Fong, DOE Los Alamos Area Office, Aug 18, 1998.

Los Alamos National Laboratory, internal memo to Mr. Dave Fuehne from Keith W. Jacobson, Air Quality Group memo ESH17:01-250, May 22, 2001.

Station #7 was operated for the entire calendar year 2000 and then was discontinued. Results from both stations are provided in this report.

A new, nonDOE facility was constructed during CY2000, the Los Alamos Research Park. This facility is on DOE property, but employs members of the public. Thus, this became a potential new MEI receptor location, requiring monitoring. No existing AIRNET station was located near this facility, and so a new station was installed and began operating during July 2000.

The net concentration at each air sampler is converted to an annual effective dose equivalent (EDE) using Table 2 of Appendix E of 40 CFR 61 and applying the valid assumption that each table value is equivalent to 10 mrem/yr. from all appropriate exposure pathways (100% occupancy assumed at the respective location). Results from each air sampler are given in Table 13. The operational performance of each air sampler is provided in Table 14.

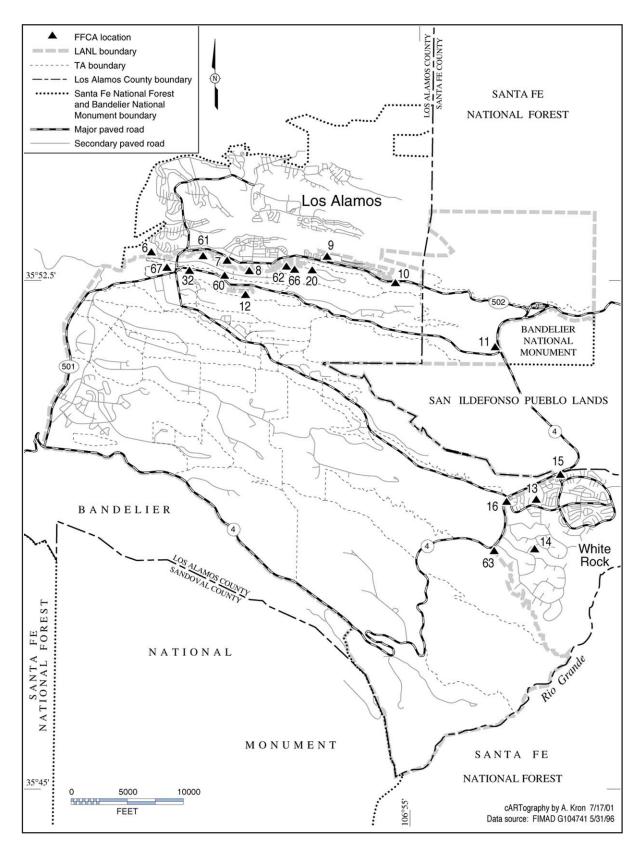


Figure 3. Locations of air sampling stations used for nonpoint source compliance

LANSCE Monthly Assessments

The Air Quality group evaluates the dose from short-lived radioactive gases released from LANSCE on a monthly basis. The monthly dose values are evaluated with the actual meteorology for the month and these doses are given in Table 15. The Air Quality group also evaluates the annual LANSCE emissions with annual average meteorology, and compares the results to the monthly values summed for the calendar year; the values for these two assessments were 0.25 mrem and 0.27 mrem respectively.

Highest EDE Determination

A major change to the procedure for determining the highest EDE was necessary for CY 1999 because of significantly reduced emissions from the LANSCE facility. Over the previous nine years, the off-site effective dose equivalent due to LANSCE operations had averaged about 5 mrem. For 1999, the highest off-site EDE from the LANSCE facility was about 0.01 mrem. The highest off-site EDE location for LANSCE effluents is a business office in the East Gate area (2470 East Gate Drive). Since the contribution from LANSCE for 1999 was greatly reduced, the location of the highest off-site dose was not as readily established as it had been in the past.

In late 1999, LANL began working on a plan to ensure that the location of the highest public dose could be determined. This plan uses a multistep approach, and the steps used were presented to the local Citizens' Advisory Board (CAB) for LANL for their review and comment. This approach was approved by the CAB for CY 1999 and was used again for the CY 2000 dose assessment determination. Table 16 shows the sites identified by LANL for the purposes of

finding the location of the highest off-site dose. Also shown in the table is the AIRNET sampling station that the Air Quality Group associated with the selected public receptor location. The LANL-wide doses at these various off-site locations are provided in Table 16. The highest off-site dose location was determined to be the East Gate area, because of increased emissions from LANSCE in 2000, as compared to 1999.

61.92: Compliance Assessment

The highest effective dose equivalent to any member of the public at any off-site point where there is a residence, school, or business office was 0.64 mrem for radionuclides released by LANL in 2000. This dose was calculated by adding up the doses for each of the point sources at LANL, the diffuse and fugitive gaseous activation products from LANSCE and TA-18, and the dose measured by the ambient air sampler in the vicinity of the public receptor location. The compliance assessment also includes a potential dose contribution of 0.18 mrem from unmonitored stacks. Because the emissions estimates do not account for pollution control systems, the actual dose will be significantly less for the unmonitored point sources. Also, this dose includes an approximate 0.01 mrem contribution from radionuclides not included in CAP88. Table 17 provides the compliance assessment summary. The location of the off-site point of highest EDE for 2000 was a business office at 2470 East Gate Drive; this location is different from the location of the previous year's assessments. The 1999 highest off-site EDE location was a business office at the Los Alamos County landfill; Table 17 also lists the LANL-wide doses at this location, for comparison.

Table 13. FFCA and Air Sampler Environmental Data

2000 Effective Dose Equivalent (net in mrem) at Air Sampling Locations Around LANL

Site	e # and Name	Am-241	Н-3	Pu-238	Pu-239	U-234	U-235	U-238	Rounded Total
06	48th Street	-0.003	0.003	0.001	0.000	0.000	0.000	0.003	0.00
07	Shell Station	0.004	0.007	-0.001	0.027	0.049	0.005	0.059	0.15
08	McDonalds	0.000	0.012	-0.001	0.005	800.0	0.001	0.009	0.03
09	Los Alamos Airport	0.002	0.033	0.001	0.009	0.005	0.002	0.007	0.06
10	Eastgate	0.002	0.026	0.001	0.003	0.009	0.000	0.013	0.05
11	Well PM-1 (E. Jemez Rd.)	-0.001	0.010	-0.002	0.001	0.001	0.000	0.005	0.02
12	Royal Crest Trailer Court	0.000	0.011	0.002	0.004	0.009	0.002	0.010	0.04
13	Rocket Park	-0.002	0.016	0.001	0.000	0.003	0.001	0.000	0.02
14	Pajarito Acres	-0.002	0.012	0.001	-0.001	0.000	0.000	0.003	0.01
15	White Rock Fire Station	-0.001	0.011	0.001	0.006	0.003	0.000	0.005	0.02
16	White Rock Nazarene	0.002	0.024	0.001	-0.001	0.003	0.000	0.004	0.03
	Church								
20	TA-21 Area B	0.002	0.029	0.000	0.027	0.019	0.002	0.023	0.10
32	County Landfill (TA-48)	0.008	0.010	0.002	0.023	0.074	0.004	0.072	0.19
60	LA Canyon	0.001	0.007	0.000	0.001	0.005	0.001	0.008	0.02
61	LA Hospital	0.004	0.005	0.000	0.002	0.011	0.000	0.015	0.04
62	Crossroads Bible Church	0.005	0.015	0.001	0.003	0.004	0.001	0.006	0.03
63	Monte Rey South	-0.003	0.012	0.001	-0.001	0.002	0.001	0.005	0.02
66	Los Alamos Inn – South*	0.000	0.012	0.002	0.084	0.007	0.002	0.014	0.12
67	TA-3 Research Park*	-0.002	0.004	0.000	-0.003	0.045	0.003	0.031	0.08

^{*} New stations added in 2000.

Table 14. FFCA Analytical Completeness Summary—Air Sampler Operation

Site #	Site Name	% Run Time	Analysis	% Analytical Completeness
06	48th Street	98.6		
			Am-241	100.0
			H-3	100.0
			Pu-238	100.0
			Pu-239	100.0
			U-234	100.0
			U-235	100.0
			U-238	100.0
07	Shell Station	96.8		
			Am-241	100.0
			H-3	100.0
			Pu-238	100.0
			Pu-239	100.0
			U-234	100.0
			U-235	100.0
			U-238	100.0
08	McDonalds	100.0		
			Am-241	100.0
			H-3	100.0
			Pu-238	100.0
			Pu-239	100.0
			U-234	100.0
			U-235	100.0
			U-238	100.0
09	Los Alamos Airport	100.0		
			Am-241	100.0
			H-3	100.0
			Pu-238	100.0
			Pu-239	100.0
			U-234	100.0
			U-235	100.0
			U-238	100.0

Table 14. FFCA Analytical Completeness Summary—Air Sampler Operation (continued)

Site #	Site Name	% Run Time	Analysis	% Analytical Completeness
10	Eastgate	99.3		
10	Lasigate	, , , , , , , , , , , , , , , , , , ,	Am-241	100.0
			H-3	108.0
			Pu-238	100.0
			Pu-239	100.0
			U-234	100.0
			U-235	100.0
			U-238	100.0
11	Well PM-1 (E. Jemez Road)	100.0		
			Am-241	100.0
			H-3	100.0
			Pu-238	100.0
			Pu-239	100.0
			U-234	100.0
			U-235	100.0
			U-238	100.0
12	Royal Crest Trailer Court	100.0		
			Am-241	100.0
			H-3	100.0
			Pu-238	100.0
			Pu-239	100.0
			U-234	100.0
			U-235	100.0
			U-238	100.0
13	Rocket Park	100.0		
			Am-241	100.0
			H-3	100.0
			Pu-238	100.0
			Pu-239	100.0
			U-234	100.0
			U-235	100.0
			U-238	100.0

Table 14. FFCA Analytical Completeness Summary—Air Sampler Operation (continued)

Site #	Site Name	% Run Time	Analysis	% Analytical Completeness
14	Pajarito Acres	100.0		
.	1 ajarrio 110105	100.0	Am-241	100.0
			H-3	100.0
			Pu-238	100.0
			Pu-239	100.0
			U-234	100.0
			U-235	100.0
			U-238	100.0
15	White Rock Fire Station	98.9		
			Am-241	100.0
			H-3	100.0
			Pu-238	100.0
			Pu-239	100.0
			U-234	100.0
			U-235	100.0
			U-238	100.0
16	White Rock Nazarene Church	99.3		
			Am-241	100.0
			H-3	100.0
			Pu-238	100.0
			Pu-239	100.0
			U-234	100.0
			U-235	100.0
			U-238	100.0
20	TA-21 Area B	97.6		
			Am-241	100.0
			H-3	100.0
			Pu-238	100.0
			Pu-239	100.0
			U-234	100.0
			U-235	100.0
			U-238	100.0

Table 14. FFCA Analytical Completeness Summary—Air Sampler Operation (continued)

Site #	Site Name	% Run Time	Analysis	% Analytical Completeness
32	County Landfill (TA-48)	100.0		
3 2	County Zunamin (111 10)	100.0	Am-241	100.0
			H-3	100.0
			Pu-238	100.0
			Pu-239	100.0
			U-234	100.0
			U-235	100.0
			U-238	100.0
60	LA Canyon	100.0		
	•		Am-241	100.0
			H-3	100.0
			Pu-238	100.0
			Pu-239	100.0
			U-234	100.0
			U-235	100.0
			U-238	100.0
61	LA Hospital	100.0		
	•		Am-241	100.0
			H-3	100.0
			Pu-238	100.0
			Pu-239	100.0
			U-234	100.0
			U-235	100.0
			U-238	100.0
62	Crossroads Bible Church	98.2		
			Am-241	100.0
			H-3	100.0
			Pu-238	100.0
			Pu-239	100.0
			U-234	100.0
			U-235	100.0
			U-238	100.0

Table 14. FFCA Analytical Completeness Summary—Air Sampler Operation (continued)

Site #	Site Name	% Run Time	Analysis	% Analytical Completeness
63	Monte Rey South	100.0		
	,		Am-241	100.0
			H-3	100.0
			Pu-238	100.0
			Pu-239	100.0
			U-234	100.0
			U-235	100.0
			U-238	100.0
66	Los Alamos Inn – South*	100.0		
			Am-241	75.0
			H-3	68.0
			Pu-238	75.0
			Pu-239	75.0
			U-234	75.0
			U-235	75.0
			U-238	75.0
67	TA-3 Research Park [†]	100.0		
0,	1110 11000000000	100.0	Am-241	50.0
			H-3	32.0
			Pu-238	50.0
			Pu-239	50.0
			U-234	50.0
			U-235	50.0
			U-238	50.0

^{*}This station began operation in April 2000.

[†]This station began operation in August 2000.

Table 15. LANSCE Monthly Assessments and Summary

		D + E + C +
Description	ESIDNUM	Dose at East Gate Receptor
LANSCE-stack-January	53000303	6.85E-05
LANSCE-stack-February	53000303	1.98E-04
LANSCE-stack-March	53000303	4.54E-05
LANSCE-stack-April	53000303	3.21E-04
LANSCE stack-May	53000303	1.23E-07
LANSCE stack-June	53000303	6.34E-05
LANSCE stack-July	53000303	1.14E-04
LANSCE stack-August	53000303	1.96E-04
LANSCE stack-September	53000303	2.66E-04
LANSCE-stack-October	53000303	9.05E-05
LANSCE-stack-November	53000303	1.60E-04
LANSCE-stack-December	53000303	4.45E-05
LANSCE-stack-PVAP*	53000303	2.98E-05
LANSCE-Non-CAP88 Radionuclides*	53000303	0.00E+00
LANSCE-stack-January	53000702	1.27E-03
LANSCE-stack-February	53000702	7.97E-04
LANSCE-stack-March	53000702	3.16E-04
LANSCE-stack-April	53000702	1.83E-02
LANSCE stack-May	53000702	3.78E-03
LANSCE stack-June	53000702	1.21E-02
LANSCE stack-July	53000702	9.48E-03
LANSCE stack-August	53000702	2.94E-02
LANSCE stack-September	53000702	4.07E-02
LANSCE-stack-October	53000702	6.84E-02
LANSCE-stack-November	53000702	3.62E-02
LANSCE-stack-December	53000702	5.19E-02
LANSCE-stack-PVAP*	53000702	2.75E-04
LANSCE-Non-CAP88 Radionuclides*	53000702	8.01E-03
LANSCE-Fugitive Emissions - Switchyard*	530003sy	1.74E-02
LANSCE-Fugitive Emissions - 1L Area*	5300071L	7.01E-02
LANSCE Summary		3.70E-01

58

Table 16. 40-61.92 Effective Dose Equivalent at Selected Public Locations

				Nearest AIRNET	AIRNET	LANL-Wide
	Location	Easting	Northing	Location	Number	EDE (mrem)*
1	Barranca School	1,630,910	1,783,870	Barranca School†	04	5.41E-02
2	Residence Near Urban Park	1,618,400	1,780,000	Urban Park†	05	2.94E-02
3	Residence on Fairway Drive	1,618,602	1,776,052	48th Street	06	1.36E-02
4	Los Alamos Shell	1,623,892	1,775,889	Shell Station	07	1.62E-01
5	Los Alamos McDonald's	1,626,450	1,775,350	LA McDonald's	08	5.13E-02
6	Los Alamos Airport	1,632,902	1,776,247	Los Alamos Airport	09	1.15E-01
7	Tsankawi Visitor Center	1,648,105	1,758,380	Well PM-1	11	4.54E-02
8	Royal Crest Trailer Court - West	1,624,256	1,773,065	Royal Crest Tlr. Crt.	12	5.14E-02
9	Royal Crest Trailer Court - East	1,625,778	1,772,955	Royal Crest Trl. Crt.	12	5.38E-02
10	Residence near WR Rocket Park	1,651,950	1,755,300	Rocket Park	13	3.72E-02
11	Residence in Pajarito Acres	1,650,770	1,750,520	Pajarito Acres	14	2.84E-02
12	White Rock Fire Station	1,653,580	1,756,630	WR Fire Station	15	3.83E-02
13	Bandelier Fire Lookout	1,635,700	1,739,005	Bandelier†	17	6.68E-02
14	Residence on Nambe Loop	1,621,568	1,776,046	TA-21 Area B	20	8.52E-02
15	Ponderosa Campground	1,608,575	1,758,460	TA-49†	26	4.21E-02
16	County Landfill Office	1,620,569	1,774,763	County Landfill	32	2.02E-01
17	Los Alamos Ice Rink	1,617,852	1,775,692	LA Canyon	60	3.18E-02
18	Los Alamos Hospital	1,620,200	1,776,300	LA Hospital	61	4.79E-02
19	Cross Roads Bible Church	1,629,200	1,776,000	Cross. Bible Church	62	5.49E-02
20	Residence on Monte Rey South	1,647,976	1,750,376	Monte Rey South	63	3.53E-02
21	Los Alamos Inn	1,624,450	1,775,300	Los Alamos Inn-S	66	1.34E-01
22	Research Park	1,618,300	1,774,600	TA-3 Research Park	67	8.84E-02
23	2470 East Gate (NNE sector)	1,638,825	1,774,097	East Gate	10	4.59E-01
24	Residence at East Gate (N sector)	1,638,616	1,774,231	East Gate	10	3.61E-01
25	Business at East Gate (NE sector)	1,640,230	1,774,090	East Gate	10	2.87E-01

^{*} Note, to allow for more meaningful comparisons, these doses do not include the estimated contribution from unmonitored point sources.

[†]Note, these samplers are not part of the regular NESHAPs compliance network for LANL.

Table 17. 61.92 Highest Effective Dose Equivalent Summary

		Dose for Release	Dose at Landfill	Dose at East Gate
ESIDNUM	Description	Site Receptor		Receptor Receptor
03002914	CMR Stack	6.90E-07	Receptor 6.90E-07	5.46E-08
03002915	CMR Stack	1.32E-05	1.32E-05	1.51E-06
03002919	CMR Stack	2.64E-04	2.64E-04	2.93E-05
03002919	CMR Stack	3.20E-05	3.20E-05	2.68E-06
03002923	CMR Stack	2.10E-04	2.10E-04	2.53E-05
03002924	CMR Stack	3.94E-04	3.94E-04	2.23E-05
03002924	CMR Stack	1.38E-04	1.38E-04	1.79E-05
03002928	CMR Stack	5.62E-07	5.62E-07	7.44E-08
03002929	CMR Stack	0.00E+00	0.00E+00	0.00E+00
03002933	CMR Stack CMR Stack	0.00E+00	0.00E+00	0.00E+00 0.00E+00
03002937		0.00E+00	0.00E+00	
03002944	CMR Stack	0.00E+00	0.00E+00	0.00E+00
03002945	CMR Stack	0.00E+00	0.00E+00	0.00E+00
03002946	CMR Stack	3.23E-06	3.23E-06	3.25E-07
03010222	Shops Addition Stack	4.83E-06	4.83E-06	4.29E-07
16020504	WETF Stack	1.22E-02	2.20E-03	1.27E-03
18000001	TA-18 Diffuse	4.61E-05	2.46E-06	4.61E-05
21015505	TSTA Stack	6.43E-03	9.38E-04	4.35E-03
21020901	TSFF Stack	3.06E-02	3.84E-03	2.21E-02
33008606	HP-Site Stack	2.71E-02	1.56E-03	3.48E-03
41000417	W-Site Stack	2.29E-04	8.79E-05	6.19E-05
48000107	Radiochemistry Stack/non-CAP88 radionuclides	4.49E-02	3.98E-03	3.72E-03
48000154	Radiochemsitry Stack	0.00E+00	0.00E+00	0.00E+00
48000160	Radiochemistry Stack/non CAP88 radionuclides	8.35E-05	7.12E-06	6.47E-06
50000102	Waste Management Stack	4.71E-06	4.81E-07	1.14E-06
50003701	Waste Management Stack	0.00E+00	0.00E+00	0.00E+00
50006903	Waste Management Stack	0.00E+00	0.00E+00	0.00E+00
53000303	LANSCE-Stack-Annual	1.60E-03	1.58E-05	1.60E-03
53000303	LANSCE-Stack/non CAP88 radionuclides	0.00E+00	0.00E+00	0.00E+00
53000399	LANSCE Fugitive Emissions	8.75E-02	2.63E-04	8.75E-02
53000702	LANSCE-Stack-Annual	2.73E-01	1.04E-03	2.73E-01
53000702	LANSCE-Stack/non CAP88 radionuclides	8.01E-03	4.52E-05	8.01E-03
55000415	Plutonium Facility Stack	2.10E-05	1.74E-06	2.74E-06
55000416	Plutonium Facility Stack	1.01E-03	1.04E-04	1.66E-04
99000000	Unmonited Stacks-gross	1.80E-01	1.80E-01	1.80E-01
99000010	Air-Sampler Net Dose	1.91E-02	1.91E-01	5.40E-02
	Total	6.93E-01	3.86E-01	6.39E-01

SECTION IV. CONSTRUCTIONS AND MODIFICATIONS

61.94(b)(8): Constructions and Modifications

A brief description of constructions and modifications that were completed and/or reviewed in 2000, but for which the requirement to apply for approval to construct or modify was waived under 61.96, is provided here. The Air Quality Group for LANL/DOE maintains the documentation developed to support the waiver.

Project #99-0191: Nontraditional In-Situ Vitrification near PRS 21-018A

Nontraditional in-situ vitrification (ISV) was evaluated to demonstrate its effectiveness for stabilization of radionuclides in contaminated soil. The demonstration involved 13,200 ft³ of contaminated soil from an absorption bed. Using a vibrating drill, four electrodes were inserted into the contaminated soil. Then, a hood was placed over the affected area to collect any off-gas. The contaminated area was heated to melting, turned to glass, cooled, and sampled. The off-gas passed through HEPA filters, scrubbers, and a thermal oxidizer before it was exhausted to the environment.

Air-emission estimates for a number of radionuclides were based on soil characteristics and contamination data. Controlled emissions were estimated using Appendix D release factors and control factors (for HEPA filtration) to determine the applicability of Radionuclide-NESHAP preapproval requirements. In addition, the

enhanced rule was applied when applicable. Dose assessments of these air emissions were calculated using CAP88. Based on the modeling results, the potential effective dose equivalent from the point source at the nearest receptor was 4.8×10^{-2} mrem/yr. and was below the permitting threshold of 0.1 mrem/yr. specified in the Radionuclide-NESHAP.

Furthermore, uncontrolled emissions were estimated based on the retention factors supplied by the contractor performing the demonstration to determine the applicability of Radionuclide-NESHAP monitoring requirements. Dose assessments of these air emissions were calculated using CAP88. Based on the modeling results, the potential effective dose equivalent from the point source at the nearest receptor was 5.3×10^{-2} mrem/yr. and was below the monitoring threshold of 0.1 mrem/yr specified in Radionuclide-NESHAP. Therefore, monitoring was not a compliance requirement. An air sampler, located approximately 50 meters from the operation, confirmed this low potential for emissions.

SECTION V. ADDITIONAL INFORMATION

This following section is provided pursuant to DOE guidance and is not required by Subpart H reporting requirements.

Unplanned Releases

During 2000, the Laboratory had no instances of increased airborne emissions of radioactive materials that required reporting to the Environmental Protection Agency. There were two instances of unplanned events. Equipment malfunction at TA-21, building 209, resulted in the release of 215 Ci of tritium during the period of March 22– 28. Routine emissions at TA21-209 were typically less than 50 Ci a week during most of CY 2000. The Weapons Engineering Tritium Facility (WETF) at TA-16 had a typical release rate of about 5 to 10 Ci a week during CY 2000. However, on October 5, a release of about 90 Ci of tritium (3H) occurred due to process problems; the release occurred over a 6-hour period.

Environmental Monitoring

The LANL Air Quality Group operates an extensive environmental monitoring network that includes several environmental monitoring stations located near the LANSCE boundary inhabited by the public. Measurement systems at these stations include LiF thermoluminescent dosimeters, continuously operated air samplers, and in situ high-pressure ion chambers. The combination of these measurement systems allows for monitoring of radionuclide air concentrations and the radiation exposure rate. Results for air sampling are published

here and results for all monitoring data are published in the Annual Site Environmental Surveillance Report for DOE Order compliance.

Other Supplemental Information

- Collective effective dose equivalent for 2000 airborne releases: 1.0 person-rem;
- Compliance with Subparts Q and T of 40 CFR 6—Radon-222 Emissions;

These regulations apply to Radon-222 emissions from DOE storage/disposal facilities that contain byproduct material. "Byproduct material" is the tailings or wastes produced by the extraction or concentration of uranium from ore. Although this regulation targets uranium mills, LANL has likely stored small amounts of byproduct material used in experiments in the TA-54 low-level waste facility, Area G, and this practice makes the Laboratory subject to this regulation. Subject facilities cannot exceed a Radon-222 emissions rate of 20 pCi/m2 s. In 1993 and 1994, LANL conducted a study to characterize emissions from the Area G disposal site.¹³ This study showed an average emission rate of 0.14 pCi/m2 s for Area G. The performance assessment for Area G has determined that there will not be a significant increase in Radon-222 emissions in the future.14

- Potential to exceed 0.1 mrem from LANL sources of Radon-222 or Radon-220 emissions: not applicable at LANL;
- Status of compliance with EPA effluent monitoring requirements: As of June 3, 1996, LANL came into compliance with EPA effluent monitoring requirements.

REFERENCES

- 1. U.S. Department of Energy, "SWEIS Yearbook 1999," LANL Report LA-UR-00-5520, Los Alamos, NM, December 2000, located at http://lib-www.lanl.gov/la-pubs/00393813.pdf.
- U.S. Department of Energy, "Site-Wide Environmental Impact Statement for Continued Operation of the Los Alamos National Laboratory," Vol. Summary, DOE/EIS—0238, Albuquerque, NM, January 1999.
- K. W. Jacobson, S. Duffy, and K. Kowalewsky, "Population and Agricultural Data Arrays for the Los Alamos National Laboratory," Los Alamos National Laboratory report LA-13469-MS (1998).
- 4. S. D. Terp, "2000 Radioactive Materials Usage Survey for Point Sources," Los Alamos National Laboratory report LAUR-01-2250 (2001).
- Los Alamos National Laboratory, "Performance Requirements for Air Quality," Air Quality Group Laboratory Implementation Requirement, LPR 404-10-00.0 (1998).
- 6. U.S. Environmental Protection Agency, Federal Register, Vol. 60, No. 107 (June 5, 1995).
- 7. U.S. Environmental Protection Agency, "The Clean Air Act Assessment Package—1988 (CAP-88): A Dose and Risk Assessment Methodology for Radionuclide Emissions to Air," Vol. 1: User's Manual, EPA/Washington D.C. (1990).
- 8. Radiation Shielding Information Center, "CAP-88 Clean Air Act Assessment Package," Oak Ridge National Laboratory, Tennessee (1990).

- 9. U.S. Environmental Protection Agency, "National Emission Standards for Emissions of Radionuclides other than Radon from Department of Energy Facilities," Code of Federal Regulations, Title 40, Part 61.90, Subpart H (1989).
- 10. K. F. Eckerman, A. B. Wolbarst, and A. C. B. Richardson, Federal Guidance Report No. 11, "Limiting Values of Radionuclide Intake and Air Concentration and Dose Conversion Factors for Inhalation, Submersion, and Ingestion," Office of Radiation Programs, U.S. Environmental Protection Agency, Washington, D.C. (1988).
- 11. K.F. Eckerman and J.C. Ryman, Federal Guidance Report No. 12, "External Exposures to Radionuclides in Air, Water, and Soil; Exposure-to-Dose Coefficients for General Application," U.S. Environmental Protection Agency, Washington, D.C. (1993).
- 12. K. W. Jacobson, e-mail to Mr. George P. Brozowski, U.S. Environmental Protection Agency Region VI, March 18, 1999.
- 13. B. Eklund, "Measurements of Emission Fluxes from Technical Area 53, Areas G and L," Radian Corporation report, Austin, Texas (1995).
- 14. Los Alamos National Laboratory, "Performance Assessment and Composite Analysis for Los Alamos National Laboratory Materials Disposal Area G," Los Alamos National Laboratory report LA-UR9785 (1997).

61.94(b)(9) Certification

I certify under penalty of law that I have personally examined and am familiar with the information submitted herein and based on my inquiry of those individuals immediately responsible for obtaining the information, I believe that the submitted information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment (See, 18 USC., 1001).

Signature: _	Signature on File	Date: 0/2/0
Area Man	Gurulé, P.E., Owner nager, Los Alamos Area Office artment of Energy	
Signature: _	Signature on File	Date: (12761

Los Alamos National Laboratory

1999 LANL Radionuclide Emissions Report Errata, as noted by K.W. Jacobson

Table 16:

The station number for the LA Canyon air sampler should have read "60" and not "61."

This report has been reproduced directly from the best available copy. It is available electronically on the Web (http://www.doe.gov/bridge).

Copies are available for sale to U.S. Department of Energy employees and contractors from—

Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831 (865) 576-8401

Copies are available for sale to the public from—

National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22616 (800) 553-6847

