RECEIVED APR 2 4 2018 NMED Hazardous Waste Hazardous Waste Hazardous Waste Associate Directorate for Environmental Management P.O. Box 1663, MS M992 Los Alamos, New Mexico 87545 (505) 606-2337 Environmental Management P. O. Box 1663, MS M984 Los Alamos, New Mexico 87545 (505) 665-5658/FAX (505) 606-2132 Date: APR 2 4 2018 Refer To: ADEM-18-0042 LAUR: 18-23320 John Kieling, Bureau Chief Hazardous Waste Bureau New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87505-6303 Subject: Monthly Notification of Groundwater Data Reviewed in April 2018 This letter is Los Alamos National Laboratory's (LANL's) written submission in accordance with Section XXVI of the 2016 Compliance Order on Consent (Consent Order). Members of LANL's Associate Directorate for Environmental Management met on April 12, 2018, to review groundwater data received in March 2018. This report was prepared by comparing the data against groundwater notification criteria as defined in Section IX of the 2016 Consent Order. These criteria consider New Mexico Water Quality Control Commission (NMWQCC) groundwater standards, U.S. Environmental Protection Agency (EPA) maximum contaminant levels (MCLs), New Mexico Environment Department (NMED) screening levels for tap water, EPA regional screening levels for tap water, and NMED-approved background values for hydrogeological zones as set forth in the "Groundwater Background Investigation Report, Revision 5." For comparison with EPA tap water standards, the standard's carcinogenic risk value was adjusted to 1×10^{-5} , as specified in the Consent Order. This report was prepared using the November 2017 EPA regional screening levels for tap water. This report also includes analytical data from samples collected at locations within the Pueblo de San Ildefonso, which are subject to reporting at this time. These data have been reviewed by the Pueblo. This review is required under the Memorandum of Agreement dated May 28, 2014, between the U.S. Department of Energy, National Nuclear Security Administration, Los Alamos Field Office, and San Ildefonso Pueblo. ## 1-Day Notification There were two instances of a contaminant detected at a concentration that exceeded the NMWQCC groundwater standard or federal MCL at locations where contaminants have not been previously detected above the respective standard (based on samples collected since June 14, 2007). RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) was measured at 7.69 μ g/L and 7.08 μ g/L in an unfiltered sample and its field duplicate, respectively, collected on February 21, 2018, from intermediate spring Bulldog Spring. These detections were both above the 7.02 μ g/L NMWQCC groundwater standard. One-day notification of these results by telephone occurred on April 12, 2018. # 15-Day Notification The required information for the contaminants and other chemical parameters that meet the five reporting criteria requiring written notification within 15 days is given in the accompanying report and tables. If you have questions, please contact Nita Patel at (505) 665-9273 (npatel@lanl.gov) or Hai Shen at (505) 665-5046 (hai.shen@em.doe.gov). -2- Sincerely, Environmental Remediation Program Los Alamos National Laboratory Sincerely, Los Alamos Field Office David S. Rhodes, Director Office of Quality and Regulatory Compliance Environmental Management ET/DR/NP:sm Enclosure: Two hard copies with electronic files – Summary of Groundwater Data Reviewed in April 2018 That Meet Notification Requirements (EP2018-0057) Cy: (date-stamped letter and attachment emailed) Laurie King, EPA Region 6, Dallas, TX Michelle Hunter, NMED-GWQB Steve Yanicak, NMED-DOE-OB, MS M894 Raymond Martinez, San Ildefonso Pueblo, NM Dino Chavarria, Santa Clara Pueblo, NM emla.docs@em.doe.gov Nita Patel, ADEM ER Program Brian Iacona, ADESH-EPC-CP Public Reading Room (EPRR) ADESH Records PRS Database Cy: (w/o enc./date-stamped letter emailed) Wayne Witten, Los Alamos County Utility Department, Los Alamos, NM lasomailbox@nnsa.doe.gov Peter Maggiore, DOE-NA-LA Karen Armijo, DOE-NA-LA Hai Shen, DOE-EM-LA Cheryl L. Rodriguez, DOE-EM-LA David Rhodes, DOE-EM-LA Mei Ding, EES-14 Enrique Torres, ADEM ER Program Jake Meadows, ADESH-EPC-CP Jocelyn Buckley, ADESH-EPC-CP Leslie Dale, ADESH-EPC-CP Benjamine Roberts, ADESH-EPC-DO William Mairson, ADESH & PADOPS Craig Leasure, PADOPS # SUMMARY OF GROUNDWATER DATA REVIEWED IN APRIL 2018 THAT MEET NOTIFICATION REQUIREMENTS ### INTRODUCTION This report provides information to the New Mexico Environment Department (NMED) concerning recent groundwater monitoring data obtained by Los Alamos National Laboratory (the Laboratory) under its annual "Interim Facility-Wide Groundwater Monitoring Plan" for the 2018 Monitoring Year and contains results for contaminants and other chemical constituents that meet the five screening criteria described in Section XXVI of the 2016 Compliance Order on Consent modified February 2017 (2016 Consent Order). The report covers groundwater samples collected from wells or springs (listed in the accompanying tables) that provide surveillance of the hydrogeological zones indicated in the tables. The report includes two tables. Table 1, NMED 03-18 Groundwater Report, presents results since June 14, 2007, that met the five reporting criteria as specified in the 2016 Consent Order. Table 2, NMED 03-18 Groundwater Report Addendum, presents results that are exceeding the 95th percentile of those results in the data set defined in the "Groundwater Background Investigation Report, Revision 5." Only contaminants and other chemical constituents lacking a calculated groundwater background value (i.e., the frequency of detections was too low to calculate a background value at the 95% upper tolerance level) are listed in this table. Table 2 is a voluntary submission by the Laboratory to NMED to identify the potential risk resulting from contaminants and other chemical constituents without defined background values. These tables include the following: - Comments on results that appear to be exceptional based on consideration of monitoring data acquired from previous analyses (using statistics described below) - Supplemental information summarizing monitoring results obtained from previous analyses - Sampling date, name of the well or spring, location of the well or spring, depth of the screened interval, groundwater zone sampled, analytical result, detection limit, values for regulatory standards or screening levels, and analytical and secondary validation qualifiers. Additional information describing the locations and analytical data is also included. All data have been through secondary validation. This report was prepared by comparing the data against groundwater notification criteria as defined in Section IX of the 2016 Consent Order. These criteria consider New Mexico Water Quality Control Commission (NMWQCC) groundwater standards, U.S. Environmental Protection Agency (EPA) maximum contaminant levels (MCLs), NMED screening levels for tap water, EPA regional screening levels for tap water, and NMED-approved background values for hydrogeological zones as set forth in the "Groundwater Background Investigation Report, Revision 5." For comparison with EPA tap water standards, the standard's carcinogenic risk value was adjusted to 1 × 10⁻⁵, as specified in the Consent Order. This report was prepared using the November 2017 EPA regional screening levels for tap water. Background values applied in Table 1 notification criteria C2 and C4 are the background values for hydrogeological zones as set forth in the NMED-approved "Groundwater Background Investigation Report, Revision 5." Screening values applied in Table 2 criteria XC2scr and XC4scr are the 95th percentile of the data set used to establish background as defined in the "Groundwater Background Investigation Report, Revision 5." #### **DESCRIPTION OF TABLES** ## 1-Day Notification Requirement The CA value is used in the Criteria Code column of Table 1. The CA value represents the data that show detection of a contaminant in a well screen interval or spring at a concentration that exceeds either the NMWQCC water quality standard or the federal MCL if that contaminant has not previously exceeded such water quality standard or MCL in the well screen interval or spring. The Laboratory notifies NMED orally within 1 business day after review of such analytical data and also includes the data in the 15-day notification table. ## **15-Day Notification Requirement** Table 1 is divided into separate categories that correspond to the five screening criteria in Section XXVI of the 2016 Consent Order. Some data met more than one of the notification criteria and appear in the table multiple times. The criteria are as follows: - C1. Detection of a contaminant that is an organic compound in a spring or screened interval of a well if that contaminant has not previously been detected in the spring or screened interval. - C2. Detection of a contaminant that is a metal or other inorganic compound at a concentration above the background level in a spring or screened interval of a well if that contaminant has not previously exceeded the background level in the spring or screened interval. - Detection of a contaminant in a spring or screened interval of a well at a concentration that (1) exceeds the lower of either one-half the NMWQCC water quality standard or one-half the federal MCL, or, if there is no such standard for the contaminant, (2) exceeds one-half the tap water screening levels in Table A-1 of NMED's "Risk Assessment Guidance for Site Investigations and Remediation" (March 2017 or updates, as appropriate), or, if there is no NMED tap water screening level available for a contaminant, (3) exceeds one-half the EPA regional human health mediumspecific screening level for tap water, if that contaminant has not previously exceeded one-half such standard or screening level in the spring or screened interval. - C4. Detection of a contaminant that is a metal or other inorganic compound in a spring or screened interval of a well at a concentration that exceeds two times the background level for the third consecutive sampling of the spring or screened interval. - C5. Detection of a contaminant in a spring or screened interval of a well at a concentration that exceeds either one-half the NMWQCC water quality standard or one-half the federal MCL, and which has increased for the third consecutive sampling of that spring or screened interval. Table 2 is divided into two categories that correspond to two screening criteria. They mirror criteria C2 and C4 in Table 1, respectively. The two criteria are as follows: XC2scr. Detection of a contaminant that is a metal or other inorganic compound at a concentration above the 95th percentile in a spring or screened interval of a well if that contaminant has not previously exceeded the 95th percentile of the data set used to establish background in the spring or screened interval as defined in the "Groundwater Background Investigation Report, Revision 5." XC4scr. Detection of a contaminant that is a metal or other inorganic compound in a spring or screened interval of a well at a concentration that for the third consecutive sampling exceeds 2 times the 95th percentile of the data set used to establish background as defined in the "Groundwater Background Investigation Report, Revision 5." Columns two through eight in both tables provide summary statistics for metals or inorganic compounds by field preparation code (e.g., filtered aluminum) for samples collected since January 1, 2000, including the currently reported data The statistics include the date of the first sampling event; the number of sampling events and samples analyzed; the number of detections; and the minimum, maximum, and median concentration for detections. This information indicates whether the new result is consistent with the range of earlier data. The subsequent columns contain location and sampling information: Canyon—canyon where monitoring location is found Zone—hydrogeological zone from which the groundwater sample was collected (e.g., alluvial spring) Location—monitoring location name Screen Depth—depth of top of well screen in feet (0 for springs, -1 if unknown) Start Date—sample date Fld QC Type Code—identifies regular samples (REG) or field duplicates (FD) Fld Prep Code—identifies whether samples are filtered or unfiltered Lab Sample Type Code—indicates whether result is a primary sample (INIT) or reanalysis (RE) Anyl Suite Code—analytical suite (such as volatile organic compounds) for analyzed compound Analyte Desc-name of analyte Analyte—chemical symbol for analyte or CAS (Chemical Abstracts Service) number for organic compounds Std Result—analytical result in standard measurement units Result/Median—ratio of the Std Result to the median of all detections since 2000 LVL Type/Risk Code—type of regulatory standard, screening level, or background value (indicating groundwater zone) used for comparison Screen Level—value of the LVL Type/Risk Code Exceedance Ratio—ratio of Std Result to LVL Type/Risk Code. In earlier versions of this report, the ratio was divided by the basis for comparison in the criterion, but that is no longer the case. For example, for a criterion (such as C3) that compares the value with one-half the standard, a value equal to a standard previously had an exceedance ratio of 2. The current report shows this ratio as 1. Std MDL—method detection limit in standard measurement units Std UOM—standard units of measurement LA-UR-18-23320 3 April 2018 EP2018-0057 Dilution Factor—amount by which the sample was diluted to measure the concentration Lab Qual Code—analytical laboratory qualifiers indicating analytical quality of the sample Validation Flag—secondary validation qualifier Validation Reason Code—concatenated secondary validation codes explaining assignment of qualifiers Anyl Meth Code—analytical method number Lab Code—analytical laboratory name Comment—comment on the analytical result Table 1: NMED 03-18 Groundwater Report | | | VIED 03-18 | 0100 | IIuwatei | i topoi t | | - | | | | | | | | • | • | | | | | | _ | | | | | | | | |---------------|--------|------------|------------|----------|---------------|------------|---|-------------------------|--------------------------|--------------|------------|------------------|---------|-----------------|-------------------|----------|------------|---------------|----------------------------|--------------|------------------|---------|---------|-----------------|-------------------------------|------------|----------------|----------|---------| | Criteria Code | Visits | | Min Detect | | Median Detect | Num Detect | | Zone | Location | Screen Depth | Start Date | Fld QC Type Code | Lab Sam | Anyl Suite Code | Analyte Desc | Analyte | Std Result | Result/Median | LVL Type/Risk Code | Screen Level | Exceedance Ratio | Std MDL | Std UOM | Dilution Eactor | Lab Qual Code Validation Flag | Validation | Anyl Meth Code | Lab Code | Comment | | C1 | 23 26 | 9/9/2004 | 2.50 | 2.50 | 2.50 | 1 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Intermediate
Spring | Bulldog Spring | 0 | 2/21/2018 | REG UF | INIT | VOC | Acetone | 67-64-1 | 2.50 | 1.0 | NMED A1
TAP SCRN
LVL | 14100.00 | 0.0 | 1.50 | μg/L | 1 | J | J_LAB | SW-846:8260B | GELC | | | C1 | 5 7 | 3/20/2017 | 0.35 | 0.4 | 0.4 | 1 | Water Canyon
(includes
Canon de Valle,
Potrillo, and
Fence Canyons) | Regional | R-68 | 1340 | 2/6/2018 | REG UF | INIT | VOC | Tetrachloroethene | 127-18-4 | 0.35 | 1.0 | EPA MCL | 5.0 | 0.1 | 0.30 | μg/L | 1 | J | J_LAB | SW-846:8260B | GELC | | | C2 | 25 31 | 1/25/2007 | 0.22 | 0.45 | 0.252 | 31 | Water Canyon
(includes
Canon de Valle,
Potrillo, and
Fence Canyons) | Regional | CdV-R-15-3 S4 | 1235 | 2/22/2018 | REG F | INIT | GENINORO | Perchlorate | CIO4 | 0.45 | 1.8 | LANL Reg
BG LVL | 0.414 | 1.1 | 0.050 | μg/L | 1 | NQ | NQ | SW-846:6850 | GELC | | | C3 | 72 87 | 1/10/2000 | 145.0 | 502.0 | 183.0 | 81 | Water Canyon
(includes
Canon de Valle,
Potrillo, and
Fence Canyons) | Intermediate
Spring | Burning Ground
Spring | 0 | 2/10/2018 | REG F | INIT | METALS | Barium | Ва | 502.00 | 2.7 | NM GW
STD | 1000 | 0.5 | 1.00 | μg/L | 1 | NQ | NQ | SW-846:6010C | GELC | | | C4 | 21 27 | 4/20/2010 | 41.30 | 119.0 | 52.60 | 27 | Water Canyon
(includes
Canon de Valle,
Potrillo, and
Fence Canyons) | Intermediate | 16-26644 | 129 | 2/22/2018 | REG F | INIT | METALS | Barium | Ва | 46.60 | 0.9 | LANL Int
BG LVL | 13.50 | 3.5 | 1.00 | μg/L | 1 | NQ | NQ | SW-846:6010C | GELC | | | C4 | 18 23 | 4/20/2010 | 15.20 | 38.7 | 19.8 | 23 | Water Canyon
(includes
Canon de Valle,
Potrillo, and
Fence Canyons) | Intermediate | 16-26644 | 129 | 2/22/2018 | REG F | INIT | GENINORO | Chloride | CI(-1) | 18.40 | 0.9 | LANL Int
BG LVL | 3.11 | 5.9 | 0.34 | mg/L | 5 | NQ | NQ | EPA:300.0 | GELC | | | C4 | 25 31 | 6/1/2005 | 5.78 | 8.40 | 6.770 | 31 | Water Canyon
(includes
Canon de Valle,
Potrillo, and
Fence Canyons) | Intermediate | CdV-16-1(i) | 624 | 2/16/2018 | FD F | INIT | GENINORO | Chloride | CI(-1) | 8.40 | 1.2 | LANL Int
BG LVL | 3.110 | 2.7 | 0.067 | mg/L | 1 | NQ | NQ | EPA:300.0 | GELC | | | C4 | 25 31 | 6/1/2005 | 5.78 | 8.4 | 6.77 | 31 | Water Canyon
(includes
Canon de Valle,
Potrillo, and
Fence Canyons) | Intermediate | CdV-16-1(i) | 624 | 2/16/2018 | REG F | INIT | GENINORO | Chloride | CI(-1) | 8.38 | 1.2 | LANL Int
BG LVL | 3.110 | 2.7 | 0.067 | mg/L | 1 | NQ | NQ | EPA:300.0 | GELC | | | C4 | 9 13 | 5/21/2015 | 9.11 | 66.5 | 12.60 | 13 | Water Canyon
(includes
Canon de Valle,
Potrillo, and
Fence Canyons) | Intermediate
Perched | CDV-9-1(i) S1 | 937 | 2/6/2018 | REG F | INIT | GENINORO | Chloride | CI(-1) | 12.60 | 1.0 | LANL Int
BG LVL | 3.1 | 4.1 | 0.134 | mg/L | 2 | NQ | NQ | EPA:300.0 | GELC | | LA-UR-18-23320 EP2018-0057 5 April 2018 Table 1: NMED 03-18 Groundwater Report | rap | ie i. | NIVIE | D 03-18 | Jround | iwater i | Report |---------------|--------|---------|-------------|------------|------------|---------------|------------|---|-------------------------|--------------------------|--------------|------------|------------------|---------------|----------------------|-----------------|--------------------------------|-----------|------------|---------------|--------------------|--------------|------------------|---------|---------|-----------------|----------------------------------|----|----------------|----------|---------| | Criteria Code | Visits | Samples | First Event | Min Detect | Max Detect | Median Detect | Num Detect | Canyon | Zone | Location | Screen Depth | Start Date | Fld QC Type Code | Fld Prep Code | Lab Sample Type Code | Anyl Suite Code | Analyte Desc | Analyte | Std Result | Result/Median | LVL Type/Risk Code | Screen Level | Exceedance Ratio | Std MDL | Std UOM | Dilution Eactor | Lab Qual Code
Validation Flag | .≅ | Anyl Meth Code | Lab Code | Comment | | C4 | 9 | 13 5 | /21/2015 | 0.96 | 3 | 1.1 | 13 | Water Canyon
(includes
Canon de Valle,
Potrillo, and
Fence Canyons) | Intermediate
Perched | CDV-9-1(i) S1 | 937 | 2/6/2018 | REG | F | INIT | | Nitrate-Nitrite as
Nitrogen | NO3+NO2-N | 0.96 | 0.9 | LANL Int
BG LVL | 0.46 | 2.1 | 0.02 | mg/L | 1 | NQ | NQ | EPA:353.2 | GELC | | | C4 | 29 | 34 9 | /9/2004 | 53.90 | 82.00 | 69.050 | 34 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Intermediate
Spring | Bulldog Spring | 0 | 2/21/2018 | FD | F | INIT | METALS | Barium | Ва | 75.60 | 1.1 | LANL Int
BG LVL | 13.500 | 5.6 | 1.000 | μg/L | 1 | NQ | NQ | SW-846:6010C | GELC | | | C4 | 29 | 34 9 | /9/2004 | 53.90 | 82.0 | 69.1 | 34 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Intermediate
Spring | Bulldog Spring | 0 | 2/21/2018 | REG | F | INIT | METALS | Barium | Ва | 75.40 | 1.1 | LANL Int
BG LVL | 13.50 | 5.6 | 1.000 | μg/L | 1 | NQ | NQ | SW-846:6010C | GELC | | | C4 | 28 | 33 9 | /9/2004 | 12.10 | 34.6 | 19 | 33 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Intermediate
Spring | Bulldog Spring | 0 | 2/21/2018 | FD | F | INIT | GENINORG | Chloride | CI(-1) | 27.10 | 1.4 | LANL Int
BG LVL | 3.1 | 8.7 | 0.34 | mg/L | 5 | NQ | NQ | EPA:300.0 | GELC | | | C4 | 28 | 33 9 | /9/2004 | 12.10 | 34.6 | 19.10 | 33 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Intermediate
Spring | Bulldog Spring | 0 | 2/21/2018 | REG | F | INIT | GENINORG | Chloride | CI(-1) | 27.50 | 1.4 | LANL Int
BG LVL | 3.1 | 8.8 | 0.34 | mg/L | 5 | NQ | NQ | EPA:300.0 | GELC | | | C4 | 26 | 31 6 | /22/2005 | 0.54 | 1 | 0.7 | 31 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Intermediate
Spring | Bulldog Spring | 0 | 2/21/2018 | FD | F | INIT | GENINORG | Perchlorate | CIO4 | 0.97 | 1.3 | LANL Int
BG LVL | 0.27 | 3.6 | 0.05 | μg/L | 1 | NQ | NQ | SW-846:6850 | GELC | | | C4 | 26 | 31 6 | /22/2005 | 0.54 | 1 | 0.7 | 31 | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Intermediate
Spring | Bulldog Spring | 0 | 2/21/2018 | REG | F | INIT | GENINORG | Perchlorate | CIO4 | 0.99 | 1.4 | LANL Int
BG LVL | 0.3 | 3.7 | 0.050 | μg/L | 1 | NQ | NQ | SW-846:6850 | GELC | | | C4 | 72 | 87 1 | /10/2000 | 145.00 | 502.0 | 183.0 | 81 | Water Canyon
(includes
Canon de Valle,
Potrillo, and
Fence Canyons) | | Burning Ground
Spring | 0 | 2/10/2018 | REG | F | INIT | METALS | Barium | Ва | 502.00 | 2.7 | LANL Int
BG LVL | 13.50 | 37.2 | 1.00 | μg/L | 1 | NQ | NQ | SW-846:6010C | GELC | | | C4 | 24 | 29 1 | /29/2007 | 13.80 | 42.0 | 19.3 | 29 | Water Canyon
(includes
Canon de Valle,
Potrillo, and
Fence Canyons) | | Burning Ground
Spring | 0 | 2/10/2018 | REG | F | INIT | GENINORG | Chloride | Cl(-1) | 16.30 | 0.8 | LANL Int
BG LVL | 3.11 | 5.2 | 0.134 | mg/L | 2 | NQ | NQ | EPA:300.0 | GELC | | | C4 | 68 | 76 1 | /10/2000 | 122.00 | 243.0 | 167.00 | 69 | Water Canyon
(includes
Canon de Valle,
Potrillo, and
Fence Canyons) | Intermediate
Spring | Martin Spring | 0 | 2/23/2018 | REG | F | INIT | METALS | Barium | Ва | 158.00 | | LANL Int
BG LVL | 13.500 | 11.7 | 1.000 | μg/L | 1 | NQ | NQ | SW-846:6010C | GELC | | Table 1: NMED 03-18 Groundwater Report | iub | C 1. 1 | NMED 03-18 | Ground | uwatei | Report |---------------|--------|------------------------|------------|------------|---------------|------------|---|------------------------|---------------------|--------------|----------------|------------------|---------------|----------------------|-----------------|--------------------------------|-----------|------------|---------------|--------------------|--------------|------------------|---------|-------------------|-----------------|----------------------------------|------------------------|----------------|----------|---------| | Criteria Code | Visits | Samples
First Event | Min Detect | Max Detect | Median Detect | Num Detect | Canyon | Zone | Location | Screen Depth | Start Date | Fld QC Type Code | Fld Prep Code | Lab Sample Type Code | Anyl Suite Code | Analyte Desc | Analyte | Std Result | Result/Median | LVL Type/Risk Code | Screen Level | Exceedance Ratio | Std MDL | Std UOM | Dilution Factor | Lab Qual Code
Validation Flag | Validation Reason Code | Anyl Meth Code | Lab Code | Comment | | C4 | 68 7 | 76 1/10/2000 | 15.50 | 42.80 | 29.250 | 76 | Water Canyon
(includes
Canon de Valle,
Potrillo, and
Fence Canyons) | Intermediate
Spring | Martin Spring | 0 | 2/23/2018 | REG | F | INIT | GENINORG | Calcium | Ca | 27.40 | 0.9 | LANL Int
BG LVL | 10.70 | 2.6 | 0.050 | mg/L | I | NQ | NQ | SW-846:6010C | GELC | | | C4 | 24 3 | 30 1/30/2007 | 18.00 | 44 | 22.6 | 30 | Water Canyon
(includes
Canon de Valle,
Potrillo, and
Fence Canyons) | Intermediate
Spring | Martin Spring | 0 | 2/23/2018 | REG | F | INIT | GENINORG | Chloride | CI(-1) | 24.00 | 1.1 | LANL Int
BG LVL | 3.1 | 7.7 | 0.34 | mg/L | 5 | NQ | NQ | EPA:300.0 | GELC | | | C4 | 32 3 | 8/25/2005 | 65.70 | 112 | 94.30 | | Water Canyon
(includes
Canon de Valle,
Potrillo, and
Fence Canyons) | Intermediate
Spring | Martin Spring | 0 | 2/23/2018 | REG | F | INIT | GENINORG | Hardness | HARDNESS | 93.80 | | LANL Int
BG LVL | 37.8 | 2.5 | 0.45 | mg/L | | NQ | NQ | SM:A2340B | GELC | | | C4 | 24 3 | 30 1/30/2007 | 1.69 | 4.9 | 2.72 | 30 | Water Canyon
(includes
Canon de Valle,
Potrillo, and
Fence Canyons) | Intermediate
Spring | Martin Spring | 0 | 2/23/2018 | REG | F | INIT | GENINORG | Nitrate-Nitrite as
Nitrogen | NO3+NO2-N | 2.92 | 1.1 | LANL Int
BG LVL | 0.5 | 6.4 | 0.085 | mg/L | ; | NQ | NQ | EPA:353.2 | GELC | | | C4 | 32 3 | 8/25/2005 | 93.80 | 155 | 133 | 39 | Water Canyon
(includes
Canon de Valle,
Potrillo, and
Fence Canyons) | Intermediate
Spring | Martin Spring | 0 | 2/23/2018 | REG | F | INIT | METALS | Strontium | Sr | 133.00 | 1.0 | LANL Int
BG LVL | 59.60 | 2.2 | 1.00 | μg/L | | NQ | NQ | SW-846:6010C | GELC | | | C4 | 24 3 | 30 1/30/2007 | 7 13.10 | 20.0 | 16.9 | | Water Canyon
(includes
Canon de Valle,
Potrillo, and
Fence Canyons) | Intermediate
Spring | Martin Spring | 0 | 2/23/2018 | REG | F | INIT | GENINORG | Sulfate | SO4(-2) | 19.80 | 1.2 | LANL Int
BG LVL | 7.10 | 2.8 | 0.665 | mg/L | 5 | NQ | NQ | EPA:300.0 | GELC | | | C4 | 14 | 5 8/8/2011 | 42.00 | 54.10 | 44.00 | | Lower Los Alamos
Canyon
(San Ildefonso
Pueblo) | | Vine Tree
Spring | 0 | 12/12/201
7 | REG | F | INIT | METALS | Barium | Ва | 43.20 | 1.0 | LANL Int
BG LVL | 13.5 | 3.2 | 1.000 | μg/L [*] | J | NQ | NQ | SW-846:6010C | GELC | | | | | 5 8/8/2011 | 27.60 | 31.00 | 28.60 | | Lower Los Alamos
Canyon
(San Ildefonso
Pueblo) | Intermediate
Spring | Vine Tree
Spring | 0 | 12/12/201
7 | REG | F | INIT | GENINORG | Calcium | Ca | 31.00 | | LANL Int
BG LVL | 10.7 | 2.9 | 0.050 | mg/L | | NQ | NQ | SW-846:6010C | GELC | | | C4 | 14 | 5 8/8/2011 | 15.50 | 19 | 16.8 | | Lower Los Alamos
Canyon
(San Ildefonso
Pueblo) | Intermediate
Spring | Vine Tree
Spring | 0 | 12/12/201
7 | REG | F | INIT | GENINORG | Chloride | CI(-1) | 17.90 | | LANL Int
BG LVL | 3.11 | 5.8 | 0.07 | mg/L | 1 | NQ | NQ | EPA:300.0 | GELC | | 7 Table 1: NMED 03-18 Groundwater Report | Tabl | 21: NI | MED | 03-18 | Ground | dwater | Report |---------------|--------|---------|-------------|------------|------------|---------------|------------|--|------------------------|---------------------|--------------|----------------|------------------|---------------------------------------|-----------------|--------------------------------|-----------|------------|---------------|--------------------|--------------|------------------|---------|---------|-----------------|----------------------------------|------------------------|----------------|----------|---------| | Criteria Code | Visits | Samples | First Event | Min Detect | Max Detect | Median Detect | Num Detect | Canyon | Zone | Location | Screen Depth | Start Date | Fld QC Type Code | Fld Prep Code
Lab Sample Type Code | Anyl Suite Code | Analyte Desc | Analyte | Std Result | Result/Median | LVL Type/Risk Code | Screen Level | Exceedance Ratio | Std MDL | Std UOM | Dilution Eactor | Lab Qual Code
Validation Flag | Validation Reason Code | Anyl Meth Code | Lab Code | Comment | | C4 | 4 15 | 5 8/8/ | 3/2011 | 101.00 | 113 | 104.0 | 15 | Lower Los Alamos
Canyon
(San Ildefonso
Pueblo) | Intermediate
Spring | Vine Tree
Spring | 0 | 12/12/201
7 | REG | F INIT | GENINORG | Hardness | HARDNESS | 113.00 | 1.1 | LANL Int
BG LVL | 37.80 | 3.0 | 0.45 | mg/L | 1 | NQ | NQ | SM:A2340B | GELC | | | C4 | 4 15 | 8/8/ | 3/2011 | 7.75 | 8.59 | 7.95 | 15 | Lower Los Alamos
Canyon
(San Ildefonso
Pueblo) | Intermediate
Spring | Vine Tree
Spring | 0 | 12/12/201
7 | REG | F INIT | GENINORG | Magnesium | Mg | 8.59 | | LANL Int
BG LVL | 3.140 | 2.7 | 0.110 | mg/L | 1 | NQ | NQ | SW-846:6010C | GELC | | | C4 | 3 14 | 8/8 | 3/2011 | 3.38 | 4.35 | 3.59 | 14 | Lower Los Alamos
Canyon
(San Ildefonso
Pueblo) | Intermediate
Spring | Vine Tree
Spring | 0 | 12/12/201
7 | REG | F INIT | GENINORG | Nitrate-Nitrite as
Nitrogen | NO3+NO2-N | 3.57 | | LANL Int
BG LVL | 0.459 | 7.8 | 0.085 | mg/L | 5 | NQ | NQ | EPA:353.2 | GELC | | | C4 | 4 15 | 5 8/8/ | 3/2011 | 4.86 | 7 | 5.7 | 15 | Lower Los Alamos
Canyon
(San Ildefonso
Pueblo) | Intermediate
Spring | Vine Tree
Spring | 0 | 12/12/201
7 | REG | F INIT | GENINORG | Perchlorate | CIO4 | 5.99 | | LANL Int
BG LVL | 0.27 | 22.2 | 0.250 | µg/L | 5 | NQ | NQ | SW-846:6850 | GELC | | | C4 | 4 15 | 5 8/8/ | 3/2011 | 127.00 | 151 | 141.0 | 15 | Lower Los Alamos
Canyon
(San Ildefonso
Pueblo) | Intermediate
Spring | Vine Tree
Spring | 0 | 12/12/201
7 | REG | F INIT | METALS | Strontium | Sr | 145.00 | | LANL Int
BG LVL | 59.60 | 2.4 | 1.000 | μg/L | 1 | NQ | NQ | SW-846:6010C | GELC | | | C4 | 4 15 | 5 8/8/ | 3/2011 | 19.90 | 21.7 | 21.20 | 15 | Lower Los Alamos
Canyon
(San Ildefonso
Pueblo) | Intermediate
Spring | Vine Tree
Spring | 0 | 12/12/201
7 | REG | F INIT | GENINORG | Sulfate | SO4(-2) | 21.60 | | LANL Int
BG LVL | 7.1 | 3.0 | 0.266 | mg/L | 2 | NQ | NQ | EPA:300.0 | GELC | | | C4 : | 34 36 | 5 2/2 | 28/2009 | 3.00 | 6.7 | 4.73 | 36 | Mortandad Canyon
(includes Ten Site
Canyon and
Canada del Buey) | Regional | R-45 S1 | 880 | 2/14/2018 | REG | F INIT | GENINORG | Chloride | CI(-1) | 6.03 | | LANL Reg
BG LVL | 2.700 | 2.2 | 0.067 | mg/L | 1 | NQ | NQ | EPA:300.0 | GELC | | | C4 : | 34 40 | 2/2 | 28/2009 | 8.40 | 50.700 | 27.50 | 40 | Mortandad Canyon
(includes Ten Site
Canyon and
Canada del Buey) | Regional | R-45 S1 | 880 | 2/14/2018 | REG | F INIT | METALS | Chromium | Cr | 44.90 | | LANL Reg
BG LVL | 7.480 | 6.0 | 3.000 | µg/L | 1 | NQ | NQ | SW-846:6020 | GELC | | | C4 : | 34 36 | 5 2/2 | 28/2009 | 0.26 | 3.47 | 2.830 | 36 | Mortandad Canyon
(includes Ten Site
Canyon and
Canada del Buey) | Regional | R-45 S1 | 880 | 2/14/2018 | REG | F INIT | GENINORG | Nitrate-Nitrite as
Nitrogen | NO3+NO2-N | 3.29 | | LANL Reg
BG LVL | 0.769 | 4.3 | 0.085 | mg/L | 5 | NQ | NQ | EPA:353.2 | GELC | | | C4 : | 33 40 | 3/5 | 5/2009 | 6.10 | 47.4 | 13.200 | 39 | Mortandad Canyon
(includes Ten Site
Canyon and
Canada del Buey) | Regional | R-45 S2 | 975 | 2/14/2018 | REG | F INIT | METALS | Chromium | Cr | 21.80 | | LANL Reg
BG LVL | 7.48 | 2.9 | 3.000 | μg/L | 1 | NQ | NQ | SW-846:6020 | GELC | | | C4 : | 66 42 | 2 3/6 | 6/2010 | 4.68 | 10 | 8 | 42 | Mortandad Canyon
(includes Ten Site
Canyon and
Canada del Buey) | Regional | R-50 S1 | 1077 | 2/15/2018 | REG | F INIT | GENINORG | Chloride | CI(-1) | 9.22 | | LANL Reg
BG LVL | 2.7 | 3.4 | 0.13 | mg/L | 2 | NQ | NQ | EPA:300.0 | GELC | | Table 1: NMED 03-18 Groundwater Report | Table | | ED 03-18 (| Ground | wateri | eport |---------------|---------|-------------|------------|------------|---------------|------------|--|----------|---------------|--------------|------------|------------------|---------------|---|--------------------------------|-----------|-------------|-------------------------------------|--------------|------------------|---------|---------|-----------------|-----------------|------------------------|----------------|----------|---------| | Criteria Code | Samples | First Event | Min Detect | Max Detect | Median Detect | Num Detect | Canyon | Zone | Location | Screen Depth | Start Date | Fid QC Type Code | Fld Prep Code | Lab Sample Type Code
Anyl Suite Code | Analyte Desc | Analyte | Std Result | Result/Median
LVL Type/Risk Code | Screen Level | Exceedance Ratio | Std MDL | Std UOM | Dilution Eactor | Validation Flag | Validation Reason Code | Anyl Meth Code | Lab Code | Comment | | C4 36 | 44 | 3/6/2010 | 49.80 | 150.00 | 99.05 | 44 | Mortandad Canyon
(includes Ten Site
Canyon and
Canada del Buey) | Regional | R-50 S1 | 1077 | 2/15/2018 | REG | = | NIT METALS | Chromium | Cr | 123.00 | 1.2 LANL Reg
BG LVL | 7.5 | 16.4 | 3.000 | μg/L | 1 | NQ | NQ | SW-846:6020 | GELC | | | C4 36 | 43 | 3/6/2010 | 0.40 | 2.72 | 1.79 | 43 | Mortandad Canyon
(includes Ten Site
Canyon and
Canada del Buey) | Regional | R-50 S1 | 1077 | 2/15/2018 | REG | = 1 | NIT GENINORG | Nitrate-Nitrite as
Nitrogen | NO3+NO2-N | 2.52 | 1.4 LANL Reg
BG LVL | 0.8 | 3.3 | 0.085 | mg/L | 5 | NQ | NQ | EPA:353.2 | GELC | | | C4 36 | 42 | 3/6/2010 | 7.22 | 14.9 | 11.70 | 42 | Mortandad Canyon
(includes Ten Site
Canyon and
Canada del Buey) | Regional | R-50 S1 | 1077 | 2/15/2018 | REG I | = 1 | NIT GENINORG | Sulfate | SO4(-2) | 13.90 | 1.2 LANL Reg
BG LVL | 4.590 | 3.0 | 0.133 | mg/L | 1 | NQ | NQ | EPA:300.0 | GELC | | | C4 20 | 24 | 5/20/2011 | 2.03 | 23.30 | 19.70 | 23 | Mortandad Canyon
(includes Ten Site
Canyon and
Canada del Buey) | Regional | R-61 S1 | 1125 | 2/20/2018 | FD I | = | NIT METALS | Chromium | Cr | 21.60 | 1.1 LANL Reg
BG LVL | 7.480 | 2.9 | 3.000 | μg/L | 1 | NQ | NQ | SW-846:6020 | GELC | | | C4 20 | 24 | 5/20/2011 | 2.03 | 23.30 | 19.70 | 23 | Mortandad Canyon
(includes Ten Site
Canyon and
Canada del Buey) | Regional | R-61 S1 | 1125 | 2/20/2018 | REG I | = | NIT METALS | Chromium | Cr | 22.60 | 1.1 LANL Reg
BG LVL | 7.5 | 3.0 | 3.000 | μg/L | 1 | NQ | NQ | SW-846:6020 | GELC | | | C4 20 | 24 | 5/20/2011 | 0.43 | 2.3 | 1.9 | 24 | Mortandad Canyon
(includes Ten Site
Canyon and
Canada del Buey) | Regional | R-61 S1 | 1125 | 2/20/2018 | FD I | = 1 | NIT GENINORG | Nitrate-Nitrite as
Nitrogen | NO3+NO2-N | 1.85 | 1.0 LANL Reg
BG LVL | 0.8 | 2.4 | 0.085 | mg/L | 5 | NQ | NQ | EPA:353.2 | GELC | | | C4 20 | 24 | 5/20/2011 | 0.43 | 2.3 | 1.9 | | Mortandad Canyon
(includes Ten Site
Canyon and
Canada del Buey) | Regional | R-61 S1 | 1125 | 2/20/2018 | REG I | = 1 | NIT GENINORG | Nitrate-Nitrite as
Nitrogen | NO3+NO2-N | 1.85 | 1.0 LANL Reg
BG LVL | 0.77 | 2.4 | 0.085 | mg/L | 5 | NQ | NQ | EPA:353.2 | GELC | | | C4 20 | 24 | 5/20/2011 | 2.96 | 12.1 | 8.0 | | Mortandad Canyon
(includes Ten Site
Canyon and
Canada del Buey) | Regional | R-61 S1 | 1125 | 2/20/2018 | FD I | = 1 | NIT GENINORG | Perchlorate | CIO4 | 11.60 | 1.4 LANL Reg
BG LVL | 0.4 | 28.0 | 0.50 | μg/L | 10 | NQ | NQ | SW-846:6850 | GELC | | | C4 20 | 24 | 5/20/2011 | 2.96 | 12.1 | 8.05 | 24 | Mortandad Canyon
(includes Ten Site
Canyon and
Canada del Buey) | Regional | R-61 S1 | 1125 | 2/20/2018 | REG I | = | NIT GENINORG | Perchlorate | CIO4 | 10.80 | 1.3 LANL Reg
BG LVL | 0.41 | 26.1 | 0.500 | μg/L | 10 | NQ | NQ | SW-846:6850 | GELC | | | C5 11 | 12 | 4/1/2010 | 609.00 | 3880 | 2740 | | Water Canyon
(includes Canon de
Valle, Potrillo, and
Fence Canyons) | Alluvial | CDV-16-611937 | 3 | 2/16/2018 | REG I | = | NIT METALS | Manganese | Mn | 1880.0
0 | 0.7 NM GW
STD | 200 | 9.4 | 2 | μg/L | 1 | NQ | NQ | SW-846:6010C | GELC | | Table 1: NMED 03-18 Groundwater Report | | 101 C 1. | INIVIL | D 03-18 | Ground | IWater | report |---|-------------------------|---------|-------------|------------|------------|---------------|------------|--|------------------------|----------------|--------------|------------|------------------|---------|----------------------|-----------------|-------|--------------|----------|------------|---------------|----------------------------|--------------|------------------|---------|---------|-----------------|----------------------------------|------------------------|----------------|----------|---| | | Criteria Code
Visits | Samples | First Event | Min Detect | Max Detect | Median Detect | Num Detect | Canyon | Zone | Location | Screen Depth | Start Date | Fld QC Type Code | Prep Co | Lab Sample Type Code | Anyl Suite Code | | Analyte Desc | Analyte | Std Result | Result/Median | LVL Type/Risk Code | Screen Level | Exceedance Ratio | Std MDL | Std UOM | Dilution Factor | Lab Qual Code
Validation Flag | Validation Reason Code | Anyl Meth Code | Lab Code | Comment | | C | 5 31 | 36 (| 6/22/2005 | 1.06 | 7.69 | 3.675 | | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Intermediate
Spring | Bulldog Spring | 0 | 2/21/2018 | REG | UF II | NIT | HEXP | RDX | | 121-82-4 | 7.69 | | NMED A1
TAP SCRN
LVL | 7.02 | 1.1 | 0.092 | μg/L | 2 | NQ | NQ | SW-846:8330B | GELC | Highest to date, concentration has increased for the third consecutive sampling. Prior RDX concentrations fluctuate between 1.06 µg/L and 6.88 µg/L. Current elevated RDX is likely due to relatively high turbidity (NTU:2.9) of the sample. | | C | 5 64 | 72 | 1/10/2000 | 570.00 | 2840 | 1315 | | Water Canyon
(includes Canon de
Valle, Potrillo, and
Fence Canyons) | Intermediate
Spring | Martin Spring | 0 | 2/23/2018 | REG | F II | NIT | METALS | Boron | | В | 984.00 | | NM GW
STD | 750 | 1.3 | 15 | μg/L | 1 | NQ | NQ | SW-846:6010C | GELC | | | C | A 31 | 36 | 6/22/2005 | 1.06 | 7.69 | 3.675 | | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Intermediate
Spring | Bulldog Spring | 0 | 2/21/2018 | FD | UF II | NIT F | HEXP | RDX | | 121-82-4 | 7.08 | | NMED A1
TAP SCRN
LVL | | 1 | 0.091 | μg/L | 2 | NQ | NQ | SW-846:8330B | GELC | Primary
sample
concentration
was 7.69 µg/L. | | C | A 31 | 36 | 6/22/2005 | 1.06 | 7.69 | 3.675 | | Pajarito Canyon
(includes Twomile
and Threemile
Canyons) | Intermediate
Spring | Bulldog Spring | 0 | 2/21/2018 | REG | UF II | NIT F | HEXP | RDX | | 121-82-4 | 7.69 | | NMED A1
TAP SCRN
LVL | | 1.1 | 0.092 | μg/L | 2 | NQ | NQ | SW-846:8330B | GELC | Highest to date, concentration has increased for the third consecutive sampling. Prior RDX concentrations fluctuate between 1.06 µg/L and 6.88 µg/L. Current elevated RDX is likely due to relatively high turbidity | Table 1: NMED 03-18 Groundwater Report | Criteria Code
Visits
Samples | First Event | Min Detect | Max Detect | Median Detect
Num Detect | Canyon | Zone | Location | Screen Depth | Start Date | Fld QC Type Code | Lab Sample Type Code | Anyl Suite Code | Analyte Desc | Analyte | Std Result | Result/Median | LVL Type/Risk Code | Screen Level | Exceedance Ratio | Std MDL | Std UOM | Dilution Eactor | tio | Validation Reason Code | Anyl Meth Code | Lab Code | Comment | |------------------------------------|-------------|------------|------------|-----------------------------|--------|------|----------|--------------|------------|------------------|----------------------|-----------------|--------------|---------|------------|---------------|--------------------|--------------|------------------|---------|---------|-----------------|-----|------------------------|----------------|----------|-----------------------------| (NTU:2.9) of
the sample. | ## Table 2: NMED 03-18 Groundwater Report Addendum | Criteria Code | Visits | Samples | First Event | Min Detect | Max Detect | Median Detect | Num Detect | Canyon | Zone | Location | Screen Depth | Start Date | Fld QC Type Code | Fld Prep Code | Lab Sample Type Code | Anyl Suite Code | Analyte Desc | Analyte | Std Result | Result/Median | LVL Type/Risk Code | Screen Level | Exceedance Ratio | Std MDL | Std UOM | Dilution Factor | Lab Oual Code
Validation Flag | | Validation Reason Code Anyl Meth Code | Lab Code | Comment | |---------------|--------|---------|-------------|------------|------------|---------------|------------|---|------------------------|-----------------------------|--------------|------------|------------------|---------------|----------------------|-----------------|--------------------|---------------|------------|---------------|--------------------|--------------|------------------|---------|---------|-----------------|----------------------------------|-----|---------------------------------------|----------|---------| | XC2sc | 27 | 35 | 12/15/2005 | 18.8 | 54.5 | 21.85 | 6 | Water Canyon (includes
Canon de Valle, Potrillo,
and Fence Canyons) | Intermediate | CdV-16-2(i)r | 850 | 2/16/2018 | REG | F | INIT | METALS | Iron | Fe | 54.5 | 2.5 | Int-Scr_95 | 54.1 | 1 | 30 | μg/L | 1 J | J | J_L | AB SW-846:6010C | GELC | | | XC2sc | 24 | 29 | 8/25/2005 | 0.003 | 0.0127 | 0.00437 | 5 | Water Canyon (includes
Canon de Valle, Potrillo,
and Fence Canyons) | Intermediate
Spring | Martin Spring | 0 | 2/23/2018 | REG | UF I | INIT | INORGANIC | Cyanide
(Total) | CN
(Total) | 0.0127 | 2.9 | Int-Scr_95 | 0.0017 | 7.5 | 0.002 | mg/L | 1 | NQ | NQ | EPA:335.4 | GELC | | | XC4sc | 28 | 34 | 6/1/2005 | 36.5 | 78.9 | 60.5 | 34 | Water Canyon (includes
Canon de Valle, Potrillo,
and Fence Canyons) | Intermediate | CdV-16-1(i) | 624 | 2/16/2018 | FD | F | INIT | METALS | Boron | В | 36.5 | 0.6 | Int-Scr_95 | 16.2 | 2.3 | 15 | μg/L | 1 J | J | J_L | AB SW-846:6010C | GELC | | | XC4sc | 28 | 34 | 6/1/2005 | 36.5 | 78.9 | 60.5 | 34 | Water Canyon (includes
Canon de Valle, Potrillo,
and Fence Canyons) | Intermediate | CdV-16-1(i) | 624 | 2/16/2018 | REG | F | INIT | METALS | Boron | В | 36.6 | 0.6 | Int-Scr_95 | 16.2 | 2.3 | 15 | μg/L | 1 J | J | J_L | AB SW-846:6010C | GELC | | | XC4sc | 28 | 34 | 6/1/2005 | 3.4 | 24.8 | 9.5 | 32 | Water Canyon (includes
Canon de Valle, Potrillo,
and Fence Canyons) | Intermediate | CdV-16-1(i) | 624 | 2/16/2018 | FD | F | INIT | METALS | Copper | Cu | 14.5 | 1.5 | Int-Scr_95 | 3 | 4.8 | 3 | μg/L | 1 | NQ | NQ | SW-846:6010C | GELC | | | XC4sc | 28 | 34 | 6/1/2005 | 3.4 | 24.8 | 9.5 | 32 | Water Canyon (includes
Canon de Valle, Potrillo,
and Fence Canyons) | Intermediate | CdV-16-1(i) | 624 | 2/16/2018 | REG | F | INIT | METALS | Copper | Cu | 14.4 | 1.5 | Int-Scr_95 | 3 | 4.8 | 3 | μg/L | 1 | NQ | NQ | SW-846:6010C | GELC | | | XC4sc | 72 | 87 | 1/10/2000 | 16.2 | 2590 | 335 | 62 | Water Canyon (includes
Canon de Valle, Potrillo,
and Fence Canyons) | Spring | Burning
Ground
Spring | 0 | 2/10/2018 | REG | F | INIT | METALS | Aluminum | Al | 338 | 1 | Int-Scr_95 | 68 | 5 | 68 | μg/L | 1 | NQ | NQ | SW-846:6010C | GELC | | | XC4sc | - 68 | 76 | 1/10/2000 | 51 | 5130 | 316.5 | 48 | Water Canyon (includes
Canon de Valle, Potrillo,
and Fence Canyons) | Intermediate
Spring | Martin Spring | 0 | 2/23/2018 | REG | F | INIT | METALS | Aluminum | Al | 152 | 0.5 | Int-Scr_95 | 68 | 2.2 | 68 | μg/L | 1 J | J | J_L | AB SW-846:6010C | GELC | | | XC4sc | 64 | 72 | 1/10/2000 | 570 | 2840 | 1315 | 72 | Water Canyon (includes
Canon de Valle, Potrillo,
and Fence Canyons) | Intermediate
Spring | Martin Spring | 0 | 2/23/2018 | REG | F | INIT | METALS | Boron | В | 984 | 0.7 | Int-Scr_95 | 16.2 | 61 | 15 | μg/L | 1 | NQ | NQ | SW-846:6010C | GELC | | | XC4sc | 14 | 15 | 8/8/2011 | 0.136 | 0.19 | 0.161 | 15 | Lower Los Alamos
Canyon (San Ildefonso
Pueblo) | Intermediate
Spring | Vine Tree
Spring | 0 | 12/12/2017 | REG | F | INIT | GENINORG | Bromide | Br(-1) | 0.161 | 1 | Int-Scr_95 | 0.0716 | 2.2 | 0.067 | mg/L | 1 J | J | J_L | AB EPA:300.0 | GELC | | Table 2: NMED 03-18 Groundwater Report Addendum | Criteria Code | Visits | Samples | First Event | Min Detect | Max Detect | Median Detect | Num Detect | Canyon | Zone | Location | Screen Depth | Start Date | Fld QC Type Code | Fld Prep Code | Lab Sample Type Code | Anyl Suite Code | Analyte Desc | Analyte | Std Result | Result/Median | LVL Type/Risk Code | Screen Level | Exceedance Ratio | Std MDL | Std UOM | Dilution Factor | Lah Oual Code
Validation Elan | Valluation Flag | Validation Reason Code | Lab Code | Comment | |---------------|--------|---------|-------------|------------|------------|---------------|------------|--|----------|----------|--------------|------------|------------------|---------------|----------------------|-----------------|-------------------------------------|---------|------------|---------------|--------------------|--------------|------------------|---------|---------|-----------------|----------------------------------|-----------------|------------------------|----------|---------| | XC4sc | 20 | 24 | 5/20/2011 | 0.053 | 11.8 | 1.53 | - | Mortandad Canyon
(includes
Ten Site Canyon and
Canada del Buey) | Regional | R-61 S1 | 1125 | 2/20/2018 | FD | F I | NIT | GENINORG | Total
Phosphate as
Phosphorus | | 0.574 | 0.4 | Reg-Scr_95 | 0.0822 | 7 (|).02 | mg/L | 1 | NG | Q NO | EPA:365.4 | GELC | | | XC4sc | 20 | 24 | 5/20/2011 | 0.053 | 11.8 | 1.53 | 9 | Mortandad Canyon
(includes
Ten Site Canyon and
Canada del Buey) | Regional | R-61 S1 | 1125 | 2/20/2018 | REG | FI | NIT | GENINORG | Total
Phosphate as
Phosphorus | PO4-P | 0.55 | 0.4 | Reg-Scr_95 | 0.0822 | 6.7 | 0.02 | mg/L | 1 | NG | Q NO | EPA:365.4 | GELC | |