

Environmental Protection & Compliance Division Environmental Compliance Programs (EPC-CP) PO Box 1663, K490 Los Alamos, New Mexico 87545 (505) 667-0666 National Nuclear Security Administration Los Alamos Field Office 3747 West Jemez Road, A316 Los Alamos, New Mexico, 87544 (505) 665-7314/Fax (505) 667-5948

ESHID-603375

Symbol:

EPC-DO-19-069

LA-UR:

19-21981

Locates Action No.:

U1801172

Date:

MAR 2 0 2019

Ms. Michelle Hunter, Chief Ground Water Quality Bureau New Mexico Environment Department Harold Runnels Building, Room N2261 1190 St. Francis Drive P.O. Box 26110 Santa Fe, NM 87502

Subject: DP-1132, Status Update, Condition No. 7, Verification of Secondary Containment

Dear Ms. Hunter:

On August 29, 2018 the New Mexico Environment Department (NMED) issued Discharge Permit DP-1132 to the U.S. Department of Energy and Los Alamos National Security, LLC (subsequently transferred to Triad National Security, LLC) for discharges of treated effluent from the TA-50 Radioactive Liquid Waste Treatment Facility (RLWTF). Pursuant to permit Condition No. 7, *Verification of Secondary Containment*, the U.S. Department of Energy and Triad National Security, LLC (DOE/Triad) were required to submit to NMED by November 27, 2018 verification that all units intended to convey, store, treat, or dispose of untreated liquid or semi-liquid meet the requirements of secondary containment, as defined in Discharge Permit DP-1132. In a November 19, 2018 letter (Attachment 1), DOE/Triad submitted the required verification to NMED. In summary, the above-referenced letter communicated the following:

- 1. The RLWTF has secondary containment for all units and systems intended to convey, store, treat, or dispose of an untreated liquid or semi-liquid.
- 2. Six rooms at the RLWTF do not have the required leak detection systems.
- 3. Designs for the missing leak detection systems would be completed in ~ 90 days.
- 4. An installation schedule would be submitted to NMED when the design was complete.

Ms. Michelle Hunter EPC-DO-19-069

The designs for leak detection systems in the six rooms identified in the above-referenced November 19, 2018, letter (Attachment 1) have been completed, and installation will be finished by June 15, 2019. Upon completion of work, a revised secondary containment verification report will be submitted to NMED.

Please contact Karen E. Armijo by telephone at (505) 665-7314 or by email at <u>Karen.Armijo@nnsa.doe.gov</u>, or Robert S. Beers by telephone at (505) 667-7969 or by email at <u>bbeers@lanl.gov</u> if you have questions regarding this update.

Sincerely,

Enrique Kiki" Torres

Division Leader

Environmental Protection & Compliance

Triad National Security, LLC

ET/KEA/MTS/RSB:jdm

Sincerely,

Karen E. Armijo

Permitting and Compliance Program Manager

National Nuclear Security Administration

U.S. Department of Energy

Attachment(s): Attachment 1 DP-1132, Condition No. 7, Verification of Secondary Containment

Copy: Shelly Lemon, NMED/SWQB, Shelly.Lemon@state.nm.us, (E-File)

John E. Kieling, NMED/HWB, john.kieling@state.nm.us, (E-File)

Gerald Knutson, NMED/GWQB, Gerald.Knutson@state.nm.us, (E-File)

Andrew Romero, NMED/GWQB, Andrew C.Romero @state.nm.us, (E-File)

Karen E. Armijo, NA-LA, <u>Karen.Armijo@nnsa.doe.gov</u>, (E-File)

Michael W. Hazen, ALDESHOSS, mhazen@lanl.gov, (E-File)

Enrique Torres, EPC-DO, etorres@lanl.gov, (E-File)

William H. Schwettmann, IPM, bills@lanl.gov, (E-File)

Raelynn Romero, PM6, raelynn@lanl.gov, (E-File)

Randal S. Johnson, DESHF-TA55, randyi@lanl.gov, (E-File)

Denise C. Gelston, TA-55-RLW, dgelston@lanl.gov, (E-File)

Alvin M. Aragon, TA-55-RLW, alaragon@lanl.gov, (E-File)

John C. Del Signore, TA-55-RLW, jcds@lanl.gov, (E-File)

Michael T. Saladen, EPC-CP, saladen@lanl.gov, (E-File)

Robert S. Beers, EPC-CP, bbeers@lanl.gov, (E-File)

locatesteam@lanl.gov, (E-File)

epc-correspondence@lanl.gov, (E-File)

ATTACHMENT 1

DP-1132, Condition No. 7, Verification of Secondary Containment

EPC-DO: 19-069

LA-UR-19-21981

Date: MAR 2 0 2019

ATTACHMENT 1

CROUND WATER

NOV 1 9 2018

BUREAU

Environmental Protection & Compliance Division Environmental Compliance Programs (EPC-CP) PO Box 1663, K490 Los Alamos, New Mexico 87545 (505) 667-0666

National Nuclear Security Administration Los Alamos Field Office 3747 West Jemez Road, A316 Los Alamos, New Mexico, 87544 (505) 665-7314/Fax (505) 667-5948

Symbol:

EPC-DO-18-403

LA-UR:

18-30432

Locates Action No.:

U1801172

Date:

NOV 1 9 2018

Ms. Michelle Hunter, Chief Ground Water Quality Bureau New Mexico Environment Department Harold Runnels Building, Room N2261 1190 St. Francis Drive P.O. Box 26110 Santa Fe, NM 87502

Subject:

DP-1132, Condition No. 7, Verification of Secondary Containment

Dear Ms. Hunter:

On August 29, 2018, the New Mexico Environment Department (NMED) issued Discharge Permit DP-1132 to the U.S. Department of Energy and Los Alamos National Security, LLC (subsequently transferred to Triad National Security, LLC) for discharges of treated effluent from the TA-50 Radioactive Liquid Waste Treatment Facility (RLWTF). Pursuant to permit Condition No. 7, *Verification of Secondary Containment*, the U.S. Department of Energy and Triad National Security, LLC (DOE/Triad) is required to submit to NMED by November 27, 2018, verification that all units intended to convey, store, treat or dispose of untreated liquid or semi-liquid waste streams meet the requirements of secondary containment as defined in Discharge Permit DP-1132.

Enclosure 1 documents that all treatment, storage, and conveyance units at the RLWTF have secondary containment. The majority of those secondary containments—63 out of 81—are associated with the Radioactive Liquid Waste Collection System (RLWCS). The remaining 18 secondary containments are located within buildings and rooms at Technical Area (TA)-50. Presently, six of these 18 secondary containments do not have functioning leak detection systems, as required by permit Condition No. 7.

- 2 =

Planning and design are underway for installation of the missing leak detection systems. The design effort will take approximately 90 days. Once the design has been completed, a schedule for installing the additional detection systems will be prepared.

The RLWTF has round-the-clock knowledge of the status of vessels within TA-50 through other facility monitoring systems. For example, tank levels are continuously monitored and an unexpected level drop will generate an alarm that requires a response by the on-call duty operator. In addition, Rooms 60, 60A, and 61 are equipped with continuous radiation monitoring instruments that would sound an alarm if a vessel develops a leak.

In the interim, until the missing leak detection systems are installed, the listed rooms will be inspected at least once each work day. In addition, a revised secondary containment verification report will be submitted with each Discharge Permit DP-1132 quarterly monitoring report until all leak detection systems are installed and operational.

Please contact Karen E. Armijo by telephone at (505) 665-7314 or by email at <u>Karen.Armijo@nnsa.doe.gov</u>, or Robert S. Beers by telephone at (505) 667-7969 or by email at <u>bbeers@lanl.gov</u> if you have questions regarding this submittal.

Sincerely,

Enrique "Kiki" Torres

Division Leader

Environmental Protection & Compliance

Triad National Security, LLC

TVV/KEA/MTS/RSB:jdm

Sincerely

Karen E. Armijo

Permitting and Compliance Program Manager

National Nuclear Security Administration

U.S. Department of Energy

Enclosure(s): (1) DP-1132, Verification of Secondary Containment

Copy: Shelly Lemon, NMED/SWQB, Shelly.Lemon@state.nm.us, (E-File)

John E. Kieling, NMED/HWB, john.kieling@state.nm.us, (E-File)

Gerald Knutson, NMED/GWQB, Gerald.Knutson@state.nm.us, (E-File)

Andrew Romero, NMED/GWQB, Andrew C.Romero @state.nm.us, (E-File)

Karen E. Armijo, NA-LA, Karen.Armijo@nnsa.doe.gov, (E-File)

Michael W. Hazen, ALDESHQSS, mhazen@lanl.gov, (E-File)

Enrique Torres, EPC-DO, etorres@lanl.gov, (E-File)

William H. Schwettmann, IPM, bills@lanl.gov, (E-File)

Raelynn Romero, PM6, raelynn@lanl.gov, (E-File)

Randal S. Johnson, DESHF-TA55, randyi@lanl.gov, (E-File)

Denise C. Gelston, TA-55-RLW, dgelston@lanl.gov, (E-File)

Alvin M. Aragon, TA-55-RLW, alaragon@lanl.gov, (E-File)

John C. Del Signore, TA-55-RLW, jcds@lanl.gov, (E-File)

EPC-DO-19-069 Ms. Michelle Hunter EPC-DO-18-403

- 3 -

Michael T. Saladen, EPC-CP, <u>saladen@lanl.gov</u>, (E-File) Robert S. Beers, EPC-CP, <u>bbeers@lanl.gov</u>, (E-File) Steven G. Pearson, EPC-CP, <u>spearson@lanl.gov</u>, (E-File) <u>locatesteam@lanl.gov</u>, (E-File) <u>epc-correspondence@lanl.gov</u>, (E-File)

ENCLOSURE 1

DP-1132, Verification of Secondary Containment

EPC-DO: 18-403

LA-UR-18-30432

Date: NOV 1 9 2018

Discharge Permit DP-1132 Condition No. 7: Verification of Secondary Containment Radioactive Liquid Waste Treatment Facility (RLWTF)

November 2018

Purpose

This report verifies secondary containment for all units and systems that convey, store, treat, or dispose of an untreated liquid or semi-liquid waste stream at the Radioactive Liquid Waste Treatment Facility (RLWTF) meet the requirements of secondary containment as defined in Discharge Permit DP-1132.

Requirements

Discharge Permit DP-1132 requires Los Alamos National Laboratory (LANL) to verify secondary containment by November 27, 2018. Permit requirements are listed below:

- Condition 7 of DP-1132 requires that LANL submit to the New Mexico Environment
 Department (NMED) verification demonstrating that all units intended to convey, store,
 treat, or dispose of an untreated liquid or semi-liquid waste stream meet the
 requirements of secondary containment as defined in DP-1132.
- Definition Y of DP-1132 defines secondary containment as a constructed unit or system
 designed to prevent any migration of waste streams or accumulated liquid out of the
 unit or system to the soil, ground water, or surface water at any time.
- Definition Y of DP-1132 adds that secondary containment can include, but is not limited to: double-walled pipes, concrete and floors equipped with sumps and alarm systems to detect potential leaks.
- Definition Y of DP-1132 states that secondary containment must be:
 - Designed, constructed and maintained to surround the unit on sides and bottom;
 - Free of cracks, gaps, or fissures;
 - Constructed of, or lined with, materials that are compatible with the waste streams to be in contact with the unit or system;
 - Placed on a foundation or base capable of withstanding pressure gradients, settling or uplift which may cause failure of the unit or system; and
 - Equipped with a leak detection system that is designed and operated so that it will detect the failure of the primary containment structure.

Scope of the Secondary Containment Survey

The secondary containment verification included all facilities and systems regulated by Discharge Permit DP-1132:

- Underground collection systems (piping and access vaults) at six LANL Technical Areas: TA-03, TA-35, TA-48, TA-50, TA-55, TA-59;
- Treatment units and systems in five buildings at TA-50 (Buildings 1, 2, 66, 248, and 250);
- The three treatment processes as described in Discharge Permit DP-1132: the main treatment process, the transuranic radioactive liquid waste (RLW) treatment process, and the secondary treatment process;
- The seventeen treatment units within the three treatment processes.

Treatment Processes

The RLWTF receives and treats RLW from generators at LANL. The RLWTF has a main treatment process for low-level RLW, a process for treating transuranic RLW, and a secondary treatment process for waste streams from both the low-level and transuranic processes.

The main treatment process consists of influent collection and storage, the treatment of low-level RLW, and the discharge of treated water to the environment. Process steps include treatment with chemicals in a reaction tank, filtration, ion exchange, reverse osmosis, and the sampling and analysis of treated water prior to discharge. Two secondary streams are generated by primary treatment, solids precipitated in the reaction tanks, and reverse osmosis concentrate. Both are sent to the secondary treatment process.

Transuranic RLW treatment consists of influent collection and storage, treatment of the transuranic RLW, and sludge treatment. Treated transuranic RLW cannot be discharged to the environment because it exceeds DOE, EPA, and NMED effluent limits (e.g., Radioactivity levels in treated transuranic RLW can exceed levels found in low-level RLW influent). Instead, treated transuranic RLW must be re-treated in the main or secondary treatment processes. Solids from the treatment process are concentrated, solidified with cement, and shipped to the Waste Isolation Pilot Plant (WIPP) for disposal as a transuranic waste.

The secondary process treats wastes from the primary and transuranic treatment lines. It consists of a vacuum filter to treat solids from main process, secondary reverse osmosis to treat RO concentrate from the main process and/or treated transuranic RLW, and a bottoms disposal step. Wastes from the secondary treatment process are disposed as low-level radioactive solid waste.

Treatment Units

Units within each of these process lines are summarized in Table 1, and discussed in the following pages.

TABLE 1: RLWTF TREATMENT PROCESSES AND UNITS

	Treatment Unit	Location
Main Tr	eatment:	
M1	Collection system	TA-03, 35, 48, 50, 55, 59
M2	Influent storage	50-250
M3	Emergency influent storage	50-250
M4	Reaction tanks	50-01
M5	Microfilter	50-01
_M6	Pressure filters	50-01
M7	Perchlorate ion exchange	50-01
M8	Primary reverse osmosis	50-01
M10	Effluent storage	50-01
Transura	anic:	
T1	TRU Collection system	TA50, 55
T2		50-66
T3	TRU Treatment	50-01
T4	TRU Sludge	50-01
T5	TRU Effluent	50-01
Seconda	ry Treatment:	
S1	Secondary reverse osmosis	50-01
S2	Rotary vacuum filter	50-01
S3	Bottoms storage	50-248

Location: Technical Area – Building (e.g., 50-248)

Table 1 does not list treatment unit M9, copper-zinc ion exchange, because this treatment step is no longer used. Nor does Table 1 include units that convey or store treated water to be discharged to the environment, in accordance with DP-1132 Condition 7. Specifically, it does not list the NPDES Outfall 051, the mechanical evaporator system (MES), or the solar evaporation tank (SET).

ENCLOSURE 1

LA-UR-18-30432

Vessels and Secondary Containment

Table 2 expands upon the treatment unit summary provided in Table 1. Table 2 lists vessels associated with each treatment unit, vessel location, and information about each vessel and its secondary containment.

Vessels include water treatment equipment (e.g., the microfilter) and tanks associated with the unit (e.g., the sludge tank and cleaning tanks). Each vessel is described by capacity, material of construction, and whether the vessel is above ground, on the ground (or floor), or in-ground. Definition CC of Discharge Permit DP-1132 defines these three terms, as they apply to tanks.

Table 2 also describes the secondary containment provided for each vessel, by identifying the type of secondary containment, its material of construction, and the leak detection alarm that notifies RLWTF personnel of the presence of water in the secondary containment.

Survey Summary

The survey confirmed that secondary containment is in place for all units and systems that convey, store, treat, or dispose of an untreated liquid or semi-liquid waste stream. However, the following rooms in Building 50-01 do not have the required leak detection systems:

- Room 24, location of the secondary reverse osmosis treatment unit
- Room 36, location of the double-pass M8 reverse osmosis unit
- Room 61, used for storage of low-level solids (TK08)
- Rooms 60 and 60A, location of equipment for the treatment of transuranic RLW
- Room 62, used for storage of RLW that has been chemically treated and filtered (TK09)

Planning and design is underway for the installation of the required leak detection system in these rooms. The design effort will take approximately 90 days. Once the design has been completed, a schedule for installing the additional detection systems will be prepared.

The RLWTF has round-the-clock knowledge of the status of vessels within these rooms through the other facility monitoring systems. For example, tank levels are continuously monitored, and unexpected level drops generate an alarm that requires a response by an on-call duty operator. In addition, Rooms 60, 60A, and 61 are equipped with continuous radiation monitoring instruments that would sound an alarm if a vessel develops a leak.

In the interim, until the leak detection alarms are installed, the listed rooms will be inspected at least once each work day. In addition, a revised secondary verification report will be submitted with each DP-1132 quarterly monitoring report, until leak detection systems are installed.

Notes: See Page 6

Table 2: RLWTF Vessels and Secondary Containment

ENCLOSURE 1

EPC-DO-18-403

					Vessel			Secondary Containment	inment
	Trout Linit		٠	Capacity					
	neathrent Offic	Vessei	Location	(gals.)	Category	Material	Structure	Material	Leak Detection
Main Tr	Main Treatment:								
M	. Collection system	Piping (~ 4 miles)	Six TAs	1	In-ground	Polyethylene	Pipe	Polyethylene	63 alarms
		Vaults (63)	Six TAs	I	In-ground	Concrete	Floor	Concrete	63 alarms
Z	Influent storage	WMRM tanks (2)	50-250-003	50,000	Aboveground	Fiberglass	Floor	Concrete	PLC250 SMP3
		Xfer piping	50-250-004	1	In-ground	Polyethylene	Pipe	Polyethylene	250 Inf, 250 Eff
		Xfer pump room	50-250-001	Î	Aboveground	Steel	Floor	Concrete	PLC250_SMP1
E Z		WMRM tanks (4)	50-250-003	20,000	Aboveground	Fiberglass	Floor	Concrete	PLC250_SMP3
Ψ.		TK71, TK72	50-01-70	10,000	Aboveground	Steel	Floor	Concrete	RUF 71A A1
M5	Microfilter	Filter	50-01-70	40	Aboveground	Steel	Floor	Concrete	RUF 71A A1
		Sludge tank	50-01-70	200	On-ground	Polyethylene	Floor	Concrete	RUF 71A A1
		Cleaning tanks (2)	50-01-70	200	On-ground	Polyethylene	Floor	Concrete	RUF 71A A1
M6		Filters (3)	50-01-63	100	Aboveground	Lined Steel	Floor	Concrete	SMP 16 A2
Δ	' Perchlorate ion exchange	IX vessels (8)	50-01-16	20	Aboveground	Fiberglass	Floor	Concrete	SMP 16 A2
		TK09	50-01-62	10,000	Aboveground	Steel	Floor	Concrete	! i
₩	Primary reverse osmosis	R72 RO unit	50-01-72	40	Aboveground	Steel	Floor	Concrete	RUF 71A A1
		R72 CIP tank	50-01-72	200	Aboveground	Polyethylene	Floor	Concrete	RUF 71A A1
		M8 RO unit	50-01-36	09	Aboveground	Fiberglass	Floor	Concrete	<u></u>
		M8 CIP tank	50-01-36	300	Aboveground	Polyethylene	Floor	Concrete	L
M	. Effluent storage	N.Frac, S.Frac	50-01-34B	20,000	Aboveground	Steel	Floor	Concrete	SMP_348_A1
Transuranic:	anic:								
II	TRU Collection system	Piping (~1 mile)	TA50, TA55	I	In-ground	PVDF, PP	Pipe	PVDF, PP	CTL WM57 A1
		Vaults (1)	50-201	1	In-ground	Concrete	Floor	Concrete	CTL WM57 A1
12	TRU Influent storage	Acid tank	99-05	3,900	Aboveground	Steel	Floor	Concrete	CTL_WM66_A4
l		Caustic tank	50-66	3,000	Aboveground	Steel	Floor	Concrete	CTL WM66 A4
T3	TRU Treatment	TK1	50-01-60	006	Aboveground	Steel	Floor	Concrete	L
		TK2	50-01-60	800	Aboveground	Fiberglass	Floor	Concrete	ш
T4		TK-7A	50-01-60A	006	Aboveground	Steel	Floor	Concrete	L
75	TRU Effluent	TK3	50-01-60	1,000	Aboveground	Fiberglass	Floor	Concrete	ш

LA-UR-18-30432

Table 2: RLWTF Vessels and Secondary Containment (concluded)

ENCLOSURE 1

EPC-DO-18-403

					Vessel			Secondary Containment	ainment
	Treatment Unit	Vessel	Location	Capacity	1		1		
			FOCULO	(gdis.)	category	Materiai	Structure	Material	Leak Detection
Second	Secondary Treatment:								
S1	S1 Secondary reverse osmosis	RO vessel	50-01-24	10	Aboveground	Fiberglass	Floor	Concrete	ш
		TK25	50-01-24	300	Aboveground	Polyethylene	Floor	Concrete	. ш
		TK73	50-01-70	3,700	Aboveground	Steel	Floor	Concrete	PILE 71A A1
S2	S2 Rotary vacuum filter	Vacuum filter	50-01-116	000	7	100400		כמובורני	יוט אדו
			077 70 00	2006	Apoveground	S.Steel	Floor	Concrete	SMP 16 A2
		TK08	50-01-61	8,000	Aboveground	Steel	Floor	Concrete	i L
23	Bottoms storage	TK-NE, SE, SW, NW	50-248	20,000	Aboveground	Steel	Floor	Concrete	SMP TKF A2
		3K tank	50-248	3,000	Aboveground	Steel	Floor	Concrete	SMP TKF A2
		17K tank	50-02	17,000	Aboveground	Steel	Floor	Concrete	SMP WM2 A2
									1

Notes:

- Vessel Descriptions, per definition CC of DP-1132: Aboveground, On-ground, In-ground. 4 3.2.1
 - When multiple tanks or vessels are identified, capacity is for each vessel.
- Collection systems: Each access vault is equipped with a sump and leak detection probe-alarm
 - Collection system:
- Piping: leaks in primary pipe would drain into the next downstream access vault.
 - Access vaults: each is equipped with a sump and leak detection probe-alarm.
 - Location: Technical Area-Bldg-Room
 - F means a leak detection system for the listed containment needs to be installed. 5.