

Associate Directorate for Environmental Management P.O. Box 1663, MS M992 Los Alamos, New Mexico 87545 (505) 606-2337



Environmental Management 1900 Diamond Drive, MS M984 Los Alamos, New Mexico 87544 (505) 665-5658/FAX (505) 606-2132

Date: JAN 3 8 2017 Refer To: ADEM-17-0014 LAUR: 17-20200 Locates Action No.: n/a

John Kieling, Bureau Chief Hazardous Waste Bureau New Mexico Environment Department 2905 Rodeo Park Drive East, Building 1 Santa Fe, NM 87505-6303

## Subject: Field Summary Report for Alluvial Piezometers in Sandia Canyon

Dear Mr. Kieling:

Enclosed please find two hard copies with electronic files of the Field Summary Report for Alluvial Piezometers in Sandia Canyon.

If you have any questions, please contact Ted Ball at (505) 665-3996 (tedball@lanl.gov) or Cheryl Rodriguez at (505) 665-5330 (cheryl.rodriguez@em.doe.gov).

Sincerely,

-NI

Bruce Robinson, Program Director Environmental Remediation Program Los Alamos National Laboratory

Sincerely,

David S. Rhodes, Director Office of Quality and Regulatory Compliance Environmental Management Los Alamos Field Office

## BR/DR/TB:sm

- Enclosures: Two hard copies with electronic files Field Summary Report for Alluvial Piezometers in Sandia Canyon (EP2017-0001)
- Cy: (w/enc.) Cheryl Rodriguez, DOE-EM-LA Ted Ball, ADEM ER Program

Cy: (w/electronic enc.) Laurie King, EPA Region 6, Dallas, TX Raymond Martinez, San Ildefonso Pueblo Dino Chavarria, Santa Clara Pueblo Steve Yanicak, NMED-DOE-OB, MS M894 emla.docs@em.doe.gov TerranearPMC (w/ MS Word files on CD) Public Reading Room (EPRR) ADESH Records PRS Database

Cy: (w/o enc./date-stamped letter emailed) lasomailbox@nnsa.doe.gov Peter Maggiore, DOE-NA-LA Kimberly Davis Lebak, DOE-NA-LA David Rhodes, DOE-EM-LA Bruce Robinson, ADEM ER Program Randy Erickson, ADEM Jocelyn Buckley, ADESH-EPC-CP Mike Saladen, ADESH-EPC-CP John Bretzke, ADESH-EPC-DO Michael Brandt, ADESH William Mairson, PADOPS Craig Leasure, PADOPS

LA-UR-17-20200 January 2017 EP2017-0001

# Field Summary Report for Alluvial Piezometers in Sandia Canyon



Prepared by the Associate Directorate for Environmental Management

Los Alamos National Laboratory, operated by Los Alamos National Security, LLC, for the U.S. Department of Energy under Contract No. DE-AC52-06NA25396, has prepared this document to support the investigation and cleanup, including corrective action, of contamination at Los Alamos National Laboratory, as required by the Compliance Order on Consent, signed June 24, 2016. The public may copy and use this document without charge, provided that this notice and any statement of authorship are reproduced on all copies.

## Field Summary Report for Alluvial Piezometers in Sandia Canyon

January 2017

Responsible project manager:

| Ted Ball              | Jal Ball           | Project<br>Manager    | Environmental<br>Remediation<br>Program                     | 1/18/17   |
|-----------------------|--------------------|-----------------------|-------------------------------------------------------------|-----------|
| Printed Name          | Signature          | Title                 | Organization                                                | Date      |
| Responsible LANS repr | resentative:       |                       |                                                             |           |
| Randall Erickson      | Jung Zurfor        | Associate<br>Director | Associate<br>Directorate for<br>Environmental<br>Management | 119/17    |
| Printed Name          | Signature          | Title                 | Organization                                                | Date      |
| Responsible DOE-EM-I  | LA representative: |                       |                                                             |           |
| David S. Rhodes       | Di Schol           | Office<br>Director    | Quality and<br>Regulatory<br>Compliance                     | 1-27-2017 |
| Printed Name          | Signature          | Title                 | Organization                                                | Date      |

#### **EXECUTIVE SUMMARY**

This field summary report describes the drilling, hand-augering, and installation of 17 piezometers, located within Technical Area 72 at Los Alamos National Laboratory, New Mexico. As stated in the July 2015 "Work Plan for Chromium Plume Center Characterization," the purpose of the piezometers is to evaluate infiltration over the portion of Sandia Canyon where the majority of historical and present-day infiltration is suspected to occur, as required by the New Mexico Environment Department's "Approval with Modifications, Drilling Work Plan for Alluvial Piezometers in Sandia Canyon."

Fifteen piezometers were drilled with an auger rig and installed in five north-south trending transects spanning the alluvial fill portion of the bottom of Sandia Canyon. The remaining two piezometers were hand-augered and installed upgradient of the five transects with stainless-steel hand-augers and stainless-steel extension rods. The alluvial piezometers were constructed with vibrating wire transducers set above the alluvium/bedrock contact or within the alluvium where the contact was not reached. The geologic formations encountered were alluvium (Qal), Otowi Member of the Bandelier Tuff (Qbo), Tshirege Member of the Bandelier Tuff (Qbt 1g), and the Cerro Toledo interval (Qct).

## CONTENTS

| 1.0 | INTRO | DDUCTION                                 | 1 |
|-----|-------|------------------------------------------|---|
| 2.0 | ADMI  | NISTRATIVE PLANNING                      | 2 |
| 3.0 | FIELD | ACTIVITIES                               | 2 |
|     | 3.1   | Mobilization                             | 2 |
|     | 3.2   | Drilling Methods                         | 2 |
|     | 3.3   | Lithologic Logging                       | 2 |
|     | 3.4   | Decontamination                          | 3 |
|     | 3.5   | Piezometer Installation and Construction | 3 |
|     | 3.6   | Groundwater Detection                    | 6 |
|     | 3.7   | Surface Completion                       | 6 |
|     | 3.8   | Demobilization                           | 6 |
|     | 3.9   | IDW                                      | 7 |
|     | 3.10  | Data Logger Installation                 | 7 |
|     | 3.11  | Surveying                                | 7 |
| 4.0 | ACKN  | IOWLEDGMENTS                             | 7 |
| 5.0 | REFE  | RENCES AND MAP DATA SOURCES              | 8 |
|     | 5.1   | References                               | 8 |
|     | 5.2   | Map Data Sources                         | 8 |

## Figures

| Figure 1.0-1  | Locations for alluvial piezometer transects and upgradient alluvial piezometers |
|---------------|---------------------------------------------------------------------------------|
| Figure 3.5-1  | As-built diagram of SCPZ-1512                                                   |
| Figure 3.5-2  | As-built diagram of SCPZ-1613                                                   |
| Figure 3.5-3  | As-built diagram of SCPZ-1714                                                   |
| Figure 3.5-4  | As-built diagram of SCPZ-1815                                                   |
| Figure 3.5-5  | As-built diagram of SCPZ-1916                                                   |
| Figure 3.5-6  | As-built diagram of SCPZ-2017                                                   |
| Figure 3.5-7  | As-built diagram of SCPZ-21                                                     |
| Figure 3.5-8  | As-built diagram of SCPZ-2219                                                   |
| Figure 3.5-9  | As-built diagram of SCPZ-23a                                                    |
| Figure 3.5-10 | As-built diagram of SCPZ-23b21                                                  |
| Figure 3.5-11 | As-built diagram of SCPZ-24                                                     |
| Figure 3.5-12 | As-built diagram of SCPZ-25                                                     |
| Figure 3.5-13 | As-built diagram of SCPZ-26                                                     |
| Figure 3.5-14 | Abandonment diagram for SCPZ-27-PA25                                            |
| Figure 3.5-15 | As-built diagram of SCPZ-27                                                     |
| Figure 3.5-16 | As-built diagram of SCPZ-2827                                                   |
| Figure 3.5-17 | As-built diagram of SCPZ-29                                                     |
| Figure 3.5-18 | As-built diagram of SCPZ-13                                                     |
| Figure 3.5-19 | As-built diagram of SCPZ-14                                                     |

## Tables

| Table 3.5-1  | SCPZ-15 Borehole Log                                                                                           |
|--------------|----------------------------------------------------------------------------------------------------------------|
| Table 3.5-2  | SCPZ-16 Borehole Log                                                                                           |
| Table 3.5-3  | SCPZ-17 Borehole Log                                                                                           |
| Table 3.5-4  | SCPZ-18 Borehole Log                                                                                           |
| Table 3.5-5  | SCPZ-19 Borehole Log                                                                                           |
| Table 3.5-6  | SCPZ-20 Borehole Log                                                                                           |
| Table 3.5-7  | SCPZ-21 Borehole Log                                                                                           |
| Table 3.5-8  | SCPZ-22 Borehole Log                                                                                           |
| Table 3.5-9  | SCPZ-23a Borehole Log                                                                                          |
| Table 3.5-10 | SCPZ-24 Borehole Log                                                                                           |
| Table 3.5-11 | SCPZ-25 Borehole Log41                                                                                         |
| Table 3.5-12 | SCPZ-26 Borehole Log                                                                                           |
| Table 3.5-13 | SCPZ-27-PA Borehole Log                                                                                        |
| Table 3.5-14 | SCPZ-27 Borehole Log43                                                                                         |
| Table 3.5-15 | SCPZ-28 Borehole Log                                                                                           |
| Table 3.5-16 | SCPZ-29 Borehole Log45                                                                                         |
| Table 3.5-17 | SCPZ-13 Borehole Log46                                                                                         |
| Table 3.5-18 | SCPZ-14 Borehole Log                                                                                           |
| Table 3.6-1  | DTW in Sandia Canyon Boreholes before Piezometer Construction                                                  |
| Table 3.10-1 | Sandia Canyon Piezometers Data Logger and VWT Serial Numbers and VWT Zero<br>Readings and Temperature Readings |
| Table 3.11-1 | Sandia Canyon Piezometers Survey Coordinates                                                                   |

## Appendixes

| Appendix A | Instruction Manual Model LC-2x4 4 Channel VW Datalogger          |
|------------|------------------------------------------------------------------|
| Appendix B | Instruction Manual, Model 4500 Series Vibrating Wire Piezometers |
| Appendix C | LogView User's Guide                                             |

Appendix D Vibrating Wire Pressure Transducer Calibration Reports

## ACRONYM LIST

| amsl          | above mean sea level                   |
|---------------|----------------------------------------|
| bgs           | below ground surface                   |
| Consent Order | Compliance Order on Consent            |
| DOE           | Department of Energy (U.S.)            |
| DTW           | depth to water                         |
| EM            | Environmental Management               |
| ESH           | Environment, Safety, and Health        |
| FTL           | field team leader                      |
| HSA           | hollow-stem auger                      |
| I.D.          | inside diameter                        |
| IDW           | investigation-derived waste            |
| LANL          | Los Alamos National Laboratory         |
| NAD           | North American Datum                   |
| NR            | not recorded                           |
| NMED          | New Mexico Environment Department      |
| O.D.          | outside diameter                       |
| RCT           | radiological control technician        |
| STR           | subcontractor technical representative |
| ТА            | technical area                         |
| TD            | total depth                            |
| VWT           | vibrating wire transducer              |
| WCSF          | waste characterization strategy form   |

## 1.0 INTRODUCTION

This field summary report summarizes borehole drilling, hand-augering, and installation of 17 alluvial piezometers in Sandia Canyon. The report is written in accordance with the requirements in Appendix F, Section II, of the June 2016 Compliance Order on Consent (the Consent Order) and the New Mexico Environment Department's (NMED's) "Approval with Modification, Drilling Work Plan for Alluvial Piezometers in Sandia Canyon" (NMED 2016, 601327). The alluvial piezometers were installed between May 17 and July 8, 2016, at Los Alamos National Laboratory (LANL or the Laboratory) for the Environmental Management (EM) Directorate.

The alluvial piezometers are located within the Laboratory's Technical Area 72 (TA-72) in Los Alamos County, New Mexico (Figure 1.0-1). As stated in the July 2015 "Work Plan for Chromium Plume Center Characterization" (LANL 2015, 600615), the purpose of the piezometers is to evaluate infiltration over the portion of Sandia Canyon where it is believed the majority of historical and presentday infiltration has occurred. The overall objective of the piezometer configuration is to evaluate the integrated area of infiltration over the subject area. The general approach will be to obtain pressure data at varying depths throughout the saturated portion of the alluvium. The pressure data will be used to refine the current hydrologic model for infiltration of effluent and other surface water sources in Sandia Canyon. The data will also be used to establish a baseline to compare with potential future changes that may occur either because of operational changes in effluent volumes or future remediation strategies that may include discharge of treated groundwater to Sandia Canyon above the infiltration zone monitored by the piezometers. An additional objective is to further constrain the upgradient extent of infiltration in Sandia Canyon.

A total of 15 piezometers, SCPZ-15 through SCPZ-29, were installed in 5 north-south trending transects, spanning the alluvial fill portion of the bottom of Sandia Canyon. A CME-75 tracked hollow-stem auger (HSA) drill rig with 4.25-in.—inside diameter (I.D.)/8-in.—outside diameter (O.D.) HSAs was used to drill the piezometers. A modified split-spoon sampler was used for geologic logging.

The remaining two piezometers, SCPZ-13 and SCPZ-14, were hand-augered upgradient of the five transects with 3.25-in. stainless-steel hand-augers and stainless-steel extension rods. Piezometers SCPZ-1 through SCPZ-12 were installed previously in the wetland upcanyon and are not discussed in this report (LANL 2014, 257590).

After the piezometers were drilled and hand-augered, vibrating wire transducers (VWT) were installed in the boreholes during placement of construction materials.

Post-installation activities included surface completion installation, data logger programming, and geodetic surveying. Future activities will include waste management.

The information presented in this report was compiled from field reports and daily activity summaries. Records, including field reports, field logs, and survey information, are on file at the EM Records Processing Facility. This report contains a summary description of activities and supporting figures, tables, and appendixes associated with the project. Appendix A is the instruction manual for the Geokon Model LC-2x4 4 Channel VW Datalogger, Appendix B is the instruction manual for the Geokon Model 4500 Series Vibrating Wire Piezometers, Appendix C is the Geokon LogView User's Guide, and Appendix D includes the VWT calibration reports.

## 2.0 ADMINISTRATIVE PLANNING

The following documents were prepared to guide activities associated with the drilling and installation of the alluvial piezometers in Sandia Canyon:

- The approved "Drilling Work Plan for Alluvial Piezometers in Sandia Canyon" (LANL 2015, 601047; NMED 2016, 601327);
- "Field Implementation Plan for Alluvial Piezometers in Sandia Canyon" (TerranearPMC 2016, 601928);
- "IWD [Integrated Work Document] for Drilling and Installation of Alluvial Piezometers in Sandia Canyon" (TerranearPMC 2016, 601927); and
- "Waste Characterization Strategy Form for Drilling Work Plan for Alluvial Piezometers in Sandia Canyon" (LANL 2016, 601275).

### 3.0 FIELD ACTIVITIES

Field activities, including borehole drilling, lithologic logging, VWT system installation, surface completions, geodetic surveying and waste management followed an approved IWD. The approved "Drilling Work Plan for Alluvial Piezometers in Sandia Canyon" (LANL 2015, 601047; NMED 2016, 601327) was used to guide field operations and ensure all objectives were met.

#### 3.1 Mobilization

The CME-75 tracked HSA drill rig, drilling equipment, and supplies were mobilized to a well pad (R-43) in proximity to the piezometer locations on May 17 and May 19, 2016. The equipment and tooling were decontaminated before mobilization to the site and were screened by a Laboratory radiological control technician (RCT) and inspected by the Laboratory project Environment, Safety, and Health representative and subcontractor technical representative (STR) before drilling activities commenced.

### 3.2 Drilling Methods

Fifteen of the 17 boreholes were drilled with the CME 75 tracked HSA rig, downhole tooling, and support equipment. HSAs using auger flights with 4.25-in. I.D./8-in. O.D. were used to drill the boreholes. After advancement of each auger flight, a standard penetration test hammer run downhole on rods was used to advance drive samplers over 1.5-ft-long sample intervals, with blow counts documented for each 6-in. drive interval.

Two piezometer boreholes, located farther upcanyon, were installed with nominal 3.25-in. stainless-steel hand-augers and stainless-steel extension rods.

### 3.3 Lithologic Logging

Drive samples were collected during drilling to determine lithologic characteristics as well as to examine the contact between the alluvium and underlying bedrock. In general, blow counts were documented during drive sampling to determine alluvial sediment consolidation as well as to aid in determining when Quaternary alluvium (Qal)/Tshirege Member Unit 1g of the Bandelier Tuff (Qbt 1g) bedrock contact or the Qal/Cerro Toledo (Qct) contact was encountered. However, because the Cerro Toledo (Qct) formation lacks cementation, blow counts were not useful in determining the Qal/Qct contact. During the installation of borehole SCPZ-17, the first location drilled for this project, blow counts were not recorded until the

anticipated depth of the alluvium/bedrock contact was reached. After SCPZ-17 was drilled, blow counts were recorded during drive sampling at approximate 5-ft intervals. During hand-augering, lithology was based on characteristic changes in the quality of augering as well as on the recovered auger materials. Lithologic characteristics and relative moisture were recorded on lithologic logs.

## 3.4 Decontamination

Following completion of drilling activities, augers and sampling tools were decontaminated with a wire brush, followed by spraying with Fantastik and wiping clean with paper towels. Investigation-derived waste (IDW) accumulated during decontamination activities was staged and managed on-site and characterized according to the waste characterization strategy form (WCSF).

## 3.5 Piezometer Installation and Construction

As originally designed, the piezometers comprising the five transects were to include three Geokon model 4500AL-170-kPa VWT sets in each borehole, with each VWT installed in a 2-ft interval of 10/20 silica sand, separated by a 1-ft interval of hydrated bentonite chips. The deepest of the three VWTs and the sand interval were to be placed at the alluvium/bedrock contact. The middle and upper VWTs were to be installed above and backfill materials emplaced as augers were removed.

The two hand-augered piezometer boreholes consisted of two VWT sets in each borehole. Each VWT was installed in a 2-ft interval of 10/20 Colorado silica sand, separated by a 1-ft interval of hydrated bentonite chips. The first (lowermost) VWT and sand interval were placed at the alluvium/bedrock contact.

A separate, unique data cable was connected to each VWT that extended upward, beyond the surface of the borehole. The VWTs were clearly labeled and lowered into the borehole using the manufactured communication cable, with moderate tension maintained on the cable throughout installation. Before installation, an initial zero pressure reading was obtained for each piezometer in a thermally stable water bath. Proper function of the VWTs was confirmed before initial backfilling. Material volumes were calculated before emplacement and were measured to verify depths as necessary throughout backfilling as the augers were removed. Measurements were made with a sounding line to document backfill emplacement depths. Bentonite seals were carefully hydrated to prevent infiltration into the filter pack sand. After the upper VWT was emplaced and the uppermost sand pack installed, the boreholes were backfilled with hydrated bentonite chips to 0.5 ft below ground surface (bgs).

The alluvium/bedrock interface (Qbt 1g or Qct) was to be used to establish the total depth (TD) of the piezometer boreholes. In each of the boreholes, the goal was to identify the top of bedrock at each location, then backfill the boreholes with hydrated bentonite to the base of alluvium to create a seal to ensure no preferential seepage occurred across the lithologic contact. However, at the locations of SCPZ-15, SCPZ-22, SCPZ-23b, and SCPZ-27, bedrock was not encountered, and the piezometers were installed as deep as was practical.

## Transect 1

Piezometers SCPZ-15, SCPZ-16, and SCPZ-17 were installed as transect 1.

Piezometer SCPZ-15 was drilled to a TD of 69 ft bgs, encountering moist sediment at 40.5 ft bgs, although no bedrock was encountered during drilling. Because the augers were getting tight in the borehole, they were pulled back to 54 ft bgs so sediment could settle out. Following consultation with the Laboratory technical lead, SCPZ-15 was completed above the slough, with a TD of 53.7 ft bgs. Construction details for SCPZ-15 are shown in Figure 3.5-1, and borehole lithologic details are presented in Table 3.5-1.

Piezometer SCPZ-16 was drilled to a TD of 29.5 ft bgs, encountering Qbt 1g bedrock at 28.5 ft bgs. No moisture was observed in sediments during drilling. Construction details for SCPZ-16 are shown in Figure 3.5-2, and borehole lithologic details are presented in Table 3.5-2.

During installation of piezometer SCPZ-17, difficult drilling conditions were encountered at 29.5 ft bgs, although the borehole was advanced to a TD of 35.5 ft bgs to ensure Qbt 1g bedrock was located and the auger head was not drilling on top of cobble or boulders. No moisture was observed in sediments during drilling. Construction details for SCPZ-17 are shown in Figure 3.5-3, and borehole lithologic details are presented in Table 3.5-3.

## Transect 2

Piezometers SCPZ-18, SCPZ-19, and SCPZ-20 were installed as transect 2.

Piezometer SCPZ-18 was drilled to a TD of 30.5 ft bgs, encountering Qct bedrock at 29.3 ft bgs. No moisture was observed in sediments during drilling. Construction details for SCPZ-18 are shown in Figure 3.5-4, and borehole lithologic details are shown in Table 3.5-4.

During installation of piezometer SCPZ-19, lithologic changes at 29.2 ft bgs led the geologist/field team lead (FTL) to believe Qct bedrock was encountered at 29.2 ft bgs. However, the borehole was advanced to a TD of 35.5 ft bgs to ensure the alluvium/bedrock contact had been located. No moisture was observed in sediments during drilling. Construction details for SCPZ-19 are shown in Figure 3.5-5, and borehole lithologic details are presented in Table 3.5-5.

During installation of piezometer SCPZ-20, the initial Qal/Qct contact was difficult to determine, and it was not until Qbo was encountered at 40 ft bgs that upon further evaluation of drill cuttings and drive samples the FTL determined Qct bedrock occurred at 20 ft bgs. Moisture was observed in sediments at 24 ft bgs during drilling. Construction details for SCPZ-20 are shown in Figure 3.5-6, and borehole lithologic details are presented in Table 3.5-6.

### Transect 3

Piezometers SCPZ-21, SCPZ-22, and SCPZ-23 were installed as transect 3.

Piezometer SCPZ-21 was drilled to a TD of 25.5 ft bgs, encountering Qct bedrock at 24.3 ft bgs. No moisture was observed in sediments just above the Qct contact during drilling. Construction details for SCPZ-21 are shown in Figure 3.5-7, and borehole lithologic details are presented in Table 3.5-7.

Piezometer SCPZ-22 was drilled to a TD of 56 ft bgs, encountering moist sediment at approximately 30.5 and 39–40.5 ft bgs, and wet sediment beginning at 44 ft bgs, although no bedrock was encountered during drilling. Following consultation with Laboratory technical lead, water levels were monitored for approximately 2.75 h, with depth to water (DTW) ranging from 47.6 to 50.4 ft bgs, with about 0.5 ft of sediment in the bottom of the augers. SCPZ-22 was completed above slough, with a TD of 56 ft bgs. Construction details for SCPZ-22 are shown in Figure 3.5-8, and borehole lithologic details are presented in Table 3.5-8.

The remaining piezometer(s) in transect 3, SCPZ-23a and SCPZ-23b, were completed in two boreholes. During borehole advancement for SCPZ-23a, Qbt 1g bedrock was encountered at 55.0 ft bgs. After the borehole was advanced to 58 ft bgs, to facilitate piezometer construction and installation of the lower VWT, backfill materials were bridged inside the augers, resulting in upward displacement of the middle VWT while the augers were being removed. Following discussion with the Laboratory technical lead, a second borehole, SCPZ-23b, was drilled to 50 ft bgs approximately 3.5 ft away from SCPZ-23a.The middle and

upper VWTs were installed in SCPZ-23b. No bedrock was encountered during borehole advancement of SCPZ-23b. Construction details for SCPZ-23a and SCPZ-23b are shown in Figures 3.5-9 and 3.5-10, respectively, and borehole lithologic details for SCPZ-23a are presented in Table 3.5-9. Lithologic details were not recorded for SCPZ-23b because of its proximity to SCPZ-23a.

#### Transect 4

Piezometers SCPZ-24, SCPZ-25, and SCPZ-26 were installed as transect 4.

Piezometer SCPZ-24 was drilled to a TD of 20.5 ft bgs, encountering Qbt 1g bedrock at 14.5 ft bgs. Because the alluvium/bedrock contact is shallow, the borehole was advanced another 6 ft to ensure bedrock was encountered, and the auger head was not drilling on a cobble or boulder. No moisture was observed in sediments during drilling. Construction details for SCPZ-24 are shown in Figure 3.5-11, and borehole lithologic details are presented in Table 3.5-10.

Piezometer SCPZ-25 was drilled to a TD of 56 ft bgs, and Qbt 1g bedrock was encountered at 55 ft bgs. During well construction, DTW was measured at 42.4 ft bgs. Construction details for SCPZ-25 are shown in Figure 3.5-12, and borehole lithologic details are presented in Table 3.5-11.

Piezometer SCPZ-26 was drilled to a TD of 30.5 ft bgs, and Qct bedrock was encountered at 24.3 ft bgs. Because the alluvium/bedrock contact is shallow, the borehole was advanced another 6 ft to ensure bedrock had been located. No moisture was observed in sediments during drilling. Construction details for SCPZ-26 are shown in Figure 3.5-13, and borehole lithologic details are presented in Table 3.5-12.

#### Transect 5

Piezometers SCPZ-27, SCPZ-28, and SCPZ-29 were installed as transect 5.

Two boreholes were drilled to install SCPZ-27, the first of which, designated as SCPZ-27-PA, was abandoned when Qbt 1g bedrock was encountered at 10.4 ft bgs. Borehole abandonment details are shown in Figure 3.5-14, and borehole lithologic details are presented in Table 3.5-13. Because the terrain near the SCPZ-27-PA location is not flat, the second borehole for SCPZ-27 had to be located across the stream channel on the north bank, approximately 30 ft from SCPZ-29. Piezometer SCPZ-27 was advanced to 56 ft bgs, with no bedrock encountered during drilling. After drilling to TD, the augers were pulled up 2 ft to allow sediment to settle out. Water levels were monitored at the direction of the Laboratory technical lead for approximately 1.5 h. During this monitoring, water levels changed from 52.3 ft bgs at the onset of monitoring to 47.3 ft bgs before piezometer construction. Construction details for SCPZ-27 are shown in Figure 3.5-15, and borehole lithologic details are presented in Table 3.5-14.

Piezometer SCPZ-28 was drilled to a TD of 46 ft bgs, and Qbt 1g bedrock was encountered at 44.8 ft bgs. Moist and wet sediments were observed during drilling; however, no standing water was measured in the borehole before the VWT was installed. Construction details for SCPZ-28 are shown in Figure 3.5-16, and borehole lithologic details are presented in Table 3.5-15.

Piezometer SCPZ-29 was drilled to a TD of 51 ft bgs, and Qbt 1g bedrock was encountered at 49.1 ft bgs. Before well construction, DTW was measured at 49.5 ft bgs. Construction details for SCPZ-29 are shown in Figure 3.5-17, and lithologic details are presented in Table 3.5-16.

#### **Upgradient Piezometers**

Piezometers SCPZ-13 and SCPZ-14 were installed upgradient of transects 1–5, approximately 2471 ft and 1699 ft, respectively, west-northwest of transect 1.

Piezometer SCPZ-13 was hand-augered to a TD of 8.2 ft bgs, and Qbt 1g bedrock was encountered at 8.1 ft bgs. Moist sediments were observed during installation of SCPZ-13; however, no standing water was encountered. Construction details for SCPZ-13 are shown in Figure 3.5-18, and borehole lithologic details are presented in Table 3.5-17.

Piezometer SCPZ-14 was hand-augered to a TD of 10.1 ft bgs, and Qbt 1g bedrock was encountered at 10 ft bgs. No moisture was observed in sediments during installation of SCPZ-14. Construction details for SCPZ-14 are shown in Figure 3.5-19, and borehole lithologic details are presented in Table 3.5-18.

## 3.6 Groundwater Detection

Based on existing alluvial wells and piezometers in the area, the saturated thickness of alluvial groundwater has been shown to be highly variable. Water-level variability is driven by hydraulic response to the daily variations in effluent discharge, periodic storm flows, and seasonal precipitation. The alluvial water level was anticipated to occur near the alluvium/bedrock interface. Alluvial water was found at the alluvium/bedrock interface at SCPZ-25 and SCPZ-29. Moist or wet sediments were observed in many boreholes while drilling above the alluvium/bedrock interface, and measurable standing water was recorded at SCPZ-15, SCPZ-22, SCPZ-25, SCPZ-27, and SCPZ-29. Water levels measured in boreholes before piezometer construction as well as depth to bedrock, where applicable, are presented in Table 3.6-1 as well as on as-built figures for the piezometers.

## 3.7 Surface Completion

The surface completions included a 4-ft long 16-in.-I.D. steel outer protective casings to protect the data cables and data logger. The protective casings extend to approximately 2 ft bgs and were filled with 3 ft of pea gravel, with a weep hole installed at the base of the steel casings above ground level to prevent water buildup inside. Subsequent to piezometer installation, the steel protective casings were set in 3-ft by 3-ft by 0.5-ft-thick concrete pads. The tops of the protective casings were fitted with tamper-proof aluminum cover plates and fitted with Laboratory-supplied locks. A brass survey monument, imprinted with well identification information, was placed in the northwest corner of each concrete pad.

SCPZ-23b and SCPZ-27-PA were completed at the surface with a mounded concrete cap and an aluminum survey marker imprinted with the location identification information.

### 3.8 Demobilization

Demobilization activities included the following:

- Final decontamination and screening for radioactivity by an RCT of the drill rig, tools, and support equipment
- Loading and removal of the drilling tools, including alternative tools, from the site
- Removal of the drill rig and support vehicles from the site
- Staging and securing of IDW for future disposition
- Removal of municipal waste (e.g., materials packaging)
- Final site cleanup

## 3.9 IDW

A WCSF was prepared by the Laboratory in accordance with EP-DIR-SOP-10021, Characterization and Management of Project Waste, and all IDW was managed in accordance with an approved WCSF. This procedure incorporated the requirements of all applicable U.S. Environmental Protection Agency, and NMED regulations, U.S. Department of Energy orders, and Laboratory requirements. The waste streams included drill cuttings and contact waste. Drill cuttings were managed in accordance with the NMED-approved Decision Tree for the Land Application of Drill Cuttings (April 2016). Drilling, purge, and development waters were managed in accordance with the NMED-approved Notice of Intent Decision Tree for Drilling, Development, Rehabilitation, and Sampling Purge Water (March 2010). Drill cuttings were sent to an authorized treatment, storage, or disposal facility. Contact waste was containerized and characterized and characterized of the drill cuttings.

## 3.10 Data Logger Installation

Following completion of piezometer installation, Geokon model LC-2×4 channel data loggers were installed at each piezometer location. The VWTs were connected to the data loggers and programmed to collect data readings at 1-h intervals. Following data logger installation and programming, the data loggers were secured at each piezometer location inside 16-in. protective casings with locking covers. Data logger and VWT serial numbers, along with VWT initial zero pressure readings and thermal bath temperature readings before installation, are presented in Table 3.10-1.

### 3.11 Surveying

A New Mexico licensed professional land surveyor conducted a geodetic survey on July 8, 2016 (Table 3.11-1). The survey data conform to Laboratory Information Architecture project standards IA-CB02, "GIS Horizontal Spatial Reference System," and IA-D802, "Geospatial Positioning Accuracy Standard for A/E/C and Facility Management." All coordinates are expressed relative to the New Mexico State Plane Coordinate System Central Zone (North American Datum [NAD] 83); elevation is expressed in feet above mean sea level (amsl) using the National Geodetic Vertical Datum of 1929. Survey points include ground surface elevation near concrete pads/mounds, the top of the pins in the concrete pads/mounds, and the top of the protective casings.

## 4.0 ACKNOWLEDGMENTS

Cascade Drilling drilled and installed piezometers SCPZ-15 through SCPZ-29.

TerranearPMC provided oversight on all preparatory and field-related activities. TerranearPMC field personnel hand-augered and installed piezometers SCPZ-13 and 14.

## 5.0 REFERENCES AND MAP DATA SOURCES

#### 5.1 References

The following list includes all documents cited in this report. Parenthetical information following each reference provides the author(s), publication date, and ER ID or ESH ID. This information is also included in text citations. ER IDs were assigned by the Environmental Programs Directorate's Records Processing Facility (IDs through 599999), and ESH IDs are assigned by the Environment, Safety, and Health (ESH) Directorate (IDs 600000 and above). IDs are used to locate documents in the Laboratory's Electronic Document Management System and, where applicable, in the master reference set.

Copies of the master reference set are maintained at the NMED Hazardous Waste Bureau and the ESH Directorate. The set was developed to ensure that the administrative authority has all material needed to review this document, and it is updated with every document submitted to the administrative authority. Documents previously submitted to the administrative authority are not included.

- LANL (Los Alamos National Laboratory), June 2014. "Sandia Wetland Performance Report, Baseline Conditions 2012–2014," Los Alamos National Laboratory document LA-UR-14-24271, Los Alamos, New Mexico. (LANL 2014, 257590)
- LANL (Los Alamos National Laboratory), July 2015. "Work Plan for Chromium Plume Center Characterization," Los Alamos National Laboratory document LA-UR-15-24861, Los Alamos, New Mexico. (LANL 2015, 600615)
- LANL (Los Alamos National Laboratory), December 2015. "Drilling Work Plan for Alluvial Piezometers in Sandia Canyon," Los Alamos National Laboratory document LA-UR-15-29446, Los Alamos, New Mexico. (LANL 2015, 601047)
- LANL (Los Alamos National Laboratory), March 1, 2016. "Waste Characterization Strategy Form for Drilling Work Plan for Alluvial Piezometers in Sandia Canyon," Los Alamos National Laboratory, Los Alamos, New Mexico. (LANL 2016, 601275)
- NMED (New Mexico Environment Department), March 17, 2016. "Approval with Modification, Drilling Work Plan for Alluvial Piezometers in Sandia Canyon," New Mexico Environment Department letter to D. Hintze (DOE-EM-LA) and M. Brandt (LANL) from J.E. Kieling (NMED-HWB), Santa Fe, New Mexico. (NMED 2016, 601327)
- TerranearPMC, May 2016. "Field Implementation Plan for Alluvial Piezometers in Sandia Canyon," plan prepared for Los Alamos National Laboratory, Los Alamos, New Mexico. (TerranearPMC 2016, 601928)
- TerranearPMC, May 9, 2016. "IWD [Integrated Work Document] for 2016 Drilling and Installation of Alluvial Piezometers in Sandia Canyon," Los Alamos, New Mexico. (TerranearPMC 2016, 601927)

#### 5.2 Map Data Sources

Point Feature Locations of the Environmental Restoration Project Database; Los Alamos National Laboratory, Waste and Environmental Services Division, EP2008-0109; 12 April 2010.

Hypsography, 100 and 20 Foot Contour Interval; Los Alamos National Laboratory, ENV Environmental Remediation and Surveillance Program; 1991.

Surface Drainages, 1991; Los Alamos National Laboratory, ENV Environmental Remediation and Surveillance Program, ER2002-0591; 1:24,000 Scale Data; Unknown publication date.

Paved Road Arcs; Los Alamos National Laboratory, KSL Site Support Services, Planning, Locating and Mapping Section; 06 January 2004; as published 28 May 2009.

Dirt Road Arcs; Los Alamos National Laboratory, KSL Site Support Services, Planning, Locating and Mapping Section; 06 January 2004; as published 28 May 2009.

Structures; Los Alamos National Laboratory, KSL Site Support Services, Planning, Locating and Mapping Section; 06 January 2004; as published 28 May 2009.

Technical Area Boundaries; Los Alamos National Laboratory, Site Planning & Project Initiation Group, Infrastructure Planning Division; 4 December 2009.



Figure 1.0-1 Locations for alluvial piezometer transects and upgradient alluvial piezometers



Figure 3.5-1 As-built diagram of SCPZ-15



Figure 3.5-2 As-built diagram of SCPZ-16



Figure 3.5-3 As-built diagram of SCPZ-17



Figure 3.5-4 As-built diagram of SCPZ-18



Figure 3.5-5 As-built diagram of SCPZ-19



Figure 3.5-6 As-built diagram of SCPZ-20



Figure 3.5-7 As-built diagram of SCPZ-21



Figure 3.5-8 As-built diagram of SCPZ-22



Figure 3.5-9 As-built diagram of SCPZ-23a



Figure 3.5-10 As-built diagram of SCPZ-23b



Figure 3.5-11 As-built diagram of SCPZ-24



Figure 3.5-12 As-built diagram of SCPZ-25



Figure 3.5-13 As-built diagram of SCPZ-26


Figure 3.5-14 Abandonment diagram for SCPZ-27-PA



Figure 3.5-15 As-built diagram of SCPZ-27



Figure 3.5-16 As-built diagram of SCPZ-28



Figure 3.5-17 As-built diagram of SCPZ-29



Figure 3.5-18 As-built diagram of SCPZ-13



Figure 3.5-19 As-built diagram of SCPZ-14

| Drive Sample<br>Depth (ft bgs) | Blow Counts                                                      | %<br>Recovery | Lithologic<br>Description                                                               | Lithologic Unit                                        | Relative<br>Moisture       |
|--------------------------------|------------------------------------------------------------------|---------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------|
| 4–5.5                          | 3-4-8                                                            | 100           | Tan to light<br>brown silt and<br>fine sand,<br>unconsolidated,<br>poorly sorted        | Qal                                                    | Dry                        |
| 9–10.5                         | 4-4-4                                                            | 100           | Same as above                                                                           | Qal                                                    | Dry                        |
| 14–15.5                        | 8-8-11                                                           | 100           | Light to<br>medium brown,<br>silt and fine<br>sand,<br>unconsolidated,<br>poorly sorted | Qal                                                    | Dry                        |
| 19–20.5                        | 11-21-24                                                         | 100           | Same as above                                                                           | Qal                                                    | Dry                        |
| 24–25.5                        | 10-10-25                                                         | 100           | Same as above                                                                           | Qal                                                    | Dry                        |
| 29–30.5                        | 10-12-34                                                         | 100           | Same as above                                                                           | Qal                                                    | Dry                        |
| 34–35.5                        | 15-26-28                                                         | 100           | Same as above                                                                           | Qal                                                    | Dry                        |
| 39–40.5                        | 11-12-22                                                         | 100           | Same as above                                                                           | Qal                                                    | Bottom few<br>inches moist |
| 44–45.5                        | 8-12-26                                                          | 100           | Same as above                                                                           | Qal                                                    | Wet                        |
| 49–50.5                        | 50                                                               | 100 (slough)  | Same as above                                                                           | Qal                                                    | Wet                        |
| 54–69.0                        | Drive samples<br>not attempted<br>because of<br>slough in augers | n/a*          | n/a                                                                                     | No indication of<br>bedrock contact<br>during drilling | n/a                        |

Table 3.5-1 SCPZ-15 Borehole Log

\*n/a = Not applicable.

| Drive Sample<br>Depth (ft bgs) | Blow Counts | %<br>Recovery | Lithologic<br>Description                                                 | Lithologic Unit                  | Relative Moisture                         |
|--------------------------------|-------------|---------------|---------------------------------------------------------------------------|----------------------------------|-------------------------------------------|
| 4–5.5                          | 4-8-9       | 75            | Light brown fine sand/silt                                                | Qal                              | Dry                                       |
| 9–10.5                         | 6-7-9       | 25            | Same as<br>above                                                          | Qal                              | Dry                                       |
| 14–15.5                        | 5-5-9       | 100           | Light to dark<br>brown, fine<br>sand/silt,<br>minor clay,<br>trace gravel | Qal                              | Dry to moist near<br>bottom of<br>sampler |
| 19–20.5                        | 7-8-10      | 25            | Light brown, fine sand/silt                                               | Qal                              | Dry                                       |
| 24–25.5                        | 7-9-16      | 25            | Same as<br>above                                                          | Qal                              | Dry                                       |
| 28–29.5                        | 10-11-19    | 100           | Poorly to<br>moderately<br>welded, light<br>pinkish-white,<br>pumice-rich | Qbt 1g contact at<br>28.5 ft bgs | Dry                                       |

Table 3.5-2 SCPZ-16 Borehole Log

| Drive Sample<br>Depth (ft bgs) | Blow Counts                    | %<br>Recovery    | Lithologic<br>Description                                                                                       | Lithologic Unit                                                    | Relative Moisture |
|--------------------------------|--------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------|
| 4–5.5                          | NRª                            | 100              | Pinkish-gray<br>to light brown,<br>fine sand,<br>poorly sorted,<br>with coarse<br>gravel<br>(weathered<br>tuff) | Qal                                                                | Dry               |
| 9–10.5                         | NR                             | 100              | Same as<br>above; also<br>abundant<br>quartz and<br>sanidine                                                    | Qal                                                                | Dry               |
| 14–15.5                        | NR                             | 100              | Same as<br>above; also<br>weathered tuff<br>and dacite<br>gravel                                                | Qal                                                                | Dry               |
| 19–20.5                        | NR                             | 25               | Same as<br>above; also<br>less gravel                                                                           | Qal                                                                | Dry               |
| 24–25.5                        | NR                             | 100              | Same as<br>above; also<br>reddish-<br>brown, minor<br>clay                                                      | Qal                                                                | Moist             |
| 29–30.5                        | 50/6                           | 30               | light brown to<br>pink, pumice-<br>rich                                                                         | Qbt 1g contact at 29.5 ft bgs                                      | Dry               |
| 30.5–35.5 <sup>b</sup>         | Drive samples<br>not collected | n/a <sup>c</sup> | Same as<br>above                                                                                                | Qbt 1g; no<br>indication of<br>lithology change<br>during drilling | Dry               |

Table 3.5-3 SCPZ-17 Borehole Log

<sup>a</sup>NR = Not recorded.

<sup>b</sup> Borehole advanced to 35.5 ft bgs to ensure bedrock was encountered.

 $^{c}$ n/a = Not applicable.

| Drive Sample<br>Depth (ft bgs) | Blow Counts | %<br>Recovery | Lithologic<br>Description                                                                                                                                                | Lithologic Unit               | Relative<br>Moisture                |
|--------------------------------|-------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------|
| 4–5.5                          | 5, 5, 5     | 50            | Tan to light<br>brown, fine<br>sand with silt,<br>poorly sorted,<br>unconsolidated,<br>minor gravel                                                                      | Qal                           | Dry                                 |
| 9–10.5                         | 5, 5, 8     | 100           | Tan, medium to<br>coarse silty<br>sand, quartz<br>and sanidine,<br>moderately<br>sorted                                                                                  | Qal                           | Dry                                 |
| 14–15.5                        | 10, 16, 22  | 100           | Same as<br>above; also<br>minor gravel                                                                                                                                   | Qal                           | Dry                                 |
| 19–20.5                        | 9, 10, 16   | 100           | Same as above                                                                                                                                                            | Qal                           | Dry                                 |
| 24–25.5                        | 14, 18, 19  | 100           | Light brown,<br>fine sand and<br>silt, moderately<br>sorted,<br>consolidated                                                                                             | Qal                           | Moist in bottom<br>1 in. of sampler |
| 29–30.5                        | 5, 6, 12    | 100           | Reddish-brown<br>to pink, well<br>stratified above<br>contact,<br>medium to dark<br>brown poorly<br>sorted sand<br>and silt, with<br>fibrous pumice<br>in layers of tuff | Qct contact at<br>29.3 ft bgs | Moist above<br>lithologic contact   |

Table 3.5-4 SCPZ-18 Borehole Log

| Drive Sample<br>Depth (ft bgs) | Blow Counts | %<br>Recovery | Lithologic<br>Description                                                                                                            | Lithologic Unit            | Relative<br>Moisture |
|--------------------------------|-------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------|
| 4–5.5                          | 4, 4, 4     | 25            | Tan to light<br>brown, fine<br>sand with silt,<br>minor gravel,<br>subangular to<br>rounded                                          | Qal                        | Dry                  |
| 9–10.5                         | 7, 8, 11    | 75            | Same as<br>above                                                                                                                     | Qal                        | Dry                  |
| 14–15.5                        | 7, 10, 5    | 100           | Same as<br>above; also<br>less gravel,<br>medium-<br>coarse sand<br>towards<br>bottom of<br>sample,<br>quartz and<br>sanidine        | Qal                        | Dry                  |
| 19–20.5                        | 9, 12, 25   | 100           | Light brown to<br>tan, medium-<br>coarse sand                                                                                        | Qal                        | Dry                  |
| 24–25.5                        | 11, 13, 15  | 100           | Same as<br>above                                                                                                                     | Qal                        | Dry                  |
| 29–30.5                        | 7, 8, 16    | 100           | Reddish-<br>brown to<br>brown, silt<br>and<br>tuffaceous<br>materials,<br>layers of fine<br>sanidine<br>crystals, well<br>stratified | Qct contact at 29.2 ft bgs | Dry                  |
| 34–35.5                        | 15, 16, 24  | 100           | Same as<br>above                                                                                                                     | Qct                        | Dry to moist         |

Table 3.5-5 SCPZ-19 Borehole Log

| Drive Sample<br>Depth (ft bgs) | Blow Counts | %<br>Recovery | Lithologic<br>Description                                                                                                              | Lithologic Unit             | Relative Moisture |
|--------------------------------|-------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------|
| 4–5.5                          | 10, 12, 19  | 25            | Light brown, poorly<br>sorted fine sand<br>and silt, with dacite<br>gravel and<br>weathered tuff                                       | Qal                         | Dry               |
| 9–10.5                         | 5, 6, 9     | 50            | Light brown, fine<br>sand, less gravel,<br>abundant quartz<br>and sanidine,<br>weather tuff<br>fragments                               | Qal                         | Dry               |
| 14–15.5                        | 5, 8, 7     | 50            | Same as above                                                                                                                          | Qal                         | Dry               |
| 19–20.5                        | 9, 9, 9     | 100           | Medium to dark<br>brown sand and silt,<br>with quartz and<br>sanidine, glassy-<br>fibrous pumice, clay<br>towards bottom of<br>sampler | Qct contact at<br>20 ft bgs | Dry to moist      |
| 24–25.5                        | 5, 6, 10    | 100           | Medium brown, fine<br>sand, well sorted,<br>abundant quartz<br>and sanidine                                                            | Qct                         | Moist             |
| 29–30.5                        | 12, 15, 16  | 100           | Medium to dark<br>brown, fine sand,<br>abundant quartz                                                                                 | Qct                         | Moist             |
| 34–34.5                        | 10, 15, 16  | 100           | Reddish-dark<br>brown, fine sand<br>and silt, well sorted,<br>with gravel                                                              | Qct                         | Moist             |
| 39-40.5                        | 18, 22, 37  | 100           | Pale red to pinkish-<br>gray, crystal-<br>bearing, lithic-rich,<br>vitric pumice                                                       | Qct/Qbo at<br>40 ft bgs     | Moist             |

Table 3.5-6 SCPZ-20 Borehole Log

| Drive Sample<br>Depth (ft bgs) | Blow Counts | %<br>Recovery | Lithologic<br>Description                                                                                                                              | Lithologic Unit            | Relative Moisture                    |
|--------------------------------|-------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------|
| 4–5.5                          | 4, 5, 7     | 50            | Tan, fine to medium<br>sand, poorly sorted,<br>with silt,<br>unconsolidated                                                                            | Qal                        | Dry                                  |
| 9–10.5                         | 3, 7, 7     | 75            | Same as above                                                                                                                                          | Qal                        | Dry                                  |
| 14–15.5                        | 6, 7, 10    | 100           | Light-medium<br>brown, fine sand<br>and silt, moderately<br>sorted,<br>unconsolidated                                                                  | Qal                        | Dry                                  |
| 19–20.5                        | 5, 10, 13   | 100           | Light brown,<br>medium sand and<br>silt, poorly sorted,<br>unconsolidated                                                                              | Qal                        | Dry                                  |
| 24–25.5                        | 3, 5, 10    | 100           | Light brown, well<br>stratified as above,<br>layered pumice-rich<br>sediment, abundant<br>quartz and<br>sanidine, crystal<br>rich tuffaceous<br>layers | Qct contact at 24.3 ft bgs | Moist above<br>contact, dry<br>below |

Table 3.5-7 SCPZ-21 Borehole Log

| Drive Sample<br>Depth (ft bgs) | Blow Counts                    | %<br>Recovery | Lithologic<br>Description                                                                       | Lithologic Unit | Relative Moisture                |
|--------------------------------|--------------------------------|---------------|-------------------------------------------------------------------------------------------------|-----------------|----------------------------------|
| 4–5.5                          | 4, 5, 6                        | 25            | Tan, fine sand,<br>poorly sorted, with<br>silt, unconsolidated                                  | Qal             | Dry                              |
| 9–10.5                         | 5, 6, 15                       | 50            | Same as above                                                                                   | Qal             | Dry                              |
| 14–15.5                        | 12, 50/6                       | 100           | Same as above;<br>also minor gravel                                                             | Qal             | Dry                              |
| 19–20.5                        | 15, 16, 17                     | 100           | Same as above                                                                                   | Qal             | Dry                              |
| 24–25.5                        | 14, 17, 18                     | 75            | Tan, medium sand, unconsolidated                                                                | Qal             | Dry                              |
| 29–30.5                        | 6, 10, 20                      | 100           | Same as above                                                                                   | Qal             | Bottom 1 in. of<br>sampler moist |
| 34–35.5                        | 9, 10, 12                      | 100           | Tan, stratified fine-<br>coarse sand,<br>crystal rich, down<br>to reddish-brown,<br>tuff layers | Qal             | Dry                              |
| 39–40.5                        | 9, 15, 30                      | 100           | Light brown,<br>medium sand, silt,<br>minor gravel, poorly<br>sorted                            | Qal             | Moist                            |
| 44–45.5                        | 10, 19, 20                     | 100           | Same as above;<br>also increasing<br>gravel size                                                | Qal             | Wet                              |
| 49–50.5                        | 14, 19, 20                     | 100           | Same as above and consolidated                                                                  | Qal             | Wet                              |
| 54–55.5                        | 5, 6, 10                       | 100           | Same as above                                                                                   | Qal             | Wet                              |
| 55.5-56.0                      | Drive samples<br>not collected | n/a*          | Same as above                                                                                   | Qal             | Wet                              |

Table 3.5-8 SCPZ-22 Borehole Log

\*n/a = Not applicable.

| Drive Sample<br>Depth (ft bgs) | Blow Counts                    | %<br>Recovery    | Lithologic<br>Description                                                                                                     | Lithologic Unit              | Relative Moisture |
|--------------------------------|--------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------|
| 4–5.5                          | 4, 5, 5                        | 100              | Light brown, fine<br>sand and silt, minor<br>quartz and sanidine                                                              | Qal                          | Dry               |
| 9–10.5                         | 7, 8, 9                        | 50               | Light to medium<br>brown, fine sand<br>and silt, increasing<br>quartz and<br>sanidine, minor<br>gravel                        | Qal                          | Dry               |
| 14–15.5                        | 5, 6, 7                        | 100              | Same as above;<br>also transition to<br>coarse sand at<br>15 ft, abundant<br>quartz and sanidine                              | Qal                          | Dry               |
| 19–20.5                        | 6, 10, 20                      | 100              | Light brown, pink,<br>weathered tuff, with<br>less quartz and<br>sanidine,<br>transitioning to<br>coarse sand, well<br>sorted | Qal                          | Dry               |
| 24–25.5                        | 10, 12, 15                     | 100              | Dark brown, fine<br>sand, silt and minor<br>clay, weathered<br>tuff, small quartz<br>and sanidine<br>crystals                 | Qal                          | Dry               |
| 29–30.5                        | 4, 5, 8                        | 100              | Dark brown, silty<br>clay, minor lithics<br>and gravels                                                                       | Qal                          | Moist             |
| 34–35.5                        | 11, 17, 18                     | 100              | Same as above;<br>also dacite and<br>pumice<br>gravels/clasts                                                                 | Qal                          | Very moist        |
| 39–40.5                        | 6, 10, 11                      | 100              | Same as above                                                                                                                 | Qal                          | Moist             |
| 44-45.5                        | 18, 21, 22                     | 100              | Same as above                                                                                                                 | Qal                          | Wet               |
| 49–50.5                        | 7, 12, 27                      | 100              | Same as above                                                                                                                 | Qal                          | Wet               |
| 54–55.5                        | 24, 50/6                       | 100              | Same as above;<br>also to glassy<br>pumice,<br>homogenous                                                                     | Qbt 1g contact at 55 ft bgs. | Wet               |
| 55.5–58.0 <sup>a</sup>         | Drive samples<br>not collected | n/a <sup>b</sup> | Same as above                                                                                                                 | Qbt 1g                       | Wet               |

Table 3.5-9 SCPZ-23a Borehole Log

<sup>a</sup> Advanced to 58.0 ft bgs to remove slough and facilitate piezometer construction.

| Drive Sample<br>Depth (ft bgs) | Blow Counts | %<br>Recovery | Lithologic<br>Description                                                                                                             | Lithologic Unit                  | Relative Moisture |
|--------------------------------|-------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------|
| 4–5.5                          | 5, 6, 5     | 50            | Tan-light brown,<br>fine sand and silt,<br>poorly sorted,<br>unconsolidated                                                           | Qal                              | Dry               |
| 9–10.5                         | 5, 5, 7     | 75            | Same as above;<br>also minor gravel                                                                                                   | Qal                              | Dry               |
| 14–15.5                        | 23, 11, 8   | 100           | Same as above;<br>also transition to<br>whitish-light pink<br>ash flow tuff, poorly<br>welded, crystal-<br>bearing, with<br>xenoliths | Qbt 1g contact at<br>14.5 ft bgs | Dry               |
| 19–20.5                        | 15, 19, 29  | 100           | Same as above;<br>also moderately<br>welded                                                                                           | Qbt 1g                           | Dry               |

Table 3.5-10 SCPZ-24 Borehole Log

| Drive Sample<br>Depth (ft bgs) | Blow Counts                    | %<br>Recovery    | Lithologic<br>Description                                                           | Lithologic Unit                | Relative Moisture               |
|--------------------------------|--------------------------------|------------------|-------------------------------------------------------------------------------------|--------------------------------|---------------------------------|
| 4–5.5                          | 5, 5, 6                        | 50               | Tan, fine sand and silt, poorly sorted, unconsolidated                              | Qal                            | Dry                             |
| 9–10.5                         | 10, 11, 12                     | 75               | Same as above                                                                       | Qal                            | Bottom 3-in of<br>sampler moist |
| 14–15.5                        | 4, 7, 8                        | 100              | Light brown,<br>medium sand and<br>silt, moderately<br>sorted,<br>unconsolidated    | Qal                            | Moist                           |
| 19–20.5                        | 10, 7, 12                      | 100              | Same as above                                                                       | Qal                            | Moist                           |
| 24–25.5                        | 5, 5, 11                       | 100              | Same as above                                                                       | Qal                            | Moist                           |
| 29–30.5                        | 6, 8, 10                       | 100              | Same as above;<br>also minor gravel                                                 | Qal                            | Moist                           |
| 34–35.5                        | 3, 6, 5                        | 100              | Reddish-brown, fine<br>sand and silt, well<br>sorted, moderately<br>consolidated    | Qal                            | Bottom 4-in. of sampler wet     |
| 39–40.5                        | 10, 10, 13                     | 100              | Light brown,<br>medium sand and<br>silt, moderately<br>sorted,<br>unconsolidated    | Qal                            | Wet                             |
| 44–45.5                        | 5, 10, 15                      | 100              | Same as above                                                                       | Qal                            | Wet                             |
| 49–50.5                        | 9, 13, 14                      | 25               | Same as above                                                                       | Qal                            | Saturated                       |
| 54–55.5                        | 20, 50/6                       | 100              | Same as above to<br>light orange tuff<br>with white to light<br>gray pumice lapilli | Qbt 1g contact at<br>55 ft bgs | Wet above<br>contact            |
| 55.5–56.0ª                     | Drive samples<br>not collected | n/a <sup>b</sup> | Same as above                                                                       | Qbt 1g                         | Wet                             |

Table 3.5-11SCPZ-25 Borehole Log

<sup>a</sup> Advanced to 56.0 ft bgs to remove slough and facilitate piezometer construction.

| Drive Sample<br>Depth (ft bgs) | Blow Counts | %<br>Recovery | Lithologic<br>Description                                                         | Lithologic Unit            | Relative Moisture |
|--------------------------------|-------------|---------------|-----------------------------------------------------------------------------------|----------------------------|-------------------|
| 4–5.5                          | 4, 5, 5     | 50            | Tan, fine sand and silt, poorly sorted, unconsolidated                            | Qal                        | Dry               |
| 9–10.5                         | 5, 6, 7     | 75            | Tan, fine sand and<br>silt, minor gravel,<br>moderately sorted,<br>unconsolidated | Qal                        | Dry               |
| 14–15.5                        | 6, 8, 9     | 100           | Same as above                                                                     | Qal                        | Dry               |
| 19–20.5                        | 7, 8, 9     | 100           | Same as above                                                                     | Qal                        | Dry               |
| 24–25.5                        | 4, 7, 10    | 100           | Same as above;<br>also well stratified,<br>to layered silty,<br>crystal-rich tuff | Qct contact at 24.3 ft bgs | Dry               |
| 29–30.5                        | 9, 10, 20   | 100           | Same as above                                                                     | Qct                        | Dry               |

Table 3.5-12SCPZ-26 Borehole Log

# Table 3.5-13SCPZ-27-PA Borehole Log

| Drive Sample<br>Depth (ft bgs) | Blow Counts | %<br>Recovery | Lithologic<br>Description                                                                | Lithologic Unit                  | Relative Moisture |
|--------------------------------|-------------|---------------|------------------------------------------------------------------------------------------|----------------------------------|-------------------|
| 4–5.5                          | 4, 5, 5     | 50            | Tan to light brown,<br>fine sand and silt,<br>poorly sorted,<br>unconsolidated           | Qal                              | Dry               |
| 9–10.5                         | 10, 50/6    | 100           | Same as above to<br>light gray to pink<br>ash flow tuff, crystal<br>rich, pumice lapilli | Qbt 1g contact at<br>10.4 ft bgs | Dry               |
| 14–15.5                        | 50/6        | 25            | Same as above                                                                            | Qbt 1g                           | Dry               |

| Drive Sample<br>Depth (ft bgs) | Blow Counts                    | %<br>Recovery    | Lithologic<br>Description                                                                       | Lithologic Unit | Relative Moisture  |
|--------------------------------|--------------------------------|------------------|-------------------------------------------------------------------------------------------------|-----------------|--------------------|
| 4–5.5                          | 4, 5, 7                        | 75               | Tan to light brown,<br>fine to medium<br>sand and silt,<br>moderately sorted,<br>unconsolidated | Qal             | Dry                |
| 9–10.5                         | 5, 7, 9                        | 100              | Same as above                                                                                   | Qal             | Dry                |
| 14–15.5                        | 4, 6, 21                       | 100              | Same as above                                                                                   | Qal             | Dry                |
| 19–20.5                        | 4, 8, 12                       | 100              | Same as above                                                                                   | Qal             | Dry                |
| 24–25.5                        | 8, 16, 23                      | 100              | Same as above                                                                                   | Qal             | Dry                |
| 29–30.5                        | 19, 21, 29                     | 100              | Medium to dark<br>brown, fine sand<br>and silt, moderately<br>sorted,<br>unconsolidated         | Qal             | Moist at 30 ft bgs |
| 34–35.5                        | 9, 19, 20                      | 100              | Same as above                                                                                   | Qal             | Moist              |
| 39–40.5                        | 12, 15, 16                     | 100              | Same as above                                                                                   | Qal             | Wet at 40 ft bgs   |
| 44–45.5                        | 8, 8, 11                       | 100              | Same as above                                                                                   | Qal             | Wet                |
| 49–50.5                        | 9, 10, 12                      | 100              | Same as above                                                                                   | Qal             | Wet                |
| 54-55.5                        | 12, 15, 16                     | 100              | Same as above                                                                                   | Qal             | Wet                |
| 55.5–56.0 <sup>a</sup>         | Drive samples<br>not collected | n/a <sup>b</sup> | Same as above                                                                                   | Qal             | Wet                |

Table 3.5-14SCPZ-27 Borehole Log

<sup>a</sup> Advanced to 56.0 ft bgs to facilitate piezometer construction.

| Drive Sample<br>Depth (ft bgs) | Blow Counts                    | %<br>Recovery    | Lithologic<br>Description                                                                         | Lithologic Unit                  | Relative Moisture      |
|--------------------------------|--------------------------------|------------------|---------------------------------------------------------------------------------------------------|----------------------------------|------------------------|
| 4–5.5                          | 6, 8, 10                       | 75               | Light brown, fine<br>sand and silt, poorly<br>sorted,<br>unconsolidated                           | Qal                              | Dry                    |
| 9–10.5                         | 10, 15, 16                     | 100              | Same as above                                                                                     | Qal                              | Dry                    |
| 14–15.5                        | 10, 13, 14                     | 100              | Same as above,<br>minor tuffaceous<br>gravels                                                     | Qal                              | Dry                    |
| 19–20.5                        | 13, 15, 16                     | 100              | Same as above                                                                                     | Qal                              | Dry                    |
| 24–25.5                        | 5, 5, 8                        | 100              | Light brown,<br>medium-coarse<br>sand, moderately<br>sorted,<br>unconsolidated                    | Qal                              | Dry                    |
| 29–30.5                        | 20, 29, 35                     | 100              | Light gray, poorly welded tuff, crystal and sanidine rich                                         | Qal                              | Wet at 29.9 ft<br>bgs  |
| 34–35.5                        | 12, 17, 18                     | 100              | Light brown,<br>medium to coarse<br>sand, minor gravel                                            | Qal                              | Dry                    |
| 39–40.5                        | 10, 15, 17                     | 100              | Brown to pink tuff, fine sand and silt                                                            | Qal                              | Moist                  |
| 44–45.5                        | 9, 10, 22                      | 100              | Same as above to<br>white, powdery,<br>grayish-white,<br>crystal-rich pumice<br>lapilli (fibrous) | Qbt 1g contact at<br>44.8 ft bgs | Moist above<br>contact |
| 45.5-46.0ª                     | Drive samples<br>not collected | n/a <sup>b</sup> | Same as above                                                                                     | Qbt 1g                           | Moist                  |

Table 3.5-15SCPZ-28 Borehole Log

<sup>a</sup> Advanced to 46.0 ft bgs to facilitate piezometer construction.

| Drive Sample<br>Depth (ft bgs) | Blow Counts                    | %<br>Recovery    | Lithologic<br>Description                                                                                                | Lithologic Unit                  | Relative Moisture            |
|--------------------------------|--------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------|
| 4–5.5                          | 6, 7, 9                        | 50               | Tan fine sand and silt, poorly sorted, unconsolidated                                                                    | Qal                              | Dry                          |
| 9–10.5                         | 4, 5, 6                        | 50               | Same as above                                                                                                            | Qal                              | Dry                          |
| 14–15.5                        | 4, 5, 8                        | 100              | Light brown, fine to<br>medium sand,<br>moderately sorted,<br>unconsolidated                                             | Qal                              | Dry                          |
| 19–20.5                        | 4, 5, 9                        | 100              | Same as above                                                                                                            | Qal                              | Dry                          |
| 24–25.5                        | 5, 5, 5                        | 75               | Same as above                                                                                                            | Qal                              | Dry                          |
| 29–30.5                        | 9, 10, 12                      | 100              | Same as above to<br>30.1 ft bgs; medium<br>to dark brown, fine<br>sand and silt,<br>moderately sorted,<br>unconsolidated | Qal                              | Moist at 30.1 ft<br>bgs      |
| 34–35.5                        | 20, 50/6                       | 50               | Same as above                                                                                                            | Qal                              | Moist                        |
| 39–40.5                        | 10, 15, 19                     | 75               | Same as above                                                                                                            | Qal                              | Very moist at<br>38.8 ft bgs |
| 44–44.5                        | 7, 7, 11                       | 50               | Same as above                                                                                                            | Qal                              | Wet                          |
| 49–50.5                        | 9, 12, 13                      | 50               | Same as above to<br>49.1 ft bgs; light<br>orange tuff, with<br>white-light gray<br>pumice lapilli                        | Qbt 1g contact at<br>49.1 ft bgs | Dry                          |
| 50.5–51.0 <sup>a</sup>         | Drive samples<br>not collected | n/a <sup>b</sup> | Same as above                                                                                                            | Qbt 1g                           | Dry                          |

Table 3.5-16SCPZ-29 Borehole Log

<sup>a</sup> Advanced to 51.0 ft bgs to facilitate piezometer construction.

| Drive Sample<br>Depth (ft bgs) | Blow Counts      | %<br>Recovery | Lithologic<br>Description <sup>a</sup>                                 | Lithologic Unit | Relative Moisture      |
|--------------------------------|------------------|---------------|------------------------------------------------------------------------|-----------------|------------------------|
| 0-8.1                          | n/a              | n/a           | Light brown, fine<br>and silt, moderately<br>sorted,<br>unconsolidated | Qal             | Moist at 6.1 ft<br>bgs |
| 8.1-8.2                        | n/a <sup>b</sup> | n/a           | Tuff                                                                   | Qbt 1g          | Moist                  |

Table 3.5-17SCPZ-13 Borehole Log

<sup>a</sup> Logged from hand-auger cuttings.

<sup>b</sup> n/a = Not applicable.

## Table 3.5-18SCPZ-14 Borehole Log

| Drive Sample<br>Depth (ft bgs) | Blow Counts      | %<br>Recovery | Lithologic<br>Description <sup>a</sup>                                 | Lithologic Unit | Relative Moisture |
|--------------------------------|------------------|---------------|------------------------------------------------------------------------|-----------------|-------------------|
| 0–10                           | n/a              | n/a           | Light brown, fine<br>and silt, moderately<br>sorted,<br>unconsolidated | Qal             | Dry               |
| 10–10.1                        | n/a <sup>b</sup> | n/a           | Tuff                                                                   | Qbt 1g          | Dry               |

<sup>a</sup> Logged from hand-auger cuttings.

| -                   |                 |                                              |
|---------------------|-----------------|----------------------------------------------|
| Piezometer Location | DTW<br>(ft bgs) | Depth to Bedrock<br>(Qbt 1g/Qct)<br>(ft bgs) |
| SCPZ-15             | 36.8            | Not encountered                              |
| SCPZ-22             | 47.6            | Not encountered                              |
| SCPZ-25             | 42.4            | 55                                           |
| SCPZ-27             | 47.3            | Not encountered                              |
| SCPZ-29             | 49.5            | 49.1                                         |

 Table 3.6-1

 DTW in Sandia Canyon Boreholes before Piezometer Construction

| Identification      | Data Logger<br>Serial Numbers | VWT Serial<br>Numbers | VWT Zero<br>Readings | VWT Temperature<br>Readings<br>(°C) |
|---------------------|-------------------------------|-----------------------|----------------------|-------------------------------------|
| SCPZ-13 Upper VWT   | 1614894                       | 1612744               | 10378.190            | 27.6                                |
| SCPZ-13 Lower VWT   | *                             | 1612745               | 10087.525            | 27.2                                |
| SCPZ-14 Upper VWT   | 1614895                       | 1612746               | 10218.339            | 27.7                                |
| SCPZ-14 Lower VWT   | —                             | 1612747               | 10497.163            | 27.6                                |
| SCPZ-15 Upper VWT   | 1614896                       | 1610327               | 10231.005            | 16.0                                |
| SCPZ-15 Middle VWT  | —                             | 1610328               | 10340.222            | 16.0                                |
| SCPZ-15 Lower VWT   | —                             | 1610329               | 10155.685            | 15.5                                |
| SCPZ-16 Upper VWT   | 1614897                       | 1610330               | 10344.997            | 14.7                                |
| SCPZ-16 Middle VWT  | —                             | 1610331               | 10353.710            | 15.5                                |
| SCPZ-16 Lower VWT   | —                             | 1610332               | 10436.498            | 15.4                                |
| SCPZ-17 Upper VWT   | 1614898                       | 1610333               | 10248.741            | 24.2                                |
| SCPZ-17 Middle VWT  | —                             | 1610335               | 10475.862            | 23.8                                |
| SCPZ-17 Lower VWT   | —                             | 1610336               | 10086.328            | 24.2                                |
| SCPZ-18 Upper VWT   | 1614899                       | 1610337               | 10400.012            | 20.1                                |
| SCPZ-18 Middle VWT  | —                             | 1610338               | 10363.469            | 19.8                                |
| SCPZ-18 Lower VWT   | —                             | 1610339               | 10228.333            | 20.3                                |
| SCPZ-19 Upper VWT   | 1614900                       | 1612710               | 10459.746            | 19.5                                |
| SCPZ-19 Middle VWT  | —                             | 1612711               | 10623.842            | 19.6                                |
| SCPZ-19 Lower VWT   | —                             | 1612712               | 10384.371            | 19.4                                |
| SCPZ-20 Upper VWT   | 1614901                       | 1612713               | 10174.870            | 19.6                                |
| SCPZ-20 Middle VWT  | —                             | 1612714               | 10524.434            | 19.3                                |
| SCPZ-20 Lower VWT   | —                             | 1612715               | 10350.003            | 19.6                                |
| SCPZ-21 Upper VWT   | 1614902                       | 1612716               | 10313.104            | 30.1                                |
| SCPZ-21 Middle VWT  | —                             | 1612717               | 10253.509            | 29.6                                |
| SCPZ-21 Lower VWT   | —                             | 1612718               | 10472.297            | 29.3                                |
| SCPZ-22 Upper VWT   | 1614903                       | 1612719               | 10475.536            | 29.1                                |
| SCPZ-22 Middle VWT  | —                             | 1612720               | 10364.675            | 29.1                                |
| SCPZ-22 Lower VWT   | _                             | 1612721               | 10236.816            | 29.1                                |
| SCPZ-23b Upper VWT  | 1614904                       | 1612722               | 10160.021            | 25.8                                |
| SCPZ-23b Middle VWT | _                             | 1612723               | 10480.882            | 26.1                                |

Table 3.10-1Sandia Canyon Piezometers Data Logger and VWT Serial Numbers<br/>and VWT Zero Readings and Temperature Readings

| Identification     | Data Logger<br>Serial Numbers | VWT Serial<br>Numbers | VWT Zero<br>Readings | VWT Temperature<br>Readings<br>(°C) |
|--------------------|-------------------------------|-----------------------|----------------------|-------------------------------------|
| SCPZ-23a Lower VWT | —                             | 1612724               | 10504.913            | 26.1                                |
| SCPZ-24 Upper VWT  | 1614905                       | 1612725               | 10555.665            | 21.8                                |
| SCPZ-24 Middle VWT | —                             | 1612726               | 10271.530            | 21.7                                |
| SCPZ-24 Lower VWT  | —                             | 1612728               | 10391.126            | 21.6                                |
| SCPZ-25 Upper VWT  | 1614906                       | 1612729               | 10343.736            | 26.4                                |
| SCPZ-25 Middle VWT | —                             | 1612730               | 10179.236            | 26.5                                |
| SCPZ-25 Lower VWT  | —                             | 1612731               | 9158.264             | 26.6                                |
| SCPZ-26 Upper VWT  | 1614907                       | 1612732               | 10366.034            | 23.3                                |
| SCPZ-26 Middle VWT | —                             | 1612733               | 10462.978            | 23.3                                |
| SCPZ-26 Lower VWT  | —                             | 1612734               | 10198.188            | 23.2                                |
| SCPZ-27 Upper VWT  | 1614908                       | 1612735               | 10191.866            | 19.3                                |
| SCPZ-27 Middle VWT | —                             | 1612736               | 10321.530            | 19.3                                |
| SCPZ-27 Lower VWT  | —                             | 1612737               | 10392.526            | 19.3                                |
| SCPZ-28 Upper VWT  | 1614909                       | 1612738               | 10213.386            | 18.7                                |
| SCPZ-28 Middle VWT | —                             | 1612739               | 10293.143            | 18.7                                |
| SCPZ-28 Lower VWT  | —                             | 1612740               | 10369.769            | 18.9                                |
| SCPZ-29 Upper VWT  | 1614910                       | 1612741               | 10428.328            | 18.8                                |
| SCPZ-29 Middle VWT | —                             | 1612742               | 10596.849            | 19.2                                |
| SCPZ-29 Lower VWT  | —                             | 1612743               | 10500.931            | 19.1                                |

Table 3.10-1 (continued)

\* — = Only one data logger per piezometer location.

| Identification                     | Northing     | Easting      | Elevation |
|------------------------------------|--------------|--------------|-----------|
| SCPZ-13 brass cap embedded in pad  | 1770428.6948 | 1634955.9897 | 6764.22   |
| SCPZ-13 ground surface near pad    | 1770430.1237 | 1634955.5643 | 6764.04   |
| SCPZ-13 protective casing          | 1770428.2661 | 1634956.4967 | 6766.22   |
| SCPZ-14 brass cap embedded in pad  | 1770316.3836 | 1635727.5751 | 6750.35   |
| SCPZ-14 ground surface near pad    | 1770317.8479 | 1635727.4759 | 6750.11   |
| SCPZ-14 protective casing          | 1770314.9524 | 1635726.9231 | 6752.57   |
| SCPZ-15 brass cap embedded in pad  | 1769690.4957 | 1637386.6216 | 6720.20   |
| SCPZ-15 ground surface near pad    | 1769691.6385 | 1637385.4305 | 6719.98   |
| SCPZ-15 protective casing          | 1769689.8164 | 1637386.9581 | 6722.62   |
| SCPZ-16 brass cap embedded in pad  | 1769727.1688 | 1637397.2607 | 6719.82   |
| SCPZ-16 ground surface near pad    | 1769727.8650 | 1637398.1232 | 6719.66   |
| SCPZ-16 protective casing          | 1769726.7590 | 1637397.4791 | 6721.94   |
| SCPZ-17 brass cap embedded in pad  | 1769850.5762 | 1637427.6662 | 6720.10   |
| SCPZ-17 ground surface near pad    | 1769851.1542 | 1637426.3385 | 6719.96   |
| SCPZ-17 protective casing          | 1769849.6866 | 1637427.5164 | 6722.04   |
| SCPZ-18 brass cap embedded in pad  | 1769624.9441 | 1637581.2525 | 6715.27   |
| SCPZ-18 ground surface near pad    | 1769625.3319 | 1637580.3275 | 6715.12   |
| SCPZ-18 protective casing          | 1769624.0080 | 1637581.4669 | 6717.57   |
| SCPZ-19 brass cap embedded in pad  | 1769659.2075 | 1637589.6891 | 6714.50   |
| SCPZ-19 ground surface near pad    | 1769660.4075 | 1637588.8040 | 6714.46   |
| SCPZ-19 protective casing          | 1769658.4099 | 1637589.6570 | 6716.77   |
| SCPZ-20 brass cap embedded in pad  | 1769771.8010 | 1637610.9222 | 6715.37   |
| SCPZ-20 ground surface near pad    | 1769773.4422 | 1637610.4934 | 6715.24   |
| SCPZ-20 protective casing          | 1769771.0009 | 1637611.1700 | 6717.65   |
| SCPZ-21 brass cap embedded in pad  | 1769571.2304 | 1637826.3519 | 6711.35   |
| SCPZ-21 ground surface near pad    | 1769572.2888 | 1637825.8690 | 6711.19   |
| SCPZ-21 protective casing          | 1769570.4095 | 1637826.7888 | 6713.48   |
| SCPZ-22 brass cap embedded in pad  | 1769617.3342 | 1637838.7288 | 6711.28   |
| SCPZ-22 ground surface near pad    | 1769618.4864 | 1637839.0567 | 6711.09   |
| SCPZ-22 protective casing          | 1769616.5850 | 1637838.6268 | 6713.41   |
| SCPZ-23a brass cap embedded in pad | 1769729.6960 | 1637845.9166 | 6710.48   |

 Table 3.11-1

 Sandia Canyon Piezometers Survey Coordinates

| Identification                                              | Northing     | Easting      | Elevation |
|-------------------------------------------------------------|--------------|--------------|-----------|
| SCPZ-23a ground surface near pad                            | 1769730.6690 | 1637844.8818 | 6710.67   |
| SCPZ-23a protective casing                                  | 1769729.1073 | 1637846.3838 | 6712.49   |
| SCPZ-23b brass cap embedded in pad                          | 1769726.4493 | 1637849.8132 | 6709.79   |
| SCPZ-23b ground surface near pad                            | 1769725.2175 | 1637850.0875 | 6709.39   |
| SCPZ-24 brass cap embedded in pad                           | 1769532.3212 | 1638063.7958 | 6712.15   |
| SCPZ-24 ground surface near pad                             | 1769533.2057 | 1638062.7896 | 6712.07   |
| SCPZ-24 protective casing                                   | 1769531.7524 | 1638063.8726 | 6714.33   |
| SCPZ-25 brass cap embedded in pad                           | 1769602.7992 | 1638080.9766 | 6705.67   |
| SCPZ-25 ground surface near pad                             | 1769604.2733 | 1638079.8373 | 6705.46   |
| SCPZ-25 protective casing                                   | 1769602.1753 | 1638081.0447 | 6707.71   |
| SCPZ-26 brass cap embedded in pad                           | 1769665.3774 | 1638103.7642 | 6705.31   |
| SCPZ-26 ground surface near pad                             | 1769667.0857 | 1638102.1285 | 6705.17   |
| SCPZ-26 protective casing                                   | 1769664.9882 | 1638103.5415 | 6707.49   |
| SCPZ-27 brass cap embedded in pad                           | 1769634.4635 | 1638370.7228 | 6702.23   |
| SCPZ-27 ground surface near pad                             | 1769634.6488 | 1638369.6326 | 6702.10   |
| SCPZ-27 protective casing                                   | 1769633.6896 | 1638370.8445 | 6704.10   |
| SCPZ-27 plugging and abandonment brass cap embedded in pad  | 1769489.1337 | 1638327.5256 | 6707.00   |
| SCPZ-27 27 plugging and abandonment ground surface near pad | 1769487.9666 | 1638327.7641 | 6706.71   |
| SCPZ-28 brass cap embedded in pad                           | 1769538.1862 | 1638333.7400 | 6702.48   |
| SCPZ-28 ground surface near pad                             | 1769539.2003 | 1638333.4881 | 6702.32   |
| SCPZ-28 protective casing                                   | 1769538.1319 | 1638334.2588 | 6704.69   |
| SCPZ-29 brass cap embedded in pad                           | 1769622.1270 | 1638342.5159 | 6702.02   |
| SCPZ-29 ground surface near pad                             | 1769622.8494 | 1638341.3330 | 6701.82   |
| SCPZ-29 protective casing                                   | 1769621.2938 | 1638342.8802 | 6703.95   |

### Table 3.11-1 (continued)

Note: All coordinates are expressed as New Mexico State Plane Coordinate System Central Zone (NAD 83); elevation is expressed in ft amsl using the National Geodetic Vertical Datum of 1929.

# Appendix A

Instruction Manual Model LC-2x4 4 Channel VW Datalogger



The World Leader in Vibrating Wire Technology

48 Spencer Street Lebanon, NH 03766, USA Tel: 603•448•1562 Fax: 603•448•3216 E-mail: geokon@geokon.com http://www.geokon.com

Instruction Manual

**Model LC-2x4** 

### **4 Channel VW Datalogger**



No part of this instruction manual may be reproduced, by any means, without the written consent of Geokon, Inc.

The information contained herein is believed to be accurate and reliable. However, Geokon, Inc. assumes no responsibility for errors, omissions or misinterpretation. The information herein is subject to change without notification.

Copyright © 2007 - 2016 by Geokon, Inc. (Doc Rev R, 04/14/2016)



#### **Warranty Statement**

Geokon, Inc. warrants its products to be free of defects in materials and workmanship, under normal use and service for a period of 13 months from date of purchase. If the unit should malfunction, it must be returned to the factory for evaluation, freight prepaid. Upon examination by Geokon, if the unit is found to be defective, it will be repaired or replaced at no charge. However, the WARRANTY is VOID if the unit shows evidence of having been tampered with or shows evidence of being damaged as a result of excessive corrosion or current, heat, moisture or vibration, improper specification, misapplication, misuse or other operating conditions outside of Geokon's control. Components which wear or which are damaged by misuse are not warranted. This includes fuses and batteries.

Geokon manufactures scientific instruments whose misuse is potentially dangerous. The instruments are intended to be installed and used only by qualified personnel. There are no warranties except as stated herein. There are no other warranties, expressed or implied, including but not limited to the implied warranties of merchantability and of fitness for a particular purpose. Geokon, Inc. is not responsible for any damages or losses caused to other equipment, whether direct, indirect, incidental, special or consequential which the purchaser may experience as a result of the installation or use of the product. The buyer's sole remedy for any breach of this agreement by Geokon, Inc. or any breach of any warranty by Geokon, Inc. shall not exceed the purchase price paid by the purchaser to Geokon, Inc. for the unit or units, or equipment directly affected by such breach. Under no circumstances will Geokon reimburse the claimant for loss incurred in removing and/or reinstalling equipment.

Every precaution for accuracy has been taken in the preparation of manuals and/or software, however, Geokon, Inc. neither assumes responsibility for any omissions or errors that may appear nor assumes liability for any damages or losses that result from the use of the products in accordance with the information contained in the manual or software.

### TABLE OF CONTENTS

| 1. INTRO | DDUCTION                                                                                                       | 1  |
|----------|----------------------------------------------------------------------------------------------------------------|----|
| 2. GETT  | ING STARTED                                                                                                    | 3  |
| 2.1. Tr  | RANSDUCER INSTALLATION                                                                                         | 4  |
| 2.2. E   | ARTH GROUND INSTALLATION                                                                                       | 4  |
| 2.3. Sc  | OFTWARE INSTALLATION AND SETUP                                                                                 |    |
| 2.3      | 1. LogView Installation:                                                                                       |    |
| 2.3      | 2 Launching LogView                                                                                            |    |
| 2.3      | 3 LogView Workspaces:                                                                                          |    |
| 23       | 4 Adding Projects to Log View Workspaces                                                                       | 8  |
| 23       | 5 Adding Dataloggers to LogView Projects:                                                                      | 0  |
| 2.0      | 1.6 $1$ C-2v4 Connection (8002-4-1, PS-232):                                                                   | 11 |
| 2.0      | 7. 1. C-2x4 Connection (8002-4-1, 110-232).                                                                    |    |
| 2.0      | 2.8. I.C. 2x4 Connection 8002.4.3 /PS 4851:                                                                    |    |
| 2.3      | 0. Connecting to a Datalogger with Las View:                                                                   |    |
| 2.3      | 0.9. Connecting to a Datalogger with Logview                                                                   | 12 |
| 2.3      | 3.10. Determining COM Port Numbers:                                                                            |    |
| 2.4. C   | OMMUNICATION SETUP EXAMPLE USING HYPER I ERMINAL                                                               |    |
| 3. COM   | MAND LIST                                                                                                      |    |
| 3.1.     | BRNNN                                                                                                          |    |
| 3.2.     | С                                                                                                              |    |
| 3.3.     | CSMM/DD/YY/HH:MM:SS                                                                                            |    |
| 3.4.     | DEFAULT                                                                                                        |    |
| 3.5.     | DF                                                                                                             |    |
| 3.6.     | DL                                                                                                             |    |
| 3.7.     | DNNNN                                                                                                          |    |
| 3.8      | R                                                                                                              | 21 |
| 3.9      | GNN/C/TT/S777777/SEFEEFE/S000000 OR GNN/C/TT/SAAAAAA/SBBBBBB/SCCCCCCC                                          | 22 |
| 3 10     | וואניביינינענענענעראיזאניגענענעראיזאניענענעראיזאניענענעראיזאניענענעראיזאניענענעראיזאניענענעראיזאניענענעראיזאני | 25 |
| 3.11     | I                                                                                                              | 26 |
| 3.11.    |                                                                                                                | 26 |
| 2.12.    |                                                                                                                |    |
| 5.15.    |                                                                                                                |    |
| 3.14.    |                                                                                                                |    |
| 3.15.    | M                                                                                                              |    |
| 3.16.    | MD                                                                                                             |    |
| 3.17.    | ME                                                                                                             |    |
| 3.18.    | MXS                                                                                                            |    |
| 3.19.    | MXN                                                                                                            |    |
| 3.20.    | N                                                                                                              |    |
| 3.21.    | NA                                                                                                             |    |
| 3.22.    | NADDD                                                                                                          |    |
| 3.23.    | ND                                                                                                             |    |
| 3.24.    | NE                                                                                                             |    |
| 3.25.    | NS                                                                                                             |    |
| 3.26.    | PNNNN                                                                                                          |    |
| 3.27.    | R                                                                                                              |    |
| 3.28.    | RESET                                                                                                          |    |
| 3.29.    | S                                                                                                              |    |
| 3.30     | SCNNNNN                                                                                                        | 31 |
| 3 31     | SS                                                                                                             | 31 |
| 3 37     | SDuti-ww                                                                                                       | 22 |
| 2.32.    | CD                                                                                                             |    |
| 2.22     |                                                                                                                |    |
| 3.34.    | 51HH:MM                                                                                                        |    |
| 3.35.    | 57                                                                                                             |    |

| 3.36.                                          | TEST                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3.37.                                          | TF                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3.38.                                          | TNN/T                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3.39.                                          | TR                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3.40.                                          | TR0                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3.41.                                          | VL                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3.42.                                          | V3                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3.43.                                          | V12                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3.44.                                          | WF                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3.45.                                          | X                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MAIN                                           | ГЕЛАЛСЕ                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4.1. CI                                        | EANING                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4.2. B/                                        | TTERIES:                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4.2                                            | 1. Battery replacement instructions:                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TROU                                           | BLESHOOTING                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 51                                             | UNIT WILL NOT RESPOND TO COMMUNICATIONS                     | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 52                                             | VIRPATING WIRE GAGE MEASUREMENT READS -999000 0             | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5.2 C                                          | VIDRATING WIRE GAGE MEASUREMENT READS - 777777.0            | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5.4 VI                                         | ADE MEASUREMENT (ANALOO OK VIBRATINO WIRE) READS - 375353.2 | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5.4. VI                                        | BRATING WIKE GAGE READING IS UNSTABLE                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5.5. 11                                        | ERMISTOR MEASUREMENT SHOWS -77.7 DEGREES CELSIOS            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PPEND                                          | VIX A - SPECIFICATIONS                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A.1. N                                         | IEASUREMENT CAPABILITY                                      | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| A.2. P                                         | OWER                                                        | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| A.3. MEMORY                                    |                                                             | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| A.4. CLOCK                                     |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A.5. SERIAL INTERFACE (ALL LC-2X4 MODELS):     |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A.6. RS-485 NETWORK                            |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A.7. VIBRATING WIRE MEASUREMENT                |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A.8. INTERNAL/EXTERNAL TEMPERATURE MEASUREMENT |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A.9. MAIN BATTERY MEASUREMENT                  |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A.10.1                                         | MULTIPLEXER RELAY                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PPEND                                          | IX B - CONNECTOR PINOUTS                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DIT                                            |                                                             | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| D.1. 1                                         | ANSDUCER CABLE CONNECTIONS                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| D.2. K                                         | SP CONNECTOR PINOUT (0002-4-1).                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| D.J. U                                         | SD CUNNECTUR FINUUT (0002-4-2):                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| D.4. K                                         | 5-463 CONNECTOR FINOUT (OF HONAL, 6002-4-3):                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PPEND                                          | MX C - DATA FILE TRANSFER TO A WINDOWS PC                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C.1. D                                         | OWNLOADING DATA USING LOGVIEW.                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C.2. D                                         | UWNLUADING DATA USING HYPEKTERMINAL (UK EQUIVALENT)         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PPEND                                          | DIX D - SAMPLE DATA FILE                                    | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| D.1. S.                                        | AMPLE RAW DATA FILE                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PPEND                                          | IX E - THERMISTOR TEMPERATURE DERIVATION                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PPEND                                          | IX F - NETWORKING                                           | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| FID                                            | ROPUTION                                                    | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| F.2. Ex                                        | CAMPLE OF A 4 DATALOGGER NETWORKING SESSION                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                | IX G - LITHIUM COIN CELL                                    | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| PPFND                                          |                                                             | Contraction and a second secon |
| PPEND                                          |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

T

## LIST of FIGURES, TABLES and EQUATIONS

| FABLE 1 - TRANSDUCER CABLE CONNECTIONS                                        | 4  |
|-------------------------------------------------------------------------------|----|
| EQUATION 1 - DISPLAYED GAGE READING USING LINEAR CONVERSION                   | 22 |
| EQUATION 2 - DISPLAYED GAGE READING USING POLYNOMIAL CONVERSION               | 23 |
| TABLE 2 - VIBRATING WIRE GAGE TYPES                                           | 24 |
| TABLE 3 - GAGE TYPE DESCRIPTIONS                                              |    |
| EQUATION 3 - DIGITS CALCULATION USING LINEAR CONVERSION                       |    |
| EQUATION 4 - DIGITS CALCULATION USING POLYNOMIAL CONVERSION                   |    |
| TABLE 4 - ENGINEERING UNITS MULTIPLICATION FACTORS                            | 25 |
| TABLE 5 - LOGARITHMIC INTERVALS LIST                                          | 27 |
| TABLE 6 - S COMMAND INFORMATION                                               | 31 |
| TABLE 7 - SS COMMAND INFORMATION                                              | 32 |
| TABLE 8 - TEST MENU INFORMATION                                               |    |
| TABLE 9 - APPROXIMATE OPERATING TIMES                                         |    |
| TABLE B-1 - TRANSDUCER CABLE CONNECTIONS                                      | 43 |
| TABLE B-2 - RS-232 CONNECTOR PINOUT                                           | 44 |
| TABLE B-3 - USB CONNECTOR PINOUT                                              |    |
| TABLE B-4 - RS-485 CONNECTOR PINOUT                                           | 45 |
| EQUATION E-1 - CONVERT THERMISTOR RESISTANCE TO TEMPERATURE                   | 51 |
| TABLE E-1 - STANDARD THERMISTOR RESISTANCE VERSUS TEMPERATURE                 | 51 |
| EQUATION E-2 - CONVERT THERMISTOR, TYPE BR55KA822J, RESISTANCE TO TEMPERATURE | 52 |
| TABLE E-2 - BR55KA822J THERMISTOR RESISTANCE VERSUS TEMPERATURE               | 52 |
| EQUATION E-3 - CONVERT THERMISTOR, TYPE 103JL1A, RESISTANCE TO TEMPERATURE    | 53 |
| TABLE E-3 - 103JL1A THERMISTOR RESISTANCE VERSUS TEMPERATURE                  | 53 |

| FIGURE 1 - LC-2x4 4-CHANNEL VW DATALOGGER          | 2  |
|----------------------------------------------------|----|
| FIGURE 2 - BATTERY INSTALLATION                    | 3  |
| FIGURE 3 - SELECT WORKSPACE NAME                   | 6  |
| FIGURE 4 - SELECT WORKSPACE FOLDER                 | 7  |
| FIGURE 5 - LOGVIEW MAIN WINDOW                     | 8  |
| FIGURE 6 - LOG VIEW MAIN WINDOW WITH NEW PROJECT   | 9  |
| FIGURE 7 - LOGVIEW CONTEXT MENU                    | 10 |
| FIGURE 8 - DATALOGGER SETTINGS, CONNECTION OPTIONS | 10 |
| FIGURE 9 - DATALOGGER HIGHLIGHTED, NOT CONNECTED   | 12 |
| FIGURE 10 - DATALOGGER CONNECTION MISMATCH         | 13 |
| FIGURE 11 - DATALOGGER CONNECTED                   | 13 |
| FIGURE 12 - PC INTERNAL COM PORT                   | 14 |
| FIGURE 13 - DEVICE MANAGER PORTS LIST              | 14 |
| FIGURE 14 - HYPERTERMINAL CONNECTION DESCRIPTION   | 15 |
| FIGURE 15 - COM PORT SELECTION                     | 16 |
| FIGURE 16 - COM PORT SETTINGS                      | 16 |
| FIGURE 17 - ORDER OF ARRAY USAGE                   | 21 |
| FIGURE 18 - LOGVIEW COLLECT DATA BUTTON            | 46 |
| FIGURE 19 - DATA COLLECTION PROGRESS BAR.          | 47 |
| FIGURE 20 - DATA COLLECTION COMPLETE MESSAGE       | 47 |
| FIGURE 21 - HYPERTERMINAL TRANSFER MENU            | 48 |
| FIGURE 22 - SPECIFY DATA CAPTURE FILE              | 49 |
| FIGURE 23 - HYPERTERMINAL/DATALOGGER COMMUNICATION | 49 |

#### **1. INTRODUCTION**

The Model LC-2x4 4 Channel Datalogger is a low cost, battery powered and easy to use measurement instrument designed to read up to 4 vibrating wire sensors equipped with thermistors.

The 320K standard memory provides storage for 10666 data arrays. Each array consists of an optional datalogger ID string (16 characters maximum), a timestamp consisting of the year, date (julian day or month/day format), time (hhmm or hours/minutes format) and seconds when the reading was taken. Also included in the data is the internal 3V (or external 12V) battery voltage, the datalogger temperature, the vibrating wire readings, the transducer temperature and the Array #.

Internal math is calculated using 32 bit floating point notation (IEEE). Math operations on the instrument readings, such as application of zero readings, gage factors (or calibration factors) and offsets when using a linear conversion technique or polynomial coefficients when using the polynomial conversion, provide outputs directly in engineering units. The dataloggers internal configuration is defined through communication with a computer using the supplied RS-232 or USB (or optional RS-485) interface cable. The datalogger is configured and monitored using LogView, a Geokon proprietary Graphic User Interface (GUI) software application (See section 2). The datalogger can also be configured and monitored via text-based commands with any standard terminal emulator software, such as Microsoft Windows HyperTerminal™ (see section 3 - LC-2x4 Command Set).

The following three communications options are available for the LC-2x4:

| LC-2x4 Model # | <b>Communication</b> |  |
|----------------|----------------------|--|
| 8002-4-1       | RS-232               |  |
| 8002-4-2       | USB                  |  |
| 8002-4-3       | RS-485               |  |

- 8002-4-1: Communication with the LC-2x4 is implemented via the host computer's RS-232 COM port. See section 2.3.6 for further information.
- 8002-4-2: Communication with the LC-2x4 is implemented via the host computer's USB 2.0 port. When connected to a computer via the USB port, the LC-2x4 appears to the computer as a "virtual" COM port. The LC-2x4 datalogger also receives all of its operating power from the computer, thus extending the internal 3V (or external 12V) battery life. When disconnected from the USB port, the datalogger automatically switches to the internal 3V (or external 12V) battery pack. See section 2.3.7 for further information.
- 8002-4-3: Communication with the LC-2x4 is implemented via RS-485. This allows for long communication cables (up to 4000') between the host computer and the LC-2x4. The ability to network two or more LC-2x4 dataloggers together is also available with this communication option. See section 2.3.8 and Appendix F Networking for further information.
All data, both readings and configuration, are stored in non-volatile EEPROM with a typical storage life of 10 years (minimum). The internal temperature compensated real-time clock, used to provide timekeeping and triggering of readings, is accurate to  $\pm 2$  minutes/year.

The comma delineated ASCII output format allows for easy importing into popular spreadsheet programs such as Lotus  $1-2-3^{\text{TM}}$  or Microsoft Excel<sup>TM</sup>. See Appendix D for sample data files.



Figure 1 - LC-2x4 4-Channel VW Datalogger

## 2. GETTING STARTED

The following equipment will arrive with the Model LC-2x4 datalogger;

- 1. Set of (2) alkaline 'D' cell batteries.
- 2. Set of (4) desiccant packs packaged with the batteries.
- Accessories: <u>8002-4-1</u>: P/N S-8001-6 (DB-9F to 10-pin Bendix Male) RS-232 Communication Cable <u>8002-4-2</u>: P/N COM-109 (USB-A to 10-pin Bendix Male) USB Communication Cable <u>8002-4-3</u>: Communications Cable dependant on S-8001-5 (RS-232) or S-8002-5 (USB) RS-485 computer interface
- 4. Model LC-2x4 4 Channel Datalogger Instruction Manual.

If any of these items are missing or damaged contact the factory for replacements. The following are optional accessories;

- RS-485 interface cable.
- S-8001-5 (RS-232) or S-8002-5 (USB) RS-485 computer interface.
- Vibrating Wire Sensor with built-in thermistor (4 maximum).

This section will outline the basic steps needed to install the communications software, establish communication with the Model LC-2x4 and configure the datalogger in the context of water level monitoring using a Geokon model 4500S Vibrating Wire Pressure Transducer.

Open up the LC-2x4 by unscrewing the 4 captive screws on the top of the enclosure. Make sure that no dirt, water or other contaminants are allowed to enter the LC-2x4 enclosure. Insert the 2 "D" cells straight down into the battery holder, with the positive end of each fitting into the red washer as shown in Figure 2. Note that there is a ziplock bag containing 4 desiccant packs shipped along with the batteries. As soon as the batteries are installed, take the desiccant packs out of the ziplock back and place them inside the enclosure. Immediately close and reseal the lid. This will help to prevent condensation of moisture within the enclosure.



Figure 2 - Battery Installation

## 2.1. Transducer Installation

Open up the LC-2x4 by unscrewing the 4 captive screws on the top of the LC-2x4 enclosure. Route the vibrating wire transducer cable(s) into the LC-2x4 enclosure through the bulkhead fittings. Referring to Table 1 (or Appendix B.1.) Transducer Cable Connections, connect the cable wires to the datalogger's 5 pin internal terminal strips, located on the LC-2x4's Multiplexer circuit board. Wire each cable's 5 conductors into the terminal strip per Table 1.

| Terminal Strip<br>Position | Channel Number | Description            | Cable Wire<br>Color |
|----------------------------|----------------|------------------------|---------------------|
| VW1+                       | 1              | Vibrating Wire +       | RED                 |
| VWI-                       | 1              | Vibrating Wire -       | BLACK               |
| TH1+                       | 1              | Thermistor +           | GREEN               |
| TH1-                       | 1              | Thermistor -           | WHITE               |
| SHLD1                      | 1              | Analog Ground (shield) | BARE WIRE           |
| VW2+                       | 2              | Vibrating Wire +       | RED                 |
| VW2-                       | 2              | Vibrating Wire -       | BLACK               |
| TH2+                       | 2              | Thermistor +           | GREEN               |
| TH2-                       | 2              | Thermistor -           | WHITE               |
| SHLD2                      | 2              | Analog Ground (shield) | BARE WIRE           |
| VW3+                       | 3              | Vibrating Wire +       | RED                 |
| VW3-                       | 3              | Vibrating Wire -       | BLACK               |
| TH3+                       | 3              | Thermistor +           | GREEN               |
| TH3-                       | 3              | Thermistor -           | WHITE               |
| SHLD3                      | 3              | Analog Ground (shield) | BARE WIRE           |
| VW4+                       | 4              | Vibrating Wire +       | RED                 |
| VW4-                       | 4              | Vibrating Wire -       | BLACK               |
| TH4+                       | 4              | Thermistor +           | GREEN               |
| TH4-                       | 4              | Thermistor -           | WHITE               |
| SHLD4                      | 4              | Analog Ground (shield) | BARE WIRE           |

#### **Table 1 Transducer Cable Connections**

## 2.2. Earth Ground Installation

The LC-2x4 provides lightning protection in the form of gas tube surge arrestors. In order for these components to divert the energy from a lightning strike safely to ground, a good solid electrical connection to earth ground needs to be made. A grounding rod should be driven (or other suitable attachment to earth utilized) to ground the system and provide a path to earth in the event of a lightning strike. A 6' to 8' copper stake with appropriate large gauge wire (12 AWG or larger) connected to the LC-2x4 enclosure is suggested. The stake should be driven as close to the datalogger as possible, and to a depth of at least 3 feet (1m). A copper grounding lug is supplied on the exterior of the LC-2x4 enclosure to provide connection to this wire from the grounding rod.

## 2.3. Software Installation And Setup

LogView is Graphical User Interface (GUI) software is used to communicate with the datalogger using a personal computer running a Microsoft Windows® operating system. Other general purpose communication programs (i.e. Windows HyperTerminal<sup>1M</sup>) can also be used to communicate with the Model LC-2x4 via text-based commands. The LogView and USB drivers install program can be downloaded at <u>www.geokon.com/software</u>.

Perform the following steps to install LogView software for each computer that will connect to an LC-2x4. These instructions are for computers running Windows XP. The installation procedure is very similar for computers running Windows7, Windows 2000 and Windows 98. This installation procedure needs to be performed just once for each computer that will run LogView to communicate with a LC-2x4 datalogger.

NOTE: The USB drivers are only required for LC-2x4 models 8002-4-2 and the 8002-5 RS-485 Interface

Make sure that the (2) 1.5V D-cell alkaline batteries are installed in the datalogger (See section 4.2 BATTERIES for instructions) and that the LC-2x4 datalogger is <u>not connected</u> to the computer at this time.

#### 2.3.1. LogView Installation:

- Using Windows Explorer, navigate to the extracted downloaded files and double click on the file "start.bat" to start the install process.
- 2. Click "Next >" when the Welcome window appears.
- 3. When the Choose Install Location window appears, choose a folder for the LogView installation then click "Next>".
- When the Choose Start Menu Folder window appears, choose an appropriate folder (default is Geokon) then click "Install".
- 5. Click "Next >" when the Java Installation Complete window appears.
- 6. Click "Finish" when the Completing the LogView Setup Wizard window appears.

### 2.3.2 Launching LogView:

Launching LogView can be accomplished two different ways. Double clicking on the desktop icon:



Or via the Windows Start button: "Programs → Geokon → LogView"

### 2.3.3. LogView Workspaces:

When opening LogView for the first time, the user will be prompted to create a workspace name (see Figure 3). The workspace name can be any combination of letters and numbers and, ideally, will be descriptive in nature. See the LogView User's Guide for more information on workspaces.

| 🏂 Geokon Explorer - Wo                           | rkspace Launcher                            |                          |
|--------------------------------------------------|---------------------------------------------|--------------------------|
| Select Workspace N<br>Select the workspace to sw | lame<br>tch to from the list of names below | v (or enter a new name): |
| Workspace names:                                 | PRODUCTION]                                 | *                        |
|                                                  | Ok Cancel                                   |                          |

Figure 3 - Select Workspace Name

Once the workspace name has been selected, clicking on "**Ok**" causes LogView to prompt the user to choose or create a folder where all the workspace elements will be stored (see Figure 4). The folder location may be entered directly, i.e., C:\Workspaces\East. Coast. or the **Browse** button may be used to navigate to a folder location or to create a new folder (see Figure 4). This workspace location will be stored in the LogView configuration for subsequent application access. Once workspaces are created, future user access is always by name.

| elect Workspace         | Folder                                    |                         |
|-------------------------|-------------------------------------------|-------------------------|
| iter a workspace fulder | ur use the Browse button to navigate to o | or create a new folder. |
|                         |                                           |                         |
| New workspace folder:   | C:\Workspaces\East Coast                  | Browse                  |
|                         |                                           |                         |

Figure 4 - Select Workspace Folder

If no other is specified, a default folder path is displayed based on the system default workspace path combined with the new workspace name. After the folder path has been specified, either the default or user selected (see Figure 4), clicking on "**Ok**" will display the main window of LogView (see Figure 5). On the left-hand side of the main window is the Project Explorer displaying the newly created workspace. The user can now add new project(s), datalogger(s) and sensor configurations to the workspace by right-clicking on the workspace and using the menu tools.

| Geskon Le  | gView                |            | -       |        |         |               |                                                       |                                                                             |                                                             |                     |         |      |     |
|------------|----------------------|------------|---------|--------|---------|---------------|-------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------|---------------------|---------|------|-----|
| b Looger ) | Window Help<br>Start | Read       | Collect | Start  | View    | B             | View                                                  | Co-                                                                         | <b>F</b>                                                    | Upload              | Quin    | Set  | 3)  |
| Connect    | Manitoring           | Now        | Data    | Logang | Arrays  | Details       | Graphs                                                | Terminal                                                                    | Seconds                                                     | Sottings            | Reading | Timo | nep |
| Pr         | piect explorer       | rorrspore. |         |        |         | -             | -                                                     |                                                                             |                                                             |                     |         |      |     |
|            |                      |            |         |        | Workspa | ice inFormati | Workspace<br>Workspace<br>Desc<br>Date o<br>Workspace | ace ID: wiksp<br>name: PROI<br>ription: New<br>easted: Apri<br>fulder: C:(W | c_20100402<br>DUCTION<br>workspace<br>2010<br>Vurkspacus/Ed | 104800<br>s( Cuest) |         | Ţ    |     |
|            |                      |            |         |        |         |               |                                                       |                                                                             |                                                             |                     |         |      |     |

Figure 5 - LogView Main Window

# 2.3.4. Adding Projects to LogView Workspaces:

А.

8

Right-clicking on the "**PRODUCTION**" workspace brings up a context sensitive menu that allows the user to add projects to this workspace (using the "**New** $\rightarrow$ **Project**" menu selection). Select a name that makes sense for the real-world project this program will be used for. In this example "TestLoggers" was chosen as the project name (see Figure 6 below).

| He Looger Window Help<br>天 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■                                                                                                                                                                                 |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|                                                                                                                                                                                                                                                  |      |
|                                                                                                                                                                                                                                                  | 2    |
| Open Start Read Collact Start View View View Settings Unload Zen Set<br>Connect Monitoring Now Data Logging Arrays Details Graphs Terminal Settings Reading Time                                                                                 | Heip |
| Selection path: Workspace                                                                                                                                                                                                                        |      |
| Project explorer                                                                                                                                                                                                                                 |      |
| Project Informialion<br>Project ID: proj 20100729 111843<br>Project Trame: TestLoggers<br>Date created: JJ 29 2010<br>Project Folder: CitWorkspacestEdst Coast(proj 20100729 1116<br>Project description: Project to Bustrate logger connections |      |

Figure 6 - LogView Main Window with new project

#### 2.3.5. Adding Dataloggers to LogView Projects:

Right-clicking on the "**TestLoggers**" project brings up a context sensitive menu (see Figure 7) that allows users to add dataloggers to their projects. Selecting New→Logger from the context menu causes the "**Datalogger Settings**" dialog to be displayed. Like Workspaces and Projects, Dataloggers can be assigned a unique human-readable name. For this example, "MyLogger" was chosen for the Datalogger name. For a complete description of all datalogger settings please see the LogView Online Help section on Datalogger Settings. For connection purposes, the relevant tab in this dialog is "Connection Options" (see Figure 8).

After physically connecting to a PC, all LC-2x4 dataloggers require a COM port to be identified in the "**Connection Options**". Starting with firmware revision 3.1.X, LC-2x4 dataloggers can communicate at baud rates of 9600 and 115,200. Before this revision the datalogger baud rate was 9600 only so, for these dataloggers, the default setting should not be changed (See Figure 7).

9

10

| File Logger Window   | Help                                                              |                 |                  |
|----------------------|-------------------------------------------------------------------|-----------------|------------------|
| 5                    |                                                                   | 2               | 10               |
| Open :<br>Connect Mo | Start Read<br>Nitoring Now                                        | Collect<br>Data | Start<br>Logging |
| Selection p          | ath: PRODUCTION                                                   | - TestLogge     | ers              |
| Project es           | xplorer                                                           |                 |                  |
|                      | Uist nimect<br>Dist nimect<br>View dats file<br>Cap Export data f | likes           |                  |
|                      | New                                                               | Project         |                  |
|                      | X Remove                                                          | Logger          |                  |
|                      | Settings                                                          | Netwo           | rk               |
|                      | Move up                                                           |                 |                  |

Figure 7 - LogView Context Menu

| General | Intervals Co  | nnection Options | Data Collection Op                       | tions Memory Options |                 |
|---------|---------------|------------------|------------------------------------------|----------------------|-----------------|
|         | Connection se | ttings           |                                          |                      | Test Connection |
|         |               | COM Port:        | Net Address:<br>'Select ad<br>Baud Rate: | Network group:       |                 |
|         | Direct        | IN               | 9600                                     |                      |                 |
|         |               | COM Port:        | Baud Rate:                               | Phone number:        |                 |
|         |               | 4                | ( ) 9600                                 |                      |                 |
|         |               | IP address:      | Port:                                    |                      |                 |
|         |               |                  | 0                                        | ]                    |                 |
|         | ~-            |                  | 41-                                      |                      |                 |

Figure 8 - Datalogger Settings, Connection Options

### 2.3.6. LC-2x4 Connection (8002-4-1, RS-232):

Connect the supplied LC-2x4 RS-232 Communications cable (S-8001-6) to the COM port of the LC-2x4 datalogger. The protective cap on the datalogger COM connector is removed by pushing in and turning. Plug the DB-9 end of the RS-232 Communications cable into the host computer's RS-232 port (either internal or external via a USB to Serial converter). Proceed to section 2.3.9, Connecting to a Datalogger with LogView.

## 2.3.7. LC-2x4 Connection (8002-4-2, USB) :

Connect the supplied LC-2x4 USB Communications cable (COM-109) to the USB port of the LC-2 datalogger. The protective cap on the datalogger USB connector is removed by pushing in and turning. Plug the USB-A end of the USB cable into an available USB-2.0 port on the host computer.

**NOTE:** On certain PCs with operating systems older than XP, Service Pack 3, the 8002-4-2 may require the installation of a driver to properly communicate with the PC. If the PC does not recognize the datalogger's internal USB to serial converter then the driver may need to be installed by executing the program, CDMv2\_xxxx, from the LogView Install folder. Proceed to section 2.3.9, Connecting to a Datalogger with LogView.

## 2.3.8. LC-2x4 Connection 8002-4-3 (RS 485):

Make the COM port connection per section 2.3.6 (RS-232) or 2.3.7 (USB), and then refer to **Appendix F: Networking** to establish communications.

| Geokon LogView                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                   |                                                               |                                                                                                                                                      | -                                                                                    |                                                                                                                                   |                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Se Logger Window Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                     |                                                               |                                                                                                                                                      |                                                                                      |                                                                                                                                   |                                                                                   |
| Opén Start Read<br>Connect Monitoring New                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Collect Start<br>Deta Logging                                                                                                                                                                                                       | View View<br>Arrays Deta                                      | View View                                                                                                                                            | Settings Up                                                                          | ad Zero                                                                                                                           | ?                                                                                 |
| Selection path: PRODUCTIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DN - festLoquers. LC.2x4                                                                                                                                                                                                            | : MyLonger                                                    |                                                                                                                                                      |                                                                                      |                                                                                                                                   |                                                                                   |
| Project explorer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                   |                                                               |                                                                                                                                                      |                                                                                      |                                                                                                                                   |                                                                                   |
| RODUCTION<br>E Testloggers<br>E Construction<br>From Cons | General Datalogger informatio<br>ID= LCD9241420<br>Name: MyLogger<br>Model. LC2x4<br>Date created: Apr 24 2013<br>Description: My First dat<br>Memory format<br>Total readings:<br>Memory wrapping.<br>Date format:<br>Time format: | n<br>548<br>2<br>alogger<br>10666<br>enabled<br>pilan<br>hhmm | Intervals<br>Single intervals<br>Start time:<br>Stop time:<br>Stop time:<br>Log Interval #1<br>Log Interval #3<br>Log Interval #4<br>Log Interval #6 | nabled Value<br>vas 60<br>no<br>no<br>no<br>20 90<br>30 60<br>40 70<br>50 60<br>60 0 | Connection<br>Baud<br>Network en<br>Data collection<br>Collection<br>Collection<br>Collection<br>File mode: Write to<br>File name | ection: direct<br>Port: COMS<br>Irate: 9500<br>abled: no<br>new file, then append |

Figure 9 - Datalogger Highlighted, Not Connected

## 2.3.9. Connecting to a Datalogger with LogView:

- 1. With a Datalogger profile configured and selected in the Project Explorer (see Figure 9), click on the "**Open Connect**" button on the LogView Toolbar.
- 2. When connecting to a new Datalogger for the first time, the message below (see Figure 10) may be displayed after a few seconds. This is normal and is only an indication that the datalogger doesn't match the configuration created in the Project Explorer. Click on "Continue" to finish connecting to the datalogger.
- 3. Click on the "Upload Settings" button on the LogView Toolbar to synchronize the datalogger with the LogView configuration (see Figure 11).
- 4. LogView is now connected and configured correctly for the LC-2x4 datalogger. Sensors can now be added to the datalogger in a similar fashion as adding Dataloggers to Projects. Sensor settings are accessed via the context menu from the Project Explorer.
- 5. Always upload the new settings to the datalogger after changing its configuration in LogView.



Figure 10 - Datalogger Connection Mismatch

| Geokanlo                           | gView                           |          |                                                             |                                                                                             |                                    |         |                                                                                                                                                                      |                                               |               |                                                                                                                  |            |                              |                                                        |
|------------------------------------|---------------------------------|----------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------|------------------------------------------------------------------------------------------------------------------|------------|------------------------------|--------------------------------------------------------|
| le Logger y                        | Vindow Help                     |          | _                                                           |                                                                                             |                                    | _       |                                                                                                                                                                      |                                               |               |                                                                                                                  |            |                              |                                                        |
| 3                                  | 1                               |          | 20                                                          | Ð                                                                                           |                                    | ,Ø      | hie                                                                                                                                                                  | C:>                                           | 50            | \$                                                                                                               | 200        |                              | 3                                                      |
| Connect                            | Monitoring                      | Now      | Data                                                        | Logging                                                                                     | Arrays                             | Details | Graphs                                                                                                                                                               | Terminal                                      | Settings      | Settings                                                                                                         | Reading    | Time                         | Help                                                   |
| Sek                                | ection path: PF                 | RODUCTIO | N TestLogg                                                  | H8 LC-284                                                                                   | 1: MyLogger                        |         |                                                                                                                                                                      |                                               |               | _                                                                                                                |            |                              |                                                        |
| Pro<br>PRODUCT<br>PRODUCT<br>Tests | ject explorer<br>TION<br>oggers | 5        |                                                             |                                                                                             |                                    |         |                                                                                                                                                                      |                                               |               |                                                                                                                  |            |                              |                                                        |
|                                    |                                 |          | General Datalo<br>ID<br>Name<br>Date created<br>Description | gger informatio<br>: LC04241420<br>: MyLogger<br>: LC2x4<br>: Apr 24 2012<br>: My first dat | n<br>645<br>z<br>alogger           | -1      | nbervals<br>Single int<br>Start<br>Stop                                                                                                                              | Enabled<br>erval: yes<br>time: no<br>time: no | l Value<br>60 | -                                                                                                                | eenechon — | Conne<br>Baud<br>Network ena | ction: direct<br>Part: COM3<br>rabe: 9600<br>Milection |
|                                    |                                 |          | Mamory Format<br>T<br>Mem                                   | otal readings:<br>ory wrapping:<br>Date format:<br>Time format:                             | 10666<br>enabled<br>julian<br>hbmm | 1       | Log Interval #1 10<br>Log Interval #1 10<br>Log Interval #3 30 80<br>Log Interval #3 30 80<br>Log Interval #3 50 80<br>Log Interval #5 50 60<br>Log Interval #6 60 0 |                                               | 0             | Dote collection<br>Collecting: All data<br>Last date:<br>File mode: White to new file, then append<br>File mome: |            |                              |                                                        |

Figure 11 - Datalogger Connected

## 2.3.10. Determining COM Port Numbers:

When connecting an 8002-4-1 datalogger to a PC with an internal serial port(s) the COM Port number that LogView requires is usually COM1 or COM2 but, occasionally may be COM3 if the PC has more than one internal serial port. Figure 12 below illustrates that the PC has 2 serial ports, one internal (COM1) and the other via a USB to serial converter (COM13).



Figure 12 - PC Internal COM Port

When connecting an 8002-4-2 datalogger to a PC the COM Port number LogView requires can be any number and depends on how many other devices are attached to the PC like, internal serial ports and Bluetooth devices. Figure 13 below illustrates that the PC has 3 serial ports, one internal (COM1) and the other two via USB to serial converters (COM13 and COM3). One way to determine which COM port an 8002-4-2 datalogger is attached to is to disconnect the cable and see which COM device disappears from the Device Manager Ports list.



Figure 13 - Device Manager Ports List

In this case, COM3 is actually the 8002-4-2 datalogger and not a universally available serial port.

## 2.4. Communication Setup Example Using HyperTerminal

NOTE: If using a 8002-4-2 USB LC-2x4, it is important that the LC-2x4 first be connected to the computer's USB port before attempting to communicate so that the LC-2x4 can be recognized by the computer as a virtual COM port.

Proceed with the following steps to connect with the datalogger using a terminal emulator program such as Microsoft Windows HyperTerminal<sup>TM</sup>:

- 1. Launch HyperTerminal (Start → All Programs → Accessories → Communications → HyperTerminal). If running under Vista or newer, contact Geokon for Geokon's Terminal Window Software.
- 2. Enter a name for the New Connection and click OK (see Figure 14):

| Connection Description     | 1        |          |           | ?×   |
|----------------------------|----------|----------|-----------|------|
| New Connection             |          |          |           |      |
| Enter a name and choose an | icon for | the conn | ection:   |      |
| Name:                      |          |          |           |      |
| LC-2x4                     |          |          | _         |      |
| icon:                      | (Former) | -        | र दिन्दी। | 0    |
|                            | MC       | 30       | B         | X    |
| <u>&lt;</u>                |          |          |           | >    |
|                            | -        |          |           |      |
|                            |          | OK       | Ca        | ncel |
|                            | _        | _        | 1         |      |

Figure 14 - HyperTerminal Connection Description

3. In the Connect Using window, select the appropriate COM port (see Figure 15):

| Connect To        |             |           |             | ?)>      |
|-------------------|-------------|-----------|-------------|----------|
| C-2x4             |             |           |             |          |
| Enter details for | the phone r | number th | at you want | to dial: |
| Country/region:   | United Sta  | (i) red   |             |          |
| Area code:        | 603         |           |             |          |
| Phone number:     |             |           |             |          |
| Connect using:    | COM1        | -         | -           | v        |
|                   | F           | OK        | Car         | icel     |
|                   | -           |           |             |          |

Figure 15 - COM Port Selection

4. In the COM Properties window, configure the COM port (see Figure 16):

| OM1 Properties           |      | 2                |
|--------------------------|------|------------------|
| Port Settings            |      |                  |
| <u>B</u> its per second: | 9600 | ~                |
| <u>D</u> ata bits:       | 8    | ~                |
| Parity:                  | None | ¥                |
| Stop bits:               | 1    | ~                |
| Elow control:            | None | *                |
|                          |      | Restore Defaults |
| 0                        | ĸ    | Cancel Apply     |

Figure 16 - COM Port Settings

<u>8002-4-1 (RS-232)</u>: Configure the COM port (typically COM1 or COM2) as 9600 Bits per second, 8 Data bits, no Parity, 1 Stop bit, no Flow control.

<u>8002-4-2 (USB)</u>: Configure the <u>new</u> COM port that is added when the LC-2x4 is connected as 9600 Bits per second, 8 Data bits, no Parity, 1 Stop bit, no Flow control.

- 5. Click Apply then OK.
- Press <ENTER> <ENTER> to wake the datalogger from sleep. The datalogger returns the power up prompt;

Hello. Press "?" for Help.

Note: If no characters are received in 15 seconds the datalogger (non-networked) will return to its low power sleep mode. Press <ENTER> <ENTER> to wake it again.

Note: When network commands are enabled and RS-485 is being used, the address must be sent before the respective datalogger will respond. See sections 3.21. thru 3.25. for additional information.

 Type ? <ENTER> to display the Help list. See section 3 for detailed information on all the commands listed. All commands must be entered in capital letters!;

| *?<br>Command       | Description                        |
|---------------------|------------------------------------|
| C                   | View current Clock                 |
| CSmm/dd/yy/hh:mm:ss | Clock Set                          |
| DEFAULT             | Load factory DEFAULT gage settings |
| DF                  | Date Format(0=julian,1=month,day)  |
| DL                  | Display DataLogger type            |
| Dnnnnn              | Display nnnnn arrays from pointer  |
| E                   | End communications and go to sleep |

Gnn/c/tt/szzzzz/sffffff/s000000 or Gnn/c/tt/saaaaaa/sbbbbbbb/scccccc

Gage information, where;

nn = Channel # c = Conversion Type(L/P) tt = Gage Type

For Linear (L) Conversion: szzzzz = zero reading with sign sffffff = gage factor with sign soooooo = offset with sign

For Polynomial (P) Conversion: saaaaaa = polynomial coefficient A with sign sbbbbbb = polynomial coefficient B with sign scccccc = polynomial coefficient C with sign

| IDdddddddddddddd | View current ID, set to ddddddddddddddd                                 |
|------------------|-------------------------------------------------------------------------|
| Ln/lllll/iii     | View Log intervals/change n interval                                    |
|                  | =  ength                                                                |
|                  | iii = iterations of interval                                            |
| LD,LE            | Log intervals Disable, Enable                                           |
| M,MD,ME          | Monitor status, Disable, Enable                                         |
| MXS              | Display Multiplexer Setup                                               |
| MX#              | Select Multiplexer Configuration(4,16)                                  |
| N                | Display Next time to read                                               |
| NAddd            | Network Address (1-256)                                                 |
| NS,ND,NE         | Network Status, Disable, Enable                                         |
| Pnnnnn           | Position array pointer to nnnnn                                         |
| R                | Reset memory                                                            |
| RESET            | RESET processor                                                         |
| S,SS             | Datalogger Status, System Status                                        |
| SCnnnnn          | View SCan interval/enter nnnnn interval                                 |
| SPhh:mm          | StoP logging, hh:mm = stop time                                         |
| SR               | Synchronize Readings(0=not synch'd,1=synch'd)                           |
| SThh:mm          | STart logging, hh:mm = start time                                       |
| SV               | Software Version                                                        |
| TEST             | System Test                                                             |
| TF               | Time Format $(0 = hhmm, 1 = hh, mm)$                                    |
| Tnn/t            | Thermistor information, where;                                          |
|                  | nn = Channel #                                                          |
|                  | t = Thermistor Type                                                     |
|                  | Thermistor type $(0 = \text{standard}, 1 = \text{high temp BR55A822J},$ |
|                  | 2 = high temp 103JL1A)                                                  |
| TR,TR0           | display TRap count, zero TRap count                                     |
| VL               | display Lithium cell Voltage                                            |
| V3               | display 3V Battery Voltage                                              |
| V12              | display 12V Battery Voltage                                             |
| WFn              | Wrap Format(0=don't wrap memory, 1=wrap memory                          |
| X                | Single Reading - NOT stored                                             |

All of these commands are executed by typing with the correct syntax and pressing <ENTER>. If the command has not been entered correctly, the datalogger will respond with an asterisk only. For example;

\*L7/100/255

The datalogger will respond to correctly entered commands by displaying the modified values. The purpose and syntax of each of these commands are discussed in the following sections.

18

### 3. COMMAND LIST

#### 3.1. BRnnn

This command is not displayed in the help text (?<ENTER>). Displays or sets the current baud rate. Valid numbers for "nnn" are 9 (9600 baud) or 115 (115,200 baud). The example below changes the baud rate to 9600 with no confirmation.

\*BR9

## 3.2. C

Display the current datalogger real-time clock settings. The CS command section explains how to adjust the clock settings.

\*C Date: 02/21/07 Time: 10:43:08 \*

### 3.3. CSmm/dd/yy/hh:mm:ss

Set the datalogger's internal real time clock; mm represents the month, dd the day of the month, yy the year, hh the hours, mm the minutes, and ss the seconds. Illegal combinations will be ignored (i.e. CS02/30/07 or CS///12:60). Fields can be left blank to avoid changing (i.e. CS//07 to just change the year).

\*CS///10:45:00 Date: 02/21/07 Time: 10:45:00 \*

Note: If logging is currently started and the clock is changed, a restart of the scan interval or log interval table will occur.

## 3.4. DEFAULT

The DEFAULT command will reload the datalogger's channel and gage settings to the factory default settings, along with the reading synchronization and memory wrap settings. This results in:

All channels Enabled All Gage Types set to 1 All Zero Readings set to 0.00000 All Gage Factors set to 1.00000 All Gage Offsets set to 0.00000 All channels use linear conversion Scan interval = 10S All readings synchronized to the top of the hour Memory will wrap when full and continue logging All Thermistors set to standard temperature

\*DEFAULT This will load all channels with factory default gage settings! Are you sure(Y/N)?Y All channels restored to factory default gage settings.

## 3.5. DF

Display or set the date format. This setting determines how the date information will be displayed in the array when the monitor mode is active or arrays are displayed from memory. Entering DF displays the current date format. Entering DF0 sets the date format to julian. Entering DF1 sets the date format to month,day. The default date format display is Julian (decimal) day.

```
*DF
Date format is julian.
*DF1
Date format is month,day.
*DF0
Date format is julian.
```

### 3.6. DL

Display the current datalogger mode setting.

\*DL LC-2x4

### 3.7. Dnnnnn

Use the D command to display arrays forward from the User Position for verification or collection. The updated memory pointers are displayed by this command.

```
*P1
MS:3146 OP:3147 UP:1
*D5
2007,11,23,17,52,43,3.10,25.51,9039.950,-9999999.0,-9999999.0,-999999.0,23.2,-99.0,-99.0,-99.0,1
2007,11,23,17,53,43,3.10,24.77,9040.149,-9999999.0,-999999.0,-999999.0,23.2,-99.0,-99.0,-99.0,2
2007,11,23,17,54,43,2.97,24.42,9040.319,-9999999.0,-999999.0,-999999.0,23.2,-99.0,-99.0,-99.0,3
2007,11,23,17,55,43,2.98,24.22,9039.622,-999999.0,-999999.0,-999999.0,23.1,-99.0,-99.0,-99.0,4
2007,11,23,17,56,43,2.98,24.22,9038.542,-999999.0,-999999.0,-999999.0,22.7,-99.0,-99.0,-99.0,5
```

MS:3146 OP:3147 UP:6

MS represents the Memory Status of the datalogger. This number indicates how many arrays have been written to memory. In this example, MS:3146 indicates that 3146 out of 10666 arrays have been written to memory. **OP:3147** indicates that the next memory location to be written to is location 3147. **UP:1** indicates that the memory location currently being pointed to (via the P command) is memory location 1. Use the D command to display arrays forward from the User Position, In this case, **D5** displays the arrays stored at memory locations 1,2,3,4 and 5, and leaves the memory pointer at memory location 6.

Figure 17 illustrates the ring memory scheme.



Figure 17 - Order of Array Usage

OP represents the Output Position that the next array will be written to.

UP represents the User Position. This value is updated by D and P commands. The user may display arrays from this position or re-position to another array.

The format is comma delineated ASCII, identical to that displayed when the Monitor mode is active. See Appendix D for a sample data file. See Appendix C in regards using the D command to collect data. When the array display is finished the memory pointers are displayed.

## 3.8. E

Returns the datalogger to its low power sleep mode (readings continue to be logged and displayed in this mode). This command should always be used when finished communicating with the datalogger to ensure the lowest power consumption. However, the datalogger (non-networked) will enter sleep mode regardless if no command is received in a period of approximately 15 seconds.

To return from the low power operating mode press <ENTER> <ENTER>. The datalogger responds;

Hello. Press "?" for Help.

Note: When network commands are enabled the address must be sent before the respective datalogger will respond. See the NA, ND and NE command sections for additional information.

## 3.9. Gnn/c/tt/szzzzz/sffffff/soooooo or Gnn/c/tt/saaaaaa/sbbbbbbb/scccccc

The G command is used to set up each of the 4 datalogger channels. All of the transducer parameters, including the type of conversion (linear or polynomial) and whether a channel is enabled or disabled are set with this command. Refer to Table 2 and Table 3 for a description of each gage type.

The syntax for this command is:

22

Linear Conversion:

Gnn/c/t/szzzzz/sffffff/soooooo Where:

nn = Channel # (Valid entries are 1,2,3 and 4 for the LC-2x4) c = Conversion Type(L/P) where L=Linear and P=Polynomial t = Gage Type: 0: Channel Disabled (will display "---") 1: VW Gage Type 1 2: VW Gage Type 2 3: VW Gage Type 3 4: VW Gage Type 3 4: VW Gage Type 4 5: VW Gage Type 5 6: VW Gage Type 6 szzzzz = zero reading with sign sffffff = gage factor with sign soooooo = offset with sign

Example: To setup Channel 1 as a model 4000 VW Strain Gage with a Zero Reading of 490 digits, a Gage Factor of -0.0015 and a Gage Offset of 0, enter:

G1/L/3/490/-0.0015/0 <ENTER>

The LC-2x4 will return:

CH 1: ENABLED GT: 3 ZR: 490.0000 GF: -0.00150 GO: 0.00000

\*Note: If selecting Gage Type 0 to disable the channel, the LC-2x4 will only return '\*'. Use the MXS command (section 3.18) to view the disabled channels.

When using linear conversion (L) of the instrument reading, the G command is used to select the gage type and enter the gage zero reading, gage factor, and gage offset.

Linear Conversion is described further as follows:

szzzzz represents the zero reading for the transducer being read, sffffff represents the multiplier (calibration or gage factor) that will be applied to the reading to convert to engineering units and soooooo is the offset that will be applied to the gage reading. The zero reading, gage factor and offset can be entered with a sign and decimal point. The maximum number of digits, including sign and decimal point is 15. The entered value will display to a maximum of 5 places to the right of the decimal point.

For all vibrating wire instruments (Gage Types 1-6), manufactured after November 2, 2011 and for all dataloggers (8002-4-X) with a firmware revision of 3.1.X and up, the basic formula for calculation of displayed and stored values is as follows;

### Display = ((CurrentReading - ZeroReading) × Multiplier) + Offset

#### Equation 1 - Displayed Gage Reading using Linear Conversion

**NOTE:** It is possible that a new datalogger might be used with an older sensor or vice versa and because of equation differences the output might be negative. As of LogView version V2.1.1.X, an additional sensor configuration parameter is now required, allowing LogView to compensate for old versus new sensor/datalogger combinations. This new parameter: **Output Calculation**, determines whether the sensor was calibrated using the formula:  $G \times (R0 - R1)$  or  $G \times (R1 - R0)$ . As with the gage factor, this information is available from the calibration certificate supplied with each sensor. Please see the LogView User's Guide or the online help section, "Sensor Settings" available while running LogView.

NOTE: In Equation 1 (above), the "CurrentReading" is frequently referred to as R1 while the "ZeroReading" is referred to as R0

#### Polynomial Conversion:

Where:

```
nn = Channel # (Valid entries are 1,2,3 and 4 for the LC-2x4)
c = Conversion Type(L/P)
t = Gage Type;
0: Channel Disabled (will display "---")
1: VW Gage Type 1
2: VW Gage Type 2
3: VW Gage Type 3
4: VW Gage Type 3
4: VW Gage Type 4
5: VW Gage Type 5
6: VW Gage Type 6
saaaaaa = polynomial coefficient A with sign
sbbbbbb = polynomial coefficient B with sign
sccccc = polynomial coefficient C with sign
```

When using polynomial conversion (P), the G command is used to select the gage type and enter the three polynomial coefficients, A, B and C.

Polynomial Conversion is described further as follows:

saaaa represents polynomial coefficient A, sbbbb represents polynomial coefficient B and scccc polynomial coefficient C. The polynomial coefficients can be entered with a sign and decimal point. The maximum number of digits, including sign and decimal point is 15. The entered value will display to a maximum of 5 places to the right of the decimal point.

For the vibrating wire instruments (Gage Types 1-6), the basic formula for calculation of displayed and stored values is:

Display = (CurrentReading<sup>2</sup> × A) + (CurrentReading × B) + C

#### Equation 2 - Displayed Gage Reading using Polynomial Conversion

NOTE: When using the Polynomial conversion method, the default reading units for a vibrating wire instrument is the frequency squared multiplied by 10<sup>-6</sup>. For example, an instrument reading 3000Hz will output a value of "9.000" when A is entered as "0", B is "1" and C is "0". However, typical calibration units for vibrating wire instruments are frequency squared multiplied by 10<sup>-3</sup>. To adjust for this discrepancy between LC-2 expected units and calibration units **multiply the A coefficient by 1,000,000 and the B coefficient by 1000.** The A and B coefficients can be found on the supplied calibration certificate. The C coefficient should be calculated based on an actual field reading. The above multiplication is only necessary if the datalogger is being set up via text commands (see section 2.3) AND the gage conversion is set for polynomial. When using LogView to set up the datalogger configuration, the multiplication is performed by LogView. Refer to the appropriate sensor manual for more information on how to calculate the C coefficient.

| Geokon Model   | Gage Type | Description             |
|----------------|-----------|-------------------------|
| 4000           | 3         | Strain Gage             |
| 4100           | 1         | Strain Gage             |
| 4200           | 3         | Strain Gage             |
| 4204           | 6         | Strain Gage             |
| 4202/421X      | 1         | Strain Gage             |
| 4300BX         | 1         | BX Borehole Stressmeter |
| 4300EX         | 5         | EX Borehole Stressmeter |
| 4300NX         | 1         | NX Borehole Stressmeter |
| 4400           | 1         | Embedment Jointmeter    |
| 4420           | 1         | Crackmeter              |
| 4450           | 1         | Displacement Transducer |
| 4500           | 1         | Piezometer              |
| 4600/4651/4675 | 1         | Settlement Systems      |
| 4700           | 1         | Temperature Transducer  |
| 4800           | 1         | Pressure Cell           |
| 4850           | 1         | Low Pressure Piezometer |
| 4900           | 1         | Load Cell               |
| 4910/4911/4912 | 1         | Load Bolts              |

#### **Table 2 - Vibrating Wire Gage Types**

| Type | Measurement Type | Description                              | Output Units | Linear Range  | Polynomial Range |
|------|------------------|------------------------------------------|--------------|---------------|------------------|
| 0    |                  | Channel Disabled                         |              |               |                  |
| 1    | Vibrating Wire   | Middle frequency sweep, 1400-3500 Hz     | Digits       | 1960 to 12250 | 1.960 to 12.250  |
| 2    | Vibrating Wire   | High frequency sweep, 2800-4500 Hz       | Digits       | 7840 to 20250 | 7.840 to 20.250  |
| 3    | Vibrating Wire   | Very low frequency sweep, 400-1200 Hz    | Digits       | 160 to 1440   | 0.160 to 1.440   |
| 4    | Vibrating Wire   | Low frequency sweep, 1200-2800 Hz        | Digits       | 1440 to 7840  | 1.440 to 7.840   |
| 5    | Vibrating Wire   | Very high frequency sweep, 2500-4500 Hz. | Digits       | 6250 to 20250 | 6.250 to 20.250  |
| 6    | Vibrating Wire   | Low frequency sweep, 800-1600 Hz         | Digits       | 640 to 2560   | 0.640 to 2.560   |

## Table 3 - Gage Type Descriptions

The "Digits" calculation for the Vibrating Wire transducer output when using linear conversion is based on this equation;

## Digits = frequency<sup>2</sup> $\times 10^{-3}$

#### Equation 3 - Digits Calculation using Linear Conversion

The "Digits" calculation for the Vibrating Wire transducer output when using polynomial conversion is based on this equation;

Digits = frequency<sup>2</sup> ×  $10^{-6}$ 

#### Equation 4 - Digits Calculation using Polynomial Conversion

Frequency, in the above equations, represents the resonant frequency of vibration of the wire in the transducer (in Hertz) as determined by the datalogger.

To convert calibration factors (pressure transducers are usually psi per digit) to other engineering units consult Table 4.

**NOTE:** In LogView Sensor Settings, when output units are set different than inputs units, a conversion factor (see Table 4) is automatically applied to the gage factor of each sensor. See the <u>LogView User's Guide</u> for more information on Sensor Settings.

| $ \begin{array}{c} \text{From} \rightarrow \\ \text{To} \\ \downarrow \end{array} $ | psi     | "H <sub>2</sub> O | 'H <sub>2</sub> O | mm H <sub>2</sub> 0 | m H <sub>2</sub> 0 | "HG     | mm HG    | atm     | mbar     | bar     | kPa     | MPa    |
|-------------------------------------------------------------------------------------|---------|-------------------|-------------------|---------------------|--------------------|---------|----------|---------|----------|---------|---------|--------|
| psi                                                                                 | 1       | .036127           | .43275            | 0014223             | 1.4223             | .49116  | .019337  | 14.696  | .014503  | 14,5039 | .14503  | 145.03 |
| "H <sub>2</sub> O                                                                   | 27.730  | 1                 | 12                | 039372              | 39.372             | 13,596  | .53525   | 406.78  | ,40147   | 401.47  | 4.0147  | 4016.1 |
| 'H,O                                                                                | 2.3108  | .08333            | 1                 | .003281             | 3.281              | 1.133   | .044604  | 33.8983 | .033456  | 33,4558 | .3346   | 334.6  |
| mm H <sub>2</sub> 0                                                                 | 704.32  | 25.399            | 304.788           | 1                   | 1000               | 345.32  | 13.595   | 10332   | 10.197   | 10197   | 101.97  | 101970 |
| m H,0                                                                               | 70432   | .025399           | .304788           | .001                | 1                  | .34532  | .013595  | 10.332  | .010197  | 10.197  | 10197   | 101.97 |
| "HG                                                                                 | 2.036   | 073552            | .882624           | .0028959            | 2.8959             | 1       | 03937    | 29.920  | .029529  | 29.529  | .2953   | 295.3  |
| mm HG                                                                               | 51.706  | 1.8683            | 22.4196           | 073558              | 73.558             | 25.4    | 1        | 760     | 75008    | 750.08  | 7.5008  | 7500.8 |
| atm                                                                                 | 06805   | .0024583          | .0294996          | .0000968            | .0968              | .03342  | .0013158 | 1       | .0009869 | 98692   | .009869 | 9,869  |
| mbar                                                                                | 68.947  | 2.4908            | 29,8896           | .098068             | 98,068             | 33.863  | 1.3332   | 1013.2  | 1        | 1000    | 10      | 10000  |
| bar                                                                                 | .068947 | 0024908           | .0298896          | .0000981            | 098068             | .033863 | .001333  | 1.0132  | .001     | 1       | .01     | 10     |
| kPa                                                                                 | 6.8947  | .24908            | 2.98896           | .0098068            | 9.8068             | 3.3863  | 13332    | 101.320 | .1       | 100     | 1.      | 1000   |
| MPa                                                                                 | .006895 | .000249           | .002988           | .00000981           | .009807            | .003386 | .000133  | 101320  | .0001    |         | .001    | 1      |

| Table 4 - Engineering U | nits Multiplication Factors |
|-------------------------|-----------------------------|
|-------------------------|-----------------------------|

## 3.10. IDddddddddddddddd

Displays or sets the datalogger ID. The ID is a 16 character string that can be used to identify a datalogger and the data that is transmitted by it. If an ID is entered it will be transmitted as the first element in each array of data. For example;

```
*ID
Datalogger ID:
*ID
Datalogger ID:
*IDDatalogger#1
Datalogger ID:Datalogger#1
*ST
Logging started.
Datalogger#1,2007,11,25,11,25,16,2.92,20.93,9.020,-999999.0,-999999.0,
-999999.0,22.0,-99.0,-99.0,-99.0,1
Datalogger#1,2007,11,25,11,25,21,2.92,20.95,9.061,-9999999.0,-999999.0,
-999999.0,22.0,-99.0,-99.0,-99.0,2
Datalogger#1,2007,11,25,11,25,26,2.92,21.04,9.045,-999999.0,-999999.0,
-999999.0,22.0,-99.0,-99.0,-99.0,3
Datalogger#1,2007,11,25,11,25,31,2.92,21.09,9.014,-9999999.0,-999999.0,
-999999.0,22.0,-99.0,-99.0,-99.0,4
```

To clear the ID enter a <SPACE> character as the ID. When the ID is cleared the arrays from the logger will display beginning with the year. To display the current ID enter ID <ENTER>.

3.11. L

Display all 6 log intervals.

| *L<br>Log Interva | als List   |                 |
|-------------------|------------|-----------------|
| Interval #1       | Length: 10 | Iterations: 100 |
| Interval #2       | Length: 20 | Iterations: 90  |
| Interval #3       | Length: 30 | Iterations: 80  |
| Interval #4       | Length: 40 | Iterations: 70  |
| Interval #5       | Length: 50 | Iterations: 60  |
| Interval #6       | Length: 60 | Iterations: 50  |
|                   |            |                 |

\*

This command has no effect on the current interval (scan or log). If logging is started and log intervals are enabled the iterations value will be followed by the number of readings left at that interval. For example;

| *L<br>Log Intervals List |                    |
|--------------------------|--------------------|
| Interval #1 Length: 10   | Iterations: 100/96 |
| Interval #2 Length: 20   | Iterations: 90/90  |
| Interval #3 Length: 30   | Iterations: 80/80  |
| Interval #4 Length: 40   | Iterations: 70/70  |
| Interval #5 Length: 50   | Iterations: 60/60  |
| Interval #6 Length: 60   | Iterations: 50/50  |

\*

The above list indicates that there are 96 iterations of interval 1 left before interval 2 begins execution. See the Ln/11111/iii command section to modify intervals.

## 3.12. Ln/IIIII/iii

Define the length and iteration of any interval in the list; n refers to the number of the interval (1-6), IIII is the length (3-86400), and iii is the iterations (0-255), or the number of readings that will be taken at that interval. If 0 is entered for the iteration value that interval will execute indefinitely. Illegal entries will be ignored, i.e. L7/10/100 or L1/1000/500. If the entry is correct the modified interval will display.

```
*L1/100/0
Interval #1 Length: 100 Iterations: 0
*
```

If log intervals are enabled and logging was started, any change to the interval list will result in a restart of the table!

Table 5 lists possible logarithmic interval lengths and iterations. Any combination of lengths and iterations is permissible.

| Interval | Length       | Iterations | Elapsed Time  |
|----------|--------------|------------|---------------|
| 1        | 10 seconds   | 6          | 1 minute      |
| 2        | 30 seconds   | 20         | 10 minutes    |
| 3        | 60 seconds   | 100        | 100 minutes   |
| 4        | 300 seconds  | 200        | 1000 minutes  |
| 5        | 2400 seconds | 250        | 10000 minutes |
| 6        | 3600 seconds | 0          | endless       |

#### Table 5 - Logarithmic Intervals List

#### 3.13. LD

Disable use of log intervals. If logging is started (ST command) it will continue based on the scan interval entry (SC command).

```
*LD
Log intervals disabled.
*Datalogger#1,2007,11,25,11,41,17,2.92,20.63,9.055,-9999999.0,-999999.0,
-999999.0,22.5,-99.0,-99.0,-99.0,549
*
```

## 3.14. LE

Enable use of log intervals. If logging is started (ST command) it will continue based on the interval lengths and iterations of the log list (SC command).

```
*LE
Log intervals enabled.
*Datalogger#1,2007,11,25,11,42,56,2.92,21.51,9.042,-999999.0,-
999999.0,-999999.0,22.5,-99.0,-99.0,-99.0,622
```

## 3.15. M

Display the current Monitor mode setting. The monitor mode will display arrays as they are stored in memory in the course of logging. This is useful where a test is being conducted and immediate display of logged values would be helpful. Use the MD and ME commands (next two sections) to disable or enable the use of the Monitor mode.

\*M Monitor mode enabled. \*

#### 3.16. MD

Disable the Monitor mode. Arrays will not be sent to the host computer as they are logged.

\*MD Monitor mode disabled. \*

### 3.17. ME

Enable the Monitor mode. Arrays will be sent to the host computer as they are logged.

```
*ME
Monitor mode enabled.
*
```

### 3.18. MXS

Display the Multiplexer Status.

\*MXS

LC-2MUX 4-Channel Multiplexer Setup:

CH 1: ENABLED GT: 3 ZR: 0.00000 GF: 1.00000 GO: 0.00000 TH: 0

CH 2: ENABLED GT: 1 ZR: 0.00000 GF: 1.00000 GO: 0.00000 TH: 0

CH 3: ENABLED GT: 1 ZR: 0.00000 GF: 1.00000 GO: 0.00000 TH: 0

CH 4: ENABLED GT: 1 ZR: 0.00000 GF: 1.00000 GO: 0.00000 TH: 0

## 3.19. MXn

k

Select the maximum number of channels (4 or 16) of the multiplexer. For a LC-2x4, this is 4 by default:

\*MX4 4 Channel Multiplexer Selected. \*

### 3.20. N

Display the next time the datalogger will initiate a measurement cycle. If the start time (ST command) has been set this command will display when logging will begin.

\*ST12:00 Logging will start at: 12:00:00 \*N Next time to read: 12:00:00 \*

## 3.21. NA

Displays the current network address.

```
*NA
Network address: 1
*
```

When network recognition is enabled, this number (preceded by the # character) must be entered for the respective datalogger to respond. The following example illustrates communication with 2 different dataloggers on the RS-485 network.

```
<ENTER>
<ENTER>
#1<ENTER>
Network address: 1
*NA
Network address: 1
*E
<ENTER>
#2<ENTER>
#2<ENTER>
Network address: 2
*NA
Network address: 2
*E
```

#### 3.22. NAddd

Sets the current network address to any address between 1 and 256.

```
*NA10
Network address: 10
*
```

When network recognition is enabled, this number (preceded by the # character) must be entered for the respective datalogger to respond. The following example illustrates communication with 2 different dataloggers on the RS-485 network.

```
<ENTER>
<ENTER>
#1<ENTER>
Network address: 1
*NA
Network address: 1
*E
<ENTER>
<ENTER>
#10<ENTER>
Network address: 10
*NA
Network address: 10
*E
```

NOTE: If connected directly to the datalogger via USB and networking is enabled, the datalogger will respond with the \* prompt only.

NOTE: The network address may not be changed while networked. Direct connect to the datalogger via USB in order to change the network address.

## 3.23. ND

Network Disable the datalogger. Disables networking of 2 or more LC-2x4 dataloggers.

\*ND Network recognition disabled.

## 3.24. NE

Network Enable the datalogger. Enables networking of 2 or more LC-2x4 dataloggers.

\*NE Network recognition enabled,

Note: If a networked LC-2x4 is connected via the RS-232 or USB port, connection to the datalogger can be made directly without the need to enter the correct datalogger address. This can be helpful if the network address is unknown and the datalogger is network enabled.

#### 3.25. NS

Display the current network status.

\*NS Network recognition disabled. \*

Or;

```
*NS
Network recognition enabled.
*
```

### 3.26. Pnnnn

<u>Position</u> the User Position memory pointer. Type P and a number between 1 and 10666 to position the pointer. Arrays can then be displayed (D command) from the new position. The updated pointers will display after entering a valid position.

\*P1 MS:3200 OP:1567 UP:1 \*

## 3.27. R

**R**eset memory pointers to default settings. Gage and interval settings, as well as the real-time clock settings, are not affected by this command. User will be asked to verify before executing. Press  $\mathbf{Y}$  to continue, any other key to abort.

```
*R
Are you sure(Y/N)?Y
Memory cleared.
*
```

Note: This command does not erase memory. If the need arises to recover data that was previously taken, take 1 (or more) readings and then position the memory pointers via the **P** and **D** commands to recover previously taken readings.

## 3.28. RESET

RESET (re-boot) the LC-2 microprocessor. All stored readings and settings, as well as the ID and real-time clock settings are not affected by this command.

\*RESET Resetting... RESET COMPLETE

### 3.29. S

Display the datalogger Status.

```
*S
MS:1004 OP:1005 UP:1004
4 Channel Multiplexer Selected.
Scan interval: 15 second(s).
Logging stopped.
Log intervals disabled.
Monitor mode enabled.
*
```

| Line | Description               | Manual Sections  |
|------|---------------------------|------------------|
| 1    | Status of memory pointers | 3.7, 3.26        |
| 2    | Multiplexer Type          | 3.18             |
| 3    | Scan interval setting     | 3.30             |
| 4    | Start/Stop status         | 3.32, 3.34       |
| 5    | Stop time (optional)      | 3.32             |
| 6    | Log interval status       | 3.13, 3.14       |
| 7    | Monitor mode status       | 3.15, 3.16, 3.17 |

**Table 6 - S Command Information** 

#### 3.30. SCnnnnn

Enter the <u>SC</u>an interval, in seconds. Range of entry is 3 to 86400 and is dependent on the number and type of transducers connected. Only whole numbers are accepted. Typing SC with no value returns the current setting only

```
*SC
Scan interval: 60 second(s).
*SC300
Scan interval: 300 second(s).
```

## 3.31. SS

Display the System Status of the datalogger.

```
*SS
Trap count: 0
Network address: 1
Network recognition disabled.
Time format is hh,mm.
Date format is month,day.
*
```

| Line | Description                               |  |
|------|-------------------------------------------|--|
| 1    | Trap Count (Communication errors counter) |  |
| 2    | Current network address                   |  |
| 3    | Current network status                    |  |
| 4    | Current time format configuration.        |  |
| 5    | Current date format configuration.        |  |

| Table 7 - SS | Command | Information |
|--------------|---------|-------------|
|--------------|---------|-------------|

## 3.32. SPhh:mm

Stop the datalogger logging values; hh is the hour (24 hour format) of the day to stop and mm the minutes. The time entry is optional.

```
*SC60
Scan interval: 60 second(s).
*ST
Logging started.
Datalogger#1,2007,11,25,14,10,05,2.94,23.99,9.071,---,---,22.9,---,
---,--,1
```

```
*SP12:00
Logging will start at: 15:13:46
Logging will stop at: 12:00:00
```

Note that when SPhh:mm is issued, the datalogger responds with the time of the next reading along with the time at which logging will stop.

## 3.33. SR

Synchronize <u>Readings</u> to the top of the hour. If enabled (default) via the SR1 command, then all readings after the first reading will synchronize to the top of the hour:

```
*SR1
Readings are synchronized to the top of the hour.
*ST
Logging started.
2008,318,1314,41,3.50,24.45,-8961.077,-999999.0,-999999.0,
-8444.892,23.1,-99.0,23.8,23.9,6645
*2008,318,1314,45,3.50,24.57,-8961.276,-999999.0,-999999.0,
-8445.080,23.2,-99.0,23.8,23.9,6646
2008,318,1315,0,3.50,24.86,-8960.023,-999999.0,-999999.0,
-8445.035,23.2,-99.0,23.8,23.9,6647
*SRO
Readings are not synchronized to the top of the hour.
*ST
Logging started.
2008,318,1316,31,3.50,24.39,-8960.209,-999999.0,-999999.0,
-8445.080,23.3,-99.0,23.8,23.9,6648
```

\*2008,318,1316,46,3.50,24.80,-8960.090,-999999.0,-999999.0, -8445.092,23.3,-99.0,23.8,23.9,6649

\*2008,318,1317,1,3.50,24.80,-8961.173,-9999999.0,-999999.0, -8445.302,23.4,-99.0,23.8,23.9,6650

## 3.34. SThh:mm

STart the datalogger logging values; hh is the hour of the day (24 hour format) to start and mm the minutes. The time entry is optional. Entry is ignored if logging is already started (unless a time is entered).

```
*ST
Logging already started!
*ST11:00
Logging will start at: 11:00:00
*
```

## 3.35. SV

Return the <u>Software</u> <u>Version</u> of the datalogger's operating system software. Consult the factory to check on latest versions available.

```
*SV
Software version: 3.7.0
```

### 3.36. TEST

TEST is a set of internal self tests that are performed at the factory during final test.

\*TEST

LC-2MUX TEST MENU:

| SELECTION | TEST                         |
|-----------|------------------------------|
| 0         | INTERNAL EEPROM              |
| 1         | EXTERNAL EEPROM BANK 1       |
| 2         | EXTERNAL EEPROM BANK 2       |
| 3         | EXTERNAL EEPROM BANK 3       |
| 4         | EXTERNAL EEPROM BANK 4       |
| 5         | EXTERNAL EEPROM BANK 5       |
| 6         | EXTERNAL EEPROM BANK 6       |
| 7         | ALL EEPROM                   |
| 8         | +5X X                        |
| 9         | RTC 32KHz                    |
| A         | EXTERNAL INPUT (GAGE TYPE 1) |
| B         | EXTERNAL INPUT (GAGE TYPE 2) |
| C         | EXTERNAL INPUT (GAGE TYPE 3) |
| D         | EXTERNAL INPUT (GAGE TYPE 4) |
| E         | EXTERNAL INPUT (GAGE TYPE 5) |
| x         | EXIT TEST MENU               |

ENTER SELECTION:

| Selection | Description                                          |  |  |  |  |
|-----------|------------------------------------------------------|--|--|--|--|
| 0         | Test the Configuration memory bank                   |  |  |  |  |
| 1         | Test Readings 1-1777 memory bank                     |  |  |  |  |
| 2         | Test Readings 1778-3554 memory bank                  |  |  |  |  |
| 3         | Test Readings 3555-5331 memory bank                  |  |  |  |  |
| 4         | Test Readings 5332-7108 memory bank                  |  |  |  |  |
| 5         | Test Readings 7109-8885 memory bank                  |  |  |  |  |
| 6         | Test Readings 8886-10666 memory bank                 |  |  |  |  |
| 7         | Test all memory banks                                |  |  |  |  |
| 8         | Turn on System power supplies                        |  |  |  |  |
| 9         | Test the 32.768 RTC timebase                         |  |  |  |  |
| A         | External Input with Gage Type 1 filter configuration |  |  |  |  |
| B         | External Input with Gage Type 2 filter configuration |  |  |  |  |
| C         | External Input with Gage Type 3 filter configuration |  |  |  |  |
| D         | External Input with Gage Type 4 filter configuration |  |  |  |  |
| E         | External Input with Gage Type 5 filter configuration |  |  |  |  |
| X         | Exit and return to normal operations                 |  |  |  |  |

Table 8 - TEST Menu Information

## 3.37. TF

Display the current <u>Time Format</u> display option setting. This setting determines how the time information will be displayed in the array when the Monitor mode is active (see M command section) or arrays are being displayed from memory. Entering TF alone returns the current time format. Entering TF0 sets the time format to hhmm. Entering TF1 sets the time format to hh,mm. The default time format display is hhmm.

```
*TF
Time format is hh,mm.
*TFO
Time format is hhmm.
*TF1
Time format is hh,mm.
*
```

## 3.38. Tnn/t

Enter the channel's (nn) thermistor type (t). This command allows a specific thermistor to be assigned to each individual channel (generally the external thermistor that is incorporated into the VW gage). Entering T1/0 sets the external thermistor type of channel 1 to the standard  $3K\Omega@25^{\circ}C$  NTC (default). For example, entering T2/1 sets the external thermistor type of channel 2 to the high temperature BR55KA822J 8.22K $\Omega@25^{\circ}C$  NTC thermistor. Entering T3/2 sets the external thermistor type of channel 3 to the high temperature 103JL1A  $10K\Omega@25^{\circ}C$  NTC thermistor.

T1/0: CH 1: ENABLED GF: 1.00000 GO: 0.00000 ZR: 0.00000 TH: 0 GT: 1 T2/1: CH 2: ENABLED GT: 1 ZR: 0.00000 GF: 1.00000 GO: 0.00000 TH: 1 T3/2: CH 3: ENABLED ZR: 0.00000 GF: 1.00000 GO: 0.00000 TH: 2 GT: 1

### 3.39. TR

Display the current <u>TRap</u> Count. The trap counter is a register that keeps track of the number of times that the internal processor has detected a communications error. This is a useful register to check if communication problems are suspected.

#### 3.40. TR0

Reset the TRap count register to 0.

### 3.41. VL

Display the Lithium Coin Cell Voltage. The internal 3V lithium coin-cell is used to supply power to the real-time clock circuit. The 3V lithium coin cell life is rated at 10 years minimum.

```
*VL
Lithium Cell Voltage = 2.92V
*
```

#### 3.42. V3

Display the 3V D-cell battery pack voltage. Replace the batteries when this voltage is less than 1.8V

```
*V3
3V Battery Voltage = 2.93V
```

### 3.43. V12

Display the external 12V battery voltage. Replace or recharge the battery when this voltage is less than 6V

\*V12 12V Battery Voltage = 12.33V

### 3.44. WF

Display the current Wrap Format. Memory "wrapping" means that once the memory has filled, the datalogger will continue taking readings and overwrite the stored values in a circular fashion (see section 3.7.Dnnnnn).

When the wrap format is set to 0, logging will stop once the memory becomes full. This is useful if critical data is stored and it must not be inadvertently overwritten and lost.

When the wrap format is set to 1, logging will continue when the memory becomes full and the original stored values will be overwritten. With this setting, logging will continue indefinitely until told to stop with the SP command, the programmed stop time has been reached, or the battery has fallen to 1.6V.

```
*WF
Logging will not stop when memory is full
*WF0
Logging will stop when memory is full
*WF1
Logging will not stop when memory is full
*
```

# 3.45. X

Take and display one reading, but do not store this reading in memory. Useful if interested in obtaining a reading at the moment, without interrupting or affecting the current logging schedule.

```
*D
MS:3 OP:4 UP:3
*X
Datalogger#1,2007,11,25,13,11,39,2.93,23.59,9.060,---,---,-22.8,---,---,*D
MS:3 OP:4 UP:3
```

Note: In this example, channels 2,3 and 4 are disabled.

## 4. MAINTENANCE

While the Model LC-2x4 Datalogger is designed to operate in field environments, nevertheless there are some basic maintenance procedures that should be followed to insure maximum reliability and functionality.

### 4.1. Cleaning:

The outside of the box can be cleaned using a cloth dampened with soap and water. DO NOT USE ANY TYPES OF SOLVENTS OR SCOURING AGENTS!

The connector sockets can be cleaned using a small stiff brush (small painters brush) dipped in soap and water. The sockets are water resistant so the internal electronics will not be adversely affected by them filling with water or other liquids. Be aware however, readings could be affected by shorting or other effects of an improper connection due to fluids being present in the connector. Dry connections thoroughly before using.

## 4.2. Batteries:

When the unit is not in use, especially for extended periods of time, the 'D' cells should be removed to prevent damage due to leakage. The warranty does not cover damage due to battery leakage. The table below details approximate operating times for the various types of 'D' cell batteries that may be used with the Model LC-2x4.

| Battery<br>Type | Battery<br>Capacity | 4 Second<br>Scan Rate | 1 Minute<br>Scan Rate | 1 Hour<br>Scan Rate | 1 Day<br>Scan Rate |
|-----------------|---------------------|-----------------------|-----------------------|---------------------|--------------------|
| Lithium         | 19 AHr              | 54 hours              | 128 days              | ≥1 year             | ≥4 years           |
| Alkaline        | 14 AHr              | 20 hours              | 47 days               | ≥6 months           | ≥2 years           |
| Carbon-Zinc     | 5 Ahr               | 6 hours               | 16.5 days             | ≥3 months           | ≥1 year            |

#### **Table 9 - Approximate Operating Times**

The above table assumes a constant temperature environment of 25°C (not field conditions!). Battery life is shortened by temperature extremes. If the datalogger is continuously connected to an active computer's USB port, all operating power will be supplied via the USB port. As soon as USB power is lost, the datalogger will immediately switch over to its internal 3V (or external 12V) battery pack.

Batteries should be replaced when the measured voltage drops below 1.8 VDC (internal 3V battery) or 6V (external 12V battery). The datalogger electronics will stop the datalogger from logging and disable RS-485 communications if the battery goes below 1.6 VDC (internal 3V battery) or 5.5V (external 12V battery). In this event, a new set of batteries must be installed (or USB connection must be made) before the datalogger becomes operable again. All data and operating parameters are retained when removing batteries, even for an extended period (years) of time due to non-volatile EEPROM memory. If the datalogger was logging when it stopped itself due to low battery voltage, it will resume logging as soon as new batteries are installed or as soon as it is connected to a USB port.
## 4.2.1. Battery replacement instructions:

- 1) Remove the 4 captive lock regular head screws on the top of the case and lift the cover off. Underneath the cover is the 'D' cell battery holder.
- 2) Remove the two batteries from the holder being careful not to bend the sides outward. Insert the new batteries straight down into the battery holder, with the positive end of each fitting into the red washer. Check for secure connection between the battery terminals and holder. If a gap exists, remove batteries and bend the holder sides inward.



Proper Battery installation



Faulty Battery installation

3) Re-install the cover. Check datalogger for proper operation.

## 5. TROUBLESHOOTING

Listed below are a few commonly experienced problems and remedial action. Contact the factory should a problem arise not explained herein or additional information be needed.

### 5.1. Unit will not respond to communications.

- ✓ Wrong COM port selected.
- ✓ The USB Drivers may not be properly installed. See Section 2.3.2 8002-4-2 (USB) Driver Installation.
- ✓ If RS-232 or RS-485 communications are being used, the internal batteries of the datalogger may be low, dead or have a faulty connection to the holder. Replace/check batteries according to the "Battery replacement instructions:" on the previous page.
- ✓ If RS-485 communications is being used, the <ENTER>, <ENTER>, #,datalogger address, <ENTER> key sequence is not being sent. Refer to Appendix F – NETWORKING for further information.

#### 5.2. Vibrating wire gage measurement reads -999999.0

- Using an ohmmeter, check connections to the vibrating wire gage leads. Resistance should be between 90 and 180 ohms (pins A&B on the 10-pin connector, see Appendix B). Remember to correct for cable resistance (approximately 15 Ω/1000' or 50 Ω/km, double for both directions). If resistance reads less than 100 Ω the cable is probably shorted. If resistance reads infinite or in the megohms range the cable is probably cut.
- Check the datalogger with another known good transducer. If it still reads –999999.0, the datalogger may be malfunctioning.
- ✓ Check that the proper gage type is selected (see Tables 1&2).
- ✓ Check that the transducer shield wire is not shorted to either the red or black wire.

#### 5.3. Gage measurement (analog or vibrating wire) reads -999999.9

✓ A mathematical over-range has occurred. Check the magnitude of the reading, zero reading, multiplier and offset. The result must be in the range of 1.0 × 10<sup>-7</sup> to 1.0 × 10<sup>7</sup>.

#### 5.4. Vibrating wire gage reading is unstable

- ✓ Is there a source of electrical noise nearby? Likely candidates are generators, motors, arc welding equipment, high voltage lines, etc. If possible, move the datalogger and transducer cables away from the power lines or electrical equipment.
- ✓ Check if the proper gage type is selected (see Tables 1 & 2).

#### 5.5. Thermistor measurement shows -99.9 degrees Celsius

 Indicates open circuit to thermistor leads. Check connections from datalogger to thermistor leads. If okay, check thermistor with ohmmeter. Appendix F details the resistance versus temperature relationship.

### APPENDIX A - SPECIFICATIONS

#### A.1. Measurement Capability

- Vibrating Wire (all types).
- External temperature (thermistor).
- Internal temperature (thermistor).
- Main battery voltage (3V and 12V).
- RTC lithium battery voltage.

#### A.2. Power

Power supply:

Processing/communication current: VW measurement current: Quiescent current: RTC battery type:

RTC battery life: Operating temperature range:

#### A.3. Memory

320K EEPROM Data memory: Program memory: 24K EEPROM Array storage 10666 Data memory type: ring (oldest over-write) Array elements: ID (optional) Year Julian day (or month, day) Time (hhmm or hh,mm) Seconds Battery voltage Datalogger temperature Channel 1 Transducer reading Channel 2 Transducer reading Channel 3 Transducer reading Channel 4 Transducer reading Channel 1 Transducer temperature Channel 2 Transducer temperature Channel 3 Transducer temperature Channel 4 Transducer temperature Array #

Internal 3 VDC (7.5Vmax) or External 12 VDC (15Vmax)

Panasonic CR2032 3V lithium coin cell:

<100 mA

<250 mA

<600 µA

>10 years

-30 to +50° C

20mm, 225 mAHr

## A.4. Clock

| Features:    | full calendar                |
|--------------|------------------------------|
| Time format: | 12 or 24 hour (selectable)   |
| Date Format: | mm,dd or julian (selectable) |
| Accuracy:    | ±2 minutes per year          |

## A.5. Serial Interface (all LC-2x4 models):

Speed: 9600 bps & 115,200 (version 3.1.X and later) Parameters: 8 Data bits 1 Stop bit no Parity no Flow control Data output format: ASCII text

## A.6. RS-485 Network

Maximum nodes: 256 Maximum cable length: 4000', 1.22 km

## A.7. Vibrating Wire Measurement

| Excitation sweep range:          | 400 Hz to 4500 Hz                  |
|----------------------------------|------------------------------------|
| Frequency Measurement Technique: | Adaptive Multiple Period Averaging |
| Accuracy:                        | 0.05% F.S.R. (450-4000 Hz)         |
| Resolution:                      | 0.001 digit                        |

#### A.8. Internal/External Temperature Measurement

| Thermistor: | Dale #1C3001-B3 (YSI 44005) | (Standard  | 0) |
|-------------|-----------------------------|------------|----|
|             | Thermometrics BR55KAKA822J  | (High Temp | 1) |
|             | U.S. Sensor 103JL1A         | (High Temp | 2) |

| Transducer accuracy:  | ±0.5° C                           |
|-----------------------|-----------------------------------|
| Measurement accuracy: | 0.5% FSR                          |
| Resolution:           | 0.01° C (Internal)                |
|                       | 0.1° C (External)                 |
| Linearization error:  | 0.02% FSR                         |
| Temperature range:    | -40 to +60° C Standard Thermistor |
|                       | 0 to +200° C High Temp Thermistor |
| Overall accuracy:     | 1.0% FSR (±1°)                    |

## A.9. Main Battery Measurement

| <b>3V Battery:</b> |              | 12V Battery | :           |
|--------------------|--------------|-------------|-------------|
| Range:             | 0 to 7.5 VDC | Range:      | 0 to 15 VDC |
| Accuracy:          | ±1.83mV      | Accuracy:   | ±3.662mV    |
| Resolution:        | 0.01 VDC     |             |             |

## A.10. Multiplexer Relay

NAIS TXS2SA-4.5V

| contact resistance: | 0.1 ohm (max) |
|---------------------|---------------|
| switching current:  | 1A (max)      |

## APPENDIX B - CONNECTOR PINOUTS

11

-

## B.1. Transducer Cable Connections:

| Terminal Strip<br>Position | Channel<br>Number | Description            | Cable Wire<br>Color |
|----------------------------|-------------------|------------------------|---------------------|
| VW1+                       | 1.2               | Vibrating Wire +       | RED                 |
| VW1-                       | 1                 | Vibrating Wire -       | BLACK               |
| TH1+                       | 1                 | Thermistor +           | GREEN               |
| TH1-                       | 1                 | Thermistor -           | WHITE               |
| SHLD1                      | 1                 | Analog Ground (shield) | BARE WIRE           |
| VW2+                       | 2                 | Vibrating Wire +       | RED                 |
| VW2-                       | 2                 | Vibrating Wire -       | BLACK               |
| TH2+                       | 2                 | Thermistor +           | GREEN               |
| TH2-                       | 2                 | Thermistor -           | WHITE               |
| SHLD2                      | 2                 | Analog Ground (shield) | BARE WIRE           |
| VW3+                       | 3                 | Vibrating Wire +       | RED                 |
| VW3-                       | 3                 | Vibrating Wire -       | BLACK               |
| TH3+                       | 3                 | Thermistor +           | GREEN               |
| TH3-                       | 3                 | Thermistor -           | WHITE               |
| SHLD3                      | 3                 | Analog Ground (shield) | BARE WIRI           |
| VW4+                       | 4                 | Vibrating Wire +       | RED                 |
| VW4-                       | 4                 | Vibrating Wire -       | BLACK               |
| TH4+                       | 4                 | Thermistor +           | GREEN               |
| TH4-                       | 4                 | Thermistor -           | WHITE               |
| SHLD4                      | 4                 | Analog Ground (shield) | BARE WIRE           |

Table B-1 Transducer Cable Connections

## B.2. RS-232 Connector Pinout (8002-4-1):

The mating 10 pin Bendix plug is part number PT06F-12-10P.

| 10 Pin<br>Bendix | Internal Wire<br>Color | PCB connector J5<br>pin | Description |
|------------------|------------------------|-------------------------|-------------|
| Α                | Brown                  | 1                       | Ground      |
| В                | Red                    | 2                       | Tx          |
| С                | Orange                 | 3                       | Rx          |
| D                | Yellow                 | 4                       | RTS         |
| E                | Green                  | 5                       | CTS         |
| F                | Blue                   | 6                       | N/C         |
| G                | Violet                 | 7                       | DTR         |
| Н                | Grey                   | 8                       | +5V         |
| J                | White                  | 9                       | N/C         |
| K                | Black                  | 10                      | Ground      |

## Table B-2 RS-232 Connector Pinout

## B.3. USB Connector Pinout (8002-4-2):

The mating 10 pin Bendix plug is part number PT06F-12-10P.

| 10 Pin<br>Bendix | Internal Wire<br>Color | PCB connector J5<br>pin | Description    |
|------------------|------------------------|-------------------------|----------------|
| A                | Brown                  | 1                       | USB VCC        |
| В                | Red                    | 2                       | USB DM         |
| С                | Orange                 | 3                       | USB DP         |
| D                | Yellow                 | 4                       | Digital Ground |
| E                | Green                  | 5                       | RS-485 RX      |
| F                | Blue                   | 6                       | RS-485 /RX     |
| G                | Violet                 | 7                       | RS-485 TX      |
| Н                | Grey                   | 8                       | RS-485 /TX     |
| J                | White                  | 9                       | RS-485 +12V    |
| K                | Black                  | 10                      | RS-485 Ground  |

**Table B-3 USB Connector Pinout** 

## B.4. RS-485 Connector Pinout (optional, 8002-4-3):

11

| 10 Pin<br>Bendix | Internal Wire<br>Color | PCB connector J6<br>pin | Description    |
|------------------|------------------------|-------------------------|----------------|
| Α                | Brown                  | 1                       | No Connection  |
| В                | Red                    | 2                       | No Connection  |
| С                | Orange                 | 3                       | No Connection  |
| D                | Yellow                 | 4                       | Digital Ground |
| E                | Green                  | 5                       | RS-485 RX      |
| F                | Blue                   | 6                       | RS-485 /RX     |
| G                | Violet                 | 7                       | RS-485 TX      |
| Н                | Grey                   | 8                       | RS-485 /TX     |
| J                | White                  | 9                       | RS-485 +12V    |
| K                | Black                  | 10                      | RS-485 Ground  |

Table B-4 RS-485 Connector Pinout

## APPENDIX C - DATA FILE TRANSFER TO A WINDOWS PC

Data can be downloaded to the PC either via LogView software (refer to the LogView Online Help) or via Windows HyperTerminal, which, prior to Windows Vista, was supplied with most personal computers. The steps to download the data using LogView are as follows:

## C.1. Downloading Data using LogView

The steps below assume that a successful connection has been previously established between LogView and the datalogger. (See section 2.3.8 of this manual)

Click on the Collect Data button from the Main Toolbar. See Figure 18 below:

| 📽 Geokon LogView                                                                                                                                                                                                                           |                 |                    |                    |                           |                |                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|--------------------|---------------------------|----------------|------------------------|
| Eile Logger Window Help                                                                                                                                                                                                                    | $\frown$        |                    |                    |                           |                |                        |
| Close Start Read<br>Connect Monitoring Now                                                                                                                                                                                                 | Collect<br>Data | ) Start<br>Logging | View<br>Arrays     | View<br>Details           | View<br>Graphs | C:><br>View<br>Termina |
|                                                                                                                                                                                                                                            | Colle           | ect data arrays f  | rom logger N       | 267380                    | 95 fhhfh -     | - LC-3: V              |
| Project explorer                                                                                                                                                                                                                           | N               |                    |                    |                           |                |                        |
| <ul> <li>C-2x4: ThirdWellFromLeft</li> <li>C-2: Log1</li> <li>Kloentalersee</li> <li>C-2x4: NewLogger</li> <li>C-2x4: NewLogger</li> <li>C-2x16: Axpo001</li> <li>26738095 fhhfh</li> <li>C-3: witTestLogger</li> <li>C-2: etre</li> </ul> |                 |                    |                    |                           |                |                        |
|                                                                                                                                                                                                                                            | -General Data   | alogger informati  | on                 |                           |                |                        |
|                                                                                                                                                                                                                                            |                 |                    | ID: LC<br>Name: wj | 1129140705<br>tTestLogger | 5              |                        |



If the datalogger configuration is set for "Collect all data" in "Datalogger Settings→Data Collection Options" (see the LogView on-line help menu covering datalogger settings) then LogView will issue commands to the datalogger to initiate a download of all arrays logged on the datalogger. If the memory has wrapped then 10666 arrays will be downloaded starting at the current User Pointer (See sections 3.7 and 3.26 of this manual).

If the datalogger configuration is set for "Collect new data since last download" in "Datalogger Settings→Data Collection Options" then LogView will issue commands to the datalogger to initiate a download of all arrays since the last time data was downloaded.

Once the data collection has been initiated, the following progress bar (see Figure 19) will be displayed until the collection has completed:



Figure 19 - Data Collection Progress Bar

After a data collection has finished LogView will display the message shown in Figure 20:



Figure 20 - Data Collection Complete Message

## C.2. Downloading Data using HyperTerminal (or equivalent)

The steps to download the data using HyperTerminal are as follows:

Launch HyperTerminal: Start  $\rightarrow$  Programs  $\rightarrow$  Accessories  $\rightarrow$  Communications  $\rightarrow$  HyperTerminal

- Enter a name for the New Connection Select OK (see section 2.4, Figure 14, HyperTerminal Connection Description).
- Change the Connect using setting to the appropriate COM port (in this case COM1 see section 2.4, Figure 15, HyperTerminal Connection Selection) – Select OK.
- In the COM Properties Dialog, enter the "Port Settings". Select Apply. Select OK (see section 2.4, Figure 16, HyperTerminal COM Port Settings).
- 4. With the cursor in the display screen, press the Enter key a few times to verify that communications has been established. The datalogger should return the power up prompt:

Hello. Press "?" for Help.

5. Upon confirmation of communications, select Transfer | Capture Text (see Figure 21):

| File Edit View Call | Transfer         | Help          |
|---------------------|------------------|---------------|
| 06 3 4              | Send F<br>Receiv | ile           |
| 10.11 B             | Captur           | e Text        |
| Hello. Pres         | Send 1           | ext File      |
| *                   | Captur           | re to Printer |

Figure 21 - HyperTerminal Transfer Menu

6. Enter the path and name of the file you wish to create, either directly or with the Browse button, then click on the Start button (see Figure 22).

Hint: It may be helpful to specify ".CSV" as the file extension to allow for direct formatted entry into a spreadsheet program.

| Capture       | Text                           | ?×     |  |
|---------------|--------------------------------|--------|--|
| Folder:       | C:\temp\Data                   |        |  |
| <u>F</u> ile: | C:\temp\Data\CollectedData.CSV | Browse |  |
|               | Start                          | Cancel |  |

Figure 22 - Specify Data Capture File

7. With the cursor in the display screen, push the <Enter> key a few times to wake-up the datalogger, then:

Type "S" to get the Status of the datalogger. Type "P1" to position the data array Pointer at location 1. Type "D5" to Display the readings stored in memory (see Figure 23). Select Transfer | Capture Text | Stop.

| •                                                                                      |
|----------------------------------------------------------------------------------------|
| *S<br>MS:5 OP:6 UP:0<br>4 Channel Multiplexer Selected.<br>Scan interval: 5 second(s). |
| logging stopped.<br>Log intervals disabled                                             |
| Monitor mode enabled.<br>*P1                                                           |
| MS:5 0P:6 UP:1<br>*D5                                                                  |
| Datalogger#1,2007,11,25,13,38,52,2.93,23.87,-9040.338,,,23.2,,,23.2,,-                 |
| Datalogger#1,2007,11,25,13,38,57,2.93,23.93,-9040.222,,,23.2,,,23.2,,                  |
| Datalogger#1,2007,11,25,13,39,2,2.93,24.02,-9039.823,,,,23.2,,,                        |
| Datalogger#1,2007,11,25,13,39,7,2.93,24.10,-9040.090,,,,23.2,,,                        |
| Datalogger#1,2007,11,25,13,39,12,2.93,24.16,-9039.834,,,,23.2,,,,,,,,,,,,              |
| MS:5 0P:6 UP:6                                                                         |

#### Figure 23 - HyperTerminal/Datalogger Communication

8. The data are now stored in the specified file.

#### APPENDIX D - SAMPLE DATA FILE

#### D.1. Sample Raw Data File

| Datalogger#1,2007,329,1421,0,2.93,25.01,-9040.265,,,23.7,,,1  |
|---------------------------------------------------------------|
| Datalogger#1,2007,329,1421,10,2.93,25.13,-9039.986,,,23.7,,-2 |
| Datalogger#1,2007,329,1421,20,2.93,25.42,-9039.950,,,23.7,,,3 |
| Datalogger#1,2007,329,1421,30,2.93,25.30,-9041.042,,,23.7,,,4 |
| Datalogger#1,2007,329,1421,40,2.93,25.16,-9040.502,,,23.7,,-5 |
| Datalogger#1,2007,329,1421,50,2.93,25.07,-9039.458,,,23.7,,,6 |
| Datalogger#1,2007,329,1422,0,2.93,25.04,-9040.303,,,23.7,,7   |

Column: 1 2 3 4 5 6 7 8 9 10 11 12 1314 1516

where;

Column 1 represents the datalogger id

Column 2 represents the year when the array was stored.

Column 3 represents the julian day (or day, month format, see section 3.5.).

Column 4 represents the time (or hh,mm format, see section 3.26.).

Column 5 represents the seconds.

Column 6 represents the main battery voltage (alkaline batteries, nominal 3.0 VDC).

Column 7 represents the internal temperature in degrees Celsius.

Column 8 represents the Channel 1 vibrating wire reading.

Column 9 represents the Channel 2 vibrating wire reading. (disabled)

Column 10 represents the Channel 3 vibrating wire reading. (disabled)

Column 11 represents the Channel 4 vibrating wire reading. (disabled)

Column 12 represents the Channel 1 external temperature in degrees Celsius.

Column 13 represents the Channel 2 external temperature in degrees Celsius. (disabled)

Column 14 represents the Channel 3 external temperature in degrees Celsius. (disabled)

Column 15 represents the Channel 4 external temperature in degrees Celsius. (disabled) Column 16 represents the Array #

#### **APPENDIX E - THERMISTOR TEMPERATURE DERIVATION**

Thermistor Type: YSI 44005, Dale #1C3001-B3, Alpha #13A3001-B3

**Resistance to Temperature Equation:** 

$$T = \frac{1}{A + B(LnR) + C(LnR)^{3}} - 273.2$$

Equation E-1 - Convert Thermistor Resistance to Temperature

Where: T = Temperature in °C.

LnR = Natural Log of Thermistor Resistance

A =  $1.4051 \times 10^{-3}$  (coefficients calculated over the -50 to  $+150^{\circ}$  C. span)

B =  $2.369 \times 10^{-4}$ 

 $C = 1.019 \times 10^{-7}$ 

| Ohms   | Temp | Ohms   | Temp | Ohms  | Temp | Ohms  | Temp | Ohms  | Temp |
|--------|------|--------|------|-------|------|-------|------|-------|------|
| 201.1K | -50  | 16.60K | -10  | 2417  | +30  | 525.4 | +70  | 153.2 | +110 |
| 187.3K | -49  | 15.72K | -9   | 2317  | 31   | 507.8 | 71   | 149.0 | 111  |
| 174.5K | -48  | 14 90K | -8   | 2221  | 32   | 490.9 | 72   | 145.0 | 112  |
| 162.7K | -47  | 14.12K | -7   | 2130  | 33   | 474.7 | 73   | 141.1 | 113  |
| 151.7K | -46  | 13.39K | -6   | 2042  | 34   | 459.0 | 74   | 137.2 | 114  |
| 141.6K | -45  | 12.70K | -5   | 1959  | 35   | 444.0 | 75   | 133.6 | 115  |
| 132.2K | -44  | 12.05K | -4   | 1880  | 36   | 429,5 | 76   | 130.0 | 116  |
| 123.5K | -43  | 11.44K | -3   | 1805  | 37   | 415.6 | 77   | 126.5 | 117  |
| 115.4K | -42  | 10.86K | -2   | 1733  | 38   | 402.2 | 78   | 123.2 | 118  |
| 107.9K | -41  | 10.31K | -1   | 1664  | 39   | 389.3 | 79   | 119.9 | 119  |
| 101.0K | -40  | 9796   | 0    | 1598  | 40   | 376.9 | 80   | 116.8 | 120  |
| 94.48K | -39  | 9310   | +1   | 1535  | 41   | 364.9 | 81   | 113.8 | 121  |
| 88.46K | -38  | 8851   | 2    | 1475  | 42   | 353.4 | 82   | 110.8 | 122  |
| 82,87K | -37  | 8417   | 3    | 1418  | 43   | 342.2 | 83   | 107.9 | 123  |
| 77.66K | -36  | 8006   | 4    | 1363  | 44   | 331.5 | 84   | 105.2 | 124  |
| 72.81K | -35  | 7618   | 5    | 1310  | 45   | 321,2 | 85   | 102.5 | 125  |
| 68 30K | -34  | 7252   | 6    | 1260  | 46   | 311.3 | 86   | 99.9  | 126  |
| 64.09K | -33  | 6905   | 7    | 1212  | 47   | 301.7 | 87   | 97.3  | 127  |
| 60.17K | -32  | 6576   | 8    | 1167  | 48   | 292.4 | 88   | 94,9  | 128  |
| 56.51K | -31  | 6265   | 9    | 1123  | 49   | 283.5 | 89   | 92.5  | 129  |
| 53.10K | -30  | 5971   | 10   | 1081  | 50   | 274.9 | 90   | 90.2  | 130  |
| 49,91K | -29  | 5692   | 11   | 1040  | 51   | 266.6 | 91   | 87.9  | 131  |
| 46.94K | -28  | 5427   | 12   | 1002  | 52   | 258.6 | 92   | 85.7  | 132  |
| 44.16K | -27  | 5177   | 13   | 965.0 | 53   | 250.9 | 93   | 83.6  | 133  |
| 41.56K | -26  | 4939   | 14   | 929.6 | 54   | 243.4 | 94   | 81.6  | 134  |
| 39.13K | -25  | 4714   | 15   | 895.8 | 55   | 236.2 | 95   | 79.6  | 135  |
| 36.86K | -24  | 4500   | 16   | 863.3 | 56   | 229.3 | 96   | 77.6  | 136  |
| 34.73K | -23  | 4297   | 17   | 832.2 | 57   | 222.6 | 97   | 75.8  | 137  |
| 32.74K | -22  | 4105   | 18   | 802.3 | 58   | 216.1 | 98   | 73.9  | 138  |
| 30.87K | -21  | 3922   | 19   | 773.7 | 59   | 209.8 | 99   | 72.2  | 139  |
| 29.13K | -20  | 3748   | 20   | 746.3 | 60   | 203.8 | 100  | 70.4  | 140  |
| 27.49K | -19  | 3583   | 21   | 719.9 | 61   | 197.9 | 101  | 68.8  | 141  |
| 25.95K | -18  | 3426   | 22   | 694.7 | 62   | 192.2 | 102  | 67.1  | 142  |
| 24.51K | -17  | 3277   | 23   | 670.4 | 63   | 186.8 | 103  | 65.5  | 143  |
| 23.16K | -16  | 3135   | 24   | 647.1 | 64   | 181.5 | 104  | 64.0  | 144  |
| 21.89K | -15  | 3000   | 25   | 624.7 | 65   | 176.4 | 105  | 62.5  | 145  |
| 20.70K | -14  | 2872   | 26   | 603.3 | 66   | 171.4 | 106  | 61.1  | 146  |
| 19.58K | -13  | 2750   | 27   | 582.6 | 67   | 166.7 | 107  | 59.6  | 147  |
| 18.52K | -12  | 2633   | 28   | 562.8 | 68   | 162.0 | 108  | 58.3  | 148  |
| 17.53K | -11  | 2523   | 29   | 543.7 | 69   | 157.6 | 109  | 56.8  | 149  |

Table E-1 - Standard Thermistor Resistance versus Temperature

55.6

150

#### Thermistor Type: Thermometrics BR55KA822J

**Resistance to Temperature Equation:** 

$$T = \frac{1}{A + B(LnR) + C(LnR)^3} - 273.2$$

#### Equation E-2 - Convert Thermistor, Type BR55KA822J, Resistance to Temperature

Where: T = Temperature in °C.

LnR = Natural Log of Thermistor Resistance

A =  $1.02569 \times 10^{-3}$ 

B =  $2.478265 \times 10^{-4}$ 

C = 1.289498 × 10-7

Note: Coefficients calculated over -30° to +260° C. span.

| Temp | R<br>(ohms) | LaR    | LnR <sup>3</sup> | Calculated<br>Temp | Diff  | FS Error | Temp | R<br>(ohms)         | LnR   | LnR <sup>3</sup> | Calculated<br>Temp | Diff  | FS Error |
|------|-------------|--------|------------------|--------------------|-------|----------|------|---------------------|-------|------------------|--------------------|-------|----------|
| -30  | 113898      | 11,643 | 1578.342         | -30,17             | 0.17  | 0.06     | 120  | 407.62              | 6,010 | 217,118          | 120.00             | 0.00  | 0.00     |
| -25  | 86182       | 11.364 | 1467.637         | -25.14             | 0.14  | 0.05     | 125  | 360.8               | 5.888 | 204 162          | 125.00             | 0.00  | 0.00     |
| -20  | 65805       | 11,094 | 1365.581         | -20.12             | 0.12  | 0.04     | 130  | 320,21              | 5.769 | 191.998          | 130.00             | 0.00  | 0.00     |
| -15  | 50684.2     | 10.833 | 1271.425         | -15.10             | 0.10  | 0.03     | 135  | 284.95              | 5.652 | 180.584          | 135.00             | 0.00  | 0.00     |
| -10  | 39360       | 10.581 | 1184.457         | -10.08             | 0.08  | 0.03     | 140  | 254.2               | 5.538 | 169.859          | 140.01             | -0.01 | 0.00     |
| -5   | 30807.4     | 10.336 | 1104.068         | -5.07              | 0.07  | 0.02     | 145  | 227.3               | 5.426 | 159.773          | 145,02             | -0.02 | -0,01    |
| 0    | 24288.4     | 10.098 | 1029.614         | -0.05              | 0.05  | 0.02     | 150  | 203 77              | 5.317 | 150.314          | 150.03             | -0.03 | -0.01    |
| 5    | 19294.6     | 9,868  | 960.798          | 4.96               | 0.04  | 0.01     | 155  | 183,11              | 5,210 | 141,428          | 155.04             | -0.04 | -0.01    |
| 10   | 15424,2     | 9.644  | 896,871          | 9,98               | 0.02  | 0.01     | 160  | 164.9               | 5.105 | 133,068          | 160.06             | -0.06 | -0.02    |
| 15   | 12423       | 9,427  | 837.843          | 14,98              | 0.02  | 0.01     | 165  | 148,83              | 5.003 | 125.210          | 165.08             | -0.08 | -0.03    |
| 20   | 10061,4     | 9,216  | 782,875          | 19.99              | 0.01  | 0.00     | 170  | 134.64              | 4.903 | 117.837          | 170.09             | -0.09 | -0.03    |
| 25   | 8200        | 9.012  | 731.893          | 25.00              | 0.00  | 0.00     | 175  | 122.1               | 4.805 | 110.927          | 175.08             | -0.08 | -0.03    |
| 30   | 6721.54     | 8.813  | 684.514          | 30.01              | -0.01 | 0.00     | 180  | 110.95              | 4.709 | 104,426          | 180.07             | -0.07 | -0.02    |
| 35   | 5540.74     | 8.620  | 640.478          | 35.01              | -0.01 | 0.00     | 185  | 100.94              | 4.615 | 98.261           | 185.10             | -0.10 | -0.04    |
| 40   | 4592        | 8,432  | 599.519          | 40.02              | -0.02 | -0.01    | 190  | 92.086              | 4.523 | 92.512           | 190.09             | -0.09 | -0.03    |
| 45   | 3825.3      | 8.249  | 561.392          | 45.02              | -0.02 | -0.01    | 195  | 84,214              | 4.433 | 87.136           | 195.05             | -0.05 | -0.02    |
| 50   | 3202,92     | 8.072  | 525,913          | 50.01              | -0.01 | -0.01    | 200  | 77.088              | 4.345 | 82.026           | 200.05             | -0.05 | -0.02    |
| 55   | 2693.7      | 7.899  | 492.790          | 55.02              | -0.02 | -0.01    | 205  | 70.717              | 4.259 | 77.237           | 205.02             | -0.02 | -0.01    |
| 60   | 2276.32     | 7.730  | 461,946          | 60.02              | -0.02 | -0.01    | 210  | 64.985              | 4.174 | 72.729           | 210.00             | 0.00  | 0.00     |
| 65   | 1931.92     | 7.566  | 433.157          | 65.02              | -0,02 | -0.01    | 215  | 59.819              | 4.091 | 68.484           | 214.97             | 0.03  | 0.01     |
| 70   | 1646.56     | 7.406  | 406.283          | 70.02              | -0.02 | -0.01    | 220  | 55.161              | 4.010 | 64.494           | 219 93             | 0.07  | 0.02     |
| 75   | 1409.58     | 7.251  | 381.243          | 75.01              | -0.01 | 0.00     | 225  | 50.955              | 3.931 | 60.742           | 224.88             | 0.12  | 0.04     |
| 80   | 1211.14     | 7.099  | 357.808          | 80.00              | 0.00  | 0.00     | 230  | 47.142              | 3,853 | 57.207           | 229.82             | 0.18  | 0.06     |
| 85   | 1044,68     | 6.951  | 335,915          | 85.00              | 0.00  | 0.00     | 235  | 43.673              | 3.777 | 53.870           | 234.77             | 0.23  | 0.08     |
| 90   | 903.64      | 6.806  | 315.325          | 90.02              | -0.02 | -0.01    | 240  | 40,533              | 3.702 | 50,740           | 239.69             | 0.31  | 0.11     |
| 95   | 785.15      | 6.666  | 296,191          | 95.01              | -0.01 | 0,00     | 245  | 37.671              | 3.629 | 47.788           | 244.62             | 0.38  | 0.13     |
| 100  | 684.37      | 6.528  | 278.253          | 100.00             | 0.00  | 0.00     | 250  | 35.055              | 3.557 | 45.001           | 249.54             | 0.46  | 0.16     |
| 105  | 598.44      | 6.394  | 261.447          | 105.00             | 0.00  | 0.00     | 255  | 32.677              | 3.487 | 42.387           | 254.44             | 0.56  | 0.19     |
| 110  | 524.96      | 6.263  | 245.705          | 110.00             | 0.00  | 0.00     | 260  | 30.496              | 3.418 | 39.917           | 259 34             | 0.66  | 0.23     |
| 115  | 461.91      | 6135   | 230 952          | 115.00             | 0.00  | 0.00     |      | and a second second |       |                  |                    |       | 1        |

Table E-2 - BR55KA822J Thermistor Resistance versus Temperature

#### Thermistor Type: U.S. Sensor 103JL1A

## **Resistance to Temperature Equation:**

$$T = \frac{1}{A+B(LnR)+C(LnR)^{3}+D(LnR)^{5}} - 273.2$$

#### Equation E-3 - Convert Thermistor, Type 103JL1A, Resistance to Temperature

Where: T = Temperature in °C.

LnR = Natural Log of Thermistor Resistance

A =  $1.12766979300187 \times 10^{-3}$ 

B =  $2.34444184128213 \times 10^{-4}$ 

C =  $8.47692130592308 \times 10^{-8}$ 

 $D = 1.17512193579615 \times 10^{-11}$ 

| Temp | Ohms   | Temp | Ohms   |
|------|--------|------|--------|
| -30  | 176974 | 120  | 389.6  |
| -25  | 130421 | 125  | 341.9  |
| -20  | 97081  | 130  | 301    |
| -15  | 72957  | 135  | 265.8  |
| -10  | 55329  | 140  | 235.3  |
| -5   | 42327  | 145  | 208.9  |
| 0    | 32650  | 150  | 186.1  |
| 5    | 25392  | 155  | 165.96 |
| 10   | 19901  | 160  | 148.36 |
| 15   | 15712  | 165  | 132.95 |
| 20   | 12493  | 170  | 119.43 |
| 25   | 10000  | 175  | 107.52 |
| 30   | 8057   | 180  | 97.02  |
| 35   | 6531   | 185  | 87.72  |
| 40   | 5326   | 190  | 79.49  |
| 45   | 4368   | 195  | 72.17  |
| 50   | 3602   | 200  | 65.66  |
| 55   | 2986   | 205  | 59.85  |
| 60   | 2488   | 210  | 54.65  |
| 65   | 2083   | 215  | 50     |
| 70   | 1752   | 220  | 45.82  |
| 75   | 1480   | 225  | 42.06  |
| 80   | 1255   | 230  | 38.68  |
| 85   | 1070   | 235  | 35.62  |
| 90   | 915.5  | 240  | 32.86  |
| 95   | 786.6  | 245  | 30.36  |
| 100  | 678.6  | 250  | 28.09  |
| 105  | 587.6  | 255  | 26.03  |
| 110  | 510.6  | 260  | 24.15  |
| 115  | 445.3  |      | 1.1    |

Table E-3 - 103JL1A Thermistor Resistance versus Temperature

#### APPENDIX F - NETWORKING

#### F.1. Description

The Model LC-2x4 Datalogger is capable of being networked by way of a single, opticallyisolated RS-485 communications cable. Utilizing one 8001-5 (RS-232) or 8002-5 (USB) RS-485 interface adapter at the computer (data collection) end, up to 256 Model LC-2x4 Dataloggers\* may be networked. Also, the maximum network length\* can be up to 4000 feet (1.22 km). RS-485 is chosen as the transmission medium due to its inherent noise immunity and it's capability to support a bus type of network architecture. The 8001-5 RS-485 interface adapter is battery powered to allow for collection of data in the field. An AC adapter is also provided if mains power is available. The 8002-5 draws its operating power from the host computer's USB 2.0 port.

Each datalogger appears as a "node" on the RS-485 bus, with its own unique address. In order to communicate with a specific datalogger, the user transmits the address of the datalogger via the #nnn command, where nnn represents the network address of the datalogger. Valid addresses are 1 thru 256.

In a RS-485 system, it is important to locate the "termination" device at the end of the bus. Make sure that circuit board jumper JP-2 (located adjacent to J5 – the COM connector cable termination on datalogger the circuit board) is positioned between pins 1 & 2 on the datalogger that is located at the farthest point on the bus from the RS-485 Interface Adapter and data collection computer. Refer to section F.2. an example of a typical communications session.

Finally, it is helpful to set the datalogger ID# to agree with the network address. This will tend to eliminate any confusion when collecting data.

For further information, refer to sections 3.10(ID), 3.21(NA), 3.22(NAddd), 3.23(ND), 3.24(NE) & 3.25(NS).

\* The total number of networked dataloggers is limited by the total network cable length. Contact a Geokon Sales Engineer for further information.

#### F.2. Example of a 4 Datalogger Networking Session

- This session assumes that there are 4 dataloggers running at 5 second sean intervals, and that each datalogger has only one channel enabled.
- Press <ENTER> <ENTER> to wake the dataloggers from sleep. At this point, each datalogger is "listening" for its network address to be transmitted down the RS-485 bus.
- To communicate with Datalogger #1 and observe several readings, type #1<ENTER>. Datalogger #1 returns:

Network address: 1
\*
1,2007,11,25,16,25,0,2.98,24.6,-9040.265,---,--,20.5,---,--,34
1,2007,11,25,16,25,5,2.98,24.7,-9039.886,---,--,20.4,---,--,35
1,2007,11,25,16,25,10,2.98,24.7,-9040.028,---,--,20.5,---,--,36
\*E

Note that the datalogger ID, which is the first entry for each ASCII character string, corresponds to the network address. This should be set by the user during initial datalogger setup via the ID command.

Typing E<ENTER> puts the datalogger back to sleep and disconnects it from the RS-485 bus. The datalogger will continue to wake up periodically (scan rate setting) to take a data reading. The E command must be used in order to disconnect from the current datalogger and allow connection to the next datalogger.

4. To communicate with Datalogger #2 and observe several readings, type <ENTER> <ENTER>to wake the dataloggers and then type #2<ENTER>. Datalogger #2 returns:

```
Network address: 2
*
2,2007,11,25,16,25,
```

2,2007,11,25,16,25,25,2.95,24.7,-360.112,---,--,20.4,---,--,27 2,2007,11,25,16,25,30,2.96,24.7,-360.155,---,--,20.4,---,--,28 \*E

5. Doing the same for Datalogger numbers 3 & 4 results in:

```
Network address: 3
*
3,2007,11,25,16,30,0,2.98,24.7,9091.346,---,--,20.5,---,--,25
3,2007,11,25,16,30,5,2.98,24.7,9091.400,---,--,20.5,---,--,26
*E
Network address: 4
*
4,2007,11,25,16,31,26,2.96,24.8,-8457.811,---,--,20.4,---,--,20
```

4,2007,11,25,16,31,31,2.96,24.8,-8456.978,---,--,20.4,---,--,21 \*E

#### APPENDIX G – Lithium Coin Cell

#### G.1. Description:

Under normal operating conditions, the 1.5V 'D' cells provide all the power required to operate the LC-2x4 datalogger. In order to maintain the correct date and time settings for those periods when the 'D' cells are removed, the LC-2x4 datalogger incorporates a 3V lithium coin cell (Panasonic CR2032) to supply operating current to the internal Real Time Clock.

Since the power requirements of the Real Time Clock circuit are minimal (3µA max.), the clock will continue to operate for up to 10 years under these conditions.

However, if the lithium cell voltage falls to 2.5V or less, it should be replaced using the following replacement procedure.

#### G.2. Replacement Procedure:

#### Materials Required:

1/4" Slotted Screwdriver
1/8" Slotted Screwdriver
1/4" Nutdriver
CR2032 Lithium Coin Cell (Geokon P/N BAT-115)
Disposable Grounding Wrist Strap (3M P/N 2209 or equivalent)

#### Procedure:

- 1. Put on the disposable grounding wrist strap and connect to a good earth ground.
- Using the 1/4" slotted screwdriver, loosen the (4) captive screws and remove the datalogger cover.
- Remove the two 'D' cells.
- 4. Using the 1/4" slotted screwdriver, remove the (4) 3/8" 6x32 battery plate mounting screws.
- Lift up the battery plate and disconnect the 2 wire Molex connector from the header labeled "3V" ("12V" if applicable)
- 6. Using the 1/4" nutdriver, remove the (4) standoffs securing the printed circuit board to the case.
- 7. Lift the printed circuit board up to expose the bottom of the circuit board.
- 8. Using the 1/8" slotted screwdriver, gently pry the lithium coin cell battery from the battery holder.
- 9. Insert the replacement lithium coin cell into the battery holder (+ side facing out).
- 10. Re-install the printed circuit board back into the case.
- 11. Thread the (4) standoffs onto the set screws, using the nutdriver to gently tighten the standoffs.

- 12. Reconnect the 2 wire Molex connector to the header labeled "3V" ("12V" if applicable).
- 13. Position the battery plate over the standoffs and re-install using the (4) 3/8" 6x32 battery plate mounting screws.
- 14. Re-install the 'D' cells.
- 15. Re-install the datalogger cover.

Lithium coin cell replacement complete.

# **Appendix B**

Instruction Manual Model 4500 Series Vibrating Wire Piezometers



The World Leader in Vibrating Wire Technology

48 Spencer Street Lebanon, NH 03766, USA Tel: 603•448•1562 Fax: 603•448•3216 E-mail: geokon@geokon.com http://www.geokon.com

Instruction Manual

# **Model 4500**

series Vibrating Wire Piezometers

CE

No part of this instruction manual may be reproduced, by any means, without the written consent of Geokon, Inc.

The information contained herein is believed to be accurate and reliable. However, Geokon, Inc. assumes no responsibility for errors, omissions or misinterpretation. The information herein is subject to change without notification.

Copyright © 1983, 1996, 2002, 2004, 2005, 2007, 2008, 2009,2011, 2013, 2014, 2016 by Geokon, Inc. (Doc Rev Z 2/16)

#### **Warranty Statement**

Geokon, Inc. warrants its products to be free of defects in materials and workmanship, under normal use and service for a period of 13 months from date of purchase. If the unit should malfunction, it must be returned to the factory for evaluation, freight prepaid. Upon examination by Geokon, if the unit is found to be defective, it will be repaired or replaced at no charge. However, the WARRANTY is VOID if the unit shows evidence of having been tampered with or shows evidence of being damaged as a result of excessive corrosion or current, heat, moisture or vibration, improper specification, misapplication, misuse or other operating conditions outside of Geokon's control. Components which wear or which are damaged by misuse are not warranted. This includes fuses and batteries.

Geokon manufactures scientific instruments whose misuse is potentially dangerous. The instruments are intended to be installed and used only by qualified personnel. There are no warranties except as stated herein. There are no other warranties, expressed or implied, including but not limited to the implied warranties of merchantability and of fitness for a particular purpose. Geokon, Inc. is not responsible for any damages or losses caused to other equipment, whether direct, indirect, incidental, special or consequential which the purchaser may experience as a result of the installation or use of the product. The buyer's sole remedy for any breach of this agreement by Geokon, Inc. or any breach of any warranty by Geokon, Inc. shall not exceed the purchase price paid by the purchaser to Geokon, Inc. for the unit or units, or equipment directly affected by such breach. Under no circumstances will Geokon reimburse the claimant for loss incurred in removing and/or reinstalling equipment.

Every precaution for accuracy has been taken in the preparation of manuals and/or software, however, Geokon, Inc. neither assumes responsibility for any omissions or errors that may appear nor assumes liability for any damages or losses that result from the use of the products in accordance with the information contained in the manual or software.

# TABLE of CONTENTS

| 1. THEORY OF OPERATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .1                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| 2. INSTALLATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .2                                                                   |
| <ol> <li>INSTALLATION</li> <li>PRELIMINARY TESTS.</li> <li>2.1.1 Establishing an Initial Zero Reading</li> <li>2.1.2 checking the piezometer performance</li> <li>INSTALLATION IN STANDPIPES OR WELLS.</li> <li>INSTALLATION IN BOREHOLES.</li> <li>INSTALLATION IN FILLS AND EMBANKMENTS.</li> <li>INSTALLATION BY PUSHING OR DRIVING INTO SOFT SOILS.</li> <li>INSTALLATION BY PUSHING OR DRIVING INTO SOFT SOILS.</li> <li>DE-AIRING FILTER TIPS.</li> <li>2.6.1 Low Air Entry Filter, Model 4500S and 4500PN.</li> <li>2.6.2 Removable Ceramic Filter, Model 4500S.</li> <li>3.6.3 Model 4500DP.</li> <li>TMODEL 4500H AND MODEL 4500HH TRANSDUCER.</li> <li>SPLICING AND JUNCTION BOXES.</li> <li>LIGHTNING PROTECTION</li> </ol> | .2<br>.2<br>.3<br>.4<br>.4<br>.6<br>.7<br>.8<br>.8<br>.9<br>10<br>10 |
| 3. TAKING READINGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12                                                                   |
| 3.1 OPERATION OF THE GK-403 READOUT BOX         3.2 OPERATION OF THE GK-404 READOUT BOX         3.3 OPERATION OF THE GK-405 READOUT BOX         3.4 MEASURING TEMPERATURES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2<br> 3<br> 3                                                        |
| 4. DATA REDUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14                                                                   |
| <ul> <li>4.1 PRESSURE CALCULATION</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14<br>16<br>17<br>18                                                 |
| 5. TROUBLESHOOTING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9                                                                    |
| APPENDIX A - SPECIFICATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20                                                                   |
| APPENDIX B-STANDARD TEMPERATURE THERMISTOR TEMPERATURE DERIVATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21                                                                   |
| APPENDIX C - HIGH TEMPERATURE THERMISTOR TEMPERATURE DERIVATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22                                                                   |
| APPENDIX D - NOTES REGARDING THE MODEL 4500C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23                                                                   |
| APPENDIX E - NON LINEARITY AND THE USE OF A SECOND ORDER POLYNOMIAL TO<br>IMPROVE THE ACCURACY OF THE CALCULATED PRESSURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24                                                                   |
| APPENDIX F - QUICK INSTRUCTIONS FOR INSTALLING A VIBRATING WIRE<br>PIEZOMETER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25                                                                   |
| APPENDIX G - MODEL 4500AR PIEZOMETER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 26                                                                   |

# LIST of FIGURES, TABLES and EQUATIONS

| FIGURE 1-1 VIBRATING WIRE PIEZOMETER                                    | 1  |
|-------------------------------------------------------------------------|----|
| FIGURE 2-1 TYPICAL LEVEL MONITORING INSTALLATIONS                       | 4  |
| FIGURE 2-2 TYPICAL BOREHOLE INSTALLATIONS                               | 5  |
| TABLE 1 SHOWING CEMENT/BENTONITE/WATER RATIOS FOR TWO GROUT MIXES.      | 6  |
| FIGURE 2-3 TYPICAL DAM INSTALLATIONS                                    | 7  |
| FIGURE 2-4 TYPICAL SOFT SOILS INSTALLATION                              | 8  |
| FIGURE 2-5 TYPICAL MULTI-PIEZOMETER INSTALLATION                        | 1  |
| FIGURE 2-6 RECOMMENDED LIGHTNING PROTECTION SCHEME                      | 2  |
| FIGURE 3-1 GK405 READOUT UNIT 1                                         | 4  |
| EQUATION 4-1 DIGITS CALCULATION                                         | 4  |
| EQUATION 4-2 CONVERT DIGITS TO PRESSURE                                 | 5  |
| TABLE 4-1 ENGINEERING UNITS MULTIPLICATION FACTORS                      | 5  |
| FIGURE 4 - A TYPICAL CALIBRATION SHEET                                  | 6  |
| EQUATION 4-3 TEMPERATURE CORRECTION                                     | 7  |
| EQUATION 4-4 BAROMETRIC CORRECTION                                      | 7  |
| EQUATION 4-5 CORRECTED PRESSURE CALCULATION                             | 8  |
| TABLE A-1 VIBRATING WIRE PIEZOMETER SPECIFICATIONS                      | 20 |
| TABLE B-1 STANDARD TEMPERATURE THERMISTOR RESISTANCE VERSUS TEMPERATURE | 21 |
| TABLE C-1 HIGH TEMPERATURE. TEMPERATURE V THERMISTOR RESISTANCE         | 22 |

#### 1. THEORY OF OPERATION

Geokon Model 4500 Vibrating Wire Piezometers are intended primarily for long-term measurements of fluid and/or pore pressures in standpipes, boreholes, embankments, pipelines and pressure vessels. Several models of the 4500 series are available (see Appendix A). Contact Geokon sales engineers for specific application information.

The instrument utilizes a sensitive stainless steel diaphragm to which a vibrating wire element is connected. See Figure 1-1. In use, changing pressures on the diaphragm cause it to deflect, and this deflection is measured as a change in tension and frequency of vibration of the vibrating wire element. The square of the vibration frequency is directly proportional to the pressure applied to the diaphragm. Two coils, one with a magnet, another with a pole piece, are located close to the wire. In use, a pulse of varying frequency (swept frequency) is applied to the coils and this causes the wire to vibrate primarily at its resonant frequency. When excitation ends the wire continues to vibrate and a sinusoidal AC electrical signal, at the resonant frequency, is induced in the coils and transmitted to the readout box where it is conditioned and displayed.



Figure 1-1 Vibrating Wire Piezometer

To prevent damage to the sensitive diaphragm a filter is used to keep out solid particles. Figure 1-1 illustrates. Standard filters are 50 micron stainless steel; high air entry value tips are available on request.

All exposed components are made of corrosion resistant stainless steel and, if proper installation techniques are used, the device should have an unlimited life. In salt water it may be necessary to use special materials for the diaphragm and housing.

Portable readout units are available to provide the excitation, signal conditioning and readout of the instrument. Datalogging systems are also available for remote unattended data collection of multiple sensors. Contact Geokon for additional information.

Calibration data are supplied with each piezometer for conversion of gage readings to engineering units such as pressure or level. See Section 4.

#### 2. INSTALLATION

(For Quick Installation Instructions see AppendixE)

#### 2.1 Preliminary Tests

Upon receipt of the piezometer the zero reading should be checked and noted (see Sections 3.1 to 3.3 for readout instructions). A thermistor is included inside the body of the piezometer (Figure 1-1) for the measurement of temperature (see Section 3.4 for instructions).

Calibration data are supplied with each gage and a zero reading, at a specific temperature and barometric pressure, is included. Zero readings at the site should coincide with the calibration zero readings within +/- 50 digits after barometric and temperature corrections are made. The factory elevation is +580 ft. all stated barometric readings represent absolute pressure uncorrected for height above sea level. (Barometric pressure changes with elevation at a rate of  $\approx \frac{1}{2}$  psi per 1,000 ft.) See Figure 4, for a sample calibration sheet.

#### 2.1.1 Establishing an Initial Zero Reading

Vibrating Wire Piezometers differ from other types of pressure sensors in that they indicate a reading at zero pressure. Therefore it is imperative that an accurate initial zero pressure reading be obtained for each piezometer as this reading will be used in all subsequent data reduction.

There are different ways of doing this but the essential element in all methods is that the piezometer be allowed to thermally stabilize in a constant temperature environment, while the pressure on the piezometer is barometric only. Because of the way the piezometer is constructed it takes about 5 to 15 minutes for the temperature of all the different elements to equalize.

It will be necessary to measure the barometric pressure only if the piezometer is unvented and if it will be installed in a location that is subject to barometric pressure changes that require correction, such as in an open well. A piezometer sealed in place at depth could be recording pressures in groundwater that is not hydraulically connected to the atmosphere, and, for which, barometric pressure compensation would be inappropriate.

The recommended way to take a zero reading and achieve temperature stability is to first pull off the standard filter stone and fill the inside of the piezometer with water then replace the filter stone. (In the case of HAE filter stones see section 2.6). Hang the piezometer in the borehole at a point just above the water and wait until the piezometer reading has stopped changing. Now take the zero reading and read the temperature, indicated by the thermistor inside the piezometer.

Another way is to place the piezometer under water in a bucket and allow 5 to 15 minutes for the temperature to stabilize, then lift the piezometer out of the water and immediately take a reading. When doing this, lift the piezometer by the cable only, do not handle the piezometer housing as body heat from the hand could cause temperature transients. Use the thermistor inside the piezometer to measure the water temperature.

Another way is to simply read the piezometer while in the air while making sure that the temperature has had time to stabilize. If this method is chosen be sure that the piezometer is protected from sunlight or sudden changes of temperature: Wrapping it in some insulating material is recommended.

Yet another way is to lower the piezometer to a known depth as marked out on the piezometer cable, (The diaphragm inside the piezometer is located approximately <sup>3</sup>/<sub>4</sub> inch (15mm), from the tip. Then use a dip meter to accurately measure the depth to the water

surface. Now, after temperature stabilization, read the piezometer pressure and, using the factory calibration constants and a knowledge of the pressure (height x density) of the water column above the piezometer, calculate either the equivalent zero pressure reading, if the linear regression is used, or the factor, C, if the second order polynomial is used.

A question may arise as to what to do with the filter stone while taking zero readings. If a standard stainless steel filter is being used, it will not matter if the filter stone is saturated or not. But if ceramic high air entry filter stone is in use then it must be saturated while taking the zero readings and must not be allowed to dry out to the extent that surface tension effects can affect the zero reading. For more details see section 2.6.

#### Caution. - do not allow the piezometer to freeze once it has been filled with water.

#### 2.1.2 checking the piezometer performance

If a rough check on the piezometer performance is needed then the following procedure is recommended

1. Lower the piezometer to a point near the bottom of a water-filled borehole, or below the surface of a body of water.

- Allow 15-20 minutes for the piezometer to come to thermal equilibrium. Using a readout box record the reading at that level.
- Raise the piezometer by a measured depth increment. Record the reading on the readout box at the new depth..
- 4. Using the factory calibration factor calculate the change in water depth and compare the calculated change in depth with the measured depth increment. The two values should be roughly the same.

There are a couple of things that can affect this checking procedure:

- The density of the in-situ water may not be 1gm/cc if it is saline or turbid.
- The water level inside the borehole may vary during the test due to the displacement of the water level as the cable is raised and lowered in the borehole. This effect will be greater where the borehole diameter is smaller. For example, a Model 4500S-50 piezometer lowered 50 feet below the water column in a 1 inch (.875 inch ID) standpipe will displace the water level by more than 4 feet!
- Alternatively if a dip-meter is available, lower the piezometer tip to a measured depth below the water surface, allow the temperature to stabilize then take a reading. Calculate the elevation of the water surface using the given calibration factor. Compare this to the elevation measured using the dip-meter..

#### 2.2 Installation in Standpipes or Wells

A zero reading is first established (follow the procedures outlined in Section 2.1.1). The filter stone is saturated (follow the procedures in Section 2.6). Make a mark on the cable which will lie opposite the top of the standpipe, (well), when the piezometer has reached the desired depth. (The piezo diaphragm lies <sup>3</sup>/<sub>4</sub> inch above the tip of the piezo).



Figure 2-1 Typical Level Monitoring Installations

Be sure the cable is securely fastened at the top of the well or readings could be in error due to slippage of the piezometer into the well.

It is not recommended that piezometers be installed in wells or standpipes where an electrical pump and/or cable is present or nearby. Electrical interference from these sources can cause unstable readings. If unavoidable, it is recommended that the piezometer be placed inside a piece of steel pipe.

In situations where packers are used in standpipes the same sequence as above should be noted and special care should be taken to avoid cutting the cable jacket with the packer since this could introduce a possible pressure leakage path.

#### 2.3 Installation in Boreholes

Geokon piezometers can be installed in boreholes in either single or multiple installations per hole, in cased or uncased holes. See Figure 2-2. Careful attention must be paid to borehole sealing techniques if pore pressures in a particular zone are to be monitored.

Boreholes should be drilled either without drilling mud or with a material that degrades rapidly with time, such as Revert<sup>™</sup>. The hole should extend from 6 inches to 12 inches below the proposed piezometer location and should be washed clean of drill cuttings. The bottom of the borehole should then be backfilled with clean fine sand to a point 6 inches below the piezometer tip. The piezometer can then be lowered, as delivered, into position. Preferably, the piezometer may be encapsulated in a canvas-cloth bag containing clean, saturated sand and then lowered into position. While holding the

4

instrument in position (a mark on the cable is helpful) clean sand should be placed around the piezometer and to a point 6 inches above it. Figure 2-2 details two methods of isolating the zone to be monitored.

#### Installation A

Immediately above the "collection zone" the borehole should be sealed with either alternating layers of bentonite and sand backfill tamped in place for approximately 1 foot followed by common backfill or by an impermeable bentonite-cement grout mix. If multiple piezometers are to be used in a single hole the bentonite-sand plugs should be tamped in place below and above the upper piezometers and also at intervals between the piezometer zones. When designing and using tamping tools special care should be taken to ensure that the piezometer cable jackets are not cut during installation.

#### Installation B

Impermeable bentonite grout.

Piezometer Cable
Ground Surface
Portable Readout
Piezometer Cable
Ground Surface
Portable Readout
Piezometer Cable
Ground Surface
Portable Readout
Piezometer Cable

Immediately above the "collection zone" the borehole should be filled with an



Figure 2-2 Typical Borehole Installations

#### Installation C

It should be noted that since the vibrating wire piezometer is basically a no-flow instrument, collection zones of appreciable size are not required and the piezometer can, in fact, be placed directly in contact with most materials provided that the fines are not able to migrate through the filter. The latest thinking, (*Mikkelson and Green, Piezometers in Fully Grouted Boreholes.Proceedings of FMGM 2003, Field Measurements in Geomechanics, Oslo, Norway, Sept. 2003. Contact Geokon for a copy of this paper), is that it is not necessary to provide sand zones and that the piezometer can be grouted directly into the borehole using a bentonite cement grout only. However, good results have been obtained by first placing the piezometer inside a canvas bag before grouting.* 

The general rule for installing piezometers in this way is to use a bentonite grout that mimics the strength of the surrounding soil. The emphasis should be on controlling the water-cement ratio. This is accomplished **by mixing the cement with the water first**. The most effective way of mixing is in a 50 to 200 gallon barrel or tub using the drill-rig pump to circulate the mix. Any kind of bentonite powder used to make drilling mud, combined with Type 1 or 2 Portland cement can be used. The exact amount of bentonite added will vary somewhat. The table below shows two possible mixes for strengths of 50 psi and 4 psi.

Add the measured amount of clean water to the barrel then gradually add the cement in the correct weight ratio. Next add the bentonite powder, slowly, so clumps do not form. Keep adding bentonite until the watery mix turns to an oily/slimy consistency. Let the grout thicken for another five to ten minutes. Add more bentonite as required until it is a smooth thick cream like pancake batter. It is now as heavy as it is feasible to pump. When pumping grout, unless the tremie-pipe is to be left in place, withdraw the tremie-pipe after each batch, by an amount corresponding to the grout level in the borehole. <u>Caution:</u> if the grout is pumped into the hole, rather than tremied, there is a danger that the piezometer will be over-ranged and damaged., So pumping direct into the bottom of the borehole should be avoided. It is good practice to read the piezometer while pumping.

| Application        | Grout for Medi<br>Soils                                                            | ium to Hard                                                                  | Grout fo                                                                | or Soft Soils   |  |
|--------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------|--|
| Materials          | Weight                                                                             | Ratio by<br>Weight                                                           | Weight                                                                  | Ratio by Weight |  |
| Water              | 30 gallons                                                                         | 2.5                                                                          | 75 gallons                                                              | 6.6             |  |
| Portland<br>Cement | 94 lbs<br>(1 sack)                                                                 | 1                                                                            | 94 lbs<br>(1 sack)                                                      | 1               |  |
| Bentonite          | 25 lbs<br>(as required)                                                            | 0.3                                                                          | 39 lbs<br>(as required)                                                 | 0.4             |  |
| Notes              | The 28 day c<br>strength of this r<br>psi, similar to ve<br>clay. The mod<br>10,00 | ompressive<br>nix is about 50<br>ery stiff to hard<br>ulus is about<br>0 psi | The 28 day strength of this m<br>about 4psi, similar to very s<br>clay. |                 |  |

Table 1 showing Cement/Bentonite/Water ratios for two grout mixes.

(For more details on this method of installation ask for a copy of the FMGM paper)

#### 2.4 Installation in Fills and Embankments

Geokon piezometers are normally supplied with direct burial cable suitable for placement in fills such as highway embankments and dams, both in the core and in the surrounding materials.

In installations in non-cohesive fill materials the piezometer may be placed directly in the fill or, if large aggregate sizes are present, in a saturated sand pocket in the fill. If installed in large aggregate, additional measures may be necessary to protect the cable from damage.

In fills such as impervious dam cores where sub-atmospheric pore water pressure may need to be measured (as opposed to the pore air pressure) a ceramic tip with a high air entry value is often used which should be carefully placed in direct contact with the compacted fill material (see Installation A of Figure 2-3). In partially saturated fills if only the pore air pressure is to be measured, the standard tip is satisfactory. It should be noted that the coarse tip measures the air pressure when there is a difference between the pore air pressure and the pore water pressure, and that the difference between the two pressures is due to the capillary suction in the soil. The general consensus is that the difference is normally of no consequence to embankment stability. As a general rule the coarse (low air entry) tip is suitable for most routine measurements and, in fine cohesive soils, sand pockets should not be used around the piezometer tip (see Installation B of Figure 2-3). In high traffic areas and in material which exhibit pronounced "weaving", a heavy-duty armored cable should be used.

Cables are normally installed inside shallow trenches with the fill material consisting of smaller size aggregate. This fill is carefully hand compacted around the cable. Bentonite plugs are placed at regular intervals to prevent migration of water along the cable path.



#### 2.5 Installation by Pushing or Driving into Soft Soils

The Model 4500DP piezometer is designed for pushing into soft soils. See Figure 2-4. The unit is connected directly to the drill rod (AW, EW or other) and pressed into the ground either by hand or by means of the hydraulics on the rig. The units can also be driven but the possibility of a zero shift due to the driving forces exists. A good rule of thumb is that the ground conditions need to be relatively soft for the 4500DP. Soft soils like clays or silts with SPT blow counts under 10 are suitable. The idea with push-in stuff is that in soft soils it can be difficult to keep a borehole open so the push-in may eliminate the need for a borehole. In stiffer soils one technique is to drill a hole and then push the 4500DP only a few feet below the bottom of the hole but again if the soil is stiff you risk breaking the sensor or at the very least over-ranging it.

The piezometer should be connected to the readout box and monitored during the driving process. If measurement pressures reach or exceed the calibrated range, the driving should be stopped and the pressures allowed to dissipate before continuing.



The drill rod can be left in place or it can be removed. If it is to be removed then a special 5 foot section of EW (or AW) rod with wings and a left hand thread are attached directly to the piezometer tip. This section is detached from the rest of the drill string by rotating the string clockwise. The left hand thread will then loosen. The wings prevent the special EW rod from turning. A special LH/RH adapter is available from Geokon. The adapter is retrieved along with the drill string.

#### 2.6 De-airing Filter Tips

Caution. – do not allow the piezometer to freeze once it has been filled with water. Most Geokon filter tips can be removed for saturating and re-assembly. The procedures are as follows:

#### 2.6.1 Low Air Entry Filter, Model 4500S and 4500PN

For accurate results, total saturation of the filter is necessary. For the low air entry filter normally supplied, this saturation occurs as the tip is lowered into the water. Water is forced into the filter, compressing the air in the space between the filter stone and the pressure sensitive diaphragm. After a period of time, this air will dissolve into the water until the space and the filter is entirely filled with water. To speed up the saturation process, remove the filter assembly and fill the space above the diaphragm with water, then slowly replace the filter housing allowing the water to squeeze through the filter stone. With low pressure range piezometers (<10 psi) take readings with a readout box while pushing the filter housing on so as not to over-range the sensor.

To maintain saturation, the unit should be kept under water until installation.

If the 4500S piezometer is to be used in standpipes and raised and lowered many times the filter may loosen. A permanent filter assembly may be required. The removable filter may be fixed permanently by prick punching the piezometer tube approximately 1/16" to 1/8" behind the filter assembly joint.

Screens are also available for standpipe installations. Screens are less likely than standard filters to become clogged where salts in the water can be deposited if the filter is allowed to dry out completely.

#### 2.6.2 Removable Ceramic Filter, Model 4500S

The ceramic filter on the 4500S piezometer is also removable for de-airing. Because of the high air entry characteristics, de-airing is particularly important for this filter assembly. Filters with different air entry values require different procedures.

#### 1 Bar Filters

- Remove the filter from the piezometer by carefully twisting and pulling on the filter housing assembly.
- 2. Boil the filter assembly in de-aired water.
- Re-assemble the filter housing and piezometer under the surface of a container of de-aired water. Be sure that no air is trapped in the transducer cavity. While pushing the filter on use a readout box to monitor the diaphragm pressure. Allow over-range pressure to dissipate before pushing further.
- 4. To maintain saturation, the unit should remain immersed until installation.

#### 2 Bar and Higher

The proper procedure for de-airing and saturating these filters is somewhat complex and should be done either at the factory by Geokon or by carefully following the instructions below:

- Place the assembled piezometer, filter down, in a vacuum chamber with an inlet port at the bottom for de-aired water.
- Close off the water inlet and evacuate the chamber. The transducer should be monitored while the chamber is being evacuated.
- When the maximum vacuum has been achieved, allow de-aired water to enter the chamber and reach an elevation a few inches above the piezometer filter.
- Close off the inlet port. Release the vacuum.
- Observe the transducer output. It will take as long as 24 hours for the filter to completely saturate (5 bar) and the pressure to rise to zero.
- After saturation the transducer should be kept in a container of de-aired water until installation. If de-aired at the factory a special cap is applied to the piezometer to maintain saturation.

#### 2.6.3 Model 4500DP

The 4500 Drive Point is de-aired in the same way as the above models by first unscrewing the point of the piezometer assembly and then following the instruction for the 4500S.

#### 2.7 Model 4500H and Model 4500HH Transducer

These transducers are for use with high temperatures up to 250 degrees C.

When connecting the Model 4500H transducer to external fittings, the fitting should be tightened into the ¼ - 18NPT female port., with a wrench on the flats provided on the transducer housing. Also, avoid tightening onto a closed system since the process of tightening the fittings could over-range and permanently damage the transducer. If in doubt, attach the gage leads to the readout box and take readings while tightening. Teflon tape on the threads makes for easier and more positive connection to the transducer. The maximum pressure is 3MPa.

The Model 4500HH is for extra high pressures and uses a 7/16-20, 60 degree, female, medium pressure fitting. The maximum pressure is 75MPa.

Both models, 4500H and 4500HH use a high temperature thermistor, (see Appendix C),

CAUTION: All high pressure sensors are potentially dangerous and care must be taken not to over-range them beyond their calibrated range. Sensors are tested to 150% of the range to provide a factor of safety.

#### 2.8 Splicing and Junction Boxes

Because the vibrating wire output signal is a frequency rather than current or voltage, variations in cable resistance have little effect on gage readings and, therefore, splicing of cables has no effect either and, in some cases, may be beneficial. For example, if multiple piezometers are installed in a borehole, and the distance from the borehole to the terminal box or datalogger is great, a splice (or junction box, see Figure 2-6) could be made to connect the individual cables to a single multi-conductor cable. This multiconductor cable would then be run to the readout station. For such installations it is recommended that the piezometer be supplied with enough cable to reach the installation depth plus extra cable to pass through drilling equipment (rods, casing, etc.). The cable used for making splices should be a high guality twisted pair type with 100% shielding (with integral shield drain wire). When splicing, it is very important that the shield drain wires be spliced together! Splice kits recommended by Geokon incorporate casts placed around the splice then filled with epoxy to waterproof the connections. When properly made, this type of splice is equal or superior to the cable itself in strength and electrical properties. Contact Geokon for splicing materials and additional cable splicing instructions.

Junction boxes and terminal boxes are available from Geokon for all types of applications. In addition, portable readout equipment and datalogging hardware are available. See Figure 2-5. Contact Geokon for specific application information.


Figure 2-5 Typical Multi-Piezometer Installation

### 2.9 Lightning Protection

In exposed locations it is vital that the piezometer be protected against lightning strikes.

A tripolar plasma surge arrestor (Figure 1-1) is built into the body of the piezometer and protects against voltage spikes across the input leads. Following are additional lightning protection measures available;

- If the instruments will be read manually with a portable readout (no terminal box) a simple way to help protect against lightning damage is to connect the cable leads to a good earth ground when not in use. This will help shunt transients induced in the cable to ground thereby protecting the instrument.
- Terminal boxes available from Geokon can be ordered with lightning protection built in. There are two levels of protection;
  - The terminal board used to make the gage connections has provision for installation of plasma surge arrestors (similar to the device inside the piezometer).
  - Lightning Arrestor Boards (LAB-3) can be incorporated into the terminal box. These units utilize surge arrestors and transzorbs to further protect the piezometer.

In the above cases the terminal box would be connected to an earth ground.

 Improved protection using the LAB-3 can be had by placing the board in line with the cable as close as possible to the installed piezometer (see Figure 2-6). This is the recommended method of lightning protection.



Figure 2-6 Recommended Lightning Protection Scheme

### 3. TAKING READINGS

### 3.1 Operation of the GK-403 Readout Box

The GK-403 can store gage readings and also apply calibration factors to convert readings to engineering units. Consult the GK-403 Instruction Manual for additional information on Mode "G" of the Readout. The following instructions will explain taking gage measurements using Modes "B" and "F" (similar to the GK-401 switch positions "B" and "F").

Connect the Readout using the flying leads or in the case of a terminal station, with a connector. The red and black clips are for the vibrating wire gage, the white and green leads are for the thermistor and the blue for the shield drain wire.

- 1. Turn the display selector to position "B" (or "F"). Readout is in digits (Equation 4-1).
- Turn the unit on and a reading will appear in the front display window. The last digit
  may change one or two digits while reading. Press the "Store" button to record the
  value displayed. If the no reading displays or the reading is unstable see section 5
  for troubleshooting suggestions. The thermistor will be read and output directly in
  degrees centigrade.
- The unit will automatically turn itself off after approximately 2 minutes to conserve power.

### 3.2 Operation of the GK-404 Readout Box

The GK404 is a palm sized readout box which displays the Vibrating wire value and the temperature in degrees centigrade.

The GK-404 Vibrating Wire Readout arrives with a patch cord for connecting to the vibrating wire gages. One end will consist of a 5-pin plug for connecting to the respective socket on the bottom of the GK-404 enclosure. The other end will consist of 5 leads terminated with alligator clips. Note the colors of the alligator clips are red, black, green, white and blue. The colors represent the positive vibrating wire gage lead (red), negative vibrating wire gage lead (black), positive thermistor lead (green), negative thermistor lead (white) and transducer cable drain wire (blue). The clips should be connected to their respectively colored leads from the vibrating wire gage cable.

Use the **POS** (Position) button to select position **B** and the MODE button to select **Dg** (digits).

Other functions can be selected as described in the GK404 Manual.

The GK-404 will continue to take measurements and display the readings until the OFF button is pushed, or if enabled, when the automatic Power-Off timer shuts the GK-404 off.

The GK-404 continuously monitors the status of the (2) 1.5V AA cells, and when their combined voltage drops to 2V, the message **Batteries Low** is displayed on the screen. A fresh set of 1.5V AA batteries should be installed at this point

### 3.3 Operation of the GK-405 Readout Box

The GK-405 Vibrating Wire Readout is made up of two components:

- the Readout Unit, consisting of a Windows Mobile handheld PC running the GK-405 Vibrating Wire Readout Application
- the GK-405 Remote Module which is housed in a weather-proof enclosure and connects to the vibrating wire sensor by means of:
- Flying leads with alligator type clips when the sensor cable terminates in bare wires or,

2) by means of a 10 pin connector...

The two components communicate wirelessly using Bluetooth<sup>®</sup>, a reliable digital communications protocol. The Readout Unit can operate from the cradle of the Remote Module (see Figure 3.1) or, if more convenient, can be removed and operated up to 20 meters from the Remote Module



Figure 3-1 GK405 Readout Unit

For further details consult the GK405 Instruction Manual.

### 3.4 Measuring Temperatures

Each vibrating wire piezometer is equipped with a thermistor for reading temperature. The thermistor gives a varying resistance output as the temperature changes. Usually the white and green leads are connected to the internal thermistor. High temperature versions use a different thermistor than the standard versions.

The GK-403, GK404 and GK 405 readout boxes when used with the **standard** temperature thermistor will display the temperature in °C automatically. They will **not** do this with high temperature thermistors. The GK 401 readout box will not read temperatures directly, instead an ohmmeter must be used.

- Connect the ohmmeter to the two thermistor leads coming from the piezometer. (Since the resistance changes with temperature are so large, the effect of cable resistance is usually insignificant. For long cables a correction can be applied – equal to 16 ohms per thousand feet.)
- For standard temperature models, look up the temperature for the measured resistance in Table B-1.Page 21 Alternately the temperature could be calculated using Equation B-1. For high temperature models use Table C1 or the equation C1 given on page 22.

### 4. DATA REDUCTION

### 4.1 Pressure Calculation

The digits displayed by the Geokon Models GK-403, GK-404 or GK-405 Readout Boxes on channel B are based on the equation

Digits = 
$$\left(\frac{1}{\text{Period}}\right)^2 \times 10^{-3}$$
 or Digits =  $\frac{\text{Hz}^2}{1000}$ 

Equation 4-1 Digits Calculation

For example, a piezometer reading 8000 digits corresponds to a period of  $354\mu s$  and a frequency of 2828 Hz. Note that in the above equation, the period is in seconds: the readout boxes display microseconds.

Since digits are directly proportional to the applied pressure,

# Pressure = (Current Reading - Initial Reading) × Linear Calibration Factor

### $P = (R_1 - R_0) \times G$

### Equation 4-2 Convert Digits to Pressure

Since the linearity of most sensors is within  $\Box 0.2\%$  FS the errors associated with nonlinearity are of minor consequence. However, for those situations requiring the highest accuracy it may be desirable to use a second order polynomial to get a better fit of the data points. The use of a second order polynomial is explained in Appendix D.

The calibration sheet, a typical example of which is shown in Figure 4, shows the data from which the linear gage factor and the second order polynomial coefficients are derived. Columns on the right show the size of the error incurred by assuming a linear coefficient and the improvement which can be expected by going to a second order polynomial . In many cases the difference is minor. The calibration sheets gives the pressure in certain engineering units. These can be converted to other engineering units using the multiplication factors shown in Table 4-1 below.

| From →<br>To<br>↓   | psi     | "H <sub>2</sub> 0 | 'H <sub>2</sub> O | mm H <sub>2</sub> 0 | m H <sub>2</sub> 0 | "HG     | mm HG   | atm     | mbar    | bar     | kPa     | MPa    |
|---------------------|---------|-------------------|-------------------|---------------------|--------------------|---------|---------|---------|---------|---------|---------|--------|
| psi                 | 1       | 036127            | .43275            | .0014223            | 1.4223             | 49116   | .019337 | 14.696  | .014503 | 14.5039 | .14503  | 145.03 |
| "H20                | 27.730  | 1                 | 12                | .039372             | 39.372             | 13.596  | .53525  | 406.78  | .40147  | 401.47  | 4.0147  | 4016.1 |
| 'H <sub>2</sub> O   | 2.3108  | .08333            | 1                 | .003281             | 3.281              | 1.133   | .044604 | 33.8983 | .033456 | 33.4558 | .3346   | 334.6  |
| mm H <sub>2</sub> 0 | 704.32  | 25.399            | 304.788           | 1                   | 1000               | 345.32  | 13.595  | 10332   | 10.197  | 10197   | 101.97  | 101970 |
| m H <sub>2</sub> 0  | 70432   | .025399           | .304788           | .001                | 1                  | .34532  | .013595 | 10.332  | .010197 | 10.197  | .10197  | 101.97 |
| "HG                 | 2.036   | .073552           | .882624           | .0028959            | 2.8959             | 1       | .03937  | 29.920  | .029529 | 29.529  | .2953   | 295.3  |
| mm HG               | 51.706  | 1.8683            | 22.4196           | .073558             | 73.558             | 25.4    | 1       | 760     | .75008  | 750.08  | 7.5008  | 7500.8 |
| atm                 | .06805  | .002458           | .029499           | .0000968            | .0968              | .03342  | .001315 | 1       | .000986 | .98692  | .009869 | 9.869  |
| mbar                | 68.947  | 2.4908            | 29.8896           | .098068             | 98.068             | 33.863  | 1.3332  | 1013.2  | 1       | 1000    | 10      | 10000  |
| bar                 | .068947 | .002490           | .029889           | .0000981            | .098068            | .033863 | .001333 | 1.0132  | .001    | 1       | .01     | 10     |
| kPa                 | 6.8947  | .24908            | 2.98896           | .0098068            | 9.8068             | 3.3863  | _13332  | 101.320 | .1      | 100     | 1       | 1000   |
| MPa                 | .006895 | .000249           | .002988           | .0000098            | .009807            | .003386 | .000133 | 101320  | .0001   | .1      | .001    | 1      |

Table 4-1 Engineering Units Multiplication Factors

Note: Due to changes in specific gravity with temperature the factors for mercury and water in the above table are approximations!

|                                                                    | Model Number                                                                                                                              | 4500INS-70                                                                                         | 00 kPa                                                                                                                                                                          | Date of Cali                                                        | ibration: Sept                                                                                          | ember 14, 2011                                     |                                                 |
|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------|
|                                                                    | Serial Number                                                                                                                             | 10438                                                                                              | 11                                                                                                                                                                              | Тепр                                                                | erature:                                                                                                | 21.7 °C                                            |                                                 |
|                                                                    |                                                                                                                                           |                                                                                                    |                                                                                                                                                                                 | Barometric Pr                                                       | ressure: G                                                                                              | 94.7 mbar                                          |                                                 |
|                                                                    |                                                                                                                                           |                                                                                                    |                                                                                                                                                                                 | Tec                                                                 | holoian: St                                                                                             | wat Zennes                                         |                                                 |
| Applied<br>Pressure<br>(kPa)                                       | Gage<br>Reading<br>1st Cycle                                                                                                              | Gage<br>Reading<br>2nd Cycle                                                                       | Average<br>Gage<br>Reading                                                                                                                                                      | Calculated<br>Pressure<br>(Linear)                                  | Error<br>Linear<br>(%FS)                                                                                | Calculated<br>Pressure<br>(Polynomial)             | Error<br>Polynomia<br>(%FS)                     |
| 0.0<br>140.0<br>280.0<br>420.0<br>560.0<br>700.0                   | 9073<br>8303<br>7528<br>8748<br>5963<br>5174                                                                                              | 9074<br>8304<br>7528<br>0749<br>5903<br>5174                                                       | 9074<br>8304<br>7528<br>8749<br>5983<br>5174                                                                                                                                    | 1.526<br>139.7<br>278.9<br>418.8<br>559.8<br>701.5                  | 0.22<br>-0.04<br>-0.15<br>-0.16<br>-0.02<br>0.21                                                        | 0.028<br>140.0<br>280.0<br>420.0<br>560.1<br>700.0 | 0.00<br>-0.01<br>0.00<br>-0.01<br>0.01<br>-0.01 |
| (kPa) Linear                                                       | Gage Factor (G                                                                                                                            | -0,1795                                                                                            | (kPa/ digit)                                                                                                                                                                    | 1.000                                                               | R                                                                                                       | egression Zero:                                    | 9082                                            |
| (kPa) Linear<br>Polynomi                                           | r Gage Factor (G<br>ial Gage factors:<br>Calculate C by se                                                                                | ):                                                                                                 | (kPa/ digit)<br>-7 <u>.113E-07</u><br>Factor (K):<br>R <sub>1</sub> = initial field                                                                                             | B:                                                                  | R:<br>_0.1694<br>'C)<br>o the polynom                                                                   | egression Zero:<br>C:                              | 9082                                            |
| (kPa) Linear<br>Polynomi<br>(psi) Linear (<br>Polynomi             | r Gage Factor (G<br>ial Gage factors:<br>Calculate C by si<br>Gage Factor (G):<br>ial Gage Factors                                        | ):0.1795 (<br>A:<br>Thermal<br>etting P=0 and f<br>0.02603 (<br>: A:<br>Therma<br>etting P=0 and f | (kPa/ digit)<br>-7,113E-07<br>Factor (K):<br>R <sub>1</sub> = initial field<br>(psi/ digit)<br>-1.032E-07<br>I Factor (K):<br>R. = initial field                                | B:<br>0.1319 (kPa/ 4<br>zero reading into<br>B:<br>0.01913 (psi/ *) | Ra<br>-0.1694<br>°C)<br>o the polynom<br>-0.02456<br>C)                                                 | egression Zero:<br>C:                              | 9082                                            |
| (kPa) Linear<br>Polynomi<br>(psi) Linear (<br>Polynomi<br>Calcula  | r Gage Factor (G<br>ial Gage factors:<br>Calculate C by si<br>Gage Factor (G);<br>ial Gage Factors<br>Calculate C by si<br>ted Pressures: | ):0.1795                                                                                           | (kPa/ digit)<br>-7.113E-07<br>Factor (K):<br>R <sub>1</sub> = initial field<br>(psi/ digit)<br>-1.032E-07<br>Il Factor (K):<br>R <sub>1</sub> = initial field<br>Linear, P = Gi | B:                                                                  | Ro<br>-0.1694<br>-C)<br>o the polynom<br>-0.02456<br>C)<br>o the polynom                                | egression Zero:<br>C:                              | 9082                                            |
| (kPa) Linear<br>Polynomi<br>(psi) Linear (<br>Polynomi<br>Calcula) | r Gage Factor (G<br>ial Gage factors:<br>Calculate C by si<br>Gage Factor (G);<br>ial Gage Factors<br>Calculate C by si<br>ted Pressures: | ):A:<br>A:<br>Thermal<br>etting P=0 and f<br><br><br><br>Therma<br>etting P=0 and f                | (kPa/ digit)<br>-7,113E-07<br>Factor (K):<br>R <sub>1</sub> = initial field<br>(psi/ digit)<br>-1.032E-07<br>Il Factor (K):<br>R <sub>1</sub> = initial field<br>Linear, P = G( | B:                                                                  | Ro<br>-0.1694<br>'C)<br>o the polynom<br>-0.02456<br>C)<br>o the polynom<br>)-(\$_1 -\$_4) <sup>2</sup> | egression Zero:<br>C:                              | 9082                                            |

Figure 4 - A Typical Calibration Sheet

### 4.2 Temperature Correction

Careful selection of materials is made in constructing the vibrating wire piezometer to minimize thermal effects, however, most units still have a slight temperature coefficient. Consult the supplied calibration sheet to obtain the coefficient for a given piezometer.

Since piezometers are normally installed in a tranquil and constant temperature environment, corrections are not normally required. If however, that is not the case for a selected installation, corrections can be made using the internal thermistor (Figure 1-1) for temperature measurement. See Section 3.4 for instructions regarding obtaining the piezometer temperature.

Temperature correction equation is as follows;

Temperature Correction = (Current Temperature - Initial Temperature) × Thermal Factor

or PT = (T1-T0) x K

### Equation 4-3 Temperature Correction

The calculated correction would then be **added** to the Pressure calculated using Equation 4-2. If the engineering units were converted remember to apply the same conversion to the calculated temperature correction!

For example, assume the initial temperature was 22° C, the current temperature is  $15^{\circ}$  C, and the thermal coefficient is +0,1319 kPa per °C rise (Figure 2-1). The temperature correction is +0.1319(15-22) = -0.92 kPa.

### 4.3 Barometric Correction (required only on un-vented transducers)

Since the standard piezometer is hermetically sealed and un-vented, it responds to changes in atmospheric pressure. That being the case, corrections may be necessary, particularly for the sensitive, low pressure models. For example, a barometric pressure change from 29 to 31 inches of mercury would result in  $\approx$ 1 PSI of error (or  $\approx$ 2.3 feet if monitoring water level in a well!). Thus it is advisable to read and record the barometric pressure every time the piezometer is read. A separate pressure transducer (piezometer), kept out of the water, may be used for this purpose. Barometric correction equation is as follows;

### Barometric Correction = (Current Barometer - Initial Barometer) × Conversion Factor or

$$P_{B} = (S_{1}-S_{0}) \times F$$

### Equation 4-4 Barometric Correction

Since barometric pressure is usually recorded in inches of mercury a Conversion Factor is necessary to convert to PSI. The Conversion Factor for inches of mercury to PSI is .491. Table 4-1 lists other common Conversion Factors.

The calculated correction is usually **subtracted** from the Pressure calculated using Equation 4-2. If the engineering units were converted remember to apply the same conversion to the calculated barometric correction!

The user should be cautioned that this correction scheme assumes ideal conditions. In reality, conditions are not always ideal. For example, if the well is sealed, barometric effects at the piezometer level may be minimal or attenuated from the actual changes at the surface. Thus errors may result when applying a correction which is not required. We recommend, in these cases, to independently record barometric pressure changes and correlate these with observed pressure changes to arrive at a correction factor.

An alternative to making barometric correction is to use piezometers that are vented to the atmosphere as noted section 4.3.1. However, vented piezos only make sense if the piezo is in an open well or standpipe and the user is only interested in the water level. Otherwise, if the piezo is buried it is not certain that the full effect of the barometric change will be felt immediately at the piezo and is more likely to be attenuated and delayed, in which case a vented piezo would automatically apply a correction that is too large and too soon. Having an on-site barometric change and judge to what extent it may have affected the piezo reading.

Equation 4-5 describes the pressure calculation with temperature and barometric correction applied.

 $P_{corrected} = ((R_1 - R_0) \times G) + ((T_1 - T_0) \times K) - ((S_1 - S_0) \times F)$ 

### Equation 4-5 Corrected Pressure Calculation

### 4.3.1 Vented Piezometers

Vented piezometers are designed to eliminate barometric effects. The space inside the transducer is not hermetically sealed and evacuated (see Figure 1-1), but is connected via a tube (integral with the cable) to the atmosphere. A chamber containing desiccant capsules is attached to the end of the tube to prevent moisture from entered the transducer cavity. Vented piezometers require more maintenance then non-vented types, and there is always a danger that water can find its way into the inside of the transducer and ruin it.

As supplied, the outer end of the desiccant chamber is closed by means of a seal screw to keep the desiccant fresh during storage and transportation. THE SEAL SCREW **MUST BE REMOVED BEFORE THE PIEZOMETER IS PUT INTO SERVICE!** The desiccant capsules are blue when fresh, they will gradually turn pink as they absorb moisture. When they have turned light pink in color they should be replaced. Contact Geokon for replacement capsules.

#### 4.4 Environmental Factors

Since the purpose of the piezometer installation is to monitor site conditions, factors which may affect these conditions should always be observed and recorded. Seemingly minor effects may have a real influence on the behavior of the structure being monitored and may give an early indication of potential problems. Some of the factors include, but are not limited to; blasting, rainfall, tidal levels, excavation and fill levels and sequences, traffic, temperature and barometric changes (and other weather conditions), changes in personnel, nearby construction activities, seasonal changes, etc.

### 5. TROUBLESHOOTING

Maintenance and troubleshooting of vibrating wire piezometers is confined to periodic checks of cable connections and maintenance of terminals. The transducers themselves are sealed and not user serviceable. Following are typical problems and suggested remedial action.

### Piezometer fails to give a reading

- Check the resistance of the coils by connecting an ohmmeter across the gage terminals. Nominal resistance is 180Ω (±5%), plus cable resistance at approximately 16Ω per 1000' of 22 AWG wire. If the resistance is very high or infinite the cable is probably broken or cut. If the resistance is very low the gage conductors may be shorted. If a cut or a short is located in the cable, splice according to instructions in Section 2.8.
- 2. Check the readout with another gage.
- The Piezometer may have been over-ranged or shocked. Inspect the diaphragm and housing for damage. Contact the factory.

### Piezometer reading unstable

- Connect the shield drain wire to the readout using the green (GK-401) or the blue (GK-403) clip.
- Isolate the readout from the ground by placing it on a piece of wood or similar nonconductive material.
- Check for sources of nearby noise such as motors, generators, antennas or electrical cables. Move the piezometer cables if possible. Contact the factory for filtering and shielding equipment available.
- 4. The Piezometer may have been damaged by over-ranging or shock.
- The body of the Piezometer may be shorted to the shield. Check the resistance between the shield drain wire and the Piezometer housing.
- Thermistor resistance is too high
- Likely there is an open circuit. Check all connections, terminals and plugs. If a cut is located in the cable, splice according to instructions in Section 2.8.

### Thermistor resistance is too low

- Likely there is a short. Check all connections, terminals and plugs. If a short is located in the cable, splice according to instructions in Section 2.8.
- Water may have penetrated the interior of the piezometer. There is no remedial action.

# **APPENDIX A - SPECIFICATIONS**

| Model                        | 4500S                                                                                                           | 4500AL1                   | 4500AR                    | 4500B                     | 4500C                  | 4500DP                                                                                                      | 45802                     |
|------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------|---------------------------|------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------|
| Available<br>Ranges<br>(psi) | 0-50<br>0-100<br>0-150<br>0-250<br>0-500<br>0-750<br>0-1000<br>0-1500<br>0-3000<br>0-5000<br>0-10000<br>0-15000 | 0-10<br>0-25              |                           | 0-50<br>0-100<br>0-250    | 0-50<br>0-100<br>0-250 | 0-10<br>0-25<br>0-50<br>0-150<br>0-250<br>0-500<br>0-750<br>0-1000<br>0-1500<br>0-3000<br>0-5000<br>0-10000 | 0-1<br>0-5                |
| Resolution                   | 0.025% FS                                                                                                       | 0.025% FS                 | 0.025% FS                 | 0.025% FS                 | 0.05% FS               | 0.025% FS                                                                                                   | 0.01% FS                  |
| Linearity                    | < 0.5%<br>FS <sup>3</sup>                                                                                       | < 0.5%<br>FS <sup>3</sup> | < 0.5%<br>FS <sup>3</sup> | < 0.5%<br>FS <sup>3</sup> | < 0.5% FS <sup>3</sup> | < 0.5% FS <sup>3</sup>                                                                                      | < 0.5%<br>FS <sup>3</sup> |
| Accuracy                     | 0.1% FS4                                                                                                        | 0.1% FS4                  | 0.1% FS4                  | 0.1% FS4                  | 0.1% FS4               | 0.1% FS4                                                                                                    | 0.1% FS                   |
| Over-<br>Range               | 2 × FS                                                                                                          | 2 × FS                    | 2×FS                      | 2 × FS                    | 2 × FS                 | 2 × FS                                                                                                      | 2 × FS                    |
| Thermal<br>Coefficient       | <0.025%<br>FS/<br>°C                                                                                            | <0.05%<br>FS/<br>°C       | <0.05%<br>FS/<br>°C       | <0.025%<br>FS/<br>°C      | <0.05% FS/<br>°C       | <0.025% FS/<br>°C                                                                                           | <0.025%<br>FS/<br>°C      |
| Temperatur<br>e Range        | -20°C to<br>+80°C                                                                                               | -20°C to<br>+80°C         | -20°C to<br>+80°C         | -20°C to<br>+80°C         | -20°C to<br>+80°C      | -20°C to<br>+80°C                                                                                           | -20°C to<br>+80°C         |
| OD                           | .75"<br>19.05 mm                                                                                                | 1"<br>25.40 mm            | .75"<br>19.05 mm          | .687"<br>17.45 mm         | .437"<br>11.10 mm      | 1.3"<br>33.3mm                                                                                              | 1.5"<br>38.10 mm          |
| Length                       | 5.25"<br>133 mm                                                                                                 | 5.25"<br>133 mm           | 10"<br>254 mm             | 5.25"<br>133 mm           | 6.5"<br>165 mm         | 7.36"<br>187 mm                                                                                             | 6.5"<br>165 mm            |

Table A-1 Vibrating Wire Piezometer Specifications

Accuracy of Geokon test apparatus: 0.1%

Contact Geokon for specific application information.

Notes:

<sup>1</sup> Accuracy of test apparatus: 0.05%

- <sup>2</sup> Other ranges available upon request.
- 3 0.1% FS linearity available upon request.
- <sup>4</sup> Derived using 2<sup>nd</sup> order polynomial.

### APPENDIX B-STANDARD TEMPERATURE THERMISTOR TEMPERATURE DERIVATION

### Thermistor Type: YSI 44005, Dale #1C3001-B3, Alpha #13A3001-B3

### **Resistance to Temperature Equation B1:**

$$\Gamma = \frac{1}{A + B(LnR) + C(LnR)^3} - 273.2$$

Where; T = Temperature in °C.

 $\label{eq:LnR} \begin{array}{l} \text{LnR} = \text{Natural Log of Thermistor Resistance} \\ \text{A} = 1.4051 \times 10^{-3} \text{ (coefficients calculated over the } -50 \text{ to } +150^{\circ} \text{ C. span)} \\ \text{B} = 2.369 \times 10^{-4} \\ \text{C} = 1.019 \times 10^{-7} \end{array}$ 

| Ohms       | Temp | Ohms   | Temp | Ohms  | Temp | Ohms  | Temp   | Ohms  | Temp |
|------------|------|--------|------|-------|------|-------|--------|-------|------|
| 201.1K     | -50  | 16.60K | -10  | 2417  | +30  | 525.4 | +70    | 153.2 | +110 |
| 187.3K     | -49  | 15.72K | -9   | 2317  | 31   | 507.8 | 71     | 149.0 | 111  |
| 174.5K     | -48  | 14.90K | -8   | 2221  | 32   | 490.9 | 72     | 1450  | 112  |
| 162.7K     | -47  | 14.12K | -7   | 2130  | 33   | 474.7 | 73     | 141.1 | 113  |
| 151.7K     | -46  | 13.39K | -6   | 2042  | 34   | 459.0 | 74     | 137.2 | 114  |
| 141.6K     | -45  | 12.70K | -5   | 1959  | 35   | 444.0 | 75     | 133.6 | 115  |
| 132.2K     | -44  | 12.05K | -4   | 1880  | 36   | 429.5 | 76     | 130.0 | 116  |
| 123.5K     | -43  | 11.44K | -3   | 1805  | 37   | 415.6 | 77     | 126.5 | 117  |
| 115.4K     | -42  | 10.86K | -2   | 1733  | 38   | 402.2 | 78     | 123.2 | 118  |
| 107.9K     | -41  | 10.31K | -1   | 1664  | 39   | 389.3 | 79     | 119.9 | 119  |
| 101.0K     | -40  | 9796   | 0    | 1598  | 40   | 376.9 | 80     | 116.8 | 120  |
| 94.48K     | -39  | 9310   | +1   | 1535  | 41   | 364.9 | 81     | 113.8 | 121  |
| 88.46K     | -38  | 8851   | 2    | 1475  | 42   | 353.4 | 82     | 110.8 | 122  |
| 82.87K     | -37  | 8417   | 3    | 1418  | 43   | 342.2 | 83     | 107.9 | 123  |
| 77.66K     | -36  | 8006   | 4    | 1363  | 44   | 331.5 | 84     | 105.2 | 124  |
| 72.81K     | -35  | 7618   | 5    | 1310  | 45   | 321.2 | 85     | 102.5 | 125  |
| 68.30K     | -34  | 7252   | 6    | 1260  | 46   | 311.3 | 86     | 99.9  | 126  |
| 64.09K     | -33  | 6905   | 7    | 1212  | 47   | 301.7 | 87     | 97.3  | 127  |
| 60.17K     | -32  | 6576   | 8    | 1167  | 48   | 292.4 | 88     | 94.9  | 128  |
| 56.51K     | -31  | 6265   | 9    | 1123  | 49   | 283.5 | 89     | 92.5  | 129  |
| 53.10K     | -30  | 5971   | 10   | 1081  | 50   | 274.9 | 90     | 90.2  | 130  |
| 49.91K     | -29  | 5692   | 11   | 1040  | 51   | 266.6 | 91     | 87.9  | 131  |
| 46.94K     | -28  | 5427   | 12   | 1002  | 52   | 258.6 | 92     | 85.7  | 132  |
| 44.16K     | -27  | 5177   | 13   | 965.0 | 53   | 250.9 | 93     | 83.6  | 133  |
| 41.56K     | -26  | 4939   | 14   | 929.6 | 54   | 243.4 | 94     | 81.6  | 134  |
| 39.13K     | -25  | 4714   | 15   | 895.8 | 55   | 236.2 | 95     | 79.6  | 135  |
| 36.86K     | -24  | 4500   | 16   | 863.3 | 56   | 229.3 | 96     | 77.6  | 136  |
| 34.73K     | -23  | 4297   | 17   | 832.2 | 57   | 222.6 | 97     | 75.8  | 137  |
| 32.74K     | -22  | 4105   | 18   | 802.3 | 58   | 216.1 | 98     | 73.9  | 138  |
| 30.87K     | -21  | 3922   | 19   | 773.7 | 59   | 209.8 | 99     | 72.2  | 139  |
| 29.13K     | -20  | 3748   | 20   | 746.3 | 60   | 203.8 | 100    | 70.4  | 140  |
| 27.49K     | -19  | 3583   | 21   | 719.9 | 61   | 197.9 | 101    | 68.8  | 141  |
| 25.95K     | -18  | 3426   | 22   | 694.7 | 62   | 192.2 | 102    | 67.1  | 142  |
| 24.51K     | -17  | 3277   | 23   | 670.4 | 63   | 186.8 | 103    | 65.5  | 143  |
| 23.16K     | -16  | 3135   | 24   | 647.1 | 64   | 181.5 | 104    | 64.0  | 144  |
| 21.89K     | -15  | 3000   | 25   | 624.7 | 65   | 176.4 | 105    | 62.5  | 145  |
| 20.70K     | -14  | 2872   | 26   | 603.3 | 66   | 171.4 | 106    | 61.1  | 146  |
| 19.58K     | -13  | 2750   | 27   | 582.6 | 67   | 166.7 | 107    | 59.6  | 147  |
| 18.52K     | -12  | 2633   | 28   | 562.8 | 68   | 162.0 | 108    | 58.3  | 148  |
| 17.53K     | -11  | 2523   | 29   | 543,7 | 69   | 157.6 | 109    | 56.8  | 149  |
| - 122 2 12 |      |        | - TF | Seria |      |       | 12.7.7 | 55.6  | 150  |

# Table B-1 STANDARD TEMPERATURE Thermistor Resistance versus Temperature

### APPENDIX C - HIGH TEMPERATURE THERMISTOR TEMPERATURE DERIVATION Thermistor Type: Thermometrics BR55KA822J

**Basic Equation, C1** 

1  $A + B(LnR) + C(LnR)^3 - 273.2$ T = -

Where: T = Temperature in °C.

LnR = Natural Log of Thermistor Resistance

 $A = 1.02569 \times 10^{-3}$  $B = 2.478265 \times 10^{-4}$ 

 $C = 1.289498 \times 10^{-7}$ 

Note: Coefficients calculated over -30° to +260° C. span.

| Temp | R<br>(ohms) | LnR    | LnR <sup>3</sup> | Calculated<br>Temp | Diff  | FS Error | Temp | R<br>(ohms) | LnR   | LnR <sup>3</sup> | Calculated<br>Temp | Diff  | FS Error |
|------|-------------|--------|------------------|--------------------|-------|----------|------|-------------|-------|------------------|--------------------|-------|----------|
| -30  | 113898      | 11.643 | 1578.342         | -30.17             | 0.17  | 0.06     | 120  | 407.62      | 6.010 | 217.118          | 120.00             | 0.00  | 0.00     |
| -25  | 86182       | 11.364 | 1467.637         | -25.14             | 0.14  | 0.05     | 125  | 360.8       | 5.888 | 204 162          | 125.00             | 0.00  | 0.00     |
| -20  | 65805       | 11,094 | 1365.581         | -20.12             | 0.12  | 0.04     | 130  | 320,21      | 5,769 | 191,998          | 130,00             | 0.00  | 0.00     |
| -15  | 50684.2     | 10,833 | 1271,425         | -15.10             | 0.10  | 0.03     | 135  | 284.95      | 5.652 | 180.584          | 135.00             | 0.00  | 0.00     |
| -10  | 39360       | 10.581 | 1184,457         | -10.08             | 0.08  | 0.03     | 140  | 254.2       | 5.538 | 169.859          | 140.01             | -0.01 | 0.00     |
| -5   | 30807.4     | 10,336 | 1104.068         | -5.07              | 0.07  | 0.02     | 145  | 227.3       | 5.426 | 159.773          | 145.02             | -0.02 | -0.01    |
| 0    | 24288.4     | 10,098 | 1029,614         | -0.05              | 0.05  | 0.02     | 150  | 203.77      | 5.317 | 150.314          | 150.03             | -0.03 | -0.01    |
| 5    | 19294.6     | 9.868  | 960.798          | 4.96               | 0.04  | 0.01     | 155  | 183.11      | 5.210 | 141.428          | 155,04             | -0.04 | -0.01    |
| 10   | 15424.2     | 9.644  | 896.871          | 9.98               | 0.02  | 0.01     | 160  | 164.9       | 5.105 | 133.068          | 160,06             | -0.06 | -0.02    |
| 15   | 12423       | 9.427  | 837.843          | 14.98              | 0.02  | 0.01     | 165  | 148.83      | 5.003 | 125,210          | 165,08             | -0.08 | -0.03    |
| 20   | 10061.4     | 9.216  | 782,875          | 19.99              | 0.01  | 0.00     | 170  | 134,64      | 4.903 | 117,837          | 170,09             | -0.09 | -0.03    |
| 25   | 8200        | 9.012  | 731,893          | 25.00              | 0.00  | 0.00     | 175  | 122.1       | 4.805 | 110,927          | 175.08             | -0.08 | -0.03    |
| 30   | 6721.54     | 8.813  | 684.514          | 30.01              | -0.01 | 0.00     | 180  | 110.95      | 4.709 | 104.426          | 180.07             | -0.07 | -0.02    |
| 35   | 5540.74     | 8,620  | 640,478          | 35.01              | -0.01 | 0.00     | 185  | 100.94      | 4.615 | 98,261           | 185.10             | -0.10 | -0.04    |
| 40   | 4592        | 8.432  | 599,519          | 40.02              | -0.02 | -0.01    | 190  | 92.086      | 4.523 | 92.512           | 190.09             | -0.09 | -0.03    |
| 45   | 3825.3      | 8.249  | 561.392          | 45.02              | -0.02 | -0.01    | 195  | 84.214      | 4.433 | 87.136           | 195.05             | -0.05 | -0.02    |
| 50   | 3202.92     | 8.072  | 525.913          | 50.01              | -0.01 | -0.01    | 200  | 77.088      | 4.345 | 82.026           | 200,05             | -0.05 | -0.02    |
| 55   | 2693.7      | 7.899  | 492,790          | 55.02              | -0.02 | -0.01    | 205  | 70,717      | 4.259 | 77.237           | 205.02             | -0.02 | -0.01    |
| 60   | 2276.32     | 7.730  | 461,946          | 60,02              | -0.02 | -0.01    | 210  | 64.985      | 4.174 | 72.729           | 210.00             | 0.00  | 0.00     |
| 65   | 1931.92     | 7.566  | 433,157          | 65.02              | -0.02 | -0.01    | 215  | 59,819      | 4.091 | 68,484           | 214,97             | 0.03  | 0.01     |
| 70   | 1646.56     | 7.406  | 406,283          | 70.02              | -0.02 | -0.01    | 220  | 55.161      | 4.010 | 64.494           | 219,93             | 0.07  | 0.02     |
| 75   | 1409.58     | 7.251  | 381.243          | 75.01              | -0.01 | 0.00     | 225  | 50.955      | 3 931 | 60.742           | 224.88             | 0.12  | 0.04     |
| 80   | 1211.14     | 7.099  | 357.808          | 80.00              | 0.00  | 0.00     | 230  | 47.142      | 3.853 | 57.207           | 229.82             | 0,18  | 0.06     |
| 85   | 1044.68     | 6.951  | 335,915          | 85.00              | 0.00  | 0.00     | 235  | 43.673      | 3.777 | 53,870           | 234.77             | 0.23  | 0.08     |
| 90   | 903.64      | 6.806  | 315,325          | 90.02              | -0.02 | -0.01    | 240  | 40,533      | 3 702 | 50,740           | 239.69             | 0.31  | 0,11     |
| 95   | 785.15      | 6.666  | 296,191          | 95,01              | -0.01 | 0.00     | 245  | 37.671      | 3.629 | 47,788           | 244.62             | 0.38  | 0.13     |
| 100  | 684.37      | 6.528  | 278,253          | 100.00             | 0.00  | 0.00     | 250  | 35.055      | 3.557 | 45.001           | 249.54             | 0.46  | 0.16     |
| 105  | 598,44      | 6,394  | 261,447          | 105.00             | 0.00  | 0.00     | 255  | 32,677      | 3.487 | 42.387           | 254.44             | 0.56  | 0.19     |
| 110  | 524.96      | 6.263  | 245.705          | 110.00             | 0.00  | 0.00     | 260  | 30,496      | 3.418 | 39.917           | 259.34             | 0.66  | 0.23     |
| 115  | 461.91      | 6.135  | 230.952          | 115.00             | 0.00  | 0.00     | 1    | _           |       |                  |                    |       |          |

Table C-1 High Temperature. Temperature v Thermistor Resistance

Table B2

### APPENDIX D - NOTES REGARDING THE MODEL 4500C

### Installation

The construction of this very slender vibrating wire transducer, requires a miniaturization of the internal parts and consequently they are somewhat delicate. Despite every precaution it is possible for the zero to shift during shipment due to rough handling. However, tests have shown that the zero may shift but the calibration factors do not change. Therefore it is doubly important that the initial no load zero reading be taken prior to installation. And it is also important to handle the transducer gently during the installation procedure.

If the pressures to be measured are less than 5 psi the filter stone in the filter housing must be saturated. However, the filter stone and housing are not removable in the 4500C. Any attempt to remove the filter stone or the housing will destroy the transducer!

To saturate the filter a hand pump and short length of tubing surgical tubing) is required. Attach to the transducer as shown in the Fill the tubing with approximately 2" of water. Hold the transducer so water rests on the filter. Attach the end of the tube to the hand vacuum While holding the transducer so water rests on the filter (and enter the pump!), squeeze the pump to initiate vacuum in the This will draw the air out of the filter space behind it. The water will it. A vacuum of 20-25" Hg. (50-65 is sufficient for proper evacuation.

A hand pump that has been used successfully is the mityvacll<sup>®</sup> by Enterprises, Inc. of Cucamonga, USA. Hand pumps and tubing are available from the factory.

### vacuum To Pump (1/2" the tube Tubing figure. (5 cm) that the Water other pump. Filter Housing that the doesn't hand tubing. Transducer and the replace cm Hg.) Transducer Cable Neward CA,

#### Data Reduction

Data reduction follows the same

procedures as outlined in Section 4 of this manual. Use Table 4-1 to convert psi to other engineering units.

### APPENDIX E - NON LINEARITY AND THE USE OF A SECOND ORDER POLYNOMIAL TO IMPROVE THE ACCURACY OF THE CALCULATED PRESSURE

Most vibrating wire pressure transducers are sufficiently linear ( $\pm$  0.2 % FS) that use of the linear calibration factor satisfies normal requirements. However, it should be noted that the accuracy of the calibration data, which is dictated by the accuracy of the calibration apparatus, is always  $\pm$  0.1 % FS.

This level of accuracy can be recaptured, even where the transducer is non-linear, by the use of a second order polynomial expression which gives a better fit to the data then does a straight line. The polynomial expression has the form:

pressure =  $AR^2 + BR + C$ 

where R is the reading (digits channel B) and A,B,C, are coefficients. The figure 4 on page 16 shows a typical calibration sheet of a transducer which has a fairly normal nonlinearity. The figure under the "Linearity (%FS)" column is

 $\frac{\text{Calculated pressure-True pressure}_{\times 100\%} = \frac{G(R_1 - R_0) - P}{F.S} \times 100\%$ Full-scale Pressure F.S

Note The linearity is calculated using the regression zero for R<sub>0</sub> shown on the sheet.

For example when P= 420 kPa, G ( $R_1 - R_0$ ) = - 0.1795( 6749-9082), gives a calculated pressure of 418.8 kPa. The error is 1.2 kPa equal to 122mm of water.

Whereas the polynomial expression gives a calculated pressure of A (6749)  $^2$  + B (6749) + 1595,7 = 420.02 kPa and the actual error is only 0.02 kPa or 2mm of water.

Note. If the polynomial equation is used it is important that the value of C, in the polynomial equation, be taken in the field, following the procedures described in section 2.1.1. The field value of C is calculated by inserting the initial field zero reading into the polynomial equation with the pressure, P, set to zero.

If the field zero reading is not available calculate C using the zero pressure reading on the calibration sheet. (not the regression zero) In the above example the value of C would be derived from the equation  $0 = A(9074)^2 + B(9074)$  from which C = 1595.7

It should be noted that where <u>changes</u> of water levels are being monitored it makes little difference whether the linear coefficient or the polynomial expression is used.

### APPENDIX F - QUICK INSTRUCTIONS FOR INSTALLING A VIBRATING WIRE PIEZOMETER.

- Take a zero reading at zero, (atmospheric), pressure. Make sure that the temperature has not changed for 15 minutes previously. (Or until the piezo reading has stabilized). Check that this zero reading is compatible with the zero on the calibration sheet
- Record the barometric pressure and the temperature at the time the zero reading is taken.
- Carefully measure the length of the cable and make a mark on the cable which will lie opposite the top of the borehole, well, or standpipe when the piezometer has reached the desired depth. (The piezo diaphragm lies <sup>3</sup>/<sub>4</sub> inch above the tip of the piezo).
- Saturate the piezometer filter. (Section 2.6)
- Follow the instruction of Section 2.2 for installation in standpipes or wells or Section 2.3 for boreholes.

### APPENDIX G - Model 4500AR piezometer



The Model 4500 AR piezometer is designed to be used with readouts systems that can read frequency but do not have the capability to "pluck' the VW gage. This sensor has built-in electronics that cause the gage wire to vibrate in a continuous mode at its resonant frequency. The output from the sensor is a 5 volt DC square wave at this frequency.

A DC input voltage in the range of 6- 24 volts is required to operate the gage. The current consumption is approximately 21 mA at 12VDC. The gage output is independent of the input voltage. Multiple sensors powered simultaneously can be read at quite fast rates, up to 5 sensors per second and dynamic measurements on a single sensor can be made up to about 20Hz.

The gage is installed in the field in the same way that the Model 4500 standard piezometer is installed. (See Section 2)

Piezometer Wiring: The 3-pair cable is wired in pairs with each pair comprising one colored and one black lead.

| Red           | +6-24 VDC Power      |
|---------------|----------------------|
| Red's black   | Ground               |
| White         | Output               |
| White's black | <b>Output Ground</b> |
| Green         | Thermistor +         |
| Green's black | Thermistor -         |
| Bare          | Shield               |
|               |                      |

Upon power up the gage will immediately start to "ring" at the resonant frequency and will continue to do so until the power is removed. Continuous operation will have no effect on the gage life.

Note

The sensor comprises two transducers, the VW pressure sensor and a thermistor for measuring temperature. The signals from the VW transducer are high level frequency and will interfere with the thermistor output if left powered during the period that the thermistor is being read. If the temperature reading is important the power to the pressure sensor should be switched off while the reading is taken.

# Appendix C

LogView User's Guide



The World Leader in Vibrating Wire Technology

48 Spencer Street Lebanon, NH 03766, USA Tel: 603•448•1562 Fax: 603•448•3216 E-mail: geokon@geokon.com http://www.geokon.com



No part of this instruction manual may be reproduced, by any means, without the written consent of Geokon, Inc.

The information contained herein is believed to be accurate and reliable. However, Geokon, Inc. assumes no responsibility for errors, omissions or misinterpretation. The information herein is subject to change without notification.

Copyright © 2010 - 2015 by Geokon, Inc. (Rev E, 12/15)

### Warranty Statement

Geokon, Inc. warrants its products to be free of defects in materials and workmanship, under normal use and service for a period of 13 months from date of purchase. If the unit should malfunction, it must be returned to the factory for evaluation, freight prepaid. Upon examination by Geokon, if the unit is found to be defective, it will be repaired or replaced at no charge. However, the WARRANTY is VOID if the unit shows evidence of having been tampered with or shows evidence of being damaged as a result of excessive corrosion or current, heat, moisture or vibration, improper specification, misapplication, misuse or other operating conditions outside of Geokon's control. Components which wear or which are damaged by misuse are not warranted. This includes fuses and batteries.

Geokon manufactures scientific instruments whose misuse is potentially dangerous. The instruments are intended to be installed and used only by qualified personnel. There are no warranties except as stated herein. There are no other warranties, expressed or implied, including but not limited to the implied warranties of merchantability and of fitness for a particular purpose. Geokon, Inc. is not responsible for any damages or losses caused to other equipment, whether direct, indirect, incidental, special or consequential which the purchaser may experience as a result of the installation or use of the product. The buyer's sole remedy for any breach of this agreement by Geokon, Inc. or any breach of any warranty by Geokon, Inc. shall not exceed the purchase price paid by the purchaser to Geokon, Inc. for the unit or units, or equipment directly affected by such breach. Under no circumstances will Geokon reimburse the claimant for loss incurred in removing and/or reinstalling equipment.

Every precaution for accuracy has been taken in the preparation of manuals and/or software, however, Geokon, Inc. neither assumes responsibility for any omissions or errors that may appear nor assumes liability for any damages or losses that result from the use of the products in accordance with the information contained in the manual or software.

# Table of Contents:

1

d

J

| 1. Installing LogView1                                                    |
|---------------------------------------------------------------------------|
| 1.1 Installing LogView1                                                   |
| 2. Starting LogView for the first time                                    |
| 2.1 Adding Sensor(s) to a Datalogger9                                     |
| 3. Connecting to a Datalogger                                             |
| 3.1 LC-2 RS-232 Connection (8002-1-1, 8002-1A-1, 8002-4-1, 8002-16-1): 13 |
| 3.2 LC-2 USB Connection (8002-1-2, 8002-1A-2, 8002-4-2, 8002-16-2):13     |
| 3.3 Determining COM Port Numbers:                                         |
| 3.4 Establishing a Connection:                                            |
| 4. Collecting and viewing data                                            |
| 5. Creating a Datalogger Network (RS-485)                                 |
| 6. Connecting to Networked Dataloggers                                    |

# Table of Figures:

1

-

| Figure 1 - Extract File Dialog                        | 1  |
|-------------------------------------------------------|----|
| Figure 2- LogView Already Installed Warning           | 2  |
| Figure 3 - Workspace Name                             |    |
| Figure 4 - Workspace Folder                           | 4  |
| Figure 5 - Main Window                                | 5  |
| Figure 6 - Context Menu                               |    |
| Figure 7 - Project Settings                           |    |
| Figure 8 - Project Explorer with Project Added        | 6  |
| Figure 9 - Datalogger Settings                        |    |
| Figure 10 - Workspace, Project and Datalogger         | 8  |
| Figure 11 - Adding a Sensor                           | 9  |
| Figure 12 - Sensor Settings                           | 10 |
| Figure 13 - Output Calculation Method Help Dialog     | 10 |
| Figure 14 - Thermal Factor Help Dialog                | 11 |
| Figure 15 - Units Conversion Application Warning      | 11 |
| Figure 16 - Workspace, Project, Datalogger and Sensor | 12 |
| Figure 17 - RS-232 Serial COM Ports                   | 14 |
| Figure 18 - USB COM Ports                             | 14 |
| Figure 19 - Datalogger Settings                       | 15 |
| Figure 20 - Connection Options                        | 16 |
| Figure 21 - Connection Warning Message                | 16 |
| Figure 22 - Data Collection Options                   | 18 |
| Figure 23 - Collect Data Button Enabled               | 19 |
| Figure 24 - New Data Downloading                      | 19 |
| Figure 25 - Data Collection Complete Message          | 19 |
| Figure 26 - Viewing Data Inside of LogView            | 20 |
| Figure 27 - Export Data Files Menu                    | 20 |
| Figure 28 - Data Export Settings                      | 21 |
| Figure 29 - Network Group                             | 22 |
| Figure 30 - Networked Datalogger Settings             | 23 |
| Figure 31 - Network Connection Options                | 24 |
| Figure 32 - Network Group Component Connections       | 25 |
|                                                       |    |

# 1. Installing LogView

This manual is intended to facilitate the installation, launching and configuration of LogView. It is not intended to be a substitute for the on-line manual or for the datalogger user's manuals.

Please consult the LogView Online Help and the individual datalogger's manuals for more detailed information regarding the operation of LogView and the LC-n series dataloggers.

### 1.1 Installing LogView

The LogView installer is only available as a .zip file which can be downloaded from our website. The latest version will be available there, as well as a "New Features and Fixes" page where you can view its development.

Please visit the following webpage to download it: http://www.geokon.com/software.

When prompted, choose to "Save file." When download is complete, right click on your new "LogViewSetup.zip" file and select "Extract all." This will display a message asking you to "Select a Destination and Extract Files" (Figure 1.) By default, it will create a new folder in the same location you saved it to. After choosing the destination folder, click the "Extract" button at the bottom of the window.

**TIP**: Make sure the box to "Show extracted files when complete," is checked. This opens the folder right up so you do not have to look for it.

| Extract Compressed (Zipped) Folders     | X       |
|-----------------------------------------|---------|
| Select a Destination and Extract Files  |         |
| Files will be extracted to this folder: | Browse  |
| Show extracted files when complete      | Drowsen |

### Figure 1 - Extract File Dialog

If you are installing LogView for the first time, you will need the USB drivers used to communicate with the 8003-2-2. By double clicking on the "start.bat" file, both the drivers and LogView will be installed. Follow the prompts for each installer.

To install the latest version of LogView only, double click on the file "setupLV\_3\_0\_0\_0000.exe" and follow the prompts, (the numbers may be different depending on the version number.)

**NOTE:** The LogView Installer checks to see if there is any other version installed and, if so, the following dialog box is displayed:

| ogViev | v Setup                                                                                                          |
|--------|------------------------------------------------------------------------------------------------------------------|
| 1      | LogView is already installed.<br>Click `OK` to remove the version 2.0.0.0056 or `Cancel` to cancel this upgrade. |
|        | OK Cancel                                                                                                        |

Figure 2- LogView Already Installed Warning

To install the drivers only, double click on the "CDMv2\_12\_00\_WHQLCertified.exe" and follow the prompts, (the numbers may be different depending on the version number.)

**NOTE:** The USB drivers are only required for LC-2xN models 8002-N-2, 8002-5 (RS-485 interface) and LC-3x2 model 8003-2-2. Communication with an 8002-N-1 and 8003-2-1 requires either an internal COM port or a USB-to-Serial converter (which may require its own drivers). A PC re-boot may be required before the new drivers will take effect.

# 2. Starting LogView for the first time

Launching LogView is easy and can be accomplished two different ways. Double clicking on the desktop icon:



Or via the Start button:

Programs -> Geokon -> LogView

When you open LogView for the first time, you will be prompted to create a workspace. A workspace is a place where all other LogView resources are stored and contains one or more projects along with dataloggers, sensors and data files. LogView allows multiple workspaces to be defined so that projects may be logically grouped together, i.e., a company may have multiple work-sites and for each work-site there may be multiple projects under way.

Workspaces can also be used to allow different users to keep their projects and data separate from others when sharing a PC.

The first dialog prompt is for the workspace name. The name can be any combination of letters and numbers and, ideally, will be descriptive in nature (see Figure 3).

| Geokon Explorer - Wo                              | rkspace Launcher                            |                        |
|---------------------------------------------------|---------------------------------------------|------------------------|
| Select Workspace N<br>Select the workspace to swi | lame<br>tch to from the list of names below | (or enter a new name): |
| Workspace names:                                  | PRODUCTION                                  | .8)                    |
|                                                   | Ok Cancel                                   |                        |

Figure 3 - Workspace Name

Once the workspace name has been selected, the next prompt will be to choose or create a folder where all the workspace elements will be stored. As can be seen in Figure 4 below, the default workspace location is in a folder name the same as the workspace name under a special shared folder reserved for workspaces. In Windows XP this folder is located at: C:\Documents and Settings\All Users\Shared Documents\Geokon\LogView\Workspaces

For Vista and Windows 7 the default folder is located at:

C:\Users\Public\Public Documents\Geokon\LogView\Workspaces

LogView appends the name of the new workspace to this shared folder and uses it as the default location for the new workspace. The user is free to select a different location, either by entering it directly, or the Browse button may be used to navigate to a different folder location or to create a new folder. This workspace location will be stored in the LogView configuration file for subsequent application access. After workspaces are created, all future user access to a workspace is always by name.

| Geokon Explorer - V                              | Vorkspace Launcher                                                    |             |
|--------------------------------------------------|-----------------------------------------------------------------------|-------------|
| Select Workspace  <br>Enter a workspace folder o | F <b>older</b><br>In use the Browse button to navigate to or create a | new folder, |
| New workspace folder:                            | ts\Geokon\LogView\Workspaces\PRODUCTION                               | Browse      |
|                                                  | Ok Cancel                                                             |             |

Figure 4 - Workspace Folder

That's all that is required to create an initial workspace. Figure 5 below illustrates LogView's main window and shows the new workspace, PRODUCTION, in the Project Explorer:

| 🐮 Gerikon ( | og Viraw          |           | -       |                  |           | -               |                                               |                                                         |               |                    | 11                    |             |
|-------------|-------------------|-----------|---------|------------------|-----------|-----------------|-----------------------------------------------|---------------------------------------------------------|---------------|--------------------|-----------------------|-------------|
| File Logger | Window Help       | Read      | Collect | Start<br>Logging | View      | View<br>Details | View                                          | C1><br>View<br>Terminal                                 | 5<br>Settings | Upload<br>Settings | Qu<br>Zero<br>Reading | Set<br>Time |
| S           | election path; Pi | RODUCTION |         |                  |           |                 |                                               |                                                         |               |                    |                       |             |
| F           | roject explorer   |           | 5       |                  |           |                 |                                               |                                                         |               |                    |                       |             |
|             |                   |           |         |                  | , Workspa | ce informati    | ion -                                         |                                                         |               |                    |                       |             |
|             |                   |           |         |                  |           | Desc<br>Date ci | ID: W<br>Name: Pi<br>ription: N<br>reated: Ja | kspc_2011011<br>RODUCTION<br>ew workspace<br>an 14 2011 | 4_151635      |                    |                       |             |

Figure 5 - Main Window

LogView "Project" objects can be added to a workspace by right-clicking on the workspace and using the menu tools (see Figure 6).

| 📽 Geoko       | n LogView                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.               |                 |                  |                |                 |           |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------|------------------|----------------|-----------------|-----------|
| File Logge    | er Window Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |                 |                  |                |                 |           |
| T             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | 53              | 9                |                | 10              | 1         |
| Open<br>Conne | Start<br>ct Monitoring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Read<br>Now      | Collect<br>Data | Start<br>Logging | View<br>Arrays | View<br>Details | Vi<br>Gra |
|               | Selection path: PRC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DUCTION          |                 |                  |                |                 |           |
|               | Project explorer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                |                 |                  |                |                 |           |
|               | The Disconnect<br>The View data file<br>Control of the Disconnect<br>Control of th | 54 C             |                 |                  |                |                 |           |
|               | New                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Frujeci<br>Logos |                 |                  |                |                 |           |
|               | 🔀 Remove                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SETSO            |                 |                  |                |                 |           |
|               | Settings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Netvao           | ric             |                  |                | ce informati    | on        |
|               | B Mave up<br>B Move down                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                 |                  |                |                 | We        |

Figure 6 - Context Menu

5

When adding new projects, a dialog box is displayed, giving the user an opportunity to name and add a description for the new project (see Figure 7):

| General project men | noton                                          |
|---------------------|------------------------------------------------|
| Project ID:         | proj_20110217_141617                           |
| Project name:       | PlainOleLoggers                                |
| Description:        | A project containing serial and USB<br>loggers |
| Date created:       | Sep 14 2011                                    |

Figure 7 - Project Settings

Figure 8 below shows an example of the Project Explorer after a project has been added:

| Open<br>Connect | Start<br>Monitoring | Read<br>Now | Collect<br>Data | Start<br>Logging | View<br>Arrays | View<br>Details | View<br>Graphs | C:><br>View<br>Terminal | 53<br>Settings | Upload<br>Settings | Reading | Set<br>Time |
|-----------------|---------------------|-------------|-----------------|------------------|----------------|-----------------|----------------|-------------------------|----------------|--------------------|---------|-------------|
|                 | Selection path: V   | Vorkspace   |                 |                  | _              | _               |                |                         |                |                    |         |             |
|                 | Project explorer    |             |                 |                  |                |                 |                |                         |                |                    |         |             |
|                 |                     |             |                 |                  |                |                 |                |                         |                |                    |         |             |
|                 |                     |             |                 |                  |                |                 |                |                         |                |                    |         |             |
|                 |                     |             |                 |                  | r Workspa      | e informatio    | m              |                         |                |                    |         |             |

Figure 8 - Project Explorer with Project Added

In a similar fashion to adding Projects to Workspaces, Dataloggers can be added to Projects by right-clicking on the Project icon in the Project Explorer and clicking on "New", then "Logger" from the resulting context menu. This causes the Datalogger Settings window to be displayed (see figure 9). See section 2.3.5 (8002-4-3 and 8002-16-3) or 3.3.5 (8002-1-3) in the Geokon Datalogger Instruction Manual as well as the on-line help topic "Working with Dataloggers" for more details on adding dataloggers to projects.

| Datalogger ID;   | LC0914111948 |
|------------------|--------------|
| Datalogger name: | Log1         |
| Model:           | LC-2         |
| Description:     |              |
| Date created:    |              |
|                  |              |
|                  |              |
|                  |              |
|                  |              |
|                  |              |

Figure 9 - Datalogger Settings

Figure 9 illustrates the General Setting tab and allows entry of various settings such as, name, model and description. All of the settings for a datalogger are broken up into sections accessed by clicking on the appropriate tab. See the on-line help topic "Configuration, Datalogger Settings" for more details on configuring a new datalogger. After the settings from all the tabs have been entered, click on "Save" to create the new logger.

As of LogView version 3.0.1.X, when the settings are saved for a **new** datalogger, the Sensor Setting dialog is automatically displayed allowing the settings for the available sensors to be configured. If your LogView version is greater than or equal to V3.0.1.X then you may skip the following paragraphs and proceed directly to Section 2.1 of this manual. If the Sensor Settings dialog is cancelled before saving, the following paragraphs pertain (See Figure 10).



Figure 10 - Workspace, Project and Datalogger

A Sensor is the final element that needs to be added to define the complete configuration of a data logging system. Just as Dataloggers were added to Projects, Sensors can be added to Dataloggers by right-clicking on the Datalogger icon in the Project Explorer and clicking on "New", then "Sensor" from the resulting context menu (see Figure 11). This causes the Sensor Settings window to be displayed (see Figure 12).

| File | Logger          | Window       | Help                       |                                                                                                                 |                           | _              |
|------|-----------------|--------------|----------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------|----------------|
|      | Open<br>Connect | Sta<br>Monit | art Read<br>oring Now      | Collect<br>Data                                                                                                 | Start<br>Logging          | View<br>Arrays |
| _    | Se              | election pal | h: PRODUCTION              | PlainOle                                                                                                        | Loggers LC-               | 2: Log1        |
|      | P               | roject expl  | lorer                      | 1                                                                                                               |                           |                |
|      |                 |              | View data                  | file<br>ral Dat                                                                                                 | alogger informatio        | on-<br>458     |
|      |                 |              | Remove                     | Log<br>Sen                                                                                                      | igai 22<br>isor 3p 14 201 | 1              |
|      |                 |              |                            | the second se |                           |                |
|      |                 |              | Settings<br>ایس Zero readi | ng                                                                                                              | WORK                      |                |

Figure 11 - Adding a Sensor

### 2.1 Adding Sensor(s) to a Datalogger

The Sensor Settings window (see Figure 12) allows one or multiple sensor's parameters to be modified. The number of channel selection "buttons" on the left hand side of the window depends on the type of datalogger that the sensor(s) are being added to. See section 3.8 (8002-4-X and 8002-16-X) or 4.6 (8002-1-X) in the Geokon Datalogger Instruction Manual as well as the on-line help topic "Working with Sensors" for more details on adding sensors to dataloggers.

Sensor Settings X Channel: 1 Channel enabled General sensor information Conversion method 1 Sensor ID: 00801171540 Channel1 Sensor name: Linear Coefficients -\* Description: (2) Sensor output calculation: G(R1 - R0) v Zero reading: 0.0 Type: Vibrating wire ¥ Gage factor: 1.0 Model: 453.5 v Offset: 0.0 Date created: Aug 1 2012 Polynomial Coefficients Coefficient A: Temperature corrections Coefficient B: 10.0 Coefficient C: 000 Apply temperature correction Units conversion Initial temp (degrees C): 0.0 Measurement: DEFAULT 190 Thermal factor: 1.0 Input units: none 4 Convert temperature to Fahrenheit Output units: none ~ Factor: 1.0 Cancel Save

Figure 12 - Sensor Settings

Note the blue round "button" next to the Output calculation drop-down box in the Linear Coefficients section of the Sensor Settings. Clicking the button will display the following dialog box (see Figure 13):

| Output method calculation                                                                                                                                                                                            |                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| <b>NOTE:</b> LogView needs to know this information to adjust for possible sign mismatches between the l<br>Please consult your calibration sheet to determine if the output, in engineering units, is calculated as | logger and the sensor,<br>s $G(R_0 - R_1)$ or $G(R_1 - R_0)$ . |
| Please refer to the online help section, "Measurements->Linear Coefficients", for more information.                                                                                                                  |                                                                |
| OK ShowHelp                                                                                                                                                                                                          |                                                                |

Figure 13 - Output Calculation Method Help Dialog

This dialog box is shown to inform the user that the output calculation method must be selected based on information contained in the calibration sheet. For all sensors calibrated after 11-02-2011, the change (from the zero value) in digits, multiplied by the gage factor to get engineering units, is calculated as the Current Reading (**R1**) minus the Initial Reading (**R0**).

For some sensors, prior to the above date, the calculation was performed as R0 - R1.

Based on the entered calculation method, LogView can adust the sign of the gage factor accordingly, allowing the user to directly enter the gage factor from the calibration sheet.

In the Temperature corrections section of Sensor Settings, if "Apply temperature corrections" is checked, the blue round "?" button is enabled and if clicked displays the following (see Figure 14):

| Thermal factor                                   | entry                                            |                                                                                    | 1                             |
|--------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------|
| NOTE: The "Thermal fa<br>LogView will automatica | actor" should be ente<br>ally convert the factor | red <u>exactly</u> as it appears on the Ca<br>r to the proper units at the time of | libration Report.<br>Its use, |
|                                                  |                                                  |                                                                                    |                               |

Figure 14 - Thermal Factor Help Dialog

In previous versions of LogView, the Thermal factor needed to be converted to Fahrenheit units if the "Convert temperature to Fahrenheit" checkbox was checked. After LogView 2.1.1.0029, this is no longer necessary.

If "Apply temperature corrections" is checked AND a "Units conversion factor" greater than 1.0 is displayed then the following warning will be displayed in the Temperature corrections section (see Figure 15):

| Apply temperature correct       | tion         |              | Coefficient      | C: 000   | -  |
|---------------------------------|--------------|--------------|------------------|----------|----|
| Initial temp (degrees C):       | 0.0          |              | Units conversion |          |    |
| Thermal factor:                 | 1.0          | ((2))        | Measurement:     | PRESSURE |    |
| Convert temperature to F        | ahrenheit    |              | Input units:     | psi      | 18 |
| As of Loo View Version 2.1.1.0  |              | - conversion | Output units:    | feet H2O |    |
| factor is automatically applied | to the Therm | al factor!   | Factor:          | E.3) 000 |    |
|                                 |              |              |                  |          |    |
|                                 | Sa           | ve Cancel    | 1                |          |    |

Figure 15 - Units Conversion Application Warning

In previous versions of LogView, the Thermal factor was not automatically multiplied by the "Units conversion factor" (see the Units conversion section). After LogView 2.1.1.0029, this will happen automatically.

Figure 16 illustrates the "PRODUCTION" workspace with the project "PlainOleLoggers". In the Project Explorer, you can see that the "PlainOleLoggers" project is expanded and it contains a datalogger named "Log1" (LogView prefixes datalogger names with the datalogger type). Also notice that "Log1" has a sensor "Channel1" defined for it (LogView prefixes sensor names with the channel number CHn).



Figure 16 - Workspace, Project, Datalogger and Sensor

Each Project element, such as Dataloggers and Sensors, have "settings" associated with them. Once again, by right-clicking the element in the Project Explorer you can edit the Datalogger and Sensor settings - modifying parameters such as COM port settings, Gage Factors, etc.

LogView has a built-in help system which is available at all times by pressing the "Help" Toolbar button, the "F1" key or by accessing the "Help topics" menu item from the Main Menu.

# 3. Connecting to a Datalogger

The following sections describe the basic procedure to connect a datalogger to the user's PC and to establish communications with the datalogger via LogView. LC-2s with a USB connection will not maintain a PC "COM" port when the logger is disconnected. For this reason, always, connect the datalogger to the PC before launching LogView. If LogView is already open when the datalogger is connected (to the PC), close LogView and re-launch it after connecting the datalogger.

### 3.1 LC-2 RS-232 Connection (8002-1-1, 8002-1A-1, 8002-4-1, 8002-16-1):

Connect the supplied LC-2 RS-232 Communications cable (COM-108) to the COM port of the LC-2 datalogger. The protective cap on the datalogger COM connector is removed by pushing in and turning. Plug the DB-9 end of the RS-232 Communications cable into the host computer's RS-232 port (either internal or external via a USB to Serial converter).

### 3.2 LC-2 USB Connection (8002-1-2, 8002-1A-2, 8002-4-2, 8002-16-2):

Connect the supplied LC-2 USB Communications cable (COM-109) to the USB port of the LC-2 datalogger. The protective cap on the datalogger USB connector is removed by pushing in and turning. Plug the USB-A end of the USB cable into an available USB-2.0 port on the host computer.

**NOTE:** On some PCs, an 8002-X-2 may require the installation of a driver to properly communicate with the PC. If the PC does not recognize the datalogger's internal USB to serial converter then the driver may need to be installed by executing the program, CDMv2 xxxx, from the LogView Install folder.

### 3.3 Determining COM Port Numbers:

When connecting an 8002-1-1 or 8002-1A-1 datalogger to a PC with an internal serial port(s), the COM Port number that LogView requires is usually COM1 or COM2 but, occasionally may be COM3 if the PC has more than one internal serial port. Figure 17 below illustrates that the PC has 2 serial ports, one internal (COM1) and the other via a USB to serial converter (COM13).


Figure 17 - RS-232 Serial COM Ports

When connecting an 8002-1-2 or 8002-1A-2 datalogger to a PC, the COM Port number that LogView requires can be any number and depends on how many other devices are attached to the PC such as, internal serial ports and Bluetooth devices.

The figure below (see Figure 18) illustrates that the PC has 3 serial ports, one internal, COM1 and the other two via USB to serial converters, COM13 and COM3.

| Eile Action View Help                                                                                                                                                                                                        |   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| ~ ~ • • • • • • • • • • • • • • • • • •                                                                                                                                                                                      |   |
| PCMCIA adapters     Ports (COM & LPT)     Bluetooth Communications Port (COM5)     Bluetooth Communications Port (COM6)     Communications Port (COM1)     ECP Printer Port (LPT1)     Prolific USB-to-Serial Bridge (COM13) | • |

Figure 18 - USB COM Ports

**HINT:** With the Device Manager (above) open, an easy way to determine which COM port an 8002-1-2 datalogger is attached to is to disconnect the cable and see which COM device disappears from the Device Manager Ports list.

#### 3.4 Establishing a Connection:

After determining the appropriate COM Port for a datalogger, a LogView connection can be established by following the steps below:

- For USB dataloggers (8002-X-2), always make sure the USB end of the COM-109 cable is plugged into the PC and that the other end is attached to the datalogger.
- 2. Launch LogView.
- 3. Select a previously created Datalogger object from the Project Explorer and click on the "Settings" button from the LogView Toolbar. Alternately, a "new" Datalogger can be created by right-clicking a "Project" in the Project Explorer and selecting "New" then "Logger" from the resulting context menu. The Datalogger Settings dialog should be displayed (see Figure 19).

| ieneral Intervals Connection Opt | tions    Data Collection Options    Memory Op | tions |
|----------------------------------|-----------------------------------------------|-------|
| Datalogger ID:                   | LC1103104409                                  | 1     |
| Datalogger name:                 | DL1                                           |       |
| Model:                           | LC-2                                          |       |
| Description:                     | My first logger                               |       |
| Date created:                    |                                               |       |
|                                  |                                               |       |
|                                  |                                               |       |
|                                  |                                               |       |
|                                  |                                               |       |
|                                  |                                               |       |

Figure 19 - Datalogger Settings

4. Click on the "Connection Options" tab to display the settings required to establish a datalogger connection (see Figure 20).

| al | Connection se | nnection Options<br>Ittings | Data Collection Op                      | tions Memory Options | Test Connection |
|----|---------------|-----------------------------|-----------------------------------------|----------------------|-----------------|
| 1  |               | COM Port:                   | Net Address:<br>Solant ad<br>Baud Rate: | Network group:       |                 |
|    | • Direct      | COM3                        | 9600 👻                                  | 3                    | -               |
|    |               | COM Port:                   | Baud Rate:                              | Phone number:        |                 |
| 1  | () Modem      |                             | 9/400                                   | .)                   |                 |
| 1  |               | IP address:                 | Port:                                   |                      |                 |
|    | O Network     |                             | 110                                     | 1                    |                 |
|    | Q Network     | IP address;                 | Port:                                   | 1                    |                 |

Figure 20 - Connection Options

- 5. Make sure the "Direct" radio button is enabled and select a COM port corresponding to the datalogger connection as determined in section 3.3. For single channel LC-2 dataloggers with firmware versions less than V5.0.X, the proper "Baud Rate" setting will be 9600. When done, click the "Save" button. (See the datalogger's user manual for more information regarding baud rate options.)
- 6. Click on the "Open Connect" button from the toolbar to create a connection from LogView to the selected datalogger. After several seconds, LogView should respond with a "Connected" status in the lower left hand corner of the screen.

**NOTE:** It's very likely, when connecting for the first time to a new datalogger, that the following dialog box will be displayed (see Figure 21). This is normal and simply indicates that the Datalogger ID field that LogView assigns does not match the value in the physical datalogger. In most cases simply click on "Continue" to finish connecting to the datalogger.



Figure 21 - Connection Warning Message

- 7. Upload the recently modified settings to the selected datalogger by clicking on the "Upload Settings" button from the toolbar.
- 8. Close the connection by clicking on the "Close Connect" button from the toolbar.

## 4. Collecting and viewing data

Before any data is collected, ensure your "Data Collection Options" have been configured for your project (Figure 22.). These can be found by selecting your datalogger and either right clicking, then selecting "Settings," or clicking the "Settings" button in the Toolbar. Choose the "Data Collection Options" tab to configure your settings.

|         | Le constal |                                                                                                        | Data Callection Octions                 | and the second second                                                                           |   |
|---------|------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------|---|
| General | Intervals  | Connection Options                                                                                     | Data Collection Options                 | Memory Options                                                                                  |   |
|         |            | Last recorded data file<br>Logger 1_20 150 105_09                                                      | e<br>92231.dat                          |                                                                                                 | ] |
|         |            | Data file options<br>Data file options<br>Append data to ex<br>Write data to new<br>Create new file th | xisting file<br>file:<br>en append data | <ul> <li>Data File Date Format</li> <li>Day of the year</li> <li>Month, Day (MM, DD)</li> </ul> |   |
|         |            | Data collection option<br>Collect all data<br>Collect new data s                                       | s<br>since last download                | Data File Time Format<br>HourMinute (hhmm)<br>Hour,Minute (hh,mm)                               |   |
|         |            | Ollect new data s                                                                                      | since last download                     | () Hour,Minute (hh,mm)                                                                          |   |

Figure 22 - Data Collection Options

Upon successful connection to a datalogger, the "Collect Data" button will be enabled in the toolbar, otherwise it is greyed out (Figure 23.)

**NOTE:** Once connected to a datalogger, you cannot select a different datalogger without first closing the active connection. Also, data cannot be collected from a logger that is not connected.

| File Logger V    | Vindow Help         | -           |                 |
|------------------|---------------------|-------------|-----------------|
| Close<br>Connect | Start<br>Monitoring | Read<br>Now | Collect<br>Data |
| Sele             | ction path: PR      | ODUCTION    | ProjNetL        |
| PRODUC           | TION<br>letLoggers  |             |                 |

Figure 23 - Collect Data Button Enabled

When ready to collect your data, click the "Collect Data" button to begin collecting data. You will see a "Progress..." message indicating that new data is downloading (Figure 24.)

| 8  | Downloading 15 new d   | ata arrays |
|----|------------------------|------------|
| U. | 1                      |            |
|    | from the second second |            |

Figure 24 - New Data Downloading

Upon successful collection of data you will see the message displayed in Figure 25.



Figure 25 - Data Collection Complete Message

To view the collected data inside of LogView, right click on the desired datalogger and choose "View Data File." Next you will see a window showing "Available data files," choose the data file you want to view and click the "View" button. The data will be shown as a table with column headers and will also be shown as a graph below the table (Figure 26.)



Figure 26 - Viewing Data Inside of LogView

To view the collected data outside of LogView, select the desired datalogger, right click on it, select "Export" > "Data Files" (Figure 27.)

| Project explore              | er 1                       |     |                       |
|------------------------------|----------------------------|-----|-----------------------|
| PRODUCTION<br>ProjNetLoggers | Connect<br>Disconnect      | 1   |                       |
| L                            | Ø View data file<br>Export | • @ | Data files            |
|                              | Import                     | •   | Project to .LVPE file |

Figure 27 - Export Data Files Menu

A "Data Export" window will open where you can choose your export settings (Figure 28.) You must choose your "Export folder" and "Export File Format." The "Export Format Options" are optional. Next select a file from the "Available files:" pane and choose one of the arrow buttons

to move the file to the "Selected for export" pane. When your settings are complete, click the "Export" button at the bottom of the window to finish the data export. You will see a message indicating the "Data export completed."

**NOTE:** When a file is selected it will be highlighted in blue. To see the functions of the arrow buttons, hover the mouse over them for a tool tip.

| Export folder: C:VJ          | sers SOConnor Documents We | ew folder (2)      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Browse                         |
|------------------------------|----------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| Export data format: yyyy     | ,DDD,HHmm,ss               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| Export File Format           |                            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| Fi                           | e Format DAT 👻             | Sepa               | arator Character Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ma 🔹                           |
| Export Format Options        | _                          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| Export dates in Serial Date  | (Y 1900) format            | Add column headers | s to export file                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C Add meta data to export file |
| 1                            |                            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
|                              | Available files:           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Selected for export:           |
| File name                    | Collected                  | Exported           | Logge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | er1_20150105_095300.dat        |
| Logger 1_20150105_100543.dat | 01/05/15 10:05:43          |                    | 1 33 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                |
| Logger 1_20150105_094746.dat | 01/05/15 09:47:46          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
| rogger 1_20150105_092231.080 | 01/05/15 03/22/51          |                    | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |
|                              |                            |                    | ( Contraction of the local data in the local dat |                                |
|                              |                            |                    | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |
|                              |                            |                    | 1711                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |
|                              |                            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
|                              |                            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
|                              |                            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |
|                              |                            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |

Figure 28 - Data Export Settings

You will now be able to view your collected data with your chosen settings in the program of your choice.

# 5. Creating a Datalogger Network (RS-485)

Under the project "ProjNetLoggers" is another type of project object: the Network Group object. A network group object contains all dataloggers that are to be "networked" together via an RS-485 communication link. As above, right-clicking a project object calls up a context menu, allowing a Network Group object to be added to the project.

Right-clicking a Network Group object calls up a context menu, allowing dataloggers to be added under the Network object.

Figure 29 below illustrates a typical datalogger "network". In the Project Explorer, you can see that the "ProjNetLoggers" project is expanded and contains a Network group object called "RS485 Loggers". Under "RS485 Loggers" are the networked dataloggers, "DL1" and "DL2". Also notice that both dataloggers have sensors defined.

| C.  | Se alfAn I                             | Mindow Robe                                                                                     | -                            |                                                         |                                             | _              | -               |                | -                       |          |                         |                        |     |
|-----|----------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------|---------------------------------------------------------|---------------------------------------------|----------------|-----------------|----------------|-------------------------|----------|-------------------------|------------------------|-----|
| rie | Copen<br>Connect                       | Start<br>Monitoring                                                                             | Read                         | Collect<br>Data                                         | Start<br>Logging                            | View<br>Arrays | View<br>Details | View<br>Graphs | C:><br>View<br>Terminal | Settings | Upload<br>Settings      | Q00<br>Zero<br>Reading | Se  |
| _   | 51                                     | election path: Pl                                                                               | RODUCTIO                     | N ProjNetLo                                             | ggers - NET                                 | : RS485 Log    | ners            |                |                         |          |                         |                        | - 2 |
|     | Pro<br>Pro<br>Pro<br>Pro<br>Pro<br>Pro | LC-2: DL1<br>LC-2: DL1<br>LC-2: AL1: N<br>LC-2: AL1: N<br>LC-2: AL1: N<br>CH3: C<br>NOIeLoggers | vers<br>NySensor<br>Channel3 |                                                         |                                             |                |                 |                |                         |          |                         |                        |     |
|     |                                        |                                                                                                 |                              | Network grou<br>Network i<br>Network nam<br>Date create | d: NET02171<br>e: R5485 Log<br>d: Feb 17 20 | 50333<br>gers  |                 | Netwo          | ork address list        |          |                         |                        |     |
|     |                                        |                                                                                                 |                              | Descriptio                                              | ni networkg                                 | roup of logger | 5               |                |                         |          | LC-2: DL1<br>LC-2x4: DL | Address:<br>2 Address: | 1   |

Figure 29 - Network Group

The sections below describe how to connect and communicate with networked dataloggers.

### 6. Connecting to Networked Dataloggers

| Item | Description                                                                                                |
|------|------------------------------------------------------------------------------------------------------------|
| 1    | 8002-5: USB to RS-485 Conversion Module.                                                                   |
| 2    | COM-109: USB cable needed communicate with item 1.                                                         |
| 3    | 8002-1-3, 8002-4-3 or 8002-16-3: Datalogger1 - One, four or sixteen channel datalogger with RS-485 option. |
| 4    | 8002-1-3, 8002-4-3 or 8002-16-3: Datalogger2 - One, four or sixteen channel datalogger with RS-485 option. |
| 5    | 8002-1-3A: RS-485 Interconnect Cable. Connects item 1 with item 3.                                         |
| 6    | 8002-1-3A: RS-485 Interconnect Cable. Connects item 3 with item 4.                                         |

A minimum of 6 components are required to create a network of (2) dataloggers:

Table 1 - Minimum Components for RS-485 Logger Network

In LogView, after adding two Datalogger objects to the Network Group object, and before connecting the above components together as a network, each datalogger needs settings uploaded to it. This is accomplished using the following steps:

 Connect one end of the COM-109 cable to the first datalogger's "Network In" connector and the other end to a free USB port on the PC. After selecting one of the networked Datalogger objects in the Project Explorer, click on the "Settings" button from the toolbar. The dialog box below will be displayed:

| Seneral Intervals Connection Opt | ions    Data Collection Options    Memory Options |
|----------------------------------|---------------------------------------------------|
| Datalogger ID:                   | LCD430085941                                      |
| Datalogger name:                 | DL1                                               |
| Model;                           | 052                                               |
| Description:                     | Networked datalogger #1                           |
| Date created:                    | Apr 30 2010                                       |
|                                  |                                                   |
|                                  |                                                   |

Figure 30 - Networked Datalogger Settings

 Clicking on the "Connection Options" tab above will cause the dialog box below to be displayed:

| Connection settings |                    |                                 |                 |
|---------------------|--------------------|---------------------------------|-----------------|
|                     |                    |                                 | Test Connection |
| COM Port:           | Net Address:       | Network group:<br>R5485 Loggers |                 |
| Direct COM3         | 9600 🐦             |                                 |                 |
| COM Port:           | Baud Rate:<br>9600 | Phone number:                   |                 |
| IP address:         | Port:              |                                 |                 |
| (Vetwork)           | 6.                 |                                 |                 |

Figure 31 - Network Connection Options

- 3) Select a COM port corresponding to the datalogger connection see section 2.3.10 (8002-4-3 and 8002-16-3) or 3.3.9 (8002-1-3) in the Geokon Datalogger Instruction Manual for more information on how to determine the appropriate COM port. Note that the network group for this datalogger has already been filled in.
- 4) The network address now needs to be set. Set the "Net Address" to the appropriate value; "1" for the first logger, "2" for the second, etc. It's a good idea to label the datalogger and also name it in such a way that it is easy to remember which Datalogger object matches with which physical datalogger. When done click on the "Save" button.
- 5) Click on the "Open Connect" button from the toolbar to create a connection from LogView to the selected datalogger. After several seconds, LogView should respond with a "Connected" status in the lower left hand corner of the screen.

**NOTE:** It's very likely, when connecting for the first time to a new datalogger, that a warning dialog box will be displayed (see Figure 21.) This is normal and simply indicates that the Datalogger ID field that LogView assigns does not match the value in the physical datalogger. In most cases simply click on "Continue" to finish connecting to the datalogger.

- 6) Upload the recently modified settings to the selected datalogger by clicking on the "Upload Settings" button from the toolbar.
- 7) Close the connection by clicking on the "Close Connect" button from the toolbar.

Now remove the COM-109 connection from the first data logger, attach it to the second and repeat steps 1 - 7 for next datalogger.

After the settings have been uploaded for all dataloggers in the network group, connect the components together as shown in the diagram below:



Figure 32 - Network Group Component Connections

The network group has now been setup and all attached dataloggers should be able to be accessed via LogView through the one USB connection.

**NOTE:** The last datalogger in the network must be terminated for proper operation. The termination procedure is described in the Datalogger Instruction Manual – Appendix F.

# **Appendix D**

Vibrating Wire Pressure Transducer Calibration Reports

|                                                                  | VID                                                                                                                                              | aning whe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | riessure in                                                                                                                                                                                                   | ansuncer Cal                                                                                                                                                                         | IDIALION N                                                                                                                      | eport                                                           |                                                 |
|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------|
|                                                                  | Model Number:                                                                                                                                    | 4500AL-170 k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pa                                                                                                                                                                                                            | Date of Calib                                                                                                                                                                        | pration: <u>Ap</u><br>has been verified/val                                                                                     | ril 06, 2016<br>lidated as of 05/06/2016                        |                                                 |
|                                                                  | Serial Number:                                                                                                                                   | 1610327                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                               | Tempe                                                                                                                                                                                | rature:                                                                                                                         | 21.60 °C                                                        |                                                 |
| Calibra                                                          | tion Instruction:                                                                                                                                | W Pressure Tran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | sducers                                                                                                                                                                                                       | Barometric Pro                                                                                                                                                                       | essure: 10                                                                                                                      | 01.3 mbar                                                       |                                                 |
|                                                                  | Cable Length:                                                                                                                                    | 60 feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                               | Tech                                                                                                                                                                                 | nician: Kor                                                                                                                     | y Rogens                                                        | -                                               |
| Applied<br>Pressure<br>(kPa)                                     | Gage<br>Reading<br>1st Cycle                                                                                                                     | Gage<br>Reading<br>2nd Cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Average<br>Gage<br>Reading                                                                                                                                                                                    | Calculated<br>Pressure<br>(Linear)                                                                                                                                                   | Error<br>Linear<br>(%FS)                                                                                                        | Calculated<br>Pressure<br>(Polynomial)                          | Error<br>Polynomial<br>(%FS)                    |
| 0.0<br>34.0<br>68.0<br>102.0<br>136.0<br>170.0                   | 9809<br>9096<br>8379<br>7657<br>6934<br>6208                                                                                                     | 9811<br>9097<br>8381<br>7659<br>6935<br>6209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9810<br>9097<br>8380<br>7658<br>6935<br>6209                                                                                                                                                                  | 0.283<br>33.95<br>67.76<br>101.8<br>136.0<br>170.2                                                                                                                                   | 0.17<br>-0.03<br>-0.13<br>-0.09<br>-0.01<br>0.14                                                                                | 0.016<br>33.98<br>67.94<br>102.0<br>136.0<br>169.9              | 0.01<br>-0.01<br>-0.02<br>0.02<br>0.01<br>-0.02 |
| (kPa) Linea<br>Polynomial                                        | r Gage Factor (G)<br>  Gage factors:                                                                                                             | ): <u>-0.04718</u> (<br>A: <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (kPa/ digit)<br>-1.448E-07                                                                                                                                                                                    | B:                                                                                                                                                                                   | -0.04486                                                                                                                        | C:                                                              |                                                 |
| (kPa) Linea<br>Polynomia                                         | r Gage Factor (G)<br>  Gage factors:<br>Calculate C                                                                                              | ): <u>-0.04718</u><br>A: <u>-</u><br>Thermal<br>C by setting P=0 a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (kPa/ digit)<br>- <u>1.448E-07</u><br>Factor (K):<br>and R <sub>1</sub> = initial fi                                                                                                                          | B:<br>0.05671 (kPa/ %<br>eld zero reading in                                                                                                                                         | -0.04486<br>C)<br>ito the polynon                                                                                               | C:                                                              | -                                               |
| (kPa) Linea<br>Polynomial<br>(psi) Linea<br>Polynon              | r Gage Factor (G)<br>  Gage factors:<br>  Calculate C<br>r Gage Factor (G)<br>nial Gage Factors:                                                 | :A:<br>A:<br>Thermal<br>C by setting P=0 a<br>:006843<br>A:<br>Therm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | kPa/ digit)<br>- <u>1.448E-07</u><br>Factor (K):<br>and R <sub>1</sub> = initial fi<br>_(psi/ digit)<br>_ <u>-2.1E-08</u><br>aal Factor (K): _                                                                | B:                                                                                                                                                                                   | -0.04486<br>C)<br>ito the polynon<br>-0.006507<br>C)                                                                            | C:                                                              |                                                 |
| (kPa) Linea<br>Polynomial<br>(psi) Linea<br>Polynon              | r Gage Factor (G)<br>  Gage factors:<br>  Calculate C<br>r Gage Factor (G)<br>  ial Gage Factors:<br>  Calculate                                 | 2: <u>-0.04718</u><br>A:<br>Thermal<br>C by setting P=0 a<br>C by setting P=0<br>C by setting P=0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | kPa/ digit)<br>-1.448E-07<br>Factor (K):<br>and R <sub>1</sub> = initial fi<br>_(psi/ digit)<br>_2.1E-08<br>al Factor (K): _<br>and R <sub>1</sub> = initial                                                  | B:                                                                                                                                                                                   | -0.04486<br>C)<br>ito the polynon<br>-0.006507<br>C)<br>into the polyno                                                         | C:<br>mial equation                                             |                                                 |
| (kPa) Linea<br>Polynomial<br>(psi) Linea<br>Polynon<br>Calculate | r Gage Factor (G)<br>  Gage factors:<br>Calculate C<br>r Gage Factor (G)<br>nial Gage Factors:<br>Calculate<br>d Pressures:                      | 2:0.04718 (<br>A:<br>Thermal<br>2:<br>2:<br>2:<br>3:<br>2:<br>3:<br>3:<br>3:<br>3:<br>3:<br>3:<br>3:<br>3:<br>3:<br>3:<br>3:<br>3:<br>3:<br>3:<br>3:<br>3:<br>3:<br>3:<br>3:<br>3:<br>3:<br>3:<br>3:<br>3:<br>3:<br>3:<br>3:<br>3:<br>3:<br>3:<br>3:<br>3:<br>3:<br>3:<br>3:<br>3:<br>3:<br>3:<br>3:<br>3:<br>3:<br>3:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5:<br>5: | kPa/ digit)<br>-1.448E-07<br>Factor (K):<br>and $R_1 = initial finds (psi/ digit) -2.1E-08 and R_1 = initial Linear, P = G($                                                                                  | B:                                                                                                                                                                                   | -0.04486<br>C)<br>to the polynon<br>-0.006507<br>C)<br>into the polyno<br>)-(S <sub>1</sub> -S <sub>0</sub> )*                  | C:<br>mial equation                                             |                                                 |
| (kPa) Linea<br>Polynomial<br>(psi) Linea<br>Polynon<br>Calculate | r Gage Factor (G)<br>  Gage factors:<br>  Calculate C<br>r Gage Factor (G)<br>nial Gage Factors:<br>  Calculate<br>  Pressures:<br>  *Barometric | e pressures expressed in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $(kPa/digit)$ $-1.448E-07$ Factor (K): $md R_1 = initial fi$ _(psi/digit)         _2.1E-08         mal Factor (K):         and $R_1 = initial$ Linear, $P = G($ Polynomial, $P = n kPa or psi. Barometric   $ | B:<br>0.05671 (kPa/ °<br>eld zero reading in<br>B:<br>0.008226 (psi/ °<br>field zero reading i<br>$R_1 - R_0$ )+K( $T_1 - T_0$<br>= $AR_1^2 + BR_1 + C$<br>ic compensation is not re | -0.04486<br>C)<br>to the polynon<br>-0.006507<br>C)<br>into the polyno<br>)-(S 1 -S 0)*<br>+ K(T1-T0)-(S<br>equired with vented | C:<br>mial equation<br>$C:mial equationx_1 - S_0)*transducers.$ |                                                 |

|                                                |                                              |                                              |                                              |                                                                        |                                                 | 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0            |                                                 |
|------------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------|-------------------------------------------------|
|                                                | Model Number:                                | 4500AL-170 k                                 | (Pa                                          | Date of Calib<br>This calibration h                                    | pration: Ap                                     | ril 06, 2016<br>idated as of 05/06/2016            |                                                 |
|                                                | Serial Number:                               | 1610328                                      |                                              | Tempe                                                                  | erature:                                        | 21.60 °C                                           |                                                 |
| Calibra                                        | ation Instruction:                           | VW Pressure Tran                             | sducers                                      | Barometric Pr                                                          | essure: 10                                      | 01.3 mbar                                          |                                                 |
|                                                | Cable Length:                                | 60 feet                                      | _                                            | Tech                                                                   | nician: Kori                                    | y Rogers                                           | -                                               |
| Applied<br>Pressure<br>(kPa)                   | Gage<br>Reading<br>1st Cycle                 | Gage<br>Reading<br>2nd Cycle                 | Average<br>Gage<br>Reading                   | Calculated<br>Pressure<br>(Linear)                                     | Error<br>Linear<br>(%FS)                        | Calculated<br>Pressure<br>(Polynomial)             | Error<br>Polynomial<br>(%FS)                    |
| 0,0<br>34,0<br>68.0<br>102.0<br>136.0<br>170.0 | 9918<br>9220<br>8519<br>7813<br>7099<br>6388 | 9920<br>9221<br>8520<br>7814<br>7100<br>6390 | 9919<br>9221<br>8520<br>7814<br>7100<br>6389 | 0.337<br>33.96<br>67.70<br>101.7<br>136.0<br>170.2                     | 0.20<br>-0.02<br>-0.17<br>-0.18<br>0.04<br>0.16 | 0.009<br>34.01<br>67.94<br>101.9<br>136.1<br>169.9 | 0.01<br>0.01<br>-0.02<br>-0.03<br>0.07<br>-0.04 |
|                                                | Calculate C                                  | Thermal                                      | Factor (K):                                  | 0.01215 (kPa/ %                                                        | C)<br>ito the polynom                           | ial equation                                       |                                                 |
| (psi) Linea<br>Polynon                         | r Gage Factor (G)<br>nial Gage Factors:      | : -0.006981<br>: A:<br>There                 | _(psi/ digit)<br>-2.769E-08                  | B:                                                                     | -0.006529                                       | C:                                                 |                                                 |
|                                                | Calculate                                    | C by setting P=0                             | and R <sub>1</sub> =initial                  | field zero reading i                                                   | c)<br>into the polyno                           | mial equation                                      |                                                 |
|                                                | d Pressures:                                 |                                              | Linear, P = G(                               | $\mathbf{R}_1 - \mathbf{R}_0$ )+K( $\mathbf{T}_1 - \mathbf{T}_0$       | )-(S <sub>1</sub> -S <sub>0</sub> )*            |                                                    |                                                 |
| Calculate                                      |                                              |                                              | Polynomial, P =                              | $\mathbf{A}\mathbf{K}_{1}^{*} + \mathbf{B}\mathbf{K}_{1} + \mathbf{C}$ | + K(T <sub>1</sub> -T <sub>0</sub> )-(S         | 1 - S 0 J*<br>transducers.                         |                                                 |
| Calculate                                      | *Barometric                                  | pressures expressed in                       | in Ki a or psi, Datometr                     |                                                                        |                                                 |                                                    |                                                 |

|                                                   | VIDI                                                                                                                | rating wire                                                                        | rressure Tr                                                                                                                                                                                                  | ansoucer Cal                                                                                                                                                                         | IDFATION R                                                                                                                   | eport                                                                 |                                                |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------|
|                                                   | Model Number:                                                                                                       | 4500AL-170 k                                                                       | Pa                                                                                                                                                                                                           | Date of Calib<br>This calibration h                                                                                                                                                  | pration: Ap                                                                                                                  | ril 06, 2016<br>idated as of 05/06/2016                               |                                                |
|                                                   | Serial Number:                                                                                                      | 1610329                                                                            | <u> </u>                                                                                                                                                                                                     | Tempe                                                                                                                                                                                | erature:                                                                                                                     | 21.60 °C                                                              |                                                |
| Calibra                                           | ation Instruction:                                                                                                  | W Pressure Tran                                                                    | sducers                                                                                                                                                                                                      | Barometric Pr                                                                                                                                                                        | essure: 10                                                                                                                   | 01.3 mbar                                                             |                                                |
|                                                   | Cable Length:                                                                                                       | 60 feet                                                                            |                                                                                                                                                                                                              | Tech                                                                                                                                                                                 | nician: Ker                                                                                                                  | Rogers                                                                | -                                              |
| Applied<br>Pressure<br>(kPa)                      | Gage<br>Reading<br>1st Cycle                                                                                        | Gage<br>Reading<br>2nd Cycle                                                       | Average<br>Gage<br>Reading                                                                                                                                                                                   | Calculated<br>Pressure<br>(Linear)                                                                                                                                                   | Error<br>Linear<br>(%FS)                                                                                                     | Calculated<br>Pressure<br>(Polynomial)                                | Error<br>Polynomial<br>(%FS)                   |
| 0.0<br>34.0<br>68.0<br>102.0<br>136.0<br>170.0    | 9720<br>8986<br>8248<br>7506<br>6759<br>6010                                                                        | 9722<br>8987<br>8250<br>7507<br>6760<br>6011                                       | 9721<br>8987<br>8249<br>7507<br>6760<br>6011                                                                                                                                                                 | 0.321<br>33.96<br>67.74<br>101.7<br>136.0<br>170.3                                                                                                                                   | 0.19<br>-0.02<br>-0.14<br>-0.13<br>-0.01<br>0.17                                                                             | 0.003<br>34.00<br>67.96<br>102.0<br>136.0<br>170.0                    | 0.00<br>0.00<br>-0.01<br>0.00<br>0.02<br>-0.01 |
| Polynomia                                         | Gage factors:                                                                                                       | A:                                                                                 | -1.621E-07                                                                                                                                                                                                   | B:                                                                                                                                                                                   | -0.04325                                                                                                                     | C:                                                                    |                                                |
| Polynomial                                        | Gage factors:<br>Calculate C                                                                                        | A:<br>Thermal<br>C by setting P=0 a                                                | - <u>1.621E-07</u><br>Factor (K):<br>nd R <sub>1</sub> = initial fi                                                                                                                                          | B:                                                                                                                                                                                   | -0.04325<br>C)<br>to the polynom                                                                                             | C:                                                                    |                                                |
| Polynomial<br>(psi) Linea<br>Polynon              | l Gage factors:<br>Calculate C<br>r Gage Factor (G)<br>hial Gage Factors:                                           | A:                                                                                 | -1.621E-07<br>Factor (K):<br>nd R <sub>1</sub> = initial fi<br>_(psi/ digit)<br>2.351E-08                                                                                                                    | B:                                                                                                                                                                                   | <u>-0.04325</u><br>C)<br>to the polynom<br><u>-0.006273</u>                                                                  | C:                                                                    |                                                |
| Polynomial<br>(psi) Linea<br>Polynon              | l Gage factors:<br>Calculate C<br>r Gage Factor (G)<br>hial Gage Factors:<br>Calculate                              | A:                                                                                 | -1.621E-07<br>Factor (K):<br>nd R <sub>1</sub> = initial fi<br>_(psi/ digit)<br>_2.351E-08<br>nal Factor (K):<br>and R <sub>1</sub> = initial                                                                | B:                                                                                                                                                                                   | <u>-0.04325</u><br>C)<br>to the polynom<br><u>-0.006273</u><br>C)<br>into the polyno                                         | C:<br>nial equation<br>C:<br>mial equation                            |                                                |
| Polynomial<br>(psi) Linea<br>Polynon<br>Calculate | l Gage factors:<br>Calculate C<br>r Gage Factor (G)<br>hial Gage Factors:<br>Calculate<br>d Pressures:              | A:<br>Thermal<br>C by setting P=0 a<br>:0006643<br>A:<br>Therm<br>C by setting P=0 | $\frac{1.621E-07}{Factor (K):}$ Factor (K):<br>nd R <sub>1</sub> = initial fi<br>_(psi/ digit)<br><u>-2.351E-08</u><br>nal Factor (K):<br>and R <sub>1</sub> = initial<br>Linear, P = G(                     | B:                                                                                                                                                                                   | <u>-0.04325</u><br>C)<br>to the polynom<br><u>-0.006273</u><br>C)<br>into the polyno<br>)-(S <sub>1</sub> -S <sub>0</sub> )* | C:<br>nial equation<br>C:                                             |                                                |
| Polynomial<br>(psi) Linea<br>Polynon<br>Calculate | Gage factors:<br>Calculate C<br>r Gage Factor (G)<br>nial Gage Factors:<br>Calculate<br>d Pressures:<br>*Barometric | A:<br>Thermal<br>2 by setting P=0 a<br>:0006643<br>A:<br>Therm<br>C by setting P=0 | $\frac{.1.621E-07}{Factor (K):}$ Factor (K):<br>nd R <sub>1</sub> = initial fi<br>_(psi/ digit)<br><u>-2.351E-08</u><br>tal Factor (K):<br>and R <sub>1</sub> = initial<br>Linear, P = G(<br>Polynomial, P = | B:<br>0.04562 (kPa/%)<br>eld zero reading in<br>B:<br>0.006616 (psi/%)<br>field zero reading i<br>$R_1 - R_0$ )+K( $T_1 - T_0$<br>= $AR_1^2 + BR_1 + C$<br>ic compensation is not re | -0.04325<br>C)<br>to the polynom<br>-0.006273<br>C)<br>into the polyno<br>$(S_1 - S_0)^*$<br>+ $K(T_1 - T_0) - (S_0)^*$      | C:<br>mial equation<br>C:<br>mial equation<br>1-S 0)*<br>transducers. |                                                |

|                                                | <u>v101</u>                                                                                        |                                                                                   | ressure ri                                                                                                                                                      | ansulter Car                                       | In a second s            | cport                                               |                                                 |
|------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------|
| 1                                              | Model Number:                                                                                      | 4500AL-170 k                                                                      | Pa                                                                                                                                                              | Date of Calib<br>This calibration h                | ration: Ap                                                                                                                 | ril 06, 2016<br>idated as of 05/06/2016             |                                                 |
|                                                | Serial Number:                                                                                     | 1610330                                                                           | _                                                                                                                                                               | Tempe                                              | rature:                                                                                                                    | 21.60 °C                                            |                                                 |
| Calibra                                        | tion Instruction:                                                                                  | W Pressure Trans                                                                  | sducers                                                                                                                                                         | Barometric Pre                                     | essure: 10                                                                                                                 | 01.3 mbar                                           |                                                 |
|                                                | Cable Length:                                                                                      | 60 feet                                                                           | _                                                                                                                                                               | Tech                                               | nician: Karl                                                                                                               | Rogers-                                             |                                                 |
| Applied<br>Pressure<br>(kPa)                   | Gage<br>Reading<br>1st Cycle                                                                       | Gage<br>Reading<br>2nd Cycle                                                      | Average<br>Gage<br>Reading                                                                                                                                      | Calculated<br>Pressure<br>(Linear)                 | Error<br>Linear<br>(%FS)                                                                                                   | Calculated<br>Pressure<br>(Polynomial)              | Error<br>Polynomial<br>(%FS)                    |
| 0.0<br>34.0<br>68.0<br>102.0<br>136.0<br>170.0 | 9888<br>9166<br>8441<br>7712<br>6978<br>6239                                                       | 9890<br>9168<br>8442<br>7713<br>6979<br>6240                                      | 9889<br>9167<br>8442<br>7713<br>6979<br>6240                                                                                                                    | 0.326<br>33.96<br>67.75<br>101.7<br>135.9<br>170.3 | 0.19<br>-0.02<br>-0.13<br>-0.16<br>-0.04<br>0.20                                                                           | -0.013<br>34.01<br>68.00<br>102.0<br>136.0<br>170.0 | -0.01<br>0.01<br>0.01<br>-0.01<br>-0.01<br>0.00 |
|                                                |                                                                                                    | Thermal                                                                           | Factor (K):                                                                                                                                                     | 0.03585 (kPa/ °C                                   | C)                                                                                                                         |                                                     |                                                 |
|                                                | Calculate C                                                                                        | by setting P=0 a                                                                  | nd R <sub>1</sub> = initial fi                                                                                                                                  | eld zero reading in                                | to the polynom                                                                                                             | ial equation                                        |                                                 |
| (psi) Linear<br>Polynom                        | Calculate C<br>Gage Factor (G)                                                                     | by setting P=0 a<br>-0.006756<br>A:<br>Therm                                      | nd R <sub>1</sub> = initial fi<br>_(psi/ digit)<br>2.666E-08<br>aal Factor (K):                                                                                 | eld zero reading in<br>B:                          | to the polynom<br>-0.006326<br>C)                                                                                          | c:                                                  |                                                 |
| (psi) Linear<br>Polynom                        | Calculate C<br>r Gage Factor (G)<br>nial Gage Factors:<br>Calculate                                | C by setting P=0 a<br>:                                                           | nd R <sub>1</sub> = initial fi<br>_(psi/ digit)<br>2.666E-08<br>al Factor (K):<br>and R <sub>1</sub> = initial                                                  | eld zero reading in<br>B:                          | to the polynom<br>-0.006326<br>C)<br>nto the polyno                                                                        | c:                                                  |                                                 |
| (psi) Linear<br>Polynom<br>Calculated          | Calculate C<br>r Gage Factor (G)<br>hal Gage Factors:<br>Calculate<br>I Pressures:                 | C by setting P=0 a<br>:                                                           | nd R <sub>1</sub> = initial fi<br>_(psi/ digit)<br>2.666E-08<br>aal Factor (K):<br>and R <sub>1</sub> = initial<br>Linear, P = G(                               | eld zero reading in<br>B:                          | to the polynom<br>-0.006326<br>C)<br>nto the polyno<br>)-(S <sub>1</sub> -S <sub>0</sub> )*                                | c:                                                  |                                                 |
| (psi) Linear<br>Polynom<br>Calculated          | Calculate C<br>r Gage Factor (G)<br>nial Gage Factors:<br>Calculate<br>d Pressures:<br>*Barometric | C by setting P=0 a<br>:<br>:<br>:<br>C by setting P=0<br>: pressures expressed in | nd $R_1 = initial fi$<br>(psi/ digit)<br>-2.666E-08<br>al Factor (K):<br>and $R_1 = initial$<br>Linear, $P = G($<br>Polynomial, $P =$<br>h (Pa or psi. Barometr | eld zero reading in<br>B:                          | to the polynom<br>-0.006326<br>C)<br>nto the polyno<br>$(S_1 - S_0)^*$<br>+ $K(T_1 - T_0) - (S_1)^*$<br>quired with vented | transducers.                                        |                                                 |

|                                                     | VID                                                                                                         | rating wire                                                                                      | rressure Ir                                                                                                                                                                    | ansoucer Cal                                                                                                                                                                           | IDFALION R                                                                                                                      | eport                                              |                                                |
|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------|
| 18                                                  | Model Number: _                                                                                             | 4500AL-170 k                                                                                     | Pa                                                                                                                                                                             | Date of Calib<br>This calibration h                                                                                                                                                    | pration: Ap                                                                                                                     | ril 06, 2016<br>lidated as of 05/06/2016           |                                                |
|                                                     | Serial Number:                                                                                              | 1610331                                                                                          |                                                                                                                                                                                | Tempe                                                                                                                                                                                  | erature:                                                                                                                        | 21.60 °C                                           |                                                |
| Calibra                                             | tion Instruction:                                                                                           | VW Pressure Tran                                                                                 | sducers                                                                                                                                                                        | Barometric Pro                                                                                                                                                                         | essure: 10                                                                                                                      | 01.3 mbar                                          |                                                |
|                                                     | Cable Length:                                                                                               | 60 feet                                                                                          | _                                                                                                                                                                              | Tech                                                                                                                                                                                   | nician: Kich                                                                                                                    | y Rogen                                            | -                                              |
| Applied<br>Pressure<br>(kPa)                        | Gage<br>Reading<br>Ist Cycle                                                                                | Gage<br>Reading<br>2nd Cycle                                                                     | Average<br>Gage<br>Reading                                                                                                                                                     | Calculated<br>Pressure<br>(Linear)                                                                                                                                                     | Error<br>Linear<br>(%FS)                                                                                                        | Calculated<br>Pressure<br>(Polynomial)             | Error<br>Polynomial<br>(%FS)                   |
| 0.0<br>34.0<br>68.0<br>102.0<br>136.0<br>170.0      | 9907<br>9192<br>8473<br>7751<br>7027<br>6299                                                                | 9908<br>9193<br>8474<br>7752<br>7028<br>6300                                                     | 9908<br>9193<br>8474<br>7752<br>7028<br>6300                                                                                                                                   | 0.259<br>33.94<br>67.81<br>101.8<br>135.9<br>170.2                                                                                                                                     | 0.15<br>-0.03<br>-0.10<br>-0.09<br>-0.03<br>0.14                                                                                | 0.010<br>33.97<br>67.98<br>102.0<br>136.0<br>170.0 | 0.01<br>-0.02<br>0.00<br>0.01<br>-0.01<br>0.00 |
| Polynomial                                          | Gage factors:                                                                                               | A:                                                                                               | -1.352E-07                                                                                                                                                                     | B:                                                                                                                                                                                     | -0.04491                                                                                                                        | C:                                                 |                                                |
| Polynomial                                          | Gage factors:<br>Calculate (                                                                                | A:<br>Thermal<br>C by setting P=0 a                                                              | -1.352E-07<br>Factor (K):<br>nd R <sub>1</sub> = initial fi                                                                                                                    | B:                                                                                                                                                                                     | -0.04491<br>C)<br>to the polynon                                                                                                | C:                                                 |                                                |
| Polynomial<br>(psi) Linear<br>Polynom               | Gage factors:<br>Calculate (<br>Gage Factor (G<br>ial Gage Factors                                          | A:                                                                                               | -1.352E-07<br>Factor (K):<br>nd R <sub>1</sub> = initial fi<br>_(psi/ digit)<br>1.961E-08                                                                                      | B:                                                                                                                                                                                     | <u>-0.04491</u><br>C)<br>to the polynon<br><u>-0.006514</u>                                                                     | C:<br>nial equation<br>C:                          |                                                |
| Polynomial<br>(psi) Linear<br>Polynom               | Gage factors:<br>Calculate (<br>Gage Factor (G<br>ial Gage Factors<br>Calculate                             | A:<br>Thermal<br>C by setting P=0 a<br>):0006832<br>: A:<br>Therm<br>: C by setting P=0          | -1.352E-07<br>Factor (K):<br>nd R <sub>1</sub> = initial fi<br>_(psi/ digit)<br>-1.961E-08<br>nal Factor (K): _<br>and R <sub>1</sub> = initial                                | B:                                                                                                                                                                                     | <u>-0.04491</u><br>C)<br>to the polynon<br><u>-0.006514</u><br>C)<br>into the polyno                                            | C:<br>nial equation<br>C:                          |                                                |
| Polynomial<br>(psi) Linear<br>Polynom<br>Calculated | Gage factors:<br>Calculate (<br>Gage Factor (G<br>ial Gage Factors<br>Calculate                             | A:<br>Thermal<br>C by setting P=0 a<br>):<br>-0.006832<br>:<br>A:<br>Therm<br>: C by setting P=0 | -1.352E-07 Factor (K):<br>nd R <sub>1</sub> = initial fi<br>_(psi/ digit)<br>-1.961E-08<br>al Factor (K):<br>and R <sub>1</sub> = initial<br>Linear, P = G(                    | B:                                                                                                                                                                                     | <u>-0.04491</u><br>C)<br>to the polynon<br><u>-0.006514</u><br>C)<br>into the polyno<br>)-(S <sub>1</sub> -S <sub>0</sub> )*    | C:                                                 |                                                |
| Polynomial<br>(psi) Linear<br>Polynom<br>Calculated | Gage factors:<br>Calculate (<br>Gage Factor (G<br>ial Gage Factors<br>Calculate<br>Pressures:<br>*Barometri | A:<br>Thermal<br>C by setting P=0 a<br>):0006832<br>: A:<br>Therm<br>: C by setting P=0          | -1.352E-07 Factor (K):<br>nd R <sub>1</sub> = initial fi<br>_(psi/ digit)<br>-1.961E-08<br>al Factor (K):<br>and R <sub>1</sub> = initial<br>Linear, P = G(<br>Polynomial, P = | B:<br>0.01687 (kPa/ %<br>leld zero reading in<br>B:<br>0.002447 (psi/ %<br>field zero reading i<br>$R_1 - R_0$ )+K( $T_1 - T_0$<br>= $AR_1^2 + BR_1 + C$<br>the compensation is not re | -0.04491<br>C)<br>to the polynon<br>-0.006514<br>C)<br>into the polyno<br>)-(S 1 -S 0)*<br>+ K(T1-T0)-(S<br>equired with vented | C:<br>mial equation<br>C:<br>mial equation         |                                                |

|                                                | Model Number:                                                                   | 4500AL-170 k                                     | Pa                                                                                                                  | Date of Calib<br>This calibration h                | ration: Ap<br>as been verified/val                                                                       | ril 06, 2016<br>idated as of 05/06/2016              |                                               |
|------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------|
|                                                | Serial Number:                                                                  | 1610332                                          |                                                                                                                     | Tempe                                              | rature:                                                                                                  | 21.60 °C                                             |                                               |
| Calibra                                        | ation Instruction:                                                              | VW Pressure Tran                                 | sducers                                                                                                             | Barometric Pro                                     | essure: 10                                                                                               | 01.3 mbar                                            |                                               |
|                                                | Cable Length:                                                                   | 60 feet                                          |                                                                                                                     | Tech                                               | nician: Karli                                                                                            | Rogers.                                              |                                               |
| Applied<br>Pressure<br>(kPa)                   | Gage<br>Reading<br>1st Cycle                                                    | Gage<br>Reading<br>2nd Cycle                     | Average<br>Gage<br>Reading                                                                                          | Calculated<br>Pressure<br>(Linear)                 | Error<br>Linear<br>(%FS)                                                                                 | Calculated<br>Pressure<br>(Polynomial)               | Error<br>Polynomial<br>(%FS)                  |
| 0.0<br>34.0<br>68.0<br>102.0<br>136.0<br>170.0 | 10002<br>9297<br>8588<br>7875<br>7158<br>6437                                   | 10003<br>9298<br>8589<br>7876<br>7159<br>6438    | 10003<br>9298<br>8589<br>7876<br>7159<br>6438                                                                       | 0.310<br>33.92<br>67.72<br>101.7<br>135.9<br>170.3 | 0.18<br>-0.04<br>-0.15<br>-0.15<br>-0.04<br>0.18                                                         | 0.002<br>33.99<br>67.98<br>102.0<br>136.0<br>170.0   | 0.00<br>-0.01<br>0.00<br>0.00<br>0.00<br>0.00 |
|                                                | Calculate                                                                       | Thermal<br>C by setting P=0 a                    | Factor (K):                                                                                                         | 0.03829 (kPa/ %                                    | C)<br>to the polynom                                                                                     | ial equation                                         |                                               |
|                                                | Calculate                                                                       |                                                  | 4.5434243                                                                                                           |                                                    |                                                                                                          |                                                      |                                               |
| (psi) Linea<br>Polynon                         | r Gage Factor (G<br>11al Gage Factors                                           | ): <u>-0.006915</u><br>:: A:_                    | _(psi/ digit)<br>2.689E-08                                                                                          | <sup>B:</sup> -                                    | -0.006473                                                                                                | C:                                                   |                                               |
| (psi) Linea<br>Polynon                         | r Gage Factor (G<br>nial Gage Factors<br>Calculate                              | (): -0.006915<br>A:<br>Therm<br>C by setting P=0 | _(psi/ digit)<br>2.689E-08<br>Ial Factor (K):<br>and R <sub>1</sub> = initial                                       | B:                                                 | -0.006473<br>C)<br>nto the polyno                                                                        | C:                                                   |                                               |
| (psi) Linea<br>Polynon<br>Calculate            | r Gage Factor (G<br>nial Gage Factors<br>Calculate<br>d Pressures:              | ():A:<br>:: A:<br>Therm<br>: C by setting P=0    | _(psi/ digit)<br>2.689E-08<br>tal Factor (K):<br>and R <sub>1</sub> = initial<br>Linear, P = G(1                    | B:                                                 | -0.006473<br>C)<br>nto the polyno<br>-(S <sub>1</sub> -S <sub>0</sub> )*                                 | C:                                                   |                                               |
| (psi) Linea<br>Polynon<br>Calculate            | r Gage Factor (G<br>nial Gage Factors<br>Calculate<br>d Pressures:<br>*Barometr | c pressures expressed in                         | _(psi/ digit)<br>2.689E-08<br>nal Factor (K):<br>and R <sub>1</sub> = initial<br>Linear, P = G(1<br>Polynomial, P = | B:                                                 | -0.006473<br>C)<br>nto the polyno<br>$(S_1 - S_0)^*$<br>+ $K(T_1 - T_0) - (S_1)^*$<br>quired with vented | C:<br>mial equation<br>$(1 - S_0)^*$<br>transducers. |                                               |

|                                                                   | 800 T.                                                                                                                                     |                                                                                                                  |                                                                                                                                                                                                                          | Data of Call                                                                                                                                                                               | untion:                                                                                                                                       | -106 2016                                           |                                                 |
|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------|
|                                                                   | Model Number:                                                                                                                              | 4500AL-170 k                                                                                                     | Pa                                                                                                                                                                                                                       | This calibration h                                                                                                                                                                         | as been verified/val                                                                                                                          | lidated as of 05/06/2016                            |                                                 |
|                                                                   | Serial Number:                                                                                                                             | 1610333                                                                                                          |                                                                                                                                                                                                                          | Tempe                                                                                                                                                                                      | rature:                                                                                                                                       | 21.60 °C                                            |                                                 |
| Calibra                                                           | tion Instruction:                                                                                                                          | W Pressure Trans                                                                                                 | sducers                                                                                                                                                                                                                  | Barometric Pre                                                                                                                                                                             | essure: 10                                                                                                                                    | 01.3 mbar                                           |                                                 |
|                                                                   | Cable Length:                                                                                                                              | 60 feet                                                                                                          |                                                                                                                                                                                                                          | Tech                                                                                                                                                                                       | nician: Kerl                                                                                                                                  | y Rogers                                            | -                                               |
| Applied<br>Pressure<br>(kPa)                                      | Gage<br>Reading<br>1st Cycle                                                                                                               | Gage<br>Reading<br>2nd Cycle                                                                                     | Average<br>Gage<br>Reading                                                                                                                                                                                               | Calculated<br>Pressure<br>(Linear)                                                                                                                                                         | Error<br>Linear<br>(%FS)                                                                                                                      | Calculated<br>Pressure<br>(Polynomial)              | Error<br>Polynomial<br>(%FS)                    |
| 0.0<br>34.0<br>68.0<br>102.0<br>136.0<br>170.0                    | 9827<br>9117<br>8402<br>7686<br>6966<br>6240                                                                                               | 9829<br>9118<br>8403<br>7687<br>6967<br>6241                                                                     | 9828<br>9118<br>8403<br>7687<br>6967<br>6241                                                                                                                                                                             | 0.284<br>33.95<br>67.84<br>101.8<br>135.9<br>170.3                                                                                                                                         | 0.17<br>-0.02<br>-0.08<br>-0.12<br>-0.05<br>0.19                                                                                              | -0.010<br>33.98<br>68.03<br>102.0<br>135.9<br>170.0 | 0.00<br>-0.01<br>0.03<br>-0.01<br>-0.03<br>0.01 |
| (kPa) Linea<br>Polynomial                                         | r Gage Factor (G)<br>  Gage factors:                                                                                                       | .: <u>-0.04739</u> (<br>A:                                                                                       | kPa/ digit)<br>-1.582E-07                                                                                                                                                                                                | B:                                                                                                                                                                                         | -0.04485                                                                                                                                      | C:                                                  | ,                                               |
| (kPa) Linea<br>Polynomial                                         | r Gage Factor (G)<br>  Gage factors:<br>  Calculate C                                                                                      | : <u>-0.04739 (</u><br>A: <u>-</u><br>Thermal<br>C by setting P=0 a                                              | kPa/ digit)<br><u>-1.582E-07</u><br>Factor (K): <u>-</u><br>nd R <sub>1</sub> = initial fi                                                                                                                               | B:<br>0.008173 (kPa/ °(<br>eld zero reading in                                                                                                                                             | <u>-0.04485</u><br>C)<br>to the polynom                                                                                                       | C:                                                  |                                                 |
| (kPa) Linea<br>Polynomial<br>(psi) Linean<br>Polynom              | r Gage Factor (G)<br>  Gage factors:<br>  Calculate C<br>  r Gage Factor (G)                                                               | :0.04739 (<br>A:<br>Thermal<br>C by setting P=0 a<br>:0.006873                                                   | kPa/ digit)<br><u>1.582E-07</u><br>Factor (K):<br>nd R <sub>1</sub> = initial fi<br>(psi/ digit)<br>_2 295E-08                                                                                                           | B:<br>0.008173 (kPa/ %<br>eld zero reading in                                                                                                                                              | <u>-0.04485</u><br>C)<br>to the polynom                                                                                                       | C:                                                  |                                                 |
| (kPa) Linea<br>Polynomial<br>(psi) Linea<br>Polynom               | r Gage Factor (G)<br>  Gage factors:<br>  Calculate C<br>r Gage Factor (G)<br>                                                             | : <u>-0.04739</u> (<br>A: <u>-</u><br>Thermal<br>C by setting P=0 a<br>: <u>-0.006873</u><br>A: <u></u><br>Therm | kPa/ digit)<br>-1.582E-07<br>Factor (K):<br>nd R <sub>1</sub> = initial fi<br>_(psi/ digit)<br>2.295E-08<br>al Factor (K): _                                                                                             | B:                                                                                                                                                                                         | <u>-0.04485</u><br>C)<br>to the polynom<br><u>-0.006504</u><br>C)                                                                             | C:                                                  |                                                 |
| (kPa) Linea<br>Polynomial<br>(psi) Linea<br>Polynom               | r Gage Factor (G)<br>  Gage factors:<br>  Calculate C<br>  r Gage Factor (G)<br>  ial Gage Factors:<br>  Calculate                         | ::                                                                                                               | kPa/ digit)<br><u>-1.582E-07</u><br>Factor (K):<br>nd R <sub>1</sub> = initial fi<br>_(psi/ digit)<br><u>-2.295E-08</u><br>al Factor (K): _<br>and R <sub>1</sub> = initial                                              | B:<br>0.008173 (kPa/ %<br>eld zero reading in<br>B:<br>-0.001185 (psi/ %<br>field zero reading i                                                                                           | <u>-0.04485</u><br>C)<br>to the polynom<br><u>-0.006504</u><br>C)<br>nto the polyno                                                           | C:<br>nial equation<br>C:<br>mial equation          |                                                 |
| (kPa) Linea<br>Polynomial<br>(psi) Linea<br>Polynom<br>Calculated | r Gage Factor (G)<br>  Gage factors:<br>  Calculate C<br>r Gage Factor (G)<br>  ial Gage Factors:<br>  Calculate<br>  Pressures:           | : A:<br>A:<br>Thermal<br>2 by setting P=0 a<br>2<br>2<br>2<br>3<br>Therm<br>C by setting P=0                     | kPa/ digit)<br>1.582E-07<br>Factor (K):<br>nd R <sub>1</sub> = initial fi<br>(psi/ digit)<br>-2.295E-08<br>al Factor (K): _<br>and R <sub>1</sub> = initial<br>Linear, P = G(                                            | B:                                                                                                                                                                                         | <u>-0.04485</u><br>C)<br>to the polynom<br><u>-0.006504</u><br>C)<br>nto the polyno<br>(S <sub>1</sub> -S <sub>0</sub> )*                     | C:<br>nial equation<br>C:<br>mial equation          |                                                 |
| (kPa) Linea<br>Polynomial<br>(psi) Linea<br>Polynom<br>Calculated | r Gage Factor (G)<br>  Gage factors:<br>Calculate C<br>r Gage Factor (G)<br>nial Gage Factors:<br>Calculate<br>d Pressures:<br>*Barometric | e:                                                                                                               | kPa/ digit)<br>-1.582E-07<br>Factor (K):<br>nd R <sub>1</sub> = initial fi<br>_(psi/ digit)<br>-2.295E-08<br>al Factor (K):<br>and R <sub>1</sub> = initial<br>Linear, P = G(<br>Polynomial, P =<br>kPa or psi. Barometr | B:<br>0.008173 (kPa/ °<br>eld zero reading in<br>B:<br>-0.001185 (psi/ °<br>field zero reading i<br>$R_1 - R_0$ )+K( $T_1 - T_0$ )<br>= $AR_1^2 + BR_1 + C$ -<br>ic compensation is not re | <u>-0.04485</u><br>C)<br>to the polynom<br><u>-0.006504</u><br>C)<br>nto the polyno<br>(S 1 - S 0)*<br>+ K(T1 - T0 )-(S<br>quired with vented | C:<br>mial equation<br>C:<br>mial equation          |                                                 |

|                                                | Model Number:                                 | 4500AL-170 k                                  | Pa                                                | Date of Calib                                                                   | ration: <u>Ap</u>                                | ril 06, 2016<br>idated as of 05/06/2016             |                                                 |
|------------------------------------------------|-----------------------------------------------|-----------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------|-------------------------------------------------|
|                                                | Serial Number:                                | 1610335                                       |                                                   | Tempe                                                                           | rature:                                          | 21.60 °C                                            |                                                 |
| Calibra                                        | ation Instruction:                            | W Pressure Tran                               | sducers                                           | Barometric Pro                                                                  | essure: 10                                       | 01.3 mbar                                           |                                                 |
|                                                | Cable Length:                                 | 60 feet                                       | <u> </u>                                          | Tech                                                                            | nician: Kerli                                    | 4 Rogers                                            |                                                 |
| Applied<br>Pressure<br>(kPa)                   | Gage<br>Reading<br>1st Cycle                  | Gage<br>Reading<br>2nd Cycle                  | Average<br>Gage<br>Reading                        | Calculated<br>Pressure<br>(Linear)                                              | Error<br>Linear<br>(%FS)                         | Calculated<br>Pressure<br>(Polynomial)              | Error<br>Polynomial<br>(%FS)                    |
| 0.0<br>34.0<br>68.0<br>102.0<br>136.0<br>170.0 | 10044<br>9333<br>8619<br>7902<br>7181<br>6454 | 10045<br>9334<br>8620<br>7903<br>7182<br>6455 | 10045<br>9334<br>8620<br>7903<br>7182<br>6455     | 0.260<br>33.93<br>67.74<br>101.7<br>135.8<br>170.3                              | 0.15<br>-0.04<br>-0.14<br>-0.16<br>-0.08<br>0.18 | -0.019<br>34.01<br>68.01<br>102.0<br>135.9<br>170.0 | -0.01<br>0.01<br>0.02<br>-0.01<br>-0.03<br>0.01 |
|                                                | Calculate (                                   | Thermal                                       | Factor (K):                                       | 0.02673 (kPa/ °(                                                                | C)<br>to the polynom                             | ial equation                                        |                                                 |
| (psi) Linea<br>Polynon                         | r Gage Factor (G)<br>nial Gage Factors:       | : -0.006869<br>A:_                            | _(psi/ digit)<br>_2.54E-08                        | B:                                                                              | -0.006449                                        | C:                                                  |                                                 |
|                                                | Calculate                                     | Thern<br>C by setting P=0                     | aal Factor (K): _<br>and R <sub>1</sub> = initial | 0.003877 (psi/ %)<br>field zero reading i                                       | C)<br>nto the polyno                             | mial equation                                       |                                                 |
|                                                | d Pressures:                                  |                                               | Linear, P = G(                                    | $\mathbf{R}_1 \cdot \mathbf{R}_0 + \mathbf{K}(\mathbf{T}_1 \cdot \mathbf{T}_0)$ | )-(S <sub>1</sub> -S <sub>0</sub> )*             | -S )*                                               |                                                 |
| Calculate                                      |                                               |                                               | roiynomial, P =                                   | $-AK_1 + BK_1 + C$                                                              | quired with vented                               | 1 <sup>-3</sup> 0 <sup>7</sup>                      |                                                 |
| Calculate                                      | *Barometric                                   | pressures expressed in                        | ra a or por cononion                              |                                                                                 |                                                  |                                                     |                                                 |

|                                                                 |                                                                                                                            |                                                                                                      |                                                                                                                                                                                                                                 | A 44 - 10 - 10                                                                                                                                                                                                                                                                      |                                                                                                                                                                         |                                                                     |                                                |
|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------|
|                                                                 | Model Number:                                                                                                              | 4500AL-170 k                                                                                         | Pa                                                                                                                                                                                                                              | Date of Calib<br>This calibration h                                                                                                                                                                                                                                                 | pration: <u>Ap</u><br>as been verified/val                                                                                                                              | ril 06, 2016<br>idated as of 05/06/2016                             |                                                |
|                                                                 | Serial Number: _                                                                                                           | 1610336                                                                                              |                                                                                                                                                                                                                                 | Tempe                                                                                                                                                                                                                                                                               | erature:                                                                                                                                                                | 21.60 °C                                                            |                                                |
| Calibra                                                         | ation Instruction:                                                                                                         | W Pressure Trans                                                                                     | sducers                                                                                                                                                                                                                         | Barometric Pro                                                                                                                                                                                                                                                                      | essure: 10                                                                                                                                                              | 01.3 mbar                                                           |                                                |
|                                                                 | Cable Length:                                                                                                              | 60 feet                                                                                              |                                                                                                                                                                                                                                 | Tech                                                                                                                                                                                                                                                                                | nician: Ker                                                                                                                                                             | y Rogers                                                            |                                                |
| Applied<br>Pressure<br>(kPa)                                    | Gage<br>Reading<br>1st Cycle                                                                                               | Gage<br>Reading<br>2nd Cycle                                                                         | Average<br>Gage<br>Reading                                                                                                                                                                                                      | Calculated<br>Pressure<br>(Linear)                                                                                                                                                                                                                                                  | Error<br>Linear<br>(%FS)                                                                                                                                                | Calculated<br>Pressure<br>(Polynomial)                              | Error<br>Polynomial<br>(%FS)                   |
| 0.0<br>34.0<br>68.0<br>102.0<br>136.0<br>170.0                  | 9677<br>8995<br>8309<br>7619<br>6926<br>6228                                                                               | 9678<br>8996<br>8310<br>7620<br>6927<br>6229                                                         | 9678<br>8996<br>8310<br>7620<br>6927<br>6229                                                                                                                                                                                    | 0.320<br>33.93<br>67.74<br>101.7<br>135.9<br>170.3                                                                                                                                                                                                                                  | 0.19<br>-0.04<br>-0.14<br>-0.14<br>-0.05<br>0.19                                                                                                                        | 0.002<br>33.98<br>67.98<br>102.0<br>136.0<br>170.0                  | 0.00<br>-0.01<br>0.00<br>0.01<br>-0.01<br>0.00 |
| (kPa) Linea<br>Polynomia                                        | r Gage Factor (G<br>I Gage factors:                                                                                        | ): <u>-0.04928 (</u><br>A: <u></u>                                                                   | kPa/ digit)<br>-1.975E-07                                                                                                                                                                                                       | B:                                                                                                                                                                                                                                                                                  | -0.04614                                                                                                                                                                | C:                                                                  |                                                |
| (kPa) Linea<br>Polynomia                                        | r Gage Factor (G<br>I Gage factors:<br>Calculate (                                                                         | ):A:<br>A:<br>Thermal<br>C by setting P=0 a                                                          | kPa/ digit)<br>- <u>1.975E-07</u><br>Factor (K): <u>-</u><br>nd R <sub>1</sub> = initial fi                                                                                                                                     | B:                                                                                                                                                                                                                                                                                  | -0.04614<br>C)<br>to the polynom                                                                                                                                        | C:                                                                  |                                                |
| (kPa) Linea<br>Polynomia<br>(psi) Linea<br>Polynon              | r Gage Factor (G<br>l Gage factors:<br>Calculate C<br>r Gage Factor (G)<br>nial Gage Factors:                              | ):0.04928 (<br>A:<br>Thermal<br>C by setting P=0 a<br>:0.007148<br>A:                                | kPa/ digit)<br>- <u>1.975E-07</u><br>Factor (K):<br>nd R <sub>1</sub> = initial fi<br>_(psi/ digit)<br><u>2.864E-08</u>                                                                                                         | B:                                                                                                                                                                                                                                                                                  | <u>-0.04614</u><br>C)<br>to the polynom<br><u>-0.006692</u>                                                                                                             | C:<br>nial equation<br>C:                                           |                                                |
| (kPa) Linea<br>Polynomia<br>(psi) Linea<br>Polynon              | r Gage Factor (G<br>l Gage factors:<br>Calculate (<br>r Gage Factor (G)<br>nial Gage Factors:<br>Calculate                 | ):                                                                                                   | kPa/ digit)<br>- <u>1.975E-07</u><br>Factor (K):<br>nd R <sub>1</sub> = initial fi<br>_(psi/ digit)<br>- <u>2.864E-08</u><br>aal Factor (K):<br>and R <sub>1</sub> = initial                                                    | B:<br>0.03269 (kPa/ %<br>eld zero reading in<br>B:<br>-0.004741 (psi/ %<br>field zero reading i                                                                                                                                                                                     | <u>-0.04614</u><br>C)<br>ito the polynom<br><u>-0.006692</u><br>C)<br>into the polyno                                                                                   | C:<br>nial equation<br>C:<br>mial equation                          |                                                |
| (kPa) Linea<br>Polynomia<br>(psi) Linea<br>Polynon<br>Calculate | r Gage Factor (G<br>l Gage factors:<br>Calculate (<br>r Gage Factor (G)<br>nial Gage Factors:<br>Calculate<br>d Pressures: | ):0.04928 (<br>A:<br>Thermal<br>C by setting P=0 a<br>::0.007148<br>A:_<br>Therm<br>C by setting P=0 | kPa/ digit)<br>-1.975E-07<br>Factor (K):<br>nd $R_1 = initial fi$<br>_(psi/ digit)<br>-2.864E-08<br>al Factor (K):<br>and $R_1 = initial$<br>Linear, $P = G($                                                                   | B:                                                                                                                                                                                                                                                                                  | <u>-0.04614</u><br>C)<br>ito the polynom<br><u>-0.006692</u><br>C)<br>into the polyno                                                                                   | C:<br>nial equation<br>C:<br>mial equation                          |                                                |
| (kPa) Linea<br>Polynomia<br>(psi) Linea<br>Polynon<br>Calculate | r Gage Factor (G<br>I Gage factors:<br>Calculate C<br>r Gage Factor (G)<br>hial Gage Factors:<br>Calculate<br>d Pressures: | ):                                                                                                   | kPa/ digit)<br>-1.975E-07<br>Factor (K):<br>nd R <sub>1</sub> = initial fi<br>_(psi/ digit)<br>-2.864E-08<br>tal Factor (K):<br>and R <sub>1</sub> = initial<br>Linear, P = G(<br>Polynomial, P =<br>tal kPa or psi. Barometric | B:<br>0.03269 (kPa/ $^{\circ}$ )<br>eld zero reading in<br>B:<br>-0.004741 (psi/ $^{\circ}$ )<br>field zero reading i<br>R <sub>1</sub> -R <sub>0</sub> )+K(T <sub>1</sub> -T <sub>0</sub> )<br>= AR <sub>1</sub> <sup>2</sup> + BR <sub>1</sub> + C =<br>ic compensation is not re | <u>-0.04614</u><br>C)<br>to the polynom<br><u>-0.006692</u><br>C)<br>into the polyno<br>)-(S <sub>1</sub> -S <sub>0</sub> )*<br>+ K(T <sub>1</sub> -T <sub>0</sub> )-(S | C:<br>nial equation<br>C:<br>mial equation<br>t-S)*<br>transducers. |                                                |

|                                                | Vibi                                         | rating Wire                                  | Pressure Tr                                            | ansducer Cal                                                     | ibration R                                      | eport                                               |                                                 |
|------------------------------------------------|----------------------------------------------|----------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------|-------------------------------------------------|
|                                                | Model Number:                                | 4500AL-170 k                                 | Pa                                                     | Date of Calib<br>This calibration h                              | oration: Ap                                     | ril 06, 2016<br>idated as of 05/06/2016             |                                                 |
|                                                | Serial Number:                               | 1610337                                      |                                                        | Tempe                                                            | rature:                                         | 21.60 °C                                            |                                                 |
| Calibra                                        | tion Instruction:                            | W Pressure Tran                              | sducers                                                | Barometric Pr                                                    | essure: 10                                      | 01.3 mbar                                           |                                                 |
|                                                | Cable Length:                                | 60 feet                                      | -                                                      | Tech                                                             | nician: Kall                                    | Rogen                                               | -                                               |
| Applied<br>Pressure<br>(kPa)                   | Gage<br>Reading<br>1st Cycle                 | Gage<br>Reading<br>2nd Cycle                 | Average<br>Gage<br>Reading                             | Calculated<br>Pressure<br>(Linear)                               | Error<br>Linear<br>(%FS)                        | Calculated<br>Pressure<br>(Polynomial)              | Error<br>Polynomial<br>(%FS)                    |
| 0.0<br>34.0<br>68.0<br>102.0<br>136.0<br>170.0 | 9960<br>9241<br>8522<br>7799<br>7071<br>6339 | 9961<br>9243<br>8523<br>7800<br>7072<br>6340 | 9961<br>9242<br>8523<br>7800<br>7072<br>6340           | 0.258<br>33.99<br>67.78<br>101.7<br>135.9<br>170.3               | 0.15<br>0.00<br>-0.12<br>-0.15<br>-0.04<br>0.18 | -0.030<br>34.04<br>67.99<br>101.9<br>136.0<br>170.0 | -0.02<br>0.03<br>0.01<br>-0.02<br>-0.01<br>0.01 |
|                                                | Calculate C                                  | Thermal<br>by setting P=0 a                  | Factor (K): <u>0</u><br>nd R <sub>1</sub> = initial fi | .0009754 (kPa/ %                                                 | C)<br>to the polynom                            | ial equation                                        |                                                 |
| (psi) Linea                                    | r Gage Factor (G)                            | :0.006810                                    | _(psi/ digit)                                          |                                                                  |                                                 |                                                     |                                                 |
| Polynom                                        | iial Gage Factors:                           | A:                                           | -2.324E-08                                             | B:                                                               | -0.006431                                       | C:                                                  |                                                 |
|                                                | Calculate                                    | C by setting P=0                             | and $R_1 = initial$                                    | field zero reading i                                             | into the polyno                                 | mial equation                                       |                                                 |
| Calculate                                      | d Pressures:                                 |                                              | Linear, P = G(                                         | $\mathbf{R}_1 - \mathbf{R}_0$ )+K( $\mathbf{T}_1 - \mathbf{T}_0$ | )-(S <sub>1</sub> -S <sub>0</sub> )*            | - 2                                                 |                                                 |
|                                                | *Barometric                                  | pressures expressed in                       | Polynomial, P =                                        | $= \mathbf{AR}_{1}^{2} + \mathbf{BR}_{1} + \mathbf{C}$           | + $K(T_1 - T_0)$ -(S)                           | 1 -S <sub>0</sub> )*<br>transducers:                |                                                 |
| Factory Zer                                    | o Reading:                                   | 9992                                         | Femperature: _                                         | 21.5 °C                                                          | Barome                                          | ter: <u>988.7</u> n                                 | ıbar                                            |
|                                                |                                              |                                              |                                                        |                                                                  |                                                 |                                                     |                                                 |

|                                                | Model Number:                                                                                    | 4500AL-170 k                                                                                              | Pa                                                                                                                                                    | Date of Calib                                      | ration: <u>Ap</u>                                                                                                                         | ril 06, 2016                                                        |                                               |
|------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------|
|                                                | Serial Number:                                                                                   | 1610338                                                                                                   |                                                                                                                                                       | This calibration h<br>Tempe                        | as been verified/val                                                                                                                      | idated as of 05/06/2016<br>21.60 °C                                 |                                               |
| Calibra                                        | tion Instruction:                                                                                | VW Pressure Tran                                                                                          | sducers                                                                                                                                               | Barometric Pro                                     | essure: 10                                                                                                                                | 01.3 mbar                                                           |                                               |
|                                                | Cable Length:                                                                                    | 60 feet                                                                                                   |                                                                                                                                                       | Tech                                               | nician: Kili                                                                                                                              | y Rogers                                                            | -                                             |
| Applied<br>Pressure<br>(kPa)                   | Gage<br>Reading<br>1st Cycle                                                                     | Gage<br>Reading<br>2nd Cycle                                                                              | Average<br>Gage<br>Reading                                                                                                                            | Calculated<br>Pressure<br>(Linear)                 | Error<br>Linear<br>(%FS)                                                                                                                  | Calculated<br>Pressure<br>(Polynomial)                              | Error<br>Polynomial<br>(%FS)                  |
| 0.0<br>34.0<br>68.0<br>102.0<br>136.0<br>170.0 | 9932<br>9218<br>8501<br>7779<br>7054<br>6325                                                     | 9933<br>9219<br>8502<br>7780<br>7055<br>6326                                                              | 9933<br>9219<br>8502<br>7780<br>7055<br>6326                                                                                                          | 0.306<br>33.95<br>67.74<br>101.8<br>135.9<br>170.3 | 0.18<br>-0.03<br>-0.14<br>-0.13<br>-0.03<br>0.18                                                                                          | 0.000<br>34.00<br>67.96<br>102.0<br>136.0<br>170.0                  | 0.00<br>0.00<br>-0.01<br>0.01<br>0.00<br>0.00 |
|                                                |                                                                                                  | Thermal                                                                                                   | Factor (K):                                                                                                                                           | 0.02762 (kPa/ %                                    | C)                                                                                                                                        |                                                                     |                                               |
|                                                | Calculate (                                                                                      | C by setting P=0 a                                                                                        | nd R <sub>1</sub> = initial fi                                                                                                                        | eld zero reading in                                | to the polynom                                                                                                                            | ial equation                                                        |                                               |
| (psi) Linea<br>Polynon                         | Calculate (<br>r Gage Factor (G<br>nial Gage Factors                                             | C by setting P=0 a<br>):                                                                                  | nd R <sub>1</sub> = initial fi<br>_(psi/ digit)<br>-2.479E-08                                                                                         | eld zero reading in<br>B:_                         | to the polynon<br>-0.006431                                                                                                               | ial equation C:                                                     |                                               |
| (psi) Linea<br>Polynon                         | Calculate (<br>r Gage Factor (G<br>nial Gage Factors<br>Calculate                                | C by setting P=0 a<br>):<br>:A:<br>Therm<br>C by setting P=0                                              | nd R <sub>1</sub> = initial fi<br>_(psi/ digit)<br>2.479E-08<br>al Factor (K): _<br>and R <sub>1</sub> = initial                                      | eld zero reading in<br>B:                          | to the polynom<br>-0.006431<br>C)<br>into the polyno                                                                                      | nial equationC:                                                     |                                               |
| (psi) Linea<br>Polynon<br>Calculate            | Calculate (<br>r Gage Factor (G)<br>nial Gage Factors<br>Calculate<br>d Pressures:               | C by setting P=0 a<br>):                                                                                  | nd $R_1 = initial fi$<br>_(psi/ digit)<br>-2.479E-08<br>aal Factor (K): _<br>and $R_1 = initial$<br>Linear, P = G(                                    | eld zero reading in<br>B:                          | to the polynom<br>-0.006431<br>C)<br>into the polyno<br>)-(S <sub>1</sub> -S <sub>0</sub> )*                                              | ial equationC:                                                      |                                               |
| (psi) Linea<br>Polynon<br>Calculate            | Calculate (<br>r Gage Factor (G)<br>nial Gage Factors<br>Calculate<br>d Pressures:<br>*Barometri | C by setting P=0 a<br>: <u>-0.006834</u><br>: A:<br>Therm<br>C by setting P=0<br>c pressures expressed in | nd R <sub>1</sub> = initial fi<br>_(psi/ digit)<br>2.479E-08<br>al Factor (K): _<br>and R <sub>1</sub> = initial<br>Linear, P = G(<br>Polynomial, P = | eld zero reading in<br>B:                          | to the polynom<br>-0.006431<br>C)<br>into the polyno<br>)-(S <sub>1</sub> -S <sub>0</sub> )*<br>+ $K(T_1-T_0)$ -(S<br>iquired with vented | mial equation<br>C:<br>mial equation<br>$(1-S_0)^*$<br>transducers. |                                               |

|                                                                              | Vib                                                                                                                                  | rating Wire                                                                                                                                           | Pressure Tr                                                                                                                                                                                            | ansducer Cal                                                                                                                                                                          | libration R                                                                                                                                                                     | eport                                      |                                                  |
|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------|
|                                                                              | Model Number:                                                                                                                        | 4500AL-170 k                                                                                                                                          | kPa                                                                                                                                                                                                    | Date of Calib<br>This calibration h                                                                                                                                                   | oration: Ap                                                                                                                                                                     | ril 06, 2016<br>idated as of 05/06/2016    |                                                  |
|                                                                              | Serial Number: _                                                                                                                     | 1610339                                                                                                                                               | <u></u>                                                                                                                                                                                                | Tempe                                                                                                                                                                                 | erature:                                                                                                                                                                        | 21.60 °C                                   |                                                  |
| Calibra                                                                      | tion Instruction:                                                                                                                    | VW Pressure Tran                                                                                                                                      | sducers                                                                                                                                                                                                | Barometric Pr                                                                                                                                                                         | essure: 10                                                                                                                                                                      | 01.3 mbar                                  |                                                  |
|                                                                              | Cable Length:                                                                                                                        | 60 feet                                                                                                                                               |                                                                                                                                                                                                        | Tech                                                                                                                                                                                  | mician: Kell                                                                                                                                                                    | Rogers                                     |                                                  |
| Applied<br>Pressure<br>(kPa)                                                 | Gage<br>Reading<br>1st Cycle                                                                                                         | Gage<br>Reading<br>2nd Cycle                                                                                                                          | Average<br>Gage<br>Reading                                                                                                                                                                             | Calculated<br>Pressure<br>(Linear)                                                                                                                                                    | Error<br>Linear<br>(%FS)                                                                                                                                                        | Calculated<br>Pressure<br>(Polynomial)     | Error<br>Polynomial<br>(%FS)                     |
| 0.0<br>34.0<br>68.0<br>102.0<br>136.0                                        | 9790<br>9053<br>8314<br>7569<br>6819                                                                                                 | 9792<br>9054<br>8315<br>7571<br>6820                                                                                                                  | 9791<br>9054<br>8315<br>7570<br>6820                                                                                                                                                                   | 0.319<br>33.98<br>67.70<br>101.7<br>135.9                                                                                                                                             | 0.19<br>-0.01<br>-0.16<br>-0.17<br>-0.02<br>0.19                                                                                                                                | -0.019<br>34.04<br>67.96<br>101.9<br>136.0 | -0.01<br>0.02<br>-0.01<br>-0.02<br>0.01<br>-0.01 |
| 170.0<br>(kPa) Linea<br>Polynomial                                           | 6066<br>r Gage Factor (G<br>Gage factors:                                                                                            | 6067<br>():<br>A:                                                                                                                                     | 6067<br>(kPa/ digit)<br>-1.794E-07                                                                                                                                                                     | B:                                                                                                                                                                                    | -0.04279                                                                                                                                                                        | C:                                         |                                                  |
| 170.0<br>(kPa) Linear<br>Polynomial                                          | 6066<br>r Gage Factor (G<br>Gage factors:<br>Calculate                                                                               | 6067<br>():0.04564 (<br>A:<br>Thermal<br>C by setting P=0 a                                                                                           | 6067<br>(kPa/ digit)<br>-1.794E-07<br>Factor (K):<br>and R <sub>1</sub> = initial fi                                                                                                                   | B:                                                                                                                                                                                    | -0.04279<br>C)                                                                                                                                                                  | C:                                         |                                                  |
| 170.0<br>(kPa) Linear<br>Polynomial<br>(psi) Linear                          | 6066<br>r Gage Factor (G<br>Gage factors:<br>Calculate<br>r Gage Factor (G                                                           | 6067<br>(): -0.04564 (<br>A: -<br>Thermal<br>C by setting P=0 a<br>): -0.006619                                                                       | 6067<br>(kPa/ digit)<br>-1.794E-07<br>Factor (K):<br>and R <sub>1</sub> = initial fi<br>_(psi/ digit)                                                                                                  | B:                                                                                                                                                                                    | -0.04279<br>C)                                                                                                                                                                  | C:                                         |                                                  |
| 170.0<br>(kPa) Linear<br>Polynomial<br>(psi) Linear<br>Polynom               | 6066<br>• Gage Factor (G<br>Gage factors:<br>Calculate<br>• Gage Factor (G<br>ial Gage Factors                                       | 6067<br>(): -0.04564 (<br>A:<br>Thermal<br>C by setting P=0 a<br>(): -0.006619<br>:: A:                                                               | 6067<br>(kPa/ digit)<br>-1.794E-07<br>Factor (K):<br>and R <sub>1</sub> = initial fi<br>_(psi/ digit)<br>-2.603E-08                                                                                    | B:                                                                                                                                                                                    | -0.04279<br>C)<br>ito the polynom<br>-0.006207                                                                                                                                  | C:                                         |                                                  |
| 170.0<br>(kPa) Linear<br>Polynomial<br>(psi) Linear<br>Polynom               | 6066<br>- Gage Factor (G<br>Gage factors:<br>Calculate<br>- Gage Factor (G<br>ial Gage Factors                                       | 6067<br>(): -0.04564 (<br>A: -<br>Thermal<br>C by setting P=0 a<br>(): -0.006619<br>:: A:<br>Therm                                                    | 6067<br>(kPa/ digit)<br>-1.794E-07<br>Factor (K):<br>and R <sub>1</sub> = initial fi<br>_(psi/ digit)<br>-2.603E-08<br>nal Factor (K): _                                                               | B:                                                                                                                                                                                    | -0.04279<br>C)<br>nto the polynom<br>-0.006207<br>C)                                                                                                                            | C:                                         |                                                  |
| 170.0<br>(kPa) Linear<br>Polynomial<br>(psi) Linear<br>Polynom               | 6066<br>Gage Factor (G<br>Gage factors:<br>Calculate<br>Gage Factor (G<br>ial Gage Factors<br>Calculate                              | 6067<br>(): -0.04564 (<br>A:<br>Thermal<br>C by setting P=0 a<br>(): -0.006619<br>:: A:<br>Therm<br>e C by setting P=0                                | 6067<br>(kPa/ digit)<br>-1.794E-07<br>Factor (K):<br>and R <sub>1</sub> = initial fi<br>_(psi/ digit)<br>-2.603E-08<br>nal Factor (K): _<br>and R <sub>1</sub> = initial                               | B:                                                                                                                                                                                    | -0.04279<br>C)<br>nto the polynom<br>-0.006207<br>°C)<br>into the polyno                                                                                                        | C:                                         |                                                  |
| 170.0<br>(kPa) Linear<br>Polynomial<br>(psi) Linear<br>Polynom<br>Calculated | 6066<br>Gage Factor (G<br>Gage factors:<br>Calculate<br>Gage Factor (G<br>ial Gage Factors<br>Calculate<br>Calculate                 | 6067<br>(): -0.04564 (<br>A:                                                                                                                          | 6067<br>(kPa/ digit)<br>-1.794E-07<br>Factor (K):<br>and R <sub>1</sub> = initial fi<br>_(psi/ digit)<br>-2.603E-08<br>nal Factor (K):<br>and R <sub>1</sub> = initial<br>Linear, P = G(               | B:                                                                                                                                                                                    | -0.04279<br>C)<br>ito the polynom<br>-0.006207<br>°C)<br>into the polyno<br>)-(S 1 - S 0)*                                                                                      | C:                                         |                                                  |
| 170.0<br>(kPa) Linear<br>Polynomial<br>(psi) Linear<br>Polynom<br>Calculated | 6066<br>Gage Factor (G<br>Gage factors:<br>Calculate<br>Gage Factor (G<br>ial Gage Factors<br>Calculate<br>Calculate                 | 6067<br>(): -0.04564 (<br>A:<br>Thermal<br>C by setting P=0 a<br>(): -0.006619<br>:: A:<br>Therman<br>2 C by setting P=0                              | $6067$ (kPa/ digit) -1.794E-07 Factor (K): and R <sub>1</sub> = initial fi _(psi/ digit) -2.603E-08 nal Factor (K): and R <sub>1</sub> = initial Linear, P = G( Polynomial, P =                        | B:                                                                                                                                                                                    | -0.04279<br>C)<br>to the polynom<br>-0.006207<br>PC)<br>into the polyno<br>)-(S 1 -S 0)*<br>+ K(T1-T0)-(S                                                                       | C:                                         |                                                  |
| 170.0<br>(kPa) Linear<br>Polynomial<br>(psi) Linear<br>Polynom<br>Calculated | 6066<br>Gage Factor (G<br>Gage factors:<br>Calculate<br>Gage Factor (G<br>ial Gage Factors<br>Calculate<br>d Pressures:<br>*Barometr | 6067<br>(): -0.04564 (<br>A: -<br>Thermal<br>C by setting P=0 a<br>(): -0.006619<br>:: A:<br>Therm<br>e C by setting P=0<br>ic pressures expressed in | $6067$ (kPa/ digit) -1.794E-07 Factor (K): and R <sub>1</sub> = initial fi _(psi/ digit) -2.603E-08 nal Factor (K): and R <sub>1</sub> = initial Linear, P = G( Polynomial, P = n kPa or psi. Baromete | B:<br>0.04082 (kPa/°)<br>eld zero reading in<br>B:<br>0.005921 (psi/°)<br>field zero reading i<br>$R_1 - R_0$ )+K( $T_1 - T_0$<br>= $AR_1^2 + BR_1 + C$<br>ric compensation is not re | -0.04279<br>C)<br>nto the polynom<br>-0.006207<br>C)<br>into the polyno<br>(S <sub>1</sub> -S <sub>0</sub> )*<br>+ K(T <sub>1</sub> -T <sub>0</sub> )-(S<br>equired with vented | C:<br>mial equation<br>C:<br>mial equation |                                                  |

|                                                | Model Number                                                                      | 4500A1 -170 k                                 | ·Da                                                                                                                         | Date of Calib                                                                                                                                              | ration: Ap                                                                                | ril 19, 2016                                        |                                                |  |
|------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------|--|
|                                                | -                                                                                 | 4300AL-170 K                                  | <u>1a</u>                                                                                                                   | This calibration has been verified/validated as of 05/06/2016         Temperature:       23.80 °C         Barometric Pressure:       996.8 mbar            |                                                                                           |                                                     |                                                |  |
|                                                | Serial Number:                                                                    | 1612710                                       |                                                                                                                             |                                                                                                                                                            |                                                                                           |                                                     |                                                |  |
| Calibra                                        | ation Instruction:                                                                | VW Pressure Trans                             | sducers                                                                                                                     |                                                                                                                                                            |                                                                                           |                                                     |                                                |  |
|                                                | Cable Length:                                                                     | 60 feet                                       |                                                                                                                             | Tech                                                                                                                                                       | nician: Kath                                                                              | Rogers                                              |                                                |  |
| Applied<br>Pressure<br>(kPa)                   | Gage<br>Reading<br>1st Cycle                                                      | Gage<br>Reading<br>2nd Cycle                  | Average<br>Gage<br>Reading                                                                                                  | Calculated<br>Pressure<br>(Linear)                                                                                                                         | Error<br>Linear<br>(%FS)                                                                  | Calculated<br>Pressure<br>(Polynomial)              | Error<br>Polynomial<br>(%FS)                   |  |
| 0.0<br>34.0<br>68.0<br>102.0<br>136.0<br>170.0 | 10055<br>9364<br>8670<br>7974<br>7271<br>6566                                     | 10057<br>9364<br>8670<br>7973<br>7271<br>6566 | 10056<br>9364<br>8670<br>7974<br>7271<br>6566                                                                               | 0.244<br>33.95<br>67.76<br>101.7<br>135.9<br>170.2                                                                                                         | 0.14<br>-0.03<br>-0.13<br>-0.17<br>-0.04<br>0.16                                          | -0.023<br>34.03<br>68.00<br>101.9<br>136.0<br>170.0 | -0.01<br>0.02<br>0.01<br>-0.03<br>0.00<br>0.01 |  |
|                                                | Calculate (                                                                       | Thermal<br>C by setting P=0 a                 | Factor (K): <u>-</u><br>nd R <sub>1</sub> = initial fi                                                                      | 0.05334 (kPa/ °(                                                                                                                                           | C)<br>to the polynom                                                                      | ial equation                                        |                                                |  |
|                                                |                                                                                   | : -0.007065                                   | _(psi/ digit)                                                                                                               | B.                                                                                                                                                         | -0.006641                                                                                 | C:                                                  |                                                |  |
| (psi) Linea<br>Polynon                         | r Gage Factor (G)<br>nial Gage Factors                                            | : A:_                                         | -2.55E-08                                                                                                                   |                                                                                                                                                            |                                                                                           |                                                     |                                                |  |
| (psi) Linea<br>Polynon                         | r Gage Factor (G)<br>nial Gage Factors<br>Calculate                               | : A:<br>Therm<br>C by setting P=0             | <u>-2.55E-08</u><br>all Factor (K):<br>and R <sub>1</sub> = initial                                                         | -0.007737_(psi/ %                                                                                                                                          | C)<br>nto the polyno                                                                      | mial equation                                       |                                                |  |
| (psi) Linea<br>Polynon<br>Calculate            | r Gage Factor (G)<br>nial Gage Factors<br>Calculate<br>d Pressures:               | : A:_<br>Therm<br>C by setting P=0            | $\frac{-2.55E-08}{100}$ and Factor (K):<br>and R <sub>1</sub> = initial<br>Linear, P = G(1)                                 | $\frac{-0.007737}{(\text{psi})^{\circ}}$ field zero reading i $R_1 - R_0 + K(T_1 - T_0)$                                                                   | C)<br>nto the polyno<br>)-(S <sub>1</sub> -S <sub>0</sub> )*<br>+ K/T -T -\/S             | mial equation                                       |                                                |  |
| (psi) Linea<br>Polynon<br>Calculate            | r Gage Factor (G)<br>nial Gage Factors<br>Calculate<br>d Pressures:<br>*Barometri | A:<br>Therm<br>C by setting P=0               | -2.55E-08<br>al Factor (K):<br>and R <sub>1</sub> = initial<br>Linear, P = G(1<br>Polynomial, P =<br>1 kPa or psi. Barometr | $\frac{-0.007737}{(\text{psi})^{\circ_{1}}}$ field zero reading i $R_{1} - R_{0} + K(T_{1} - T_{0})$ $= AR_{1}^{2} + BR_{1} + C$ ic compensation is not re | C)<br>nto the polyno<br>$(S_1 - S_0)^*$<br>+ $K(T_1 - T_0) - (S_1)$<br>quired with vented | mial equation<br>$(1 - S_0)^*$<br>transducers.      |                                                |  |

|                                                | Vit                                           | rating Wire                                   | Pressure Tr                                     | ansducer Cal                                                                                      | ibration R                                                                      | <u>eport</u>                                        |                                        |
|------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------|
| 1                                              | Model Number:                                 | 4500AL-170 k                                  | Pa                                              | Date of Calibration: April 19, 2016<br>This calibration has been verified/validated as of 05/06/2 |                                                                                 |                                                     |                                        |
|                                                | Serial Number:                                | x 1612711<br>h: VW Pressure Transducers       |                                                 | Tempe                                                                                             |                                                                                 |                                                     |                                        |
| Calibra                                        | tion Instruction:                             |                                               |                                                 | Barometric Pressure: 996.8 mbar                                                                   |                                                                                 |                                                     |                                        |
|                                                | Cable Length:                                 | 60 feet                                       |                                                 | Tech                                                                                              | nician: Kerli                                                                   | y Rogers                                            | -                                      |
| Applied<br>Pressure<br>(kPa)                   | Gage<br>Reading<br>1st Cycle                  | Gage<br>Reading<br>2nd Cycle                  | Average<br>Gage<br>Reading                      | Calculated<br>Pressure<br>(Linear)                                                                | Error<br>Linear<br>(%FS)                                                        | Calculated<br>Pressure<br>(Polynomial)              | Error<br>Polynomial<br>(%FS)           |
| 0.0<br>34.0<br>68.0<br>102.0<br>136.0<br>170.0 | 10220<br>9529<br>8835<br>8137<br>7436<br>6728 | 10221<br>9529<br>8835<br>8137<br>7436<br>6728 | 10221<br>9529<br>8835<br>8137<br>7436<br>6728   | 0.316<br>33.98<br>67.77<br>101.7<br>135.9<br>170.3                                                | 0.19<br>-0.01<br>-0.13<br>-0.14<br>-0.06<br>0.22                                | -0.023<br>34.02<br>68.00<br>102.0<br>135.9<br>170.0 | -0.01<br>0.01<br>0.00<br>-0.03<br>0.02 |
|                                                | Calculate                                     | Thermal<br>C by setting P=0 a                 | Factor (K):                                     | 0.06979 (kPa/ °<br>eld zero reading in                                                            | C)<br>to the polynom                                                            | ial equation                                        |                                        |
| (psi) Linear<br>Polynom                        | Gage Factor (C                                | i): <u>-0.007061</u><br>s: A:                 | (psi/ digit)<br>-2.843E-08                      | B:                                                                                                | -0.006579                                                                       | C:                                                  |                                        |
|                                                | Calculat                                      | Thern<br>e C by setting P=0                   | aal Factor (K):<br>and R <sub>1</sub> = initial | -0.01012 (psi/ °<br>field zero reading i                                                          | C)<br>nto the polyno                                                            | mial equation                                       |                                        |
| Calculate                                      | l Pressures:                                  |                                               | Linear, P = G(<br>Polynomial, P =               | $R_1 - R_0 + K(T_1 - T_0)$<br>= $AR_1^2 + BR_1 + C$                                               | )-(S <sub>1</sub> -S <sub>0</sub> )*<br>+ K(T <sub>1</sub> -T <sub>0</sub> )-(S | 1-S <sub>0</sub> )*                                 |                                        |
|                                                | *Barometr                                     | ic pressures expressed in                     | n kPa or psi. Barometi                          | ic compensation is not re                                                                         | quired with vented                                                              | transducers.                                        |                                        |
|                                                |                                               |                                               |                                                 | - 27 - 2                                                                                          |                                                                                 | and the second second                               |                                        |

|                                                | Model Number:                                                                                   | 4500AL-170 k                                                                              | Pa                                                                                                                                | Date of Calib                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ration: Ap                                                                                          | ril 19, 2016                                                           |                                                |  |
|------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------|--|
|                                                | -<br>Serial Number                                                                              | 1612712                                                                                   |                                                                                                                                   | This calibration has been verified/validated as of 05/06/2016<br>Temperature: <u>23.80 °C</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                     |                                                                        |                                                |  |
| 0.11                                           | -                                                                                               | 1012/12                                                                                   | 44.12                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                     |                                                                        |                                                |  |
| Calibra                                        | Cable Length:                                                                                   | V W Pressure Transducers                                                                  |                                                                                                                                   | Barometric Pressure: 996.8 mbar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                     |                                                                        |                                                |  |
|                                                | Cable Length                                                                                    | 00 1001                                                                                   | _                                                                                                                                 | Tech                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Terth                                                                                               | y Rogers                                                               | -                                              |  |
| Applied<br>Pressure<br>(kPa)                   | Gage<br>Reading<br>1st Cycle                                                                    | Gage<br>Reading<br>2nd Cycle                                                              | Average<br>Gage<br>Reading                                                                                                        | Calculated<br>Pressure<br>(Linear)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Error<br>Linear<br>(%FS)                                                                            | Calculated<br>Pressure<br>(Polynomial)                                 | Error<br>Polynomial<br>(%FS)                   |  |
| 0.0<br>34.0<br>68.0<br>102.0<br>136.0<br>170.0 | 9979<br>9285<br>8589<br>7887<br>7183<br>6478                                                    | 9980<br>9285<br>8589<br>7887<br>7183<br>6478                                              | 9980<br>9285<br>8589<br>7887<br>7183<br>6478                                                                                      | 0.267<br>33.97<br>67.75<br>101.8<br>136.0<br>170.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.16<br>-0.01<br>-0.13<br>-0.09<br>0.01<br>0.14                                                     | 0.008<br>34.00<br>67.93<br>102.0<br>136.0<br>169.9                     | 0.01<br>0.00<br>-0.03<br>0.01<br>0.03<br>-0.01 |  |
| 1 ory nomina                                   |                                                                                                 |                                                                                           |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ()                                                                                                  |                                                                        |                                                |  |
| , or y no minu                                 | Calculate (                                                                                     | Thermal<br>C by setting P=0 a                                                             | Factor (K): <u> </u>                                                                                                              | 0.05916 (kPa/ °)<br>eld zero reading in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | to the polynom                                                                                      | ial equation                                                           |                                                |  |
| (psi) Linea<br>Polynon                         | Calculate (<br>r Gage Factor (G<br>nial Gage Factors                                            | Thermal<br>C by setting P=0 a<br>): <u>-0.007039</u><br>: A:<br>Therm                     | Factor (K):<br>nd R <sub>1</sub> = initial fi<br>_(psi/ digit)<br>_2.151E-08<br>nal Factor (K):                                   | 0.05916 (kPa/ °d<br>eld zero reading in<br>B:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | to the polynon<br>-0.006685<br>C)                                                                   | nial equation                                                          |                                                |  |
| (psi) Linea<br>Polynon                         | Calculate (<br>r Gage Factor (G<br>nial Gage Factors<br>Calculate                               | Thermal<br>C by setting P=0 a<br>): <u>-0.007039</u><br>: A:<br>Therm<br>C by setting P=0 | Factor (K):<br>nd R <sub>1</sub> = initial fi<br>_(psi/ digit)<br>_2.151E-08<br>tal Factor (K): _<br>and R <sub>1</sub> = initial | eld zero reading in<br>B:B:B:B:B:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | to the polynon<br>-0.006685<br>C)<br>into the polyno                                                | nial equation<br>C:<br>mial equation                                   |                                                |  |
| (psi) Linea<br>Polynon<br>Calculate            | Calculate (<br>r Gage Factor (G<br>nial Gage Factors<br>Calculate<br>d Pressures:               | Thermal<br>C by setting P=0 a<br>: -0.007039<br>: A:<br>Therm<br>C by setting P=0         | Factor (K):<br>nd $R_1 = initial fi_(psi/ digit)2.151E-08tal Factor (K):and R_1 = initialLinear, P = G($                          | <u>0.05916</u> (kPa/ °<br>eld zero reading in<br><u>B:</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | to the polynon<br>-0.006685<br>C)<br>nto the polyno<br>)-(S <sub>1</sub> -S <sub>0</sub> )*         | nial equation<br>C:<br>mial equation                                   |                                                |  |
| (psi) Linea<br>Polynon<br>Calculate            | Calculate (<br>r Gage Factor (G<br>nial Gage Factors<br>Calculate<br>d Pressures:<br>*Barometri | Thermal<br>C by setting P=0 a<br>: <u>-0.007039</u><br>: A:<br>Therm<br>C by setting P=0  | Factor (K):<br>nd $R_1 = initial fi_(psi/ digit)2.151E-08tal Factor (K):and R_1 = initialLinear, P = G(Polynomial, P =$           | $\frac{0.05916}{(kPa/20)} (kPa/20)$ $\frac{1}{100} = \frac{1}{100} (kPa/20)$ $\frac{1}{100} (kPa/20)$ $\frac{1}{100$ | to the polynom<br>-0.006685<br>C)<br>into the polyno<br>$(S_1 - S_0)^*$<br>+ $K(T_1 - T_0) - (S_0)$ | mial equation<br>C:<br>mial equation<br>$a_1 - S_0$ )*<br>transducers. |                                                |  |

|                                                | <u>vibi</u>                                  | ating wire                                   | Pressure Tr                                                 | ansducer Cal                                                                                                                                    | Ibration R                                                                                            | eport                                              |                                                 |  |
|------------------------------------------------|----------------------------------------------|----------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------|--|
|                                                | Model Number:                                | 4500AL-170 k                                 | Pa                                                          | Date of Calibration: April 19, 2016<br>This calibration has been verified/validated as of 05/06/2016                                            |                                                                                                       |                                                    |                                                 |  |
|                                                | Serial Number:                               | 1612713                                      |                                                             | Temperature:   23.80   °C     Barometric Pressure:   996.8   mbar                                                                               |                                                                                                       |                                                    |                                                 |  |
| Calibra                                        | tion Instruction: <u>\</u>                   | W Pressure Trans                             | sducers                                                     |                                                                                                                                                 |                                                                                                       |                                                    |                                                 |  |
|                                                | Cable Length:                                | 60 feet                                      | _                                                           | Tech                                                                                                                                            | nician: Karl                                                                                          | y Rogens                                           |                                                 |  |
| Applied<br>Pressure<br>(kPa)                   | Gage<br>Reading<br>1st Cycle                 | Gage<br>Reading<br>2nd Cycle                 | Average<br>Gage<br>Reading                                  | Calculated<br>Pressure<br>(Linear)                                                                                                              | Error<br>Linear<br>(%FS)                                                                              | Calculated<br>Pressure<br>(Polynomial)             | Error<br>Polynomial<br>(%FS)                    |  |
| 0.0<br>34.0<br>68.0<br>102.0<br>136.0<br>170.0 | 9760<br>9048<br>8332<br>7611<br>6884<br>6156 | 9761<br>9048<br>8332<br>7611<br>6884<br>6156 | 9761<br>9048<br>8332<br>7611<br>6884<br>6156                | 0.354<br>33.95<br>67.70<br>101.7<br>136.0<br>170.3                                                                                              | 0.21<br>-0.03<br>-0.16<br>-0.17<br>0.00<br>0.19                                                       | 0.003<br>34.00<br>67.96<br>102.0<br>136.0<br>169.9 | 0.00<br>0.00<br>-0.01<br>-0.01<br>0.03<br>-0.01 |  |
|                                                | Calculate C                                  | Thermal<br>by setting P=0 a                  | Factor (K):                                                 | 0.02810 (kPa/ of                                                                                                                                | C)<br>to the polynom                                                                                  | ial equation                                       |                                                 |  |
| (psi) Linear                                   | r Gage Factor (G)<br>11al Gage Factors:      | : -0.006838<br>A:                            | _(psi/ digit)<br>-2.841E-08                                 | B:                                                                                                                                              | -0.006386                                                                                             | C:                                                 |                                                 |  |
| Tolynon                                        |                                              | Therm<br>C by setting P=0                    | al Factor (K): _<br>and R <sub>1</sub> = initial            | <u>-0.004076</u> (psi/ °<br>field zero reading i                                                                                                | C)<br>nto the polyno                                                                                  | mial equation                                      |                                                 |  |
| Torynom                                        | Calculate                                    |                                              |                                                             |                                                                                                                                                 |                                                                                                       |                                                    |                                                 |  |
| Calculate                                      | Calculate<br>d Pressures:                    |                                              | Linear, P = G(                                              | $\mathbf{R}_1 - \mathbf{R}_0 + \mathbf{K}(\mathbf{T}_1 - \mathbf{T}_0)$                                                                         | )-(S <sub>1</sub> -S <sub>0</sub> )*                                                                  | <b>a</b>                                           |                                                 |  |
| Calculate                                      | Calculate<br>d Pressures:<br>*Barometric     | pressures expressed in                       | Linear, P = G(<br>Polynomial, P =<br>1 kPa or psi. Barometr | $\mathbf{R}_1 - \mathbf{R}_0 + \mathbf{K}(\mathbf{T}_1 - \mathbf{T}_0)$<br>= $\mathbf{A}\mathbf{R}_1^2 + \mathbf{B}\mathbf{R}_1 + \mathbf{C}^2$ | )-(S <sub>1</sub> -S <sub>0</sub> )*<br>+ K(T <sub>1</sub> -T <sub>0</sub> )-(S<br>quired with vented | 1 -S 0)*<br>transducers.                           |                                                 |  |

|                                                |                                               |                                               |                                               | Date of Calib                                                                                                                                                                                     | vration: An                                      | ril 10, 2016                                        |                                                |  |
|------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------|------------------------------------------------|--|
|                                                | Model Number:                                 | 4500AL-170 k                                  | Pa                                            | Date of Calibration:       April 19, 2010         This calibration has been verified/validated as of 05/06/2016         Temperature:       23.80 °C         Barometric Pressure:       996.8 mbar |                                                  |                                                     |                                                |  |
|                                                | Serial Number:                                | 1612714                                       |                                               |                                                                                                                                                                                                   |                                                  |                                                     |                                                |  |
| Calibra                                        | tion Instruction:                             | W Pressure Trans                              | sducers                                       |                                                                                                                                                                                                   |                                                  |                                                     |                                                |  |
|                                                | Cable Length:                                 | 60 feet                                       | _                                             | Tech                                                                                                                                                                                              | nician: Kell                                     | h Rogers                                            | -                                              |  |
| Applied<br>Pressure<br>(kPa)                   | Gage<br>Reading<br>1st Cycle                  | Gage<br>Reading<br>2nd Cycle                  | Average<br>Gage<br>Reading                    | Calculated<br>Pressure<br>(Linear)                                                                                                                                                                | Error<br>Linear<br>(%FS)                         | Calculated<br>Pressure<br>(Polynomial)              | Error<br>Polynomial<br>(%FS)                   |  |
| 0.0<br>34.0<br>68.0<br>102.0<br>136.0<br>170.0 | 10112<br>9403<br>8691<br>7975<br>7255<br>6530 | 10112<br>9403<br>8691<br>7975<br>7255<br>6530 | 10112<br>9403<br>8691<br>7975<br>7255<br>6530 | 0.285<br>33.93<br>67.72<br>101.7<br>135.9<br>170.3                                                                                                                                                | 0.17<br>-0.04<br>-0.15<br>-0.16<br>-0.06<br>0.18 | -0.013<br>34.01<br>67.99<br>102.0<br>136.0<br>170.0 | -0.01<br>0.01<br>0.01<br>0.00<br>-0.01<br>0.01 |  |
|                                                | Calculate C                                   | Thermal                                       | Factor (K):                                   | 0.02065 (kPa/ %)<br>eld zero reading in                                                                                                                                                           | C)<br>to the polynom                             | ial equation                                        |                                                |  |
| (psi) Linear<br>Polynom                        | Gage Factor (G)                               | : -0.006883<br>A:                             | (psi/ digit)<br>-2.67E-08                     | B:                                                                                                                                                                                                | -0.006439                                        | C:                                                  |                                                |  |
|                                                | Calculate                                     | Therm<br>C by setting P=0                     | al Factor (K): _                              | -0.002995 (psi/ °                                                                                                                                                                                 | C)<br>into the polyno                            | mial equation                                       |                                                |  |
|                                                | Pressures:                                    | , <u>B</u>                                    | Linear, P = G(                                | R, -R, )+K(T, -T,                                                                                                                                                                                 | )-(S,-S <sub>n</sub> )*                          |                                                     |                                                |  |
| Calculated                                     |                                               |                                               | Polynomial, P =                               | $= AR_1^2 + BR_1 + C$                                                                                                                                                                             | + K(T <sub>1</sub> -T <sub>0</sub> )-(S          | 1 -S 0)*                                            |                                                |  |
| Calculated                                     |                                               |                                               |                                               |                                                                                                                                                                                                   |                                                  |                                                     |                                                |  |

|                                                |                                                                                                    |                                                                                                 |                                                                                                                                                              | Data of Calib                                                 | untiaus Aust                                                                                                                             | 1 10 2016                                           |                                                 |  |  |
|------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------|--|--|
|                                                | Model Number:                                                                                      | 4500AL-170 k                                                                                    | Pa                                                                                                                                                           | This calibration has been verified/validated as of 05/06/2016 |                                                                                                                                          |                                                     |                                                 |  |  |
|                                                | Serial Number:                                                                                     | 1612715                                                                                         |                                                                                                                                                              | Temperature: 23.80 °C                                         |                                                                                                                                          |                                                     |                                                 |  |  |
| Calibra                                        | ation Instruction:                                                                                 | W Pressure Trans                                                                                | sducers                                                                                                                                                      | Barometric Pressure: 996.8 mbar                               |                                                                                                                                          |                                                     |                                                 |  |  |
|                                                | Cable Length:                                                                                      | 60 feet                                                                                         | _                                                                                                                                                            | Tech                                                          | nician: Karl                                                                                                                             | y Rogers                                            | -                                               |  |  |
| Applied<br>Pressure<br>(kPa)                   | Gage<br>Reading<br>1st Cycle                                                                       | Gage<br>Reading<br>2nd Cycle                                                                    | Average<br>Gage<br>Reading                                                                                                                                   | Calculated<br>Pressure<br>(Linear)                            | Error<br>Linear<br>(%FS)                                                                                                                 | Calculated<br>Pressure<br>(Polynomial)              | Error<br>Polynomial<br>(%FS)                    |  |  |
| 0.0<br>34.0<br>68.0<br>102.0<br>136.0<br>170.0 | 9939<br>9228<br>8515<br>7797<br>7074<br>6348                                                       | 9940<br>9228<br>8515<br>7797<br>7074<br>6348                                                    | 9940<br>9228<br>8515<br>7797<br>7074<br>6348                                                                                                                 | 0.308<br>33.98<br>67.73<br>101.7<br>135.9<br>170.3            | 0.18<br>-0.01<br>-0.15<br>-0.16<br>-0.02<br>0.19                                                                                         | -0.019<br>34.03<br>67.97<br>102.0<br>136.0<br>170.0 | -0.01<br>0.02<br>-0.01<br>-0.01<br>0.01<br>0.00 |  |  |
|                                                |                                                                                                    | Thermal                                                                                         | Factor (K);                                                                                                                                                  | 0.009594 (kPa/ %<br>eld zero reading in                       | C)<br>to the polynom                                                                                                                     | ial equation                                        |                                                 |  |  |
|                                                | Calculate (                                                                                        | by setting P=0 a                                                                                | a start i start and a start                                                                                                                                  |                                                               |                                                                                                                                          |                                                     |                                                 |  |  |
| (psi) Linea<br>Polynon                         | Calculate (<br>r Gage Factor (G)<br>nial Gage Factors:                                             | C by setting P=0 a<br>: -0.006865<br>A:                                                         | _(psi/ digit)<br>-2.66E-08                                                                                                                                   | в:                                                            | -0.006432                                                                                                                                | C:                                                  |                                                 |  |  |
| (psi) Linea<br>Polynon                         | Calculate (<br>r Gage Factor (G)<br>nial Gage Factors:<br>Calculate                                | C by setting P=0 a<br>:                                                                         | (psi/ digit)<br><u>-2.66E-08</u><br>all Factor (K): _<br>and R <sub>1</sub> = initial                                                                        | B:                                                            | -0.006432<br>C)<br>nto the polyno                                                                                                        | C:                                                  |                                                 |  |  |
| (psi) Linea<br>Polynon<br>Calculate            | Calculate C<br>r Gage Factor (G)<br>nial Gage Factors:<br>Calculate<br>d Pressures:                | C by setting P=0 a<br>:                                                                         | $\frac{(\text{psi/digit})}{-2.66E-08}$ tal Factor (K):<br>and R <sub>1</sub> = initial<br>Linear, P = G(                                                     | B:                                                            | -0.006432<br>C)<br>nto the polyno<br>-(S <sub>1</sub> -S <sub>0</sub> )*                                                                 | C:<br>mial equation                                 |                                                 |  |  |
| (psi) Linea<br>Polynon<br>Calculate            | Calculate (<br>r Gage Factor (G)<br>nial Gage Factors:<br>Calculate<br>d Pressures:<br>*Barometrie | C by setting P=0 a<br>:0,006865<br>:A:<br>Therm<br>C by setting P=0<br>: pressures expressed ir | $\frac{1}{(\text{psi/digit})}$ $\frac{-2.66E-08}{(\text{main Factor (K): }_{1})}$ and R <sub>1</sub> = initial<br>Linear, P = G(1)<br>Polynomial, P = 10 (1) | B:                                                            | -0.006432<br>C)<br>nto the polyno<br>(S <sub>1</sub> -S <sub>0</sub> )*<br>+ K(T <sub>1</sub> -T <sub>0</sub> )-(S<br>quired with vented | C:<br>mial equation<br>$\tau^{-S_0}$ *              |                                                 |  |  |

|                                                | Model Number                                 | 4500 41 170 1                                | Da                                            | Date of Calib                                                                                                                                   | oration: Ap                                      | ril 19, 2016                                        |                                                 |  |
|------------------------------------------------|----------------------------------------------|----------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------|-------------------------------------------------|--|
|                                                | Moder Number                                 | 4300AL-170                                   |                                               | This calibration has been verified/validated as of 05/06/2016         Temperature:       23.80 °C         Barometric Pressure:       996.8 mbar |                                                  |                                                     |                                                 |  |
|                                                | Serial Number:                               | 1612716                                      |                                               |                                                                                                                                                 |                                                  |                                                     |                                                 |  |
| Calibra                                        | ation Instruction:                           | W Pressure Tran                              | sducers                                       |                                                                                                                                                 |                                                  |                                                     |                                                 |  |
|                                                | Cable Length:                                | 60 feet                                      |                                               | Tech                                                                                                                                            | nician: Karl                                     | Rogers                                              | -                                               |  |
| Applied<br>Pressure<br>(kPa)                   | Gage<br>Reading<br>1st Cycle                 | Gage<br>Reading<br>2nd Cycle                 | Average<br>Gage<br>Reading                    | Calculated<br>Pressure<br>(Linear)                                                                                                              | Error<br>Linear<br>(%FS)                         | Calculated<br>Pressure<br>(Polynomial)              | Error<br>Polynomial<br>(%FS)                    |  |
| 0.0<br>34.0<br>68.0<br>102.0<br>136.0<br>170.0 | 9909<br>9214<br>8516<br>7815<br>7110<br>6398 | 9910<br>9215<br>8516<br>7815<br>7110<br>6398 | 9910<br>9215<br>8516<br>7815<br>7110<br>6398  | 0.315<br>33.97<br>67.79<br>101.7<br>135.9<br>170.3                                                                                              | 0.19<br>-0.02<br>-0.11<br>-0.15<br>-0.06<br>0.22 | -0.022<br>34.01<br>68.02<br>102.0<br>135.9<br>170.0 | -0.01<br>0.01<br>0.03<br>-0.01<br>-0.03<br>0.02 |  |
|                                                | Calculate C                                  | Thermal                                      | Factor (K): <u></u>                           | 0.02196 (kPa/ °(                                                                                                                                | C)<br>to the polynom                             | ial equation                                        |                                                 |  |
| (psi) Linea<br>Polynon                         | r Gage Factor (G)<br>nial Gage Factors:      | : -0.007023<br>A:<br>Thern                   | _(psi/ digit)<br>-2.81E-08<br>nal Factor (K): | B:                                                                                                                                              | -0.006565<br>C)                                  | C;                                                  |                                                 |  |
|                                                | Calculate                                    | C by setting P=0                             | and R <sub>1</sub> = initial                  | field zero reading i                                                                                                                            | into the polyno                                  | mial equation                                       |                                                 |  |
|                                                | d Pressures:                                 |                                              | Linear, P = G(                                | $R_1 - R_0 + K(T_1 - T_0)$                                                                                                                      | )-(S <sub>1</sub> -S <sub>0</sub> )*             | 04.25                                               |                                                 |  |
| Calculate                                      |                                              |                                              | Polynomial, P =                               | = <b>AR</b> <sub>1</sub> <sup>2</sup> + <b>BR</b> <sub>1</sub> + <b>C</b> -<br>ic compensation is not re                                        | + $K(T_1 - T_0)$ -(S)                            | 1 -S <sub>0</sub> )*<br>transducers.                |                                                 |  |
| Calculate                                      | *Barometric                                  | pressures expressed in                       | h kPa or psi. Barometr                        |                                                                                                                                                 |                                                  |                                                     |                                                 |  |

|                                                |                                              | aning which                                  | riessure II                                              | ansoucer Cal                                                                                                                                                                                      | Ibration R                                      | eport                                              |                                                  |  |
|------------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------|--------------------------------------------------|--|
| 1                                              | Model Number:                                | 4500AL-170 k                                 | Pa                                                       | Date of Calibration:       April 19, 2016         This calibration has been verified/validated as of 05/06/2016         Temperature:       23.80 °C         Barometric Pressure:       996.8 mbar |                                                 |                                                    |                                                  |  |
|                                                | Serial Number:                               | 1612717                                      |                                                          |                                                                                                                                                                                                   |                                                 |                                                    |                                                  |  |
| Calibrat                                       | tion Instruction:                            | W Pressure Tran                              | sducers                                                  |                                                                                                                                                                                                   |                                                 |                                                    |                                                  |  |
|                                                | Cable Length:                                | 60 feet                                      | _                                                        | Tech                                                                                                                                                                                              | nician: Kath                                    | y Rogens                                           | 2                                                |  |
| Applied<br>Pressure<br>(kPa)                   | Gage<br>Reading<br>1st Cycle                 | Gage<br>Reading<br>2nd Cycle                 | Average<br>Gage<br>Reading                               | Calculated<br>Pressure<br>(Linear)                                                                                                                                                                | Error<br>Linear<br>(%FS)                        | Calculated<br>Pressure<br>(Polynomial)             | Error<br>Polynomial<br>(%FS)                     |  |
| 0.0<br>34.0<br>68.0<br>102.0<br>136.0<br>170.0 | 9832<br>9106<br>8375<br>7640<br>6897<br>6157 | 9833<br>9106<br>8376<br>7640<br>6897<br>6157 | 9833<br>9106<br>8376<br>7640<br>6897<br>6157             | 0.347<br>33.93<br>67.69<br>101.7<br>136.0<br>170.2                                                                                                                                                | 0.21<br>-0.04<br>-0.17<br>-0.17<br>0.04<br>0.16 | 0.020<br>33.98<br>67.94<br>101.9<br>136.1<br>169.9 | 0.01<br>-0.01<br>-0.02<br>-0.02<br>0.07<br>-0.03 |  |
|                                                | Calculate C                                  | Thermal<br>C by setting P=0 a                | Factor (K): <u>-</u> l<br>nd R <sub>1</sub> = initial fi | 0.009374 (kPa/ °(                                                                                                                                                                                 | C)<br>to the polynom                            | ial equation                                       |                                                  |  |
| (psi) Linear<br>Polynom                        | Gage Factor (G)<br>ial Gage Factors:         | : -0.006704<br>A:                            | _(psi/ digit)<br>-2.589E-08                              | B:                                                                                                                                                                                                | -0.006290                                       | C:                                                 |                                                  |  |
|                                                | Calculate                                    | C by setting P=0                             | and R <sub>1</sub> = initial                             | field zero reading i                                                                                                                                                                              | nto the polyno                                  | mial equation                                      |                                                  |  |
| Calculated                                     | Pressures:                                   |                                              | Linear, P = G(                                           | $\mathbf{R}_1 - \mathbf{R}_0 + \mathbf{K}(\mathbf{T}_1 - \mathbf{T}_0)$                                                                                                                           | )-(S <sub>1</sub> -S <sub>0</sub> )*            |                                                    |                                                  |  |
|                                                | *Barometric                                  | pressures expressed in                       | rolynomial, P =                                          | <b>AK</b> <sub>1</sub> + <b>BK</b> <sub>1</sub> + C -                                                                                                                                             | + $K(T_1 - T_0)$ -(S)<br>quired with vented t   | 1 <sup>-S</sup> <sub>0</sub> ) <sup>#</sup>        |                                                  |  |
|                                                |                                              |                                              |                                                          | 11 ( 00                                                                                                                                                                                           | Damara                                          | 099.7                                              | •                                                |  |

|                                                | <u></u>                                       | ating wire.                                   | ressure 11                                    | anouter Cal                                                                                                                                                                                       | INTALIOII A                                      | eport.                                              |                                                |  |
|------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------|------------------------------------------------|--|
|                                                | Model Number:                                 | 4500AL-170 k                                  | Pa                                            | Date of Calibration:       April 19, 2016         This calibration has been verified/validated as of 05/06/2016         Temperature:       23.80 °C         Barometric Pressure:       996.8 mbar |                                                  |                                                     |                                                |  |
|                                                | Serial Number:                                | 1612718                                       |                                               |                                                                                                                                                                                                   |                                                  |                                                     |                                                |  |
| Calibra                                        | tion Instruction:                             | WW Pressure Tran                              | sducers                                       |                                                                                                                                                                                                   |                                                  |                                                     |                                                |  |
|                                                | Cable Length:                                 | 60 feet                                       |                                               | Tech                                                                                                                                                                                              | nician: Karl                                     | y Rogers                                            | -                                              |  |
| Applied<br>ressure<br>(kPa)                    | Gage<br>Reading<br>1st Cycle                  | Gage<br>Reading<br>2nd Cycle                  | Average<br>Gage<br>Reading                    | Calculated<br>Pressure<br>(Linear)                                                                                                                                                                | Error<br>Linear<br>(%FS)                         | Calculated<br>Pressure<br>(Polynomial)              | Error<br>Polynomial<br>(%FS)                   |  |
| 0.0<br>34.0<br>68.0<br>102.0<br>136.0<br>170.0 | 10076<br>9378<br>8678<br>7975<br>7267<br>6556 | 10076<br>9378<br>8679<br>7975<br>7267<br>6556 | 10076<br>9378<br>8679<br>7975<br>7267<br>6556 | 0.241<br>33.95<br>67.73<br>101.7<br>135.9<br>170.2                                                                                                                                                | 0.14<br>-0.03<br>-0.15<br>-0.16<br>-0.04<br>0.16 | -0.019<br>34.03<br>67.98<br>102.0<br>136.0<br>170.0 | -0.01<br>0.02<br>0.00<br>-0.01<br>0.00<br>0.00 |  |
|                                                | Calculate C                                   | Thermal<br>C by setting P=0 a                 | Factor (K): <u> </u>                          | 0.05661 (kPa/ °(                                                                                                                                                                                  | C)<br>to the polynom                             | ial equation                                        |                                                |  |
| (psi) Lineai<br>Polynom                        | : Gage Factor (G)<br>ial Gage Factors:        | : <u>-0.007005</u><br>A:                      | _(psi/ digit)<br>_2.485E-08                   | B:                                                                                                                                                                                                | -0.006591                                        | C:                                                  |                                                |  |
|                                                | Calculate                                     | C by setting P=0                              | and R <sub>1</sub> = initial                  | field zero reading i                                                                                                                                                                              | C)<br>nto the polyno                             | mial equation                                       |                                                |  |
| Calculated                                     | d Pressures:                                  | - 1                                           | Linear, P = G(                                | $\mathbf{R}_{1} \cdot \mathbf{R}_{0} + \mathbf{K}(\mathbf{T}_{1} \cdot \mathbf{T}_{0})$                                                                                                           | $+(\mathbf{S}_1 - \mathbf{S}_0)^*$               | C 1#                                                |                                                |  |
|                                                | *Barometric                                   | pressures expressed in                        | n kPa or psi. Barometr                        | ic compensation is not re                                                                                                                                                                         | quired with vented (                             | ransducers.                                         |                                                |  |
|                                                |                                               |                                               |                                               | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1                                                                                                                                                          |                                                  |                                                     | _                                              |  |

|                                                | Model Number:                                 | 4500AL-170 k                                  | Pa                                                                                        | Date of Calib                                                                                                                                   | ration: Ap                                                                            | ril 19, 2016                                       |                                                 |  |
|------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------|--|
|                                                | Sarial Number                                 | 1612710                                       |                                                                                           | This calibration has been verified/validated as of 05/06/2016         Temperature:       23.80 °C         Barometric Pressure:       996.8 mbar |                                                                                       |                                                    |                                                 |  |
|                                                | Serial Number,                                | 1012/19                                       |                                                                                           |                                                                                                                                                 |                                                                                       |                                                    |                                                 |  |
| Calibra                                        | tion Instruction:                             | /W Pressure Trans                             | sducers                                                                                   |                                                                                                                                                 |                                                                                       |                                                    |                                                 |  |
|                                                | Cable Length:                                 | 60 feet                                       |                                                                                           | Tech                                                                                                                                            | nician: Kell                                                                          | y Rogers                                           | -                                               |  |
| Applied<br>Pressure<br>(kPa)                   | Gage<br>Reading<br>1st Cycle                  | Gage<br>Reading<br>2nd Cycle                  | Average<br>Gage<br>Reading                                                                | Calculated<br>Pressure<br>(Linear)                                                                                                              | Error<br>Linear<br>(%FS)                                                              | Calculated<br>Pressure<br>(Polynomial)             | Error<br>Polynomial<br>(%FS)                    |  |
| 0.0<br>34.0<br>68.0<br>102.0<br>136.0<br>170.0 | 10056<br>9343<br>8626<br>7904<br>7181<br>6453 | 10057<br>9343<br>8626<br>7904<br>7181<br>6453 | 10057<br>9343<br>8626<br>7904<br>7181<br>6453                                             | 0.259<br>33.91<br>67.73<br>101.8<br>135.9<br>170.2                                                                                              | 0.15<br>-0.05<br>-0.15<br>-0.11<br>-0.05<br>0.15                                      | 0.008<br>33.98<br>67.96<br>102.0<br>136.0<br>170.0 | 0.01<br>-0.01<br>-0.01<br>0.02<br>-0.01<br>0.00 |  |
|                                                | Calculate C                                   | Thermal<br>by setting P=0 a                   | Factor (K): <u> </u>                                                                      | 0.02882 (kPa/ °(                                                                                                                                | C)<br>to the polynom                                                                  | ial equation                                       |                                                 |  |
|                                                | r Gage Factor (G)<br>11al Gage Factors:       | : -0.006841<br>A:                             | _(psi/ digit)<br>-2.256E-08                                                               | B:                                                                                                                                              | -0.006469                                                                             | C:                                                 |                                                 |  |
| (psi) Linea<br>Polynon                         |                                               |                                               |                                                                                           | contract (pos                                                                                                                                   | -,                                                                                    |                                                    |                                                 |  |
| (psi) Linea<br>Polynon                         | Calculate                                     | C by setting P=0                              | and R <sub>1</sub> = initial                                                              | field zero reading i                                                                                                                            | nto the polyno                                                                        | mial equation                                      |                                                 |  |
| (psi) Linea<br>Polynon<br>Calculate            | Calculate<br>d Pressures:                     | C by setting P=0                              | and R <sub>1</sub> = initial<br>Linear, P = G()                                           | field zero reading i<br>R <sub>1</sub> -R <sub>0</sub> )+K(T <sub>1</sub> -T <sub>0</sub> )                                                     | nto the polyno<br>)-(S <sub>1</sub> -S <sub>0</sub> )*                                | mial equation                                      |                                                 |  |
| (psi) Linea<br>Polynon<br>Calculate            | Calculate<br>d Pressures:<br>*Barometric      | C by setting P=0                              | and R <sub>1</sub> = initial<br>Linear, P = G(<br>Polynomial, P =<br>kPa or psi. Barometr | field zero reading i<br>$R_1 - R_0 + K(T_1 - T_0)$<br>$= AR_1^2 + BR_1 + C$<br>ic compensation is not re-                                       | nto the polyno<br>$(S_1 - S_0)^*$<br>+ $K(T_1 - T_0) - (S_1)^*$<br>quired with vented | mial equation<br>$1 - S_0$ )*<br>transducers.      |                                                 |  |
|                                                  | <u></u>                                                                                                           | anng wire.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ressure II                                                                                                                                                          | ansulter Cal                                                                                                                                                                                                                                         | IN ALIVILA                                                                                                               | CPOIL                                                                |                                                 |
|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------|
|                                                  | Model Number:                                                                                                     | 4500AL-170 k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pa                                                                                                                                                                  | Date of Calib<br>This calibration h                                                                                                                                                                                                                  | eration: Ap                                                                                                              | ril 19, 2016<br>idated as of 05/06/2016                              |                                                 |
|                                                  | Serial Number:                                                                                                    | 1612720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                     | Tempe                                                                                                                                                                                                                                                | erature:                                                                                                                 | 23.80 °C                                                             |                                                 |
| Calibra                                          | ntion Instruction:                                                                                                | W Pressure Tran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | sducers                                                                                                                                                             | Barometric Pr                                                                                                                                                                                                                                        | essure: 99                                                                                                               | 96.8 mbar                                                            |                                                 |
|                                                  | Cable Length:                                                                                                     | 60 feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                   | Tech                                                                                                                                                                                                                                                 | nician: Karl                                                                                                             | Rogers                                                               | -                                               |
| Applied<br>Pressure<br>(kPa)                     | Gage<br>Reading<br>1st Cycle                                                                                      | Gage<br>Reading<br>2nd Cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Average<br>Gage<br>Reading                                                                                                                                          | Calculated<br>Pressure<br>(Linear)                                                                                                                                                                                                                   | Error<br>Linear<br>(%FS)                                                                                                 | Calculated<br>Pressure<br>(Polynomial)                               | Error<br>Polynomial<br>(%FS)                    |
| 0.0<br>34.0<br>68.0<br>102.0<br>136.0<br>170.0   | 9971<br>9283<br>8591<br>7895<br>7191<br>6490                                                                      | 9971<br>9283<br>8592<br>7895<br>7191<br>6490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9971<br>9283<br>8592<br>7895<br>7191<br>6490                                                                                                                        | 0.342<br>33.92<br>67.67<br>101.7<br>136.0<br>170.2                                                                                                                                                                                                   | 0.20<br>-0.04<br>-0.18<br>-0.19<br>0.03<br>0.16                                                                          | 0.017<br>33.99<br>67.94<br>101.9<br>136.1<br>169.9                   | 0.01<br>0.00<br>-0.02<br>-0.02<br>0.07<br>-0.03 |
| Polynomia                                        | Gage factors:                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                     |                                                                                                                                                                                                                                                      |                                                                                                                          |                                                                      |                                                 |
| Polynomia                                        | l Gage factors:<br>Calculate C                                                                                    | Thermal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Factor (K):                                                                                                                                                         | 0.05962 (kPa/ %                                                                                                                                                                                                                                      | C)<br>to the polynom                                                                                                     | ial equation                                                         |                                                 |
| Polynomia<br>(psi) Linea                         | l Gage factors:<br>Calculate C<br>r Gage Factor (G)                                                               | Thermal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Factor (K):<br>nd R <sub>1</sub> = initial fi<br>_(psi/ digit)                                                                                                      | 0.05962 (kPa/ %                                                                                                                                                                                                                                      | C)<br>to the polynom                                                                                                     | ial equation                                                         |                                                 |
| Polynomia<br>(psi) Linea<br>Polynon              | Calculate C<br>Calculate C<br>r Gage Factor (G)<br>hial Gage Factors:                                             | Thermal<br>by setting P=0 a<br>:0.007079<br>A:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Factor (K):<br>nd R <sub>1</sub> = initial fi<br>_(psi/ digit)<br>_2.984E-08                                                                                        | 0.05962 (kPa/ %<br>eld zero reading in<br>B:                                                                                                                                                                                                         | C)<br>to the polynom<br>-0.006588                                                                                        | ial equation                                                         |                                                 |
| Polynomia<br>(psi) Linea<br>Polynon              | Calculate C<br>Calculate C<br>r Gage Factor (G)<br>nial Gage Factors:<br>Calculate                                | Thermal<br>C by setting P=0 a<br>:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Factor (K):<br>nd R <sub>1</sub> = initial fi<br>_(psi/ digit)<br>2.984E-08<br>nal Factor (K):<br>and R <sub>1</sub> = initial                                      | 0.05962 (kPa/ %<br>eld zero reading in<br>B:                                                                                                                                                                                                         | C)<br>to the polynom<br>-0.006588<br>C)<br>into the polyno                                                               | ial equation<br>C:<br>mial equation                                  |                                                 |
| Polynomia<br>(psi) Linea<br>Polynon<br>Calculate | Calculate C<br>Calculate C<br>r Gage Factor (G)<br>hial Gage Factors:<br>Calculate<br>d Pressures:                | Thermal<br>C by setting P=0 a<br>:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Factor (K):<br>nd $R_1 = initial fit_(psi/ digit)2.984E-08al Factor (K):and R_1 = initialLinear, P = G($                                                            | $\frac{0.05962}{eld zero reading in}$ $\frac{B:}{-0.008648}$ (psi/°) field zero reading in $R_1 - R_0 + K(T_1 - T_0)$                                                                                                                                | C)<br>to the polynom<br>-0.006588<br>C)<br>into the polyno<br>)-(S 1 -S 0)*                                              | ial equation<br>C:                                                   |                                                 |
| Polynomia<br>(psi) Linea<br>Polynon<br>Calculate | Calculate C<br>Calculate C<br>r Gage Factor (G)<br>hial Gage Factors:<br>Calculate<br>d Pressures:<br>*Barometric | Thermal<br>C by setting P=0 a<br>:<br>:<br>:<br>:<br>C by setting P=0<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>: _ : _ :<br>: | Factor (K):<br>nd R <sub>1</sub> = initial fi<br>_(psi/ digit)<br>2.984E-08<br>nal Factor (K):<br>and R <sub>1</sub> = initial<br>Linear, P = G(<br>Polynomial, P = | $\frac{0.05962}{eld zero reading in}$ $\frac{10.05962}{eld zero reading in}$ $\frac{10.008648}{field zero reading in}$ $\frac{10.008648}{field zero reading in}$ $\frac{10.008648}{field zero reading in}$ $\frac{10.008648}{field zero reading in}$ | C)<br>to the polynom<br>-0.006588<br>C)<br>into the polyno<br>)-(S <sub>1</sub> -S <sub>0</sub> )*<br>+ $K(T_1-T_0)$ -(S | tial equation<br>C:<br>mial equation<br>$1 - S_0$ )*<br>transducers. |                                                 |

|                                                                   | <u>v10</u>                                                                                                                                | ating wire                                                                                           | rressure ir                                                                                                                                                                                               | ansulicer Cal                                                                                                                                                                                                | Ibration R                                                                                                                                                                | eport                                              |                                                |
|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------|
|                                                                   | Model Number: _                                                                                                                           | 4500AL-170 k                                                                                         | Pa                                                                                                                                                                                                        | Date of Calib<br>This calibration h                                                                                                                                                                          | eration: Ap                                                                                                                                                               | ril 19, 2016<br>idated as of 05/06/2016            |                                                |
|                                                                   | Serial Number:                                                                                                                            | 1612721                                                                                              |                                                                                                                                                                                                           | Tempe                                                                                                                                                                                                        | erature:                                                                                                                                                                  | 23.80 °C                                           |                                                |
| Calibra                                                           | tion Instruction:                                                                                                                         | VW Pressure Tran                                                                                     | sducers                                                                                                                                                                                                   | Barometric Pro                                                                                                                                                                                               | essure: 99                                                                                                                                                                | 96,8 mbar                                          |                                                |
|                                                                   | Cable Length:                                                                                                                             | 60 feet                                                                                              | _                                                                                                                                                                                                         | Tech                                                                                                                                                                                                         | nician: Kell                                                                                                                                                              | Rogers                                             |                                                |
| Applied<br>Pressure<br>(kPa)                                      | Gage<br>Reading<br>1st Cycle                                                                                                              | Gage<br>Reading<br>2nd Cycle                                                                         | Average<br>Gage<br>Reading                                                                                                                                                                                | Calculated<br>Pressure<br>(Linear)                                                                                                                                                                           | Error<br>Linear<br>(%FS)                                                                                                                                                  | Calculated<br>Pressure<br>(Polynomial)             | Error<br>Polynomial<br>(%FS)                   |
| 0.0<br>34.0<br>68.0<br>102.0<br>136.0<br>170.0                    | 9828<br>9110<br>8389<br>7662<br>6933<br>6201                                                                                              | 9829<br>9110<br>8389<br>7662<br>6933<br>6201                                                         | 9829<br>9110<br>8389<br>7662<br>6933<br>6201                                                                                                                                                              | 0.258<br>33.92<br>67.70<br>101.8<br>135.9<br>170.2                                                                                                                                                           | 0.15<br>-0.05<br>-0.16<br>-0.13<br>-0.04<br>0.14                                                                                                                          | 0.006<br>34.00<br>67.94<br>102.0<br>136.0<br>170.0 | 0.01<br>0.00<br>-0.02<br>0.02<br>0.01<br>-0.01 |
| (kPa) Linea<br>Polynomial                                         | r Gage Factor (G<br>Gage factors:                                                                                                         | ): -0.04685 (<br>A:                                                                                  | (kPa/ digit)<br>-1.572E-07                                                                                                                                                                                | B:                                                                                                                                                                                                           | -0.04433                                                                                                                                                                  | C:                                                 |                                                |
| (kPa) Linea<br>Polynomial                                         | r Gage Factor (G<br>  Gage factors:<br>Calculate (                                                                                        | ): <u>-0.04685 (</u><br>A: <u>-</u><br>Thermal<br>C by setting P=0 a                                 | (kPa/ digit)<br>-1.572E-07<br>Factor (K):<br>nd R <sub>1</sub> = initial fi                                                                                                                               | B:                                                                                                                                                                                                           | -0.04433<br>C)<br>to the polynom                                                                                                                                          | C:                                                 |                                                |
| (kPa) Linea<br>Polynomial<br>(psi) Linea                          | r Gage Factor (G<br>  Gage factors:<br>Calculate C<br>r Gage Factor (G)                                                                   | ): -0.04685 (<br>A:<br>Thermal<br>C by setting P=0 a<br>:: -0.006795                                 | (kPa/ digit)<br>- <u>1.572E-07</u><br>Factor (K):<br>nd R <sub>1</sub> = initial fi<br>_(psi/ digit)                                                                                                      | B:<br>0.06496(kPa/ °(<br>eld zero reading in                                                                                                                                                                 | -0.04433<br>C)<br>to the polynom                                                                                                                                          | C:                                                 |                                                |
| (kPa) Linea<br>Polynomial<br>(psi) Linea<br>Polynon               | r Gage Factor (G<br>  Gage factors:<br>Calculate (<br>r Gage Factor (G)<br>nial Gage Factors:                                             | ):0.04685 (<br>A:<br>Thermal<br>C by setting P=0 a<br>0:0.006795<br>:                                | (kPa/ digit)<br>-1.572E-07<br>Factor (K):<br>and R <sub>1</sub> = initial fi<br>_(psi/ digit)<br>2.28E-08<br>nal Factor (K):                                                                              | B:                                                                                                                                                                                                           | -0.04433<br>C)<br>to the polynom<br>-0.006430                                                                                                                             | C:                                                 |                                                |
| (kPa) Linea<br>Polynomial<br>(psi) Linea<br>Polynom               | r Gage Factor (G<br>  Gage factors:<br>Calculate C<br>r Gage Factor (G)<br>nial Gage Factors:<br>Calculate                                | ):0.04685 (<br>A:<br>Thermal<br>C by setting P=0 a<br>:0.006795<br>:                                 | (kPa/ digit)<br>-1.572E-07<br>Factor (K):<br>and $R_1 =$ initial fi<br>_(psi/ digit)<br>-2.28E-08<br>all Factor (K):<br>and $R_1 =$ initial                                                               | B:                                                                                                                                                                                                           | -0.04433<br>C)<br>to the polynom<br>-0.006430<br>C)<br>into the polyno                                                                                                    | C:<br>nial equation<br>C:<br>mial equation         |                                                |
| (kPa) Linea<br>Polynomial<br>(psi) Linea<br>Polynom<br>Calculate  | r Gage Factor (G<br>  Gage factors:<br>Calculate (<br>r Gage Factor (G)<br>nial Gage Factors:<br>Calculate<br>d Pressures:                | ):0.04685 (<br>A:<br>Thermal<br>C by setting P=0 a<br>:0.006795<br>: A:<br>Therm<br>C by setting P=0 | (kPa/ digit)<br>-1.572E-07<br>Factor (K):<br>and $R_1$ = initial fination<br>(psi/ digit)<br>-2.28E-08<br>al Factor (K):<br>and $R_1$ = initial<br>Linear, P = G(                                         | B:                                                                                                                                                                                                           | <u>-0.04433</u><br>C)<br>to the polynom<br><u>-0.006430</u><br>C)<br>into the polyno<br>)-(S 1 - S 0)*                                                                    | C:                                                 |                                                |
| (kPa) Linea<br>Polynomial<br>(psi) Linea<br>Polynom<br>Calculated | r Gage Factor (G<br>  Gage factors:<br>Calculate (<br>r Gage Factor (G)<br>hial Gage Factors:<br>Calculate<br>d Pressures:<br>*Barometric | ):0.04685 (<br>A:<br>Thermal<br>C by setting P=0 a<br>:0.006795<br>: A:<br>Therm<br>C by setting P=0 | (kPa/ digit)<br>-1.572E-07<br>Factor (K):<br>and $R_1$ = initial fi<br>_(psi/ digit)<br>-2.28E-08<br>al Factor (K):<br>and $R_1$ = initial<br>Linear, P = G(<br>Polynomial, P =<br>a kPa or psi. Barometr | B:<br><u>0.06496</u> (kPa/ °<br>eld zero reading in<br><u>B:</u><br><u>-0.009422</u> (psi/ °<br>field zero reading i<br>$R_1 - R_0$ )+K( $T_1 - T_0$ )<br>= $AR_1^2 + BR_1 + C$<br>ic compensation is not re | <u>-0.04433</u><br>C)<br>to the polynom<br><u>-0.006430</u><br>C)<br>into the polyno<br>)-(S <sub>1</sub> -S <sub>0</sub> )*<br>+ $K(T_1-T_0)$ -(S<br>equired with vented | C:<br>nial equation<br>C:<br>mial equation         |                                                |

|                                                                  | VID                                                                                                                                      | anng wire                                                                                          | Fressure Ir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ansuucer Car                                                                                                                                                                          | IDFALION K                                                                                                                      | eport                                                                 |                                                 |
|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------|
|                                                                  | Model Number:                                                                                                                            | 4500AL-170 k                                                                                       | Pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Date of Calib<br>This calibration h                                                                                                                                                   | oration: Ap                                                                                                                     | ril 19, 2016                                                          |                                                 |
|                                                                  | Serial Number:                                                                                                                           | 1612722                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tempe                                                                                                                                                                                 | erature:                                                                                                                        | 23.80 °C                                                              |                                                 |
| Calibra                                                          | tion Instruction:                                                                                                                        | W Pressure Trans                                                                                   | sducers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Barometric Pr                                                                                                                                                                         | essure: 99                                                                                                                      | 96.8 mbar                                                             |                                                 |
|                                                                  | Cable Length:                                                                                                                            | 60 feet                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tech                                                                                                                                                                                  | nician: Ker                                                                                                                     | 4 Rogers                                                              |                                                 |
| Applied<br>Pressure<br>(kPa)                                     | Gage<br>Reading<br>1st Cycle                                                                                                             | Gage<br>Reading<br>2nd Cycle                                                                       | Average<br>Gage<br>Reading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Calculated<br>Pressure<br>(Linear)                                                                                                                                                    | Error<br>Linear<br>(%FS)                                                                                                        | Calculated<br>Pressure<br>(Polynomial)                                | Error<br>Polynomial<br>(%FS)                    |
| 0.0<br>34.0<br>68.0<br>102.0<br>136.0<br>170.0                   | 9749<br>9037<br>8325<br>7608<br>6887<br>6163                                                                                             | 9750<br>9037<br>8325<br>7608<br>6887<br>6163                                                       | 9750<br>9037<br>8325<br>7608<br>6887<br>6163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.213<br>33.99<br>67.74<br>101.7<br>135.9<br>170.2                                                                                                                                    | 0.13<br>0.00<br>-0.14<br>-0.15<br>-0.04<br>0.15                                                                                 | -0.032<br>34.06<br>67.97<br>102.0<br>136.0<br>170.0                   | -0.02<br>0.04<br>-0.01<br>-0.01<br>0.00<br>0.01 |
| (kPa) Linea<br>Polynomial                                        | r Gage Factor (G)<br>Gage factors:                                                                                                       | ): -0.04740 (<br>A:                                                                                | (kPa/ digit)<br>-1.529E-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B:                                                                                                                                                                                    | -0.04497                                                                                                                        | C:                                                                    |                                                 |
| (kPa) Linea<br>Polynomial                                        | r Gage Factor (G)<br>Gage factors:<br>Calculate C                                                                                        | :                                                                                                  | (kPa/ digit)<br>-1.529E-07<br>Factor (K):<br>and R <sub>1</sub> = initial fi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B:<br>0.02862(kPa/ °/<br>eld zero reading in                                                                                                                                          | -0.04497<br>C)<br>to the polynon                                                                                                | C:                                                                    |                                                 |
| (kPa) Linea<br>Polynomial<br>(psi) Linea<br>Polynom              | r Gage Factor (G)<br>Gage factors:<br>Calculate C<br>r Gage Factor (G)<br>tial Gage Factors:                                             | :                                                                                                  | (kPa/ digit)<br>-1.529E-07<br>Factor (K):<br>and R <sub>1</sub> = initial fi<br>_(psi/ digit)<br>-2.218E-08<br>aal Factor (K):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B:                                                                                                                                                                                    | -0.04497<br>C)<br>to the polynon<br>-0.006522<br>C)                                                                             | C:                                                                    |                                                 |
| (kPa) Linea<br>Polynomial<br>(psi) Linea<br>Polynom              | r Gage Factor (G)<br>Gage factors:<br>Calculate C<br>r Gage Factor (G)<br>tial Gage Factors:<br>Calculate                                | :0.04740 (<br>A:<br>Thermal<br>C by setting P=0 a<br>:0.006875<br>A:_<br>Therm<br>C by setting P=0 | (kPa/ digit)<br>-1.529E-07<br>Factor (K):<br>and R <sub>1</sub> = initial fi<br>_(psi/ digit)<br>2.218E-08<br>nal Factor (K):<br>and R <sub>1</sub> = initial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B:<br>0,02862(kPa/ °/<br>eld zero reading in<br>B:<br>-0.004150(psi/ °<br>field zero reading i                                                                                        | -0.04497<br>C)<br>to the polynon<br>-0.006522<br>C)<br>into the polyno                                                          | C:<br>nial equation<br>C:                                             |                                                 |
| (kPa) Linea<br>Polynomial<br>(psi) Linea<br>Polynom<br>Calculate | r Gage Factor (G)<br>Gage factors:<br>Calculate C<br>r Gage Factor (G)<br>nial Gage Factors:<br>Calculate<br>d Pressures:                | :0.04740 (<br>A:                                                                                   | (kPa/ digit)<br>-1.529E-07<br>Factor (K):<br>and $R_1 = initial finds (psi/ digit) -2.218E-08 and Factor (K): and R_1 = initialLinear, P = G(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B:                                                                                                                                                                                    | -0.04497<br>C)<br>to the polynon<br>-0.006522<br>C)<br>into the polyno<br>)-(S 1 -S 0)*                                         | C:                                                                    |                                                 |
| (kPa) Linea<br>Polynomial<br>(psi) Linea<br>Polynom<br>Calculate | r Gage Factor (G)<br>Gage factors:<br>Calculate C<br>r Gage Factor (G)<br>nial Gage Factors:<br>Calculate<br>d Pressures:<br>*Barometric |                                                                                                    | (kPa/ digit)<br>-1.529E-07<br>Factor (K):<br>and $R_1 = initial finitial f$ | B:<br>0.02862 (kPa/ °<br>eld zero reading in<br>B:<br>-0.004150 (psi/ °<br>field zero reading i<br>$R_1 - R_0$ )+K( $T_1 - T_0$<br>= $AR_1^2 + BR_1 + C$<br>ic compensation is not re | -0.04497<br>C)<br>to the polynon<br>-0.006522<br>C)<br>into the polyno<br>)-(S 1 -S 0)*<br>+ K(T1-T0)-(S<br>squired with vented | C:<br>nial equation<br>C:<br>omial equation<br>G1-S0)*<br>transducers |                                                 |

|                                                | Vib                                           | rating Wire                                   | Pressure Tr                                                                                 | ansducer Cal                                                                                             | ibration R                                                                                         | eport                                               |                                                 |
|------------------------------------------------|-----------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------|
|                                                | Model Number: _                               | 4500AL-170 k                                  | Pa                                                                                          | Date of Calib<br>This calibration h                                                                      | ration: Ap                                                                                         | ril 19, 2016<br>idated as of 05/06/2016             |                                                 |
|                                                | Serial Number:                                | 1612723                                       | <u></u>                                                                                     | Tempe                                                                                                    | rature:                                                                                            | 23.80 °C                                            |                                                 |
| Calibra                                        | ation Instruction:                            | VW Pressure Trans                             | sducers                                                                                     | Barometric Pro                                                                                           | essure: 99                                                                                         | 6.8 mbar                                            |                                                 |
|                                                | Cable Length:                                 | 60 feet                                       | _                                                                                           | Tech                                                                                                     | nician: Karl                                                                                       | y Rogers                                            |                                                 |
| Applied<br>Pressure<br>(kPa)                   | Gage<br>Reading<br>1st Cycle                  | Gage<br>Reading<br>2nd Cycle                  | Average<br>Gage<br>Reading                                                                  | Calculated<br>Pressure<br>(Linear)                                                                       | Error<br>Linear<br>(%FS)                                                                           | Calculated<br>Pressure<br>(Polynomial)              | Error<br>Polynomial<br>(%FS)                    |
| 0.0<br>34.0<br>68.0<br>102.0<br>136.0<br>170.0 | 10078<br>9392<br>8706<br>8015<br>7320<br>6621 | 10078<br>9393<br>8706<br>8015<br>7320<br>6621 | 10078<br>9393<br>8706<br>8015<br>7320<br>6621                                               | 0.246<br>33.96<br>67.72<br>101.7<br>135.9<br>170.3                                                       | 0.15<br>-0.02<br>-0.15<br>-0.16<br>-0.06<br>0.17                                                   | -0.025<br>34.04<br>67.98<br>102.0<br>136.0<br>170.0 | -0.01<br>0.02<br>0.00<br>-0.01<br>-0.01<br>0.01 |
|                                                | Calculate (                                   | Thermal<br>C by setting P=0 a                 | Factor (K): <u>0</u><br>nd R <sub>1</sub> = initial fi                                      | 0.003730 (kPa/ °(                                                                                        | C)<br>to the polynom                                                                               | ial equation                                        |                                                 |
| (psi) Linea                                    | r Gage Factor (G)<br>nial Gage Factors        | ): -0.007133<br>: A:                          | _(psi/ digit)<br>-2.691E-08                                                                 | B:                                                                                                       | -0.006683                                                                                          | C:                                                  |                                                 |
| Polynon                                        |                                               | Therm                                         | al Factor (K): _                                                                            | 0.0005410 (psi/ %                                                                                        | C)                                                                                                 |                                                     |                                                 |
| Polynon                                        |                                               |                                               |                                                                                             |                                                                                                          |                                                                                                    |                                                     |                                                 |
| Polynon                                        | Calculate                                     | C by setting P=0                              | and R <sub>1</sub> = initial                                                                | field zero reading i                                                                                     | nto the polyno                                                                                     | mial equation                                       |                                                 |
| Polynon<br>Caiculate                           | Calculate<br>d Pressures:                     | C by setting P=0                              | and R <sub>1</sub> = initial<br>Linear, P = G(<br>Polynomial, P =                           | field zero reading i<br>$R_1 - R_0 + K(T_1 - T_0)$<br>$= AR_1^2 + BR_1 + C$                              | nto the polyno<br>)-(S <sub>1</sub> -S <sub>0</sub> )*<br>+ K(T <sub>1</sub> -T <sub>0</sub> )-(S  | mial equation                                       |                                                 |
| Polynon<br>Caiculate                           | Calculate<br>d Pressures:<br>*Barometrie      | c pressures expressed in                      | and R <sub>1</sub> = initial<br>Linear, P = G(<br>Polynomial, P =<br>h kPa or psi. Barometr | field zero reading i<br>$R_1 - R_0 + K(T_1 - T_0)$<br>$= AR_1^2 + BR_1 + C$<br>ic compensation is not re | nto the polyno<br>)-(S <sub>1</sub> -S <sub>0</sub> )*<br>+ $K(T_1-T_0)$ -(S<br>quired with vented | mial equation<br>1 -S 0)*<br>transducers            |                                                 |

|                                                | 1.194                                                                                              | 100 C                                                 |                                                                                                                   | Tran 121                                           |                                                                                                                                            |                                                      |                                                 |
|------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------|
|                                                | Model Number: _                                                                                    | 4500AL-170 k                                          | Pa                                                                                                                | Date of Calib<br>This calibration h                | ration: Ap<br>as been verified/val                                                                                                         | ril 19, 2016<br>idated as of 05/06/2016              |                                                 |
|                                                | Serial Number:                                                                                     | 1612724                                               | <u></u>                                                                                                           | Tempe                                              | rature:                                                                                                                                    | 23.80 °C                                             |                                                 |
| Calibra                                        | ation Instruction:                                                                                 | VW Pressure Tran                                      | sducers                                                                                                           | Barometric Pro                                     | essure: 99                                                                                                                                 | 6.8 mbar                                             |                                                 |
|                                                | Cable Length:                                                                                      | 60 feet                                               |                                                                                                                   | Tech                                               | nician: Karl                                                                                                                               | y Rogers                                             | -                                               |
| Applied<br>Pressure<br>(kPa)                   | Gage<br>Reading<br>1st Cycle                                                                       | Gage<br>Reading<br>2nd Cycle                          | Average<br>Gage<br>Reading                                                                                        | Calculated<br>Pressure<br>(Linear)                 | Error<br>Linear<br>(%FS)                                                                                                                   | Calculated<br>Pressure<br>(Polynomial)               | Error<br>Polynomial<br>(%FS)                    |
| 0.0<br>34.0<br>68.0<br>102.0<br>136.0<br>170.0 | 10102<br>9410<br>8717<br>8021<br>7321<br>6617                                                      | 10102<br>9411<br>8718<br>8021<br>7321<br>6617         | 10102<br>9411<br>8718<br>8021<br>7321<br>6617                                                                     | 0.244<br>33.98<br>67.78<br>101.8<br>135.9<br>170.3 | 0.14<br>-0.01<br>-0.12<br>-0.13<br>-0.04<br>0.17                                                                                           | -0.020<br>34.02<br>67.99<br>102.0<br>136.0<br>170.0  | -0.01<br>0.02<br>0.00<br>-0.01<br>-0.01<br>0.01 |
|                                                |                                                                                                    | Thermal<br>C by setting P=0 a                         | Factor (K):                                                                                                       | 0.03734 (kPa/ °<br>eld zero reading in             | C)<br>to the polynom                                                                                                                       | ial equation                                         |                                                 |
|                                                | Calculate C                                                                                        |                                                       |                                                                                                                   |                                                    |                                                                                                                                            |                                                      |                                                 |
| (psi) Linea                                    | Calculate C<br>r Gage Factor (G)                                                                   | -0.007075                                             | _(psi/ digit)                                                                                                     |                                                    |                                                                                                                                            |                                                      |                                                 |
| (psi) Linea<br>Polynon                         | Calculate C<br>r Gage Factor (G)<br>nial Gage Factors:                                             | : <u>-0.007075</u><br>A:                              | _(psi/ digit)<br>-2.34E-08                                                                                        | в:                                                 | -0.006684                                                                                                                                  | C:                                                   |                                                 |
| (psi) Linea<br>Polynon                         | Calculate C<br>r Gage Factor (G)<br>nial Gage Factors:                                             | : <u>-0.007075</u><br>A:_<br>Therm                    | _(psi/ digit)<br>2.34E-08<br>nal Factor (K): _                                                                    | B:                                                 | -0.006684<br>C)                                                                                                                            | C:                                                   |                                                 |
| (psi) Linea<br>Polynon                         | Calculate C<br>r Gage Factor (G)<br>nial Gage Factors:<br>Calculate                                | :0.007075<br>A:<br>Therm<br>C by setting P=0          | _(psi/ digit)<br>2.34E-08<br>nal Factor (K): _<br>and R <sub>1</sub> = initial                                    | B:<br>-0.005415(psi/ °<br>field zero reading i     | -0.006684<br>C)<br>nto the polyno                                                                                                          | C:                                                   |                                                 |
| (psi) Linea<br>Polynon<br>Calculate            | Calculate C<br>r Gage Factor (G)<br>nial Gage Factors:<br>Calculate<br>d Pressures:                | : -0.007075<br>A:<br>Therm<br>C by setting P=0        | _(psi/ digit)<br>2.34E-08<br>aal Factor (K): _<br>and R <sub>1</sub> = initial<br>Linear, P = G(                  | B:                                                 | -0.006684<br>C)<br>nto the polyno<br>)-(S <sub>1</sub> -S <sub>0</sub> )*                                                                  | C:                                                   |                                                 |
| (psi) Linea<br>Polynon<br>Calculate            | Calculate C<br>r Gage Factor (G)<br>nial Gage Factors:<br>Calculate<br>d Pressures:<br>*Barometric | : <u>-0.007075</u><br>A:<br>Therm<br>C by setting P=0 | _(psi/ digit)<br>2.34E-08<br>hal Factor (K):<br>and R <sub>1</sub> = initial<br>Linear, P = G(<br>Polynomial, P = | B:                                                 | -0.006684<br>C)<br>nto the polyno<br>)-(S <sub>1</sub> -S <sub>0</sub> )*<br>+ K(T <sub>1</sub> -T <sub>0</sub> )-(S<br>quired with vented | C:<br>mial equation<br>$_1 - S_0$ )*<br>transducers. |                                                 |

|                                                | <u>v10</u>                                                     | ating wire                                    | rressure ir                                                                             | ansoucer Cal                                                                                                                                                                                                                           | IDFALION N                                                                                              | eport                                               |                                                 |
|------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------|
|                                                | Model Number: _                                                | 4500AL-170 k                                  | Pa                                                                                      | Date of Calib<br>This calibration h                                                                                                                                                                                                    | ration: Ap                                                                                              | ril 19, 2016<br>idated as of 05/06/2016             |                                                 |
|                                                | Serial Number:                                                 | 1612725                                       | _                                                                                       | Tempe                                                                                                                                                                                                                                  | rature:                                                                                                 | 23.80 °C                                            |                                                 |
| Calibra                                        | ation Instruction:                                             | W Pressure Tran                               | sducers                                                                                 | Barometric Pro                                                                                                                                                                                                                         | essure: 99                                                                                              | 6.8 mbar                                            |                                                 |
|                                                | Cable Length:                                                  | 60 feet                                       | _                                                                                       | Tech                                                                                                                                                                                                                                   | nician: Karl                                                                                            | Rogers.                                             | -                                               |
| Applied<br>Pressure<br>(kPa)                   | Gage<br>Reading<br>1st Cycle                                   | Gage<br>Reading<br>2nd Cycle                  | Average<br>Gage<br>Reading                                                              | Calculated<br>Pressure<br>(Linear)                                                                                                                                                                                                     | Error<br>Linear<br>(%FS)                                                                                | Calculated<br>Pressure<br>(Polynomial)              | Error<br>Polynomial<br>(%FS)                    |
| 0.0<br>34.0<br>68.0<br>102.0<br>136.0<br>170.0 | 10143<br>9435<br>8725<br>8012<br>7294<br>6572                  | 10144<br>9435<br>8725<br>8012<br>7295<br>6572 | 10144<br>9435<br>8725<br>8012<br>7295<br>6572                                           | 0.262<br>33.99<br>67.79<br>101.7<br>135.9<br>170.3                                                                                                                                                                                     | 0.16<br>0.00<br>-0.11<br>-0.14<br>-0.05<br>0.19                                                         | -0.031<br>34.04<br>68.01<br>102.0<br>135.9<br>170.0 | -0.02<br>0.02<br>0.02<br>-0.02<br>-0.02<br>0.02 |
|                                                | Calculate (                                                    | Thermal                                       | Factor (K):<br>nd R <sub>1</sub> = initial fi                                           | 0.02570 (kPa/ °C                                                                                                                                                                                                                       | C)<br>to the polynom                                                                                    | ial equation                                        |                                                 |
|                                                | r Gage Factor (G)                                              | -0.006905                                     | _(psi/ digit)                                                                           |                                                                                                                                                                                                                                        |                                                                                                         |                                                     |                                                 |
| (psi) Linea                                    |                                                                | A:                                            | -2.405E-08                                                                              | B:                                                                                                                                                                                                                                     | -0.006503                                                                                               | C:                                                  |                                                 |
| (psi) Linea<br>Polynom                         | nial Gage Factors:                                             |                                               |                                                                                         |                                                                                                                                                                                                                                        | 0                                                                                                       |                                                     |                                                 |
| (psi) Linea<br>Polynon                         | nial Gage Factors:<br>Calculate                                | Therm<br>C by setting P=0                     | al Factor (K):                                                                          | -0.003728 (psi/ %                                                                                                                                                                                                                      | c)<br>nto the polyno                                                                                    | mial equation                                       |                                                 |
| (psi) Linea<br>Polynon<br>Calculate            | nial Gage Factors:<br>Calculate<br>d Pressures:                | Therm<br>C by setting P=0                     | aal Factor (K):<br>and R <sub>1</sub> = initial<br>Linear, P = G()                      | <u>-0.003728</u> (psi/ <sup>o</sup><br>field zero reading i<br>R <sub>1</sub> -R <sub>0</sub> )+K(T <sub>1</sub> -T <sub>0</sub> )                                                                                                     | (C)<br>nto the polynoi<br>(S 1 - S 6 )*                                                                 | mial equation                                       |                                                 |
| (psi) Linear<br>Polynon<br>Calculated          | nial Gage Factors:<br>Calculate<br>d Pressures:                | Therm<br>C by setting P=0                     | aal Factor (K):<br>and R <sub>1</sub> = initial<br>Linear, P = G(1<br>Polynomial, P =   | <u>-0.003728</u> (psi/ °<br>field zero reading i<br>$R_1 - R_0$ )+K( $T_1 - T_0$ )<br>= $AR_1^2 + BR_1 + C$                                                                                                                            | c)<br>nto the polyno<br>)-(S <sub>1</sub> -S <sub>0</sub> )*<br>+ K(T <sub>1</sub> -T <sub>0</sub> )-(S | mial equation                                       |                                                 |
| (psi) Linear<br>Polynon<br>Calculate           | nial Gage Factors:<br>Calculate<br>d Pressures:<br>•Barometric | Therm<br>C by setting P=0                     | aal Factor (K): _<br>and R <sub>1</sub> = initial<br>Linear, P = G(1<br>Polynomial, P = | <u>-0.003728</u> (psi/ <sup>o</sup> )<br>field zero reading i<br>$\mathbf{R}_1 - \mathbf{R}_0$ )+K( $\mathbf{T}_1 - \mathbf{T}_0$ )<br>= $\mathbf{A}\mathbf{R}_1^2 + \mathbf{B}\mathbf{R}_1 + \mathbf{C}$<br>ic compensation is not re | The polynom<br>$(S_1 - S_0)^*$<br>$(T_1 - T_0) - (S_0)^*$<br>guired with vented by                      | mial equation<br>1-S <sub>0</sub> )*                |                                                 |

|                                                                            | <u>v101</u>                                                                                                                                      | ating wire                                                                                                             | Fressure Ir                                                                                                                                                                                                              | ansoucer Cal                                                                                                                                                           | IDFALION K                                                                                                                                                                   | eport                                      |                                                |
|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------|
|                                                                            | Model Number:                                                                                                                                    | 4500AL-170 k                                                                                                           | Pa                                                                                                                                                                                                                       | Date of Calib<br>This calibration h                                                                                                                                    | ration: Ap                                                                                                                                                                   | ril 19, 2016<br>idated as of 05/06/2016    |                                                |
|                                                                            | Serial Number:                                                                                                                                   | 1612726                                                                                                                |                                                                                                                                                                                                                          | Tempe                                                                                                                                                                  | rature:                                                                                                                                                                      | 23.80 °C                                   |                                                |
| Calibra                                                                    | tion Instruction:                                                                                                                                | W Pressure Trans                                                                                                       | sducers                                                                                                                                                                                                                  | Barometric Pro                                                                                                                                                         | essure: 99                                                                                                                                                                   | 06.8 mbar                                  |                                                |
|                                                                            | Cable Length:                                                                                                                                    | 60 feet                                                                                                                |                                                                                                                                                                                                                          | Tech                                                                                                                                                                   | nician: Kerli                                                                                                                                                                | hy Rogers.                                 | -                                              |
| Applied<br>Pressure<br>(kPa)                                               | Gage<br>Reading<br>1st Cycle                                                                                                                     | Gage<br>Reading<br>2nd Cycle                                                                                           | Average<br>Gage<br>Reading                                                                                                                                                                                               | Calculated<br>Pressure<br>(Linear)                                                                                                                                     | Error<br>Linear<br>(%FS)                                                                                                                                                     | Calculated<br>Pressure<br>(Polynomial)     | Error<br>Polynomial<br>(%FS)                   |
| 0.0<br>34.0<br>68.0<br>102.0<br>136.0                                      | 9866<br>9166<br>8464<br>7761<br>7051                                                                                                             | 9866<br>9166<br>8465<br>7761<br>7052                                                                                   | 9866<br>9166<br>8465<br>7761<br>7052                                                                                                                                                                                     | 0.241<br>33.98<br>67.80<br>101.7<br>135.9<br>170.3                                                                                                                     | 0.14<br>-0.01<br>-0.11<br>-0.16<br>-0.04<br>0.17                                                                                                                             | -0.030<br>34.03<br>68.01<br>101.9<br>136.0 | -0.02<br>0.02<br>0.02<br>-0.03<br>0.00<br>0.01 |
| 170.0<br>(kPa) Linea<br>Polynomial                                         | 6339<br>r Gage Factor (G)<br>Gage factors:                                                                                                       | 6339<br>:0.04821(<br>A:                                                                                                | 6339<br>kPa/ digit)<br>-1.626E-07                                                                                                                                                                                        | B:                                                                                                                                                                     | -0.04557                                                                                                                                                                     | C:                                         |                                                |
| 170.0<br>(kPa) Linea<br>Polynomial                                         | 6339<br>r Gage Factor (G)<br>Gage factors:<br>Calculate C                                                                                        | 6339<br>:                                                                                                              | 6339<br>kPa/ digit)<br>-1.626E-07<br>Factor (K):<br>nd R <sub>1</sub> = initial fi                                                                                                                                       | B:                                                                                                                                                                     | -0.04557<br>C)                                                                                                                                                               | C:                                         |                                                |
| 170.0<br>(kPa) Linea<br>Polynomial<br>(psi) Linea<br>Polynom               | 6339<br>r Gage Factor (G)<br>Gage factors:<br>Calculate C<br>r Gage Factor (G)<br>tial Gage Factors:                                             | 6339<br>                                                                                                               | 6339<br>kPa/ digit)<br>-1.626E-07<br>Factor (K):<br>nd R <sub>1</sub> = initial fi<br>_(psi/ digit)<br>_2.358E-08_                                                                                                       | B:                                                                                                                                                                     | -0.04557<br>C)<br>to the polynom<br>-0.006609                                                                                                                                | C:                                         |                                                |
| 170.0<br>(kPa) Linea<br>Polynomial<br>(psi) Linea<br>Polynom               | 6339<br>r Gage Factor (G)<br>Gage factors:<br>Calculate C<br>r Gage Factor (G)<br>tial Gage Factors:<br>Calculate                                | 6339<br>                                                                                                               | 6339<br>kPa/ digit)<br><u>-1.626E-07</u><br>Factor (K):<br>nd R <sub>1</sub> = initial fi<br>_(psi/ digit)<br><u>-2.358E-08</u><br>al Factor (K):<br>and R <sub>1</sub> = initial                                        | B:                                                                                                                                                                     | -0.04557<br>C)<br>to the polynom<br>-0.006609<br>C)                                                                                                                          | C:                                         |                                                |
| 170.0<br>(kPa) Linea<br>Polynomial<br>(psi) Linea<br>Polynom<br>Calculated | 6339<br>r Gage Factor (G)<br>Gage factors:<br>Calculate C<br>r Gage Factor (G)<br>tial Gage Factors:<br>Calculate<br>d Pressures:                | 6339<br>-0.04821 (<br>A:                                                                                               | 6339<br>kPa/digit)<br>-1.626E-07<br>Factor (K):<br>nd R <sub>1</sub> = initial fi<br>_(psi/digit)<br>-2.358E-08<br>tal Factor (K): _<br>and R <sub>1</sub> = initial<br>Linear, P = G(                                   | B:<br>0.06400 (kPa/ %<br>eld zero reading in<br>B:<br>-0.009283 (psi/ %<br>field zero reading i<br>R <sub>1</sub> -R <sub>0</sub> )+K(T <sub>1</sub> -T <sub>0</sub> ; | -0.04557<br>C)<br>to the polynom<br>-0.006609<br>C)<br>into the polyno<br>(S 1 - S 0)*                                                                                       | C:                                         |                                                |
| 170.0<br>kPa) Linea<br>Polynomial<br>(psi) Linea<br>Polynom<br>Calculate   | 6339<br>r Gage Factor (G)<br>Gage factors:<br>Calculate C<br>r Gage Factor (G)<br>tial Gage Factors:<br>Calculate<br>d Pressures:<br>*Barometric | 6339<br>:0.04821 (<br>A:<br>Thermal<br>2 by setting P=0 a<br>:0.006992<br>A:<br>Therm<br>C by setting P=0<br>:0.006992 | 6339 $kPa/digit)$ $1.626E-07$ Factor (K):<br>nd R <sub>1</sub> = initial fi<br>_(psi/digit)<br>-2.358E-08<br>al Factor (K):<br>and R <sub>1</sub> = initial<br>Linear, P = G(<br>Polynomial, P =<br>hPa or psi. Barometr | B:                                                                                                                                                                     | -0.04557<br>C)<br>to the polynom<br>-0.006609<br>C)<br>nto the polyno<br>(S <sub>1</sub> -S <sub>0</sub> )*<br>+ K(T <sub>1</sub> -T <sub>0</sub> )-(S<br>quired with vented | C:<br>mial equation<br>C:<br>mial equation |                                                |

|                                                | VID                                          | aning wire                                   | ressure rr                                                                                   | ansuucer Car                                                                                              | IDIATION K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | eport                                              |                                                 |
|------------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------|
|                                                | Model Number:                                | 4500AL-170 k                                 | Pa                                                                                           | Date of Calib<br>This calibration h                                                                       | ration:Ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ril 19, 2016<br>idated as of 05/06/2016            |                                                 |
|                                                | Serial Number:                               | 1612728                                      | <u> </u>                                                                                     | Tempe                                                                                                     | rature:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23.80 °C                                           |                                                 |
| Calibra                                        | ation Instruction:                           | W Pressure Trans                             | sducers                                                                                      | Barometric Pro                                                                                            | essure: 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.8 mbar                                           |                                                 |
|                                                | Cable Length:                                | 60 feet                                      |                                                                                              | Tech                                                                                                      | nician: Karl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | y Rogers                                           | -                                               |
| Applied<br>Pressure<br>(kPa)                   | Gage<br>Reading<br>1st Cycle                 | Gage<br>Reading<br>2nd Cycle                 | Average<br>Gage<br>Reading                                                                   | Calculated<br>Pressure<br>(Linear)                                                                        | Error<br>Linear<br>(%FS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Calculated<br>Pressure<br>(Polynomial)             | Error<br>Polynomial<br>(%FS)                    |
| 0.0<br>34.0<br>68.0<br>102.0<br>136.0<br>170.0 | 9975<br>9257<br>8531<br>7808<br>7080<br>6347 | 9976<br>9258<br>8531<br>7809<br>7080<br>6347 | 9976<br>9258<br>8531<br>7809<br>7080<br>6347                                                 | 0.258<br>33.89<br>67.93<br>101.8<br>135.9<br>170.2                                                        | 0.15<br>-0.06<br>-0.03<br>-0.12<br>-0.04<br>0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.012<br>33.92<br>68.10<br>101.9<br>135.9<br>170.0 | 0.01<br>-0.04<br>0.07<br>-0.02<br>-0.02<br>0.02 |
|                                                | Calculate C                                  | Thermal                                      | Factor (K):                                                                                  | 0.03973 (kPa/ °C                                                                                          | C)<br>to the polynom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ial equation                                       |                                                 |
|                                                | r Gage Factor (G)                            | : -0.006795                                  | _(psi/ digit)                                                                                |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    |                                                 |
| (psi) Linea                                    | nial Gage Factors:                           | A:                                           | -1.899E-08                                                                                   | B:                                                                                                        | -0.006485                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C:                                                 |                                                 |
| (psi) Linea<br>Polynon                         |                                              |                                              |                                                                                              |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    |                                                 |
| (psi) Linea<br>Polynon                         | Calculate                                    | C by setting P=0                             | and <b>R</b> <sub>1</sub> = initial                                                          | field zero reading i                                                                                      | nto the polyno                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mial equation                                      |                                                 |
| (psi) Linea<br>Polynon<br>Calculate            | Calculate<br>d Pressures:                    | C by setting P=0                             | and R <sub>1</sub> = initial<br>Linear, P = G()                                              | field zero reading i<br>R <sub>1</sub> -R <sub>0</sub> )+K(T <sub>1</sub> -T <sub>0</sub> )               | nto the polyno<br>(S <sub>1</sub> -S <sub>0</sub> )*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mial equation                                      |                                                 |
| (psi) Linea<br>Polynon<br>Calculate            | Calculate<br>d Pressures:<br>*Barometric     | C by setting P=0                             | and R <sub>1</sub> = initial<br>Linear, P = G(1<br>Polynomial, P =<br>h kPa or psi. Barometr | field zero reading i<br>$R_1 - R_0 + K(T_1 - T_0)$<br>$= AR_1^2 + BR_1 + C$<br>ic compensation is not re- | nto the polynomial $(S_1 - S_0)^*$<br>+ $K(T_1 - T_0)$ -(Significant of the second | mial equation<br>$(1 - S_0)^*$                     |                                                 |

|                                                | VIDI                                                                               | ating Wire                                                 | Pressure Tr                                                                          | ansducer Cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ibration R                                                                                                                    | eport                                               |                                                |
|------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------|
| 1                                              | Model Number:                                                                      | 4500AL-170 k                                               | Pa                                                                                   | Date of Calibration h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ration: Ap                                                                                                                    | ril 19, 2016<br>idated as of 05/06/2016             |                                                |
|                                                | Serial Number:                                                                     | 1612729                                                    |                                                                                      | Temper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rature:                                                                                                                       | 23.80 °C                                            |                                                |
| Calibra                                        | tion Instruction:                                                                  | /W Pressure Trans                                          | sducers                                                                              | Barometric Pre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | essure: 99                                                                                                                    | 6.8 mbar                                            |                                                |
|                                                | Cable Length:                                                                      | 60 feet                                                    | _                                                                                    | Techn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nician: Kall                                                                                                                  | Rogen                                               |                                                |
| Applied<br>Pressure<br>(kPa)                   | Gage<br>Reading<br>1st Cycle                                                       | Gage<br>Reading<br>2nd Cycle                               | Average<br>Gage<br>Reading                                                           | Calculated<br>Pressure<br>(Linear)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Error<br>Linear<br>(%FS)                                                                                                      | Calculated<br>Pressure<br>(Polynomial)              | Error<br>Polynomial<br>(%FS)                   |
| 0.0<br>34.0<br>68.0<br>102.0<br>136.0<br>170.0 | 9958<br>9273<br>8586<br>7894<br>7197<br>6496                                       | 9959<br>9274<br>8586<br>7894<br>7197<br>6496               | 9959<br>9274<br>8586<br>7894<br>7197<br>6496                                         | 0.319<br>33.95<br>67.70<br>101.7<br>135.9<br>170.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.19<br>-0.03<br>-0.16<br>-0.18<br>-0.05<br>0.20                                                                              | -0.017<br>34.02<br>67.98<br>102.0<br>136.0<br>170.0 | -0.01<br>0.02<br>0.00<br>-0.01<br>0.00<br>0.00 |
|                                                | Calculate C                                                                        | Thermal<br>by setting P=0 a                                | Factor (K):                                                                          | 0.04197 (kPa/ °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C)<br>to the polynom                                                                                                          | ial equation                                        |                                                |
|                                                |                                                                                    | : -0.007121                                                | _(psi/ digit)                                                                        | R.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.006608                                                                                                                     | C:                                                  |                                                |
| (psi) Linear<br>Polynom                        | · Gage Factor (G)<br>ial Gage Factors:                                             | A:                                                         | al Factor (K):                                                                       | -0.006087 (psi/ %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C)                                                                                                                            |                                                     |                                                |
| (psi) Linear<br>Polynom                        | Gage Factor (G)<br>ial Gage Factors:<br>Calculate                                  | A:<br>Therm<br>C by setting P=0                            | and R <sub>1</sub> = initial                                                         | -0.006087 (psi/ %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C)<br>nto the polyno                                                                                                          | mial equation                                       |                                                |
| (psi) Linear<br>Polynom<br>Calculated          | Gage Factor (G)<br>ial Gage Factors:<br>Calculate<br>l Pressures:                  | A:<br>Therm<br>C by setting P=0                            | and $R_1 = initial$<br>Linear, $P = G(I$                                             | <u>-0.006087</u> (psi/ %<br>field zero reading i<br>R <sub>1</sub> -R <sub>0</sub> )+K(T <sub>1</sub> -T <sub>0</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C)<br>nto the polyno<br>)-(S <sub>1</sub> -S <sub>0</sub> )*                                                                  | mial equation                                       |                                                |
| (psi) Linear<br>Polynom<br>Calculated          | · Gage Factor (G)<br>ial Gage Factors:<br>Calculate<br>l Pressures:<br>•Barometric | A:_<br>Therm<br>C by setting P=0<br>pressures expressed in | al Factor (K):<br>and R <sub>1</sub> = initial<br>Linear, P = G(1<br>Polynomial, P = | $\frac{-0.006087}{\text{(psi/ %)}}$ field zero reading i $R_1 - R_0 + K(T_1 - T_0)$ $= AR_1^2 + BR_1 + C + C$ ic compensation is not reading is not | C)<br>nto the polyno<br>)-(S <sub>1</sub> -S <sub>0</sub> )*<br>+ K(T <sub>1</sub> -T <sub>0</sub> )-(S<br>quired with vented | mial equation<br>$(1 - S_0)^*$                      |                                                |

|                                                                 | <u><u><u>v</u></u>10</u>                                                                                                               | THINE WITC.                                                                                                 | 11055010 11                                                                                                                                                                      | unsulter Cal                                                                                                                                                                                                 | In ALIGH A                                                                                                                      | cport.                                                         |                                                 |
|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------|
|                                                                 | Model Number: _                                                                                                                        | 4500AL-170 k                                                                                                | Pa                                                                                                                                                                               | Date of Calib<br>This calibration h                                                                                                                                                                          | oration: <u>Ap</u><br>has been verified/val                                                                                     | ril 19, 2016<br>idated as of 05/06/2016                        |                                                 |
|                                                                 | Serial Number:                                                                                                                         | 1612730                                                                                                     |                                                                                                                                                                                  | Tempe                                                                                                                                                                                                        | erature:                                                                                                                        | 23.80 °C                                                       |                                                 |
| Calibra                                                         | ation Instruction:                                                                                                                     | VW Pressure Tran                                                                                            | sducers                                                                                                                                                                          | Barometric Pr                                                                                                                                                                                                | essure: 99                                                                                                                      | 06.8 mbar                                                      |                                                 |
|                                                                 | Cable Length:                                                                                                                          | 60 feet                                                                                                     |                                                                                                                                                                                  | Tech                                                                                                                                                                                                         | nician: Koll                                                                                                                    | y Rogens                                                       | -                                               |
| Applied<br>Pressure<br>(kPa)                                    | Gage<br>Reading<br>Ist Cycle                                                                                                           | Gage<br>Reading<br>2nd Cycle                                                                                | Average<br>Gage<br>Reading                                                                                                                                                       | Calculated<br>Pressure<br>(Linear)                                                                                                                                                                           | Error<br>Linear<br>(%FS)                                                                                                        | Calculated<br>Pressure<br>(Polynomial)                         | Error<br>Polynomial<br>(%FS)                    |
| 0.0<br>34.0<br>68.0<br>102.0<br>136.0<br>170.0                  | 9794<br>9109<br>8422<br>7731<br>7036<br>6335                                                                                           | 9795<br>9110<br>8422<br>7731<br>7036<br>6335                                                                | 9795<br>9110<br>8422<br>7731<br>7036<br>6335                                                                                                                                     | 0.270<br>33.94<br>67.72<br>101.7<br>135.8<br>170.3                                                                                                                                                           | 0.16<br>-0.04<br>-0.15<br>-0.17<br>-0.08<br>0.19                                                                                | -0.024<br>34.02<br>68.00<br>102.0<br>135.9<br>170.0            | -0.01<br>0.02<br>0.01<br>-0.01<br>-0.02<br>0.02 |
| (kPa) Linea<br>Polynomia                                        | r Gage Factor (G<br>I Gage factors:                                                                                                    | ):0.04915(<br>A:                                                                                            | kPa/ digit)<br>-2.008E-07                                                                                                                                                        | B:                                                                                                                                                                                                           | -0.04591                                                                                                                        | C:                                                             |                                                 |
| (kPa) Linea<br>Polynomia                                        | r Gage Factor (G<br>  Gage factors:<br>Calculate (                                                                                     | ): <u>-0.04915 (</u><br>A: <u>-</u><br>Thermal<br>C by setting P=0 a                                        | kPa/ digit)<br>-2.008E-07<br>Factor (K):<br>nd R <sub>1</sub> = initial fi                                                                                                       | B:<br>0.008645(kPa/ °/<br>eld zero reading in                                                                                                                                                                | -0.04591<br>C)<br>ito the polynom                                                                                               | C:                                                             |                                                 |
| (kPa) Linea<br>Polynomia<br>(psi) Linea<br>Polynon              | r Gage Factor (G<br>  Gage factors:<br>Calculate (<br>r Gage Factor (G<br>nial Gage Factors                                            | ): -0.04915 (<br>A:                                                                                         | kPa/ digit)<br>-2.008E-07<br>Factor (K):<br>nd R <sub>1</sub> = initial fi<br>_(psi/ digit)<br>_2.912E-08<br>nal Factor (K):                                                     | B:                                                                                                                                                                                                           | -0.04591<br>C)<br>ito the polynom<br>-0.006658<br>C)                                                                            | C:                                                             |                                                 |
| (kPa) Linea<br>Polynomia<br>(psi) Linea<br>Polynon              | r Gage Factor (G<br>  Gage factors:<br>Calculate (<br>r Gage Factor (G<br>nial Gage Factors<br>Calculate                               | ): -0.04915 (<br>A: -<br>Thermal<br>C by setting P=0 a<br>): -0.007128<br>: A:<br>Therm<br>C by setting P=0 | kPa/ digit)<br>-2.008E-07<br>Factor (K):<br>nd R <sub>1</sub> = initial fi<br>_(psi/ digit)<br>_2.912E-08<br>nal Factor (K):<br>and R <sub>1</sub> = initial                     | B:<br>0.008645(kPa/ °/<br>eld zero reading in<br>B:<br>-0.001254(psi/ °<br>field zero reading i                                                                                                              | -0.04591<br>C)<br>to the polynom<br>-0.006658<br>C)<br>into the polyno                                                          | C:<br>nial equation<br><br>mial equation                       |                                                 |
| (kPa) Linea<br>Polynomia<br>(psi) Linea<br>Polynon<br>Calculate | r Gage Factor (G<br>  Gage factors:<br>Calculate (<br>r Gage Factor (G<br>nial Gage Factors<br>Calculate<br>d Pressures:               | ): -0.04915 (<br>A:                                                                                         | kPa/ digit)<br>-2.008E-07<br>Factor (K):<br>nd $R_1 = initial fi _(psi/ digit) -2.912E-08 nal Factor (K): and R_1 = initialLinear, P = G($                                       | B:                                                                                                                                                                                                           | <u>-0.04591</u><br>C)<br>ito the polynom<br><u>-0.006658</u><br>C)<br>into the polyno<br>)-(S <sub>1</sub> -S <sub>0</sub> )*   | C:                                                             |                                                 |
| (kPa) Linea<br>Polynomia<br>(psi) Linea<br>Polynon<br>Calculate | r Gage Factor (G<br>  Gage factors:<br>Calculate (<br>r Gage Factor (G<br>nial Gage Factors<br>Calculate<br>d Pressures:<br>*Barometri | ): -0.04915 (<br>A:                                                                                         | (kPa/ digit)<br>-2.008E-07<br>Factor (K):<br>nd $R_1 = initial fi _(psi/ digit) -2.912E-08 nal Factor (K): and R_1 = initialLinear, P = G(Polynomial, P =h kPa or psi. Barometr$ | B:<br><u>0.008645 (kPa/ °/</u><br>eld zero reading in<br><u>B:</u><br><u>-0.001254 (psi/ °</u><br>field zero reading i<br>$R_1 - R_0$ )+K( $T_1 - T_0$<br>= $AR_1^2 + BR_1 + C$<br>ic compensation is not re | -0.04591<br>C)<br>to the polynom<br>-0.006658<br>C)<br>into the polyno<br>)-(S 1 -S 0)*<br>+ K(T1-T0)-(S<br>equired with vented | C:<br>mial equation<br>$C:mial equation_1 - S_0)^*transducers$ |                                                 |

|                                                |                                              |                                              |                                              | Data of Colli-                                                                | notion:                                                        | -110 2016                                           |                                                 |
|------------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------|
|                                                | Model Number:                                | 4500AL-170 k                                 | Pa                                           | This calibration h                                                            | as been verified/val                                           | idated as of 05/06/2016                             |                                                 |
|                                                | Serial Number:                               | 1612731                                      |                                              | Tempe                                                                         | rature:                                                        | 23.80 °C                                            |                                                 |
| Calibra                                        | ation Instruction:                           | W Pressure Tran                              | sducers                                      | Barometric Pro                                                                | essure: 99                                                     | 6.8 mbar                                            |                                                 |
|                                                | Cable Length:                                | 60 feet                                      |                                              | Tech                                                                          | nician: Kerl                                                   | y Rogers.                                           | -1                                              |
| Applied<br>Pressure<br>(kPa)                   | Gage<br>Reading<br>1st Cycle                 | Gage<br>Reading<br>2nd Cycle                 | Average<br>Gage<br>Reading                   | Calculated<br>Pressure<br>(Linear)                                            | Error<br>Linear<br>(%FS)                                       | Calculated<br>Pressure<br>(Polynomial)              | Error<br>Polynomial<br>(%FS)                    |
| 0.0<br>34.0<br>68.0<br>102.0<br>136.0<br>170.0 | 8743<br>8013<br>7282<br>6546<br>5801<br>5048 | 8744<br>8014<br>7283<br>6546<br>5802<br>5049 | 8744<br>8014<br>7283<br>6546<br>5802<br>5049 | 0.391<br>33.99<br>67.64<br>101.5<br>135.8<br>170.5                            | 0.23<br>0.00<br>-0.20<br>-0.26<br>-0.10<br>0.30                | -0.063<br>34.09<br>68.02<br>101.9<br>135.9<br>170.0 | -0.04<br>0.05<br>0.02<br>-0.03<br>-0.03<br>0.03 |
|                                                | Calculate (                                  | Thermal                                      | Factor (K):                                  | 0.02649 (kPa/ %)<br>eld zero reading in                                       | C)<br>to the polynon                                           | ial equation                                        |                                                 |
| (psi) Linea                                    | r Gage Factor (G)                            | : -0.006676                                  | (psi/ digit)                                 |                                                                               |                                                                |                                                     |                                                 |
| Polynon                                        | nial Gage Factors:                           | A:                                           | -3.681E-08                                   | B:                                                                            | -0.006168                                                      | C:                                                  |                                                 |
| rolynon                                        |                                              | Thern                                        | al Factor (K): _                             | -0.003843 (psi/ °                                                             | C)                                                             |                                                     |                                                 |
| roiyiidi                                       | Calculate                                    | C by setting P=0                             | and R <sub>1</sub> = initial                 | field zero reading i                                                          | nto the polyno                                                 | mial equation                                       |                                                 |
| 1 olynon                                       |                                              |                                              | Linear B-CO                                  | R <sub>1</sub> -R <sub>0</sub> )+K(T <sub>1</sub> -T <sub>0</sub> )           | )-(S <sub>1</sub> -S <sub>0</sub> )*                           |                                                     |                                                 |
| Calculate                                      | d Pressures:                                 |                                              | Linear, r = O(                               |                                                                               |                                                                | -S 1*                                               |                                                 |
| Calculate                                      | d Pressures:                                 |                                              | Polynomial, P =                              | $= \mathbf{AR}_1^2 + \mathbf{BR}_1 + \mathbf{C}$                              | + $K(T_1 - T_0) - (S_1)$                                       | 1-5.0)                                              |                                                 |
| Calculate                                      | d Pressures:<br>*Barometric                  | pressures expressed ir                       | Polynomial, P =                              | $= \mathbf{AR}_1^2 + \mathbf{BR}_1 + \mathbf{C}$<br>ic compensation is not re | $+ \mathbf{K}(\mathbf{T}_{1} - \mathbf{T}_{0}) - (\mathbf{S})$ | transducers.                                        | _                                               |

|                                                |                                              | HANG THE                                     | Crossure II                                                 | anduiter car                                                                                                                                                                             | DI MAUNI IX                                                                                           | -Port                                               |                                                |
|------------------------------------------------|----------------------------------------------|----------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------|
|                                                | Model Number:                                | 4500AL-170 k                                 | Pa                                                          | Date of Calib<br>This calibration h                                                                                                                                                      | ration: Ap<br>as been verified/val                                                                    | ril 19, 2016<br>idated as of 05/06/2016             |                                                |
|                                                | Serial Number:                               | 1612732                                      |                                                             | Tempe                                                                                                                                                                                    | rature:                                                                                               | 23.80 °C                                            |                                                |
| Calibra                                        | ation Instruction:                           | W Pressure Tran                              | sducers                                                     | Barometric Pro                                                                                                                                                                           | essure: 99                                                                                            | 6.8 mbar                                            |                                                |
|                                                | Cable Length:                                | 60 feet                                      | _                                                           | Tech                                                                                                                                                                                     | nician: Kall                                                                                          | Rogers                                              | -                                              |
| Applied<br>Pressure<br>(kPa)                   | Gage<br>Reading<br>1st Cycle                 | Gage<br>Reading<br>2nd Cycle                 | Average<br>Gage<br>Reading                                  | Calculated<br>Pressure<br>(Linear)                                                                                                                                                       | Error<br>Linear<br>(%FS)                                                                              | Calculated<br>Pressure<br>(Polynomial)              | Error<br>Polynomial<br>(%FS)                   |
| 0.0<br>34.0<br>68.0<br>102.0<br>136.0<br>170.0 | 9964<br>9266<br>8565<br>7860<br>7150<br>6436 | 9965<br>9266<br>8565<br>7860<br>7150<br>6436 | 9965<br>9266<br>8565<br>7860<br>7150<br>6436                | 0.313<br>33.97<br>67.74<br>101.7<br>135.9<br>170.3                                                                                                                                       | 0.19<br>-0.02<br>-0.14<br>-0.16<br>-0.04<br>0.20                                                      | -0.018<br>34.02<br>67.99<br>102.0<br>136.0<br>170.0 | -0.01<br>0.01<br>0.01<br>-0.01<br>0.00<br>0.01 |
|                                                | Calculate C                                  | Thermal<br>by setting P=0 a                  | Factor (K): <u>-</u><br>nd R <sub>1</sub> = initial fi      | 0.04336 (kPa/ °<br>eld zero reading in                                                                                                                                                   | C)<br>to the polynom                                                                                  | ial equation                                        |                                                |
| (psi) Linea                                    | r Gage Factor (G)<br>nial Gage Factors:      | : -0.006988<br>A:                            | (psi/ digit)<br>-2.831E-08                                  | B:                                                                                                                                                                                       | -0.006524                                                                                             | C:                                                  |                                                |
| Polynon                                        | na ouge ractors.                             | Therm                                        | al Factor (K): _                                            | -0.006289 (psi/ %                                                                                                                                                                        | C)                                                                                                    |                                                     |                                                |
| Polynon                                        |                                              | C by setting P=0                             | and R <sub>1</sub> = initial                                | field zero reading i                                                                                                                                                                     | into the polyno                                                                                       | mial equation                                       |                                                |
| Polynon                                        | Calculate                                    | , <u>,</u>                                   |                                                             |                                                                                                                                                                                          |                                                                                                       |                                                     |                                                |
| Polynon<br>Calculate                           | Calculate<br>d Pressures:                    |                                              | Linear, P = G(                                              | R <sub>1</sub> -R <sub>0</sub> )+K(T <sub>1</sub> -T <sub>0</sub> )                                                                                                                      | )-(S <sub>1</sub> -S <sub>0</sub> )*                                                                  |                                                     |                                                |
| Polynon<br>Calculate                           | Calculate<br>d Pressures:<br>*Barometric     | pressures expressed in                       | Linear, P = G(<br>Polynomial, P =<br>1 kPa or psi. Barometr | $\mathbf{R}_{1} - \mathbf{R}_{0} + \mathbf{K}(\mathbf{T}_{1} - \mathbf{T}_{0})$<br>= $\mathbf{A}\mathbf{R}_{1}^{2} + \mathbf{B}\mathbf{R}_{1} + \mathbf{C}$<br>ic compensation is not re | )-(S <sub>1</sub> -S <sub>0</sub> )*<br>+ K(T <sub>1</sub> -T <sub>0</sub> )-(S<br>quired with vented | 1 -S 0)*<br>transducers.                            |                                                |

|                                                |                                                                                                    |                                               | riessure ri                                                                                                       | ansuncer Car                                                                                                                                            | IDI ALION IX                                                                                                                               | <u>eport</u>                                         |                                                 |
|------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------|
|                                                | Model Number:                                                                                      | 4500AL-170 k                                  | Pa                                                                                                                | Date of Calib<br>This calibration h                                                                                                                     | ration: Ap<br>as been verified/val                                                                                                         | ril 19, 2016<br>idated as of 05/06/2016              |                                                 |
|                                                | Serial Number:                                                                                     | 1612733                                       |                                                                                                                   | Tempe                                                                                                                                                   | rature:                                                                                                                                    | 23.80 °C                                             |                                                 |
| Calibra                                        | ation Instruction:                                                                                 | W Pressure Trans                              | sducers                                                                                                           | Barometric Pro                                                                                                                                          | essure: 99                                                                                                                                 | 06.8 mbar                                            |                                                 |
|                                                | Cable Length:                                                                                      | 60 feet                                       |                                                                                                                   | Tech                                                                                                                                                    | nician: Karla                                                                                                                              | y Rogens                                             |                                                 |
| Applied<br>Pressure<br>(kPa)                   | Gage<br>Reading<br>1st Cycle                                                                       | Gage<br>Reading<br>2nd Cycle                  | Average<br>Gage<br>Reading                                                                                        | Calculated<br>Pressure<br>(Linear)                                                                                                                      | Error<br>Linear<br>(%FS)                                                                                                                   | Calculated<br>Pressure<br>(Polynomial)               | Error<br>Polynomial<br>(%FS)                    |
| 0.0<br>34.0<br>68.0<br>102.0<br>136.0<br>170.0 | 10067<br>9361<br>8648<br>7936<br>7219<br>6496                                                      | 10068<br>9361<br>8648<br>7936<br>7219<br>6496 | 10068<br>9361<br>8648<br>7936<br>7219<br>6496                                                                     | 0.262<br>33.89<br>67.83<br>101.7<br>135.9<br>170.3                                                                                                      | 0.16<br>-0.06<br>-0.09<br>-0.15<br>-0.07<br>0.17                                                                                           | -0.002<br>33.96<br>68.06<br>102.0<br>135.9<br>170.0  | 0.00<br>-0.02<br>0.05<br>-0.01<br>-0.03<br>0.02 |
|                                                |                                                                                                    | Thermal<br>C by setting P=0 a                 | Factor (K): <u>-</u><br>nd R <sub>1</sub> = initial fi                                                            | 0.03740 (kPa/ °(                                                                                                                                        | C)<br>to the polynom                                                                                                                       | ial equation                                         |                                                 |
|                                                | Calculate (                                                                                        |                                               |                                                                                                                   |                                                                                                                                                         |                                                                                                                                            |                                                      |                                                 |
| (psi) Linea<br>Polynon                         | Calculate C<br>r Gage Factor (G)<br>nial Gage Factors:                                             | :0.006904<br>A:                               | _(psi/ digit)<br>-2.367E-08                                                                                       | B:                                                                                                                                                      | -0.006512                                                                                                                                  | C:                                                   |                                                 |
| (psi) Linea<br>Polynon                         | Calculate (<br>r Gage Factor (G)<br>nial Gage Factors:<br>Calculate                                | :0.006904<br>A:_<br>Therm<br>C by setting P=0 | _(psi/ digit)<br>2.367E-08<br>al Factor (K):<br>and R <sub>1</sub> = initial                                      | B:                                                                                                                                                      | -0.006512<br>C)<br>nto the polyno                                                                                                          | C;<br>mial equation                                  |                                                 |
| (psi) Linea<br>Polynon<br>Calculate            | Calculate (<br>r Gage Factor (G)<br>nial Gage Factors:<br>Calculate<br>d Pressures:                | :0.006904<br>A:<br>Therm<br>C by setting P=0  | _(psi/ digit)<br>2.367E-08<br>aal Factor (K): _<br>and R <sub>1</sub> = initial<br>Linear, P = G(                 | B:                                                                                                                                                      | -0.006512<br>C)<br>nto the polyno<br>(S <sub>1</sub> -S <sub>0</sub> )*                                                                    | C:                                                   |                                                 |
| (psi) Linea<br>Polynon<br>Calculate            | Calculate (<br>r Gage Factor (G)<br>nial Gage Factors:<br>Calculate<br>d Pressures:<br>*Barometric | :A:<br><br>Therm<br>C by setting P=0          | _(psi/ digit)<br>2.367E-08<br>al Factor (K):<br>and R <sub>1</sub> = initial<br>Linear, P = G(<br>Polynomial, P = | B:<br><u>-0.005424</u> (psi/ $^{\circ}$<br>field zero reading i<br>$R_1 - R_0$ )+K( $T_1 - T_0$ )<br>= $AR_1^2 + BR_1 + C$<br>ic compensation is not re | -0.006512<br>C)<br>nto the polyno<br>)-(S <sub>1</sub> -S <sub>0</sub> )*<br>+ K(T <sub>1</sub> -T <sub>0</sub> )-(S<br>quired with vented | C:<br>mial equation<br>$(1 - S_0)^*$<br>transducers. |                                                 |

|                                                | Vibi                                                                                            | ating wire                                                                 | Pressure Tr                                                                                                                         | ansducer Cal                                                             | ibration R                                                                                                                  | eport                                              |                                                 |
|------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------|
| 1                                              | Model Number:                                                                                   | 4500AL-170 k                                                               | Pa                                                                                                                                  | Date of Calib<br>This calibration h                                      | ration: Ap                                                                                                                  | ril 19, 2016<br>idated as of 05/06/2016            |                                                 |
|                                                | Serial Number:                                                                                  | 1612734                                                                    |                                                                                                                                     | Tempe                                                                    | rature:                                                                                                                     | 23.10 °C                                           |                                                 |
| Calibrat                                       | tion Instruction:                                                                               | W Pressure Trans                                                           | sducers                                                                                                                             | Barometric Pro                                                           | essure: 99                                                                                                                  | 6.3 mbar                                           |                                                 |
|                                                | Cable Length:                                                                                   | 60 feet                                                                    |                                                                                                                                     | Tech                                                                     | nician: Kefli                                                                                                               | y Rogers                                           |                                                 |
| Applied<br>Pressure<br>(kPa)                   | Gage<br>Reading<br>1st Cycle                                                                    | Gage<br>Reading<br>2nd Cycle                                               | Average<br>Gage<br>Reading                                                                                                          | Calculated<br>Pressure<br>(Linear)                                       | Error<br>Linear<br>(%FS)                                                                                                    | Calculated<br>Pressure<br>(Polynomial)             | Error<br>Polynomial<br>(%FS)                    |
| 0.0<br>34.0<br>68.0<br>102.0<br>136.0<br>170.0 | 9813<br>9127<br>8438<br>7745<br>7047<br>6348                                                    | 9814<br>9127<br>8439<br>7745<br>7048<br>6349                               | 9814<br>9127<br>8439<br>7745<br>7048<br>6349                                                                                        | 0.270<br>33.94<br>67.71<br>101.7<br>135.9<br>170.2                       | 0.16<br>-0.04<br>-0.16<br>-0.15<br>-0.02<br>0.15                                                                            | 0.006<br>34.01<br>67.95<br>102.0<br>136.0<br>170.0 | 0.00<br>0.00<br>-0.02<br>-0.01<br>0.02<br>-0.01 |
|                                                |                                                                                                 | Thermal                                                                    | Factor (K): 0                                                                                                                       | .001401 (kPa/ %                                                          | C)                                                                                                                          |                                                    |                                                 |
|                                                | Calculate C                                                                                     | by setting P=0 a                                                           | nd R <sub>1</sub> = initial fi                                                                                                      | eld zero reading in                                                      | to the polynom                                                                                                              | ial equation                                       |                                                 |
| (psi) Linear<br>Polynom                        | Calculate C<br>Gage Factor (G)<br>ial Gage Factors:                                             | by setting P=0 a<br>:                                                      | nd R <sub>1</sub> = initial fi<br>_(psi/ digit)<br>2.548E-08                                                                        | eld zero reading in<br>B:                                                | to the polynom<br>-0.006702                                                                                                 | ial equation C:                                    |                                                 |
| (psi) Linear<br>Polynom                        | Calculate C<br>Gage Factor (G)<br>ial Gage Factors:<br>Calculate                                | by setting P=0 a<br>: <u>-0.007114</u><br>A:_<br>Therm<br>C by setting P=0 | nd R <sub>1</sub> = initial fi<br>_(psi/ digit)<br>2.548E-08<br>aal Factor (K):<br>and R <sub>1</sub> = initial                     | eld zero reading in<br>B:<br>0.0002032 _(psi/ °/<br>field zero reading i | to the polynom<br>-0.006702<br>С)<br>nto the polyno                                                                         | ial equation<br>C:<br>mial equation                |                                                 |
| (psi) Linear<br>Polynom<br>Calculated          | Calculate C<br>Gage Factor (G)<br>ial Gage Factors:<br>Calculate<br>I Pressures:                | C by setting P=0 a<br>:                                                    | nd R <sub>1</sub> = initial fi<br>_(psi/ digit)<br>2.548E-08<br>al Factor (K):<br>and R <sub>1</sub> = initial<br>Linear, P = G(1   | eld zero reading in<br>B:                                                | to the polynom<br>-0.006702<br>C)<br>nto the polyno<br>)-(S 1 -S 0)*                                                        | ial equation<br>C:                                 |                                                 |
| (psi) Linear<br>Polynom<br>Calculated          | Calculate C<br>Gage Factor (G)<br>ial Gage Factors:<br>Calculate<br>I Pressures:<br>*Barometric | by setting P=0 a<br>:                                                      | nd $R_1$ = initial fit<br>(psi/ digit)<br>-2.548E-08<br>al Factor (K):<br>and $R_1$ = initial<br>Linear, P = G(1<br>Polynomial, P = | eld zero reading in<br>B:                                                | to the polynom<br>-0.006702<br>C)<br>into the polyno<br>$(S_1 - S_0)^*$<br>+ $K(T_1 - T_0) - (S_0)^*$<br>quired with vented | Transducers.                                       |                                                 |

|                                                |                                                                                                    |                                                                       |                                                                                                                                                | Date of Calib                                                        | ration: An                                                                                                                 | -110 2016                                                            |                                                |
|------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------|
|                                                | Model Number:                                                                                      | 4500AL-170 k                                                          | Pa                                                                                                                                             | This calibration h                                                   | as been verified/val                                                                                                       | idated as of 05/06/2016                                              |                                                |
|                                                | Serial Number:                                                                                     | 1612735                                                               |                                                                                                                                                | Tempe                                                                | rature:                                                                                                                    | 23.10 °C                                                             |                                                |
| Calibra                                        | tion Instruction:                                                                                  | W Pressure Tran                                                       | sducers                                                                                                                                        | Barometric Pro                                                       | essure: 99                                                                                                                 | 6.3 mbar                                                             |                                                |
|                                                | Cable Length:                                                                                      | 60 feet                                                               |                                                                                                                                                | Tech                                                                 | nician: Karl                                                                                                               | y Rogers                                                             | -                                              |
| Applied<br>Pressure<br>(kPa)                   | Gage<br>Reading<br>1st Cycle                                                                       | Gage<br>Reading<br>2nd Cycle                                          | Average<br>Gage<br>Reading                                                                                                                     | Calculated<br>Pressure<br>(Linear)                                   | Error<br>Linear<br>(%FS)                                                                                                   | Calculated<br>Pressure<br>(Polynomial)                               | Error<br>Polynomial<br>(%FS)                   |
| 0.0<br>34.0<br>68.0<br>102.0<br>136.0<br>170.0 | 9788<br>9094<br>8396<br>7695<br>6993<br>6286                                                       | 9790<br>9095<br>8397<br>7696<br>6993<br>6287                          | 9789<br>9095<br>8397<br>7696<br>6993<br>6287                                                                                                   | 0.243<br>33.94<br>67.82<br>101.8<br>135.9<br>170.2                   | 0.14<br>-0.04<br>-0.10<br>-0.09<br>-0.03<br>0.14                                                                           | 0.015<br>33.98<br>67.98<br>102.0<br>136.0<br>170.0                   | 0.01<br>-0.02<br>0.00<br>0.01<br>-0.01<br>0.00 |
|                                                |                                                                                                    |                                                                       | Factor (K):                                                                                                                                    | 0.03321 (kPa/ %                                                      | C)                                                                                                                         |                                                                      |                                                |
|                                                | Calculate C                                                                                        | Thermal                                                               | nd R <sub>1</sub> = initial fi                                                                                                                 | eld zero reading in                                                  | to the polynom                                                                                                             | ial equation                                                         |                                                |
| (psi) Linear                                   | Calculate C<br>r Gage Factor (G)                                                                   | Thermal                                                               | nd R <sub>1</sub> = initial fi<br>_(psi/ digit)                                                                                                | eld zero reading in                                                  | to the polynom                                                                                                             | ial equation                                                         |                                                |
| (psi) Linear<br>Polynom                        | Calculate C<br>r Gage Factor (G)<br>tial Gage Factors:                                             | Thermal<br>by setting P=0 a<br>:                                      | nd R <sub>1</sub> = initial fi<br>_(psi/ digit)<br>1.942E-08                                                                                   | eld zero reading in<br>B: _                                          | to the polynom<br>-0.006726                                                                                                | c:                                                                   |                                                |
| (psi) Linear<br>Polynom                        | Calculate C<br>r Gage Factor (G)<br>tial Gage Factors:<br>Calculate                                | Thermal<br>2 by setting P=0 a<br>:<br>:                               | nd R <sub>1</sub> = initial fi<br>_(psi/ digit)<br><u>-1.942E-08</u><br>aal Factor (K): _<br>and R <sub>1</sub> = initial                      | eld zero reading in<br>B:<br>0.004816(psi/ °<br>field zero reading i | to the polynom<br>-0.006726<br>C)<br>nto the polyno                                                                        | nial equation                                                        |                                                |
| (psi) Linear<br>Polynom<br>Calculated          | Calculate C<br>r Gage Factor (G)<br>tial Gage Factors:<br>Calculate<br>d Pressures:                | Thermal<br>2 by setting P=0 a<br>:<br>A:<br>Therm<br>C by setting P=0 | nd R <sub>1</sub> = initial fi<br>_(psi/ digit)<br><u>-1.942E-08</u><br>nal Factor (K): _<br>and R <sub>1</sub> = initial<br>Linear, P = G(    | eld zero reading in<br>B:                                            | to the polynom<br>-0.006726<br>C)<br>nto the polyno<br>)-(S 1 -S 0)*                                                       | nial equation                                                        |                                                |
| (psi) Linear<br>Polynom<br>Calculated          | Calculate C<br>r Gage Factor (G)<br>tial Gage Factors:<br>Calculate<br>d Pressures:<br>*Barometric | Thermal<br>2 by setting P=0 a<br>:<br>:                               | nd $R_1 = initial fi$<br>_(psi/ digit)<br><u>-1.942E-08</u><br>aal Factor (K):<br>and $R_1 = initial$<br>Linear, $P = G($<br>Polynomial, $P =$ | eld zero reading in<br>B:                                            | to the polynom<br>-0.006726<br>C)<br>nto the polyno<br>$(S_1 - S_0)^*$<br>+ $K(T_1 - T_0) - (S_0)^*$<br>quired with vented | tial equation<br>C:<br>mial equation<br>$_1 -S_0$ )*<br>transducers. |                                                |

|                                                |                                              |                                              |                                                   | Date of Calib                                                           | ration: Ap                                       | ril 19, 2016                                       |                                                |
|------------------------------------------------|----------------------------------------------|----------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------|------------------------------------------------|
|                                                | Model Number:                                | 4500AL-170 k                                 | <u>.Pa</u>                                        | This calibration h                                                      | as been verified/val                             | idated as of 05/06/2016                            |                                                |
|                                                | Serial Number:                               | 1612736                                      |                                                   | Tempe                                                                   | rature:                                          | 23.10 °C                                           |                                                |
| Calibra                                        | tion Instruction:                            | W Pressure Tran                              | sducers                                           | Barometric Pr                                                           | essure: 99                                       | 06.3 mbar                                          |                                                |
|                                                | Cable Length:                                | 60 feet                                      | _                                                 | Tech                                                                    | nician: Kerl                                     | Rogens                                             |                                                |
| Applied<br>Pressure<br>(kPa)                   | Gage<br>Reading<br>1st Cycle                 | Gage<br>Reading<br>2nd Cycle                 | Average<br>Gage<br>Reading                        | Calculated<br>Pressure<br>(Linear)                                      | Error<br>Linear<br>(%FS)                         | Calculated<br>Pressure<br>(Polynomial)             | Error<br>Polynomial<br>(%FS)                   |
| 0.0<br>34.0<br>68.0<br>102.0<br>136.0<br>170.0 | 9923<br>9239<br>8553<br>7863<br>7169<br>6474 | 9924<br>9240<br>8554<br>7863<br>7170<br>6474 | 9924<br>9240<br>8554<br>7863<br>7170<br>6474      | 0.271<br>33.97<br>67.77<br>101.8<br>136.0<br>170.2                      | 0.16<br>-0.02<br>-0.12<br>-0.11<br>-0.01<br>0.15 | 0.007<br>34.01<br>67.96<br>102.0<br>136.0<br>170.0 | 0.00<br>0.00<br>-0.01<br>0.00<br>0.02<br>-0.01 |
|                                                | Calculate C                                  | Thermal<br>C by setting P=0 a                | Factor (K):                                       | 0.04286 (kPa/ %                                                         | C)<br>to the polynom                             | ial equation                                       |                                                |
| (psi) Linea<br>Polynon                         | r Gage Factor (G)<br>11al Gage Factors:      | : -0.007146<br>A:                            | _(psi/ digit)<br>-2.288E-08                       | B:                                                                      | -0.006771                                        | C:                                                 |                                                |
|                                                | Calculate                                    | Therm<br>C by setting P=0                    | aal Factor (K): _<br>and R <sub>1</sub> = initial | -0.006216 (psi/ °<br>field zero reading i                               | C)<br>nto the polyno                             | mial equation                                      |                                                |
|                                                | d Pressures:                                 |                                              | Linear, P = G(                                    | $\mathbf{R}_1 - \mathbf{R}_0 + \mathbf{K}(\mathbf{T}_1 - \mathbf{T}_0)$ | )-(S <sub>1</sub> -S <sub>0</sub> )*             |                                                    |                                                |
| Calculate                                      |                                              |                                              | Polynomial, P =                                   | $= \mathbf{AR}_1^2 + \mathbf{BR}_1 + \mathbf{C}_2$                      | + K(T <sub>1</sub> -T <sub>0</sub> )-(S          | 1-S <sub>0</sub> )*                                |                                                |
| Calculate                                      | *Barometric                                  | pressures expressed in                       | n kPa or psi. Barometr                            | ic compensation is not re                                               | quirea with ventea                               | transducers.                                       |                                                |

|                                                | Model Number:                                 | 4500AL-170 k                                  | Pa                                               | Date of Calib                                                               | ration: <u>Ap</u>                                             | ril 19, 2016                                        |                                                |
|------------------------------------------------|-----------------------------------------------|-----------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------|
|                                                | Serial Number:                                | 1612737                                       | <u> </u>                                         | This calibration in                                                         | rature:                                                       | 23.10 °C                                            |                                                |
| Calibra                                        | ation Instruction;                            | VW Pressure Tran                              | sducers                                          | Barometric Pr                                                               | essure: 99                                                    | 96.3 mbar                                           |                                                |
|                                                | Cable Length:                                 | 60 feet                                       |                                                  | Tech                                                                        | nician: Kerk                                                  | y Rogers                                            | -                                              |
| Applied<br>Pressure<br>(kPa)                   | Gage<br>Reading<br>1st Cycle                  | Gage<br>Reading<br>2nd Cycle                  | Average<br>Gage<br>Reading                       | Calculated<br>Pressure<br>(Linear)                                          | Error<br>Linear<br>(%FS)                                      | Calculated<br>Pressure<br>(Polynomial)              | Error<br>Polynomial<br>(%FS)                   |
| 0.0<br>34.0<br>68.0<br>102.0<br>136.0<br>170.0 | 10001<br>9318<br>8632<br>7941<br>7248<br>6547 | 10002<br>9318<br>8633<br>7942<br>7249<br>6548 | 10002<br>9318<br>8633<br>7942<br>7249<br>6548    | 0.320<br>33.97<br>67.71<br>101.7<br>135.8<br>170.3                          | 0.19<br>-0.02<br>-0.16<br>-0.15<br>-0.08<br>0.22              | -0.017<br>34.03<br>67.98<br>102.0<br>135.9<br>170.0 | -0.01<br>0.01<br>0.00<br>0.01<br>-0.04<br>0.02 |
|                                                | Calculate (                                   | Thermal<br>C by setting P=0 a                 | Factor (K): <u> </u>                             | 0.05437 (kPa/ °<br>eld zero reading in                                      | C)<br>to the polynom                                          | ial equation                                        |                                                |
| (psi) Linea<br>Polynon                         | r Gage Factor (G<br>nial Gage Factors         | ): <u>-0.007140</u><br>: A:_                  | _(psi/ digit)<br>3.084E-08                       | B:                                                                          | -0.006629                                                     | C:                                                  |                                                |
|                                                | Calculate                                     | Therm<br>C by setting P=0                     | al Factor (K): _<br>and R <sub>1</sub> = initial | -0.007885 (psi/ °<br>field zero reading i                                   | C)<br>nto the polyno                                          | mial equation                                       |                                                |
|                                                | d Pressures:                                  |                                               | Linear, P = G(                                   | $\mathbf{R}_1 - \mathbf{R}_0 + \mathbf{K}(\mathbf{T}_1 - \mathbf{T}_0)$     | )-(S <sub>1</sub> -S <sub>0</sub> )*                          |                                                     |                                                |
| Calculate                                      |                                               |                                               | Polynomial, P =                                  | = <b>AR</b> <sub>1</sub> <sup>2</sup> + <b>BR</b> <sub>1</sub> + <b>C</b> - | + K(T <sub>1</sub> -T <sub>0</sub> )-(S<br>quired with vented | $(1 - S_0)^*$                                       |                                                |
| Calculate                                      | *Barometri                                    | c pressures expressed in                      | Kra of pst. baromet                              | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                       |                                                               |                                                     |                                                |

|                                                | Model Number:                                | 4500AL-170 k                                 | Pa                                            | Date of Calib                                          | oration: Ap                                      | ril 19, 2016                                       |                                               |
|------------------------------------------------|----------------------------------------------|----------------------------------------------|-----------------------------------------------|--------------------------------------------------------|--------------------------------------------------|----------------------------------------------------|-----------------------------------------------|
|                                                | Serial Number:                               | 1612738                                      | 1.0                                           | Tempe                                                  | rature:                                          | 23.10 °C                                           |                                               |
| Calibra                                        | ation Instruction:                           | √W Pressure Tran                             | sducers                                       | Barometric Pro                                         | essure: 99                                       | 06.3 mbar                                          |                                               |
|                                                | Cable Length:                                | 60 feet                                      | -                                             | Tech                                                   | nician: Karl                                     | Rogen                                              |                                               |
| Applied<br>Pressure<br>(kPa)                   | Gage<br>Reading<br>1st Cycle                 | Gage<br>Reading<br>2nd Cycle                 | Average<br>Gage<br>Reading                    | Calculated<br>Pressure<br>(Linear)                     | Error<br>Linear<br>(%FS)                         | Calculated<br>Pressure<br>(Polynomial)             | Error<br>Polynomial<br>(%FS)                  |
| 0.0<br>34.0<br>68.0<br>102.0<br>136.0<br>170.0 | 9812<br>9123<br>8432<br>7737<br>7040<br>6339 | 9813<br>9124<br>8432<br>7737<br>7040<br>6340 | 9813<br>9124<br>8432<br>7737<br>7040<br>6340  | 0.220<br>33.94<br>67.78<br>101.8<br>135.9<br>170.2     | 0.13<br>-0.04<br>-0.12<br>-0.11<br>-0.04<br>0.13 | 0.007<br>34.00<br>67.97<br>102.0<br>136.0<br>170.0 | 0.00<br>-0.01<br>0.00<br>0.01<br>0.00<br>0.00 |
|                                                | Calculate C                                  | Thermal<br>C by setting P=0 a                | Factor (K):<br>nd R <sub>1</sub> = initial fi | 0.01050 (kPa/ °(<br>eld zero reading in                | C)<br>to the polynom                             | ial equation                                       |                                               |
| (psi) Linea<br>Polynon                         | r Gage Factor (G)<br>11al Gage Factors:      | : -0.007098<br>A:                            | (psi/ digit)<br>-2.032E-08                    | B:                                                     | -0.006770                                        | C:                                                 |                                               |
|                                                | Calculate                                    | C by setting P=0                             | and R <sub>1</sub> = initial                  | field zero reading i                                   | nto the polyno                                   | mial equation                                      |                                               |
|                                                |                                              |                                              | Linear, P = G(                                | $R_1 - R_0 + K(T_1 - T_0)$                             | )-(S <sub>1</sub> -S <sub>0</sub> )*             | 5 m 4 m                                            |                                               |
| Calculate                                      | d Pressures:                                 |                                              |                                               | = AR <sub>1</sub> <sup>2</sup> + BR <sub>1</sub> + C + | + K(T <sub>1</sub> -T <sub>0</sub> )-(S          | 1 -S 0)*                                           |                                               |
| Calculate                                      | d Pressures:<br>*Barometric                  | pressures expressed in                       | Polynomial, P =                               | ic compensation is not re                              | quired with vented                               | transducers.                                       |                                               |

|                                                |                                              | Sugar Sinte                                  |                                                                                      | Date of Calib                                                                                            | ration: An                                                                                                              | ril 19, 2016                                        |                                                 |
|------------------------------------------------|----------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------|
|                                                | Model Number:                                | 4500AL-170 k                                 | Pa                                                                                   | This calibration h                                                                                       | as been verified/val                                                                                                    | idated as of 05/06/2016                             |                                                 |
|                                                | Serial Number:                               | 1612739                                      |                                                                                      | Tempe                                                                                                    | rature:                                                                                                                 | 23.10 °C                                            |                                                 |
| Calibra                                        | ation Instruction:                           | VW Pressure Trans                            | sducers                                                                              | Barometric Pro                                                                                           | essure: 99                                                                                                              | 6.3 mbar                                            |                                                 |
|                                                | Cable Length:                                | 60 feet                                      |                                                                                      | Tech                                                                                                     | nician: Karl                                                                                                            | Rogens                                              |                                                 |
| Applied<br>Pressure<br>(kPa)                   | Gage<br>Reading<br>1st Cycle                 | Gage<br>Reading<br>2nd Cycle                 | Average<br>Gage<br>Reading                                                           | Calculated<br>Pressure<br>(Linear)                                                                       | Error<br>Linear<br>(%FS)                                                                                                | Calculated<br>Pressure<br>(Polynomial)              | Error<br>Polynomial<br>(%FS)                    |
| 0.0<br>34.0<br>68.0<br>102.0<br>136.0<br>170.0 | 9889<br>9182<br>8475<br>7764<br>7049<br>6325 | 9890<br>9183<br>8476<br>7764<br>7049<br>6326 | 9890<br>9183<br>8476<br>7764<br>7049<br>6326                                         | 0.262<br>34.00<br>67.74<br>101.7<br>135.8<br>170.3                                                       | 0.15<br>0.00<br>-0.14<br>-0.17<br>-0.09<br>0.21                                                                         | -0.045<br>34.07<br>68.00<br>102.0<br>135.9<br>170.0 | -0.03<br>0.04<br>0.01<br>-0.01<br>-0.05<br>0.03 |
|                                                | Calculate C                                  | Thermal                                      | Factor (K): <u> </u>                                                                 | 0.01909 (kPa/ °C                                                                                         | C)<br>to the polynom                                                                                                    | ial equation                                        |                                                 |
|                                                | r Gage Factor (G)                            | -0.006921                                    | _(psi/ digit)                                                                        |                                                                                                          |                                                                                                                         |                                                     |                                                 |
| (psi) Linea                                    | ial Gage Factors:                            | A:_                                          | -2.735E-08                                                                           | -0.002768 (psi/ %                                                                                        | -0.006478                                                                                                               | C:                                                  |                                                 |
| (psi) Linea<br>Polynon                         |                                              | Therm                                        | al Factor (K):                                                                       |                                                                                                          | -,                                                                                                                      |                                                     |                                                 |
| (psi) Linea<br>Polynon                         | Calculate                                    | Thern<br>C by setting P=0                    | al Factor (K):<br>and R <sub>1</sub> = initial                                       | field zero reading i                                                                                     | nto the polyno                                                                                                          | mial equation                                       |                                                 |
| (psi) Linea<br>Polynon<br>Calculate            | Calculate<br>d Pressures:                    | Thern<br>C by setting P=0                    | aal Factor (K):<br>and R <sub>1</sub> = initial<br>Linear, P = G(                    | field zero reading i<br>R <sub>1</sub> -R <sub>0</sub> )+K(T <sub>1</sub> -T <sub>0</sub> )              | nto the polyno<br>)-(S <sub>1</sub> -S <sub>0</sub> )*                                                                  | mial equation                                       |                                                 |
| (psi) Linea<br>Polynon<br>Calculate            | Calculate<br>d Pressures:<br>*Barometric     | Thern<br>C by setting P=0                    | aal Factor (K):<br>and R <sub>1</sub> = initial<br>Linear, P = G(<br>Polynomial, P = | field zero reading i<br>$R_1 - R_0 + K(T_1 - T_0)$<br>$= AR_1^2 + BR_1 + C$<br>ic compensation is not re | nto the polyno<br>)-(S <sub>1</sub> -S <sub>0</sub> )*<br>+ K(T <sub>1</sub> -T <sub>0</sub> )-(S<br>quired with vented | mial equation<br>1 -S 0)*<br>transducers.           |                                                 |

|                                                | Model Number:                                | 4500AL-170 k                                 | Pa                                               | Date of Calib<br>This calibration h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ration: Ap                                       | ril 19, 2016<br>idated as of 05/06/2016            |                                               |
|------------------------------------------------|----------------------------------------------|----------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------|-----------------------------------------------|
|                                                | Serial Number:                               | 1612740                                      |                                                  | Tempe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rature:                                          | 23.10 °C                                           |                                               |
| Calibra                                        | tion Instruction:                            | W Pressure Trans                             | sducers                                          | Barometric Providence | essure: 99                                       | 96.3 mbar                                          |                                               |
|                                                | Cable Length:                                | 60 feet                                      |                                                  | Tech                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nician: Kell                                     | y Rogers                                           | -                                             |
| Applied<br>Pressure<br>(kPa)                   | Gage<br>Reading<br>1st Cycle                 | Gage<br>Reading<br>2nd Cycle                 | Average<br>Gage<br>Reading                       | Calculated<br>Pressure<br>(Linear)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Error<br>Linear<br>(%FS)                         | Calculated<br>Pressure<br>(Polynomial)             | Error<br>Polynomial<br>(%FS)                  |
| 0.0<br>34.0<br>68.0<br>102.0<br>136.0<br>170.0 | 9958<br>9247<br>8533<br>7816<br>7096<br>6371 | 9959<br>9248<br>8534<br>7817<br>7096<br>6372 | 9959<br>9248<br>8534<br>7817<br>7096<br>6372     | 0.261<br>33.95<br>67.79<br>101.8<br>135.9<br>170.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.15<br>-0.03<br>-0.11<br>-0.12<br>-0.04<br>0.16 | 0.001<br>34.00<br>67.99<br>102.0<br>136.0<br>170.0 | 0.00<br>0.00<br>0.01<br>0.00<br>-0.01<br>0.01 |
|                                                | Calculate (                                  | Thermal<br>C by setting P=0 a                | Factor (K):                                      | 0.02792 (kPa/ %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C)<br>to the polynom                             | ial equation                                       |                                               |
| (psi) Linea<br>Polynon                         | r Gage Factor (G)<br>iial Gage Factors:      | : <u>-0.006873</u><br>A:                     | (psi/ digit)<br>-2.177E-08                       | B:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.006518                                        | C:                                                 |                                               |
|                                                | Calculate                                    | Therm<br>C by setting P=0                    | al Factor (K): _<br>and R <sub>1</sub> = initial | -0.004049 (psi/ °<br>field zero reading i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C)<br>nto the polyno                             | mial equation                                      |                                               |
| Calculate                                      | d Pressures:                                 |                                              | Linear, P = G(                                   | $\mathbf{R}_1 - \mathbf{R}_0$ + K( $\mathbf{T}_1 - \mathbf{T}_0$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -(S <sub>1</sub> -S <sub>0</sub> )*              | e )+                                               |                                               |
|                                                | *Barometric                                  | pressures expressed ir                       | r orynomial, P =                                 | $-AR_1 - +BR_1 + C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | quired with vented                               | 1 <sup>-3</sup> 0)"<br>transducers.                |                                               |
|                                                |                                              |                                              |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                  |                                                    |                                               |

|                                                                 | <u>101</u>                                                                                                                               |                                                                                                                                                               | ressure ri                                                                                                                                                                                     |                                                                                                                                                                                                               |                                                                                                                                             |                                                    |                                               |
|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------|
|                                                                 | Model Number:                                                                                                                            | 4500AL-170 k                                                                                                                                                  | Pa                                                                                                                                                                                             | Date of Calib<br>This calibration h                                                                                                                                                                           | ration: Ap<br>as been verified/val                                                                                                          | ril 19, 2016<br>lidated as of 05/06/2016           |                                               |
|                                                                 | Serial Number:                                                                                                                           | 1612741                                                                                                                                                       | _                                                                                                                                                                                              | Tempe                                                                                                                                                                                                         | rature:                                                                                                                                     | 23.10 °C                                           |                                               |
| Calibra                                                         | tion Instruction:                                                                                                                        | /W Pressure Trans                                                                                                                                             | sducers                                                                                                                                                                                        | Barometric Pro                                                                                                                                                                                                | essure: 99                                                                                                                                  | 96.3 mbar                                          |                                               |
|                                                                 | Cable Length:                                                                                                                            | 60 feet                                                                                                                                                       |                                                                                                                                                                                                | Tech                                                                                                                                                                                                          | nician: Karl                                                                                                                                | y Rogers                                           | -                                             |
| Applied<br>Pressure<br>(kPa)                                    | Gage<br>Reading<br>1st Cycle                                                                                                             | Gage<br>Reading<br>2nd Cycle                                                                                                                                  | Average<br>Gage<br>Reading                                                                                                                                                                     | Calculated<br>Pressure<br>(Linear)                                                                                                                                                                            | Error<br>Linear<br>(%FS)                                                                                                                    | Calculated<br>Pressure<br>(Polynomial)             | Error<br>Polynomial<br>(%FS)                  |
| 0.0<br>34.0<br>68.0<br>102.0<br>136.0<br>170.0                  | 10022<br>9328<br>8630<br>7928<br>7223<br>6514                                                                                            | 10023<br>9329<br>8631<br>7929<br>7224<br>6514                                                                                                                 | 10023<br>9329<br>8631<br>7929<br>7224<br>6514                                                                                                                                                  | 0.315<br>33.93<br>67.75<br>101.8<br>135.9<br>170.3                                                                                                                                                            | 0.18<br>-0.04<br>-0.14<br>-0.13<br>-0.04<br>0.18                                                                                            | 0.011<br>33.99<br>67.98<br>102.0<br>136.0<br>170.0 | 0.01<br>-0.01<br>0.00<br>0.01<br>0.00<br>0.00 |
| (kPa) Linea<br>Polynomia                                        | r Gage Factor (G)<br>Gage factors:                                                                                                       | : <u>-0.04844 (</u><br>A: <u>-</u>                                                                                                                            | kPa/ digit)<br>1.815E-07                                                                                                                                                                       | B:                                                                                                                                                                                                            | -0.04544                                                                                                                                    | с:                                                 |                                               |
| (kPa) Linea<br>Polynomia                                        | r Gage Factor (G)<br>  Gage factors:<br>  Calculate C                                                                                    | : A:<br>A:<br>Thermal<br>C by setting P=0 a                                                                                                                   | kPa/ digit)<br><u>-1.815E-07</u><br>Factor (K): <u> </u>                                                                                                                                       | B:<br>0.05230(kPa/ °(<br>eld zero reading in                                                                                                                                                                  | <u>-0.04544</u><br>C)<br>to the polynom                                                                                                     | C:                                                 |                                               |
| (kPa) Linea<br>Polynomia<br>(psi) Linea<br>Polynon              | r Gage Factor (G)<br>  Gage factors:<br>Calculate C<br>r Gage Factor (G)<br>nial Gage Factors:                                           | :A:<br>A:<br>Thermal<br>2 by setting P=0 a<br>3<br>5<br>6<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | kPa/ digit)<br>- <u>1.815E-07</u><br>Factor (K):<br>nd R <sub>1</sub> = initial fi<br>_(psi/ digit)<br>- <u>2.632E-08</u><br>al Factor (K):                                                    | B:                                                                                                                                                                                                            | <u>-0.04544</u><br>C)<br>to the polynom<br><u>-0.006591</u><br>C)                                                                           | C:<br>nial equation<br>C:                          |                                               |
| (kPa) Linea<br>Polynomia<br>(psi) Linea<br>Polynon              | r Gage Factor (G)<br>  Gage factors:<br>Calculate C<br>r Gage Factor (G)<br>nial Gage Factors:<br>Calculate                              | : A:<br>A:<br>Thermal<br>2 by setting P=0 a<br>3<br>3<br>3<br>3<br>4<br>3<br>4<br>4<br>4<br>4<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5               | kPa/ digit)<br><u>1.815E-07</u><br>Factor (K):<br>nd R <sub>1</sub> = initial fi<br>_(psi/ digit)<br><u>-2.632E-08</u><br>al Factor (K):<br>and R <sub>1</sub> = initial                       | B:                                                                                                                                                                                                            | <u>-0.04544</u><br>C)<br>to the polynom<br><u>-0.006591</u><br>C)<br>into the polyno                                                        | C:                                                 |                                               |
| (kPa) Linea<br>Polynomia<br>(psi) Linea<br>Polynon<br>Calculate | r Gage Factor (G)<br>  Gage factors:<br>Calculate C<br>r Gage Factor (G)<br>hial Gage Factors:<br>Calculate<br>d Pressures:              | :<br>A:<br>Thermal<br>by setting P=0 a<br>:<br>C by setting P=0<br>C by setting P=0                                                                           | kPa/ digit)<br><u>-1.815E-07</u><br>Factor (K):<br>nd R <sub>1</sub> = initial fi<br>_(psi/ digit)<br><u>-2.632E-08</u><br>al Factor (K):<br>and R <sub>1</sub> = initial<br>Linear, P = G(    | B:                                                                                                                                                                                                            | <u>-0.04544</u><br>C)<br>to the polynom<br><u>-0.006591</u><br>C)<br>into the polyno<br>)-(S <sub>1</sub> -S <sub>0</sub> )*                | C:                                                 |                                               |
| kPa) Linea<br>Polynomia<br>(psi) Linea<br>Polynon<br>Calculate  | r Gage Factor (G)<br>Gage factors:<br>Calculate C<br>r Gage Factor (G)<br>hial Gage Factors:<br>Calculate<br>d Pressures:<br>*Barometric | 0.04844 (<br>A:<br>Thermal<br>by setting P=0 a<br>:0007026<br>A:<br>Therm<br>C by setting P=0                                                                 | kPa/ digit)<br>1.815E-07<br>Factor (K):<br>nd R <sub>1</sub> = initial fi<br>(psi/ digit)<br>-2.632E-08<br>al Factor (K):<br>and R <sub>1</sub> = initial<br>Linear, P = G(<br>Polynomial, P = | B:<br><u>0.05230</u> (kPa/ °<br>eld zero reading in<br><u>B:</u><br><u>-0.007585</u> (psi/ °<br>field zero reading i<br>$R_1 - R_0$ )+K( $T_1 - T_0$ )<br>= $AR_1^2 + BR_1 + C$<br>ric compensation is not re | <u>-0.04544</u><br>C)<br>to the polynom<br><u>-0.006591</u><br>C)<br>into the polyno<br>(S 1 - S 0)*<br>+ K(T1-T0)-(S<br>quired with vented | C:                                                 |                                               |

|                                                | Vibi                                          | rating Wire                                   | Pressure Tr                                   | ansducer Cal                                                        | ibration R                                       | <u>eport</u>                                       |                                              |
|------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------|----------------------------------------------|
| 1                                              | Model Number:                                 | 4500AL-170 k                                  | Pa                                            | Date of Calib<br>This calibration h                                 | ration: <u>Ap</u><br>as been verified/val        | ril 19, 2016<br>idated as of 05/06/2016            |                                              |
|                                                | Serial Number:                                | 1612742                                       |                                               | Tempe                                                               | rature:                                          | 23.10 °C                                           |                                              |
| Calibra                                        | tion Instruction:                             | W Pressure Trans                              | sducers                                       | Barometric Pro                                                      | essure: 99                                       | 6.3 mbar                                           |                                              |
|                                                | Cable Length:                                 | 60 feet                                       |                                               | Tech                                                                | nician: Kerk                                     | y Rogers                                           | -                                            |
| Applied<br>Pressure<br>(kPa)                   | Gage<br>Reading<br>1st Cycle                  | Gage<br>Reading<br>2nd Cycle                  | Average<br>Gage<br>Reading                    | Calculated<br>Pressure<br>(Linear)                                  | Error<br>Linear<br>(%FS)                         | Calculated<br>Pressure<br>(Polynomial)             | Error<br>Polynomial<br>(%FS)                 |
| 0.0<br>34.0<br>68.0<br>102.0<br>136.0<br>170.0 | 10206<br>9527<br>8846<br>8161<br>7473<br>6782 | 10207<br>9528<br>8846<br>8161<br>7473<br>6782 | 10207<br>9528<br>8846<br>8161<br>7473<br>6782 | 0.273<br>33.97<br>67.80<br>101.8<br>135.9<br>170.2                  | 0.16<br>-0.02<br>-0.11<br>-0.11<br>-0.01<br>0.16 | 0.005<br>34.00<br>67.98<br>102.0<br>136.0<br>170.0 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 |
|                                                | Calculate C                                   | Thermal<br>C by setting P=0 a                 | Factor (K):                                   | 0.06103 (kPa/ °(<br>eld zero reading in                             | C)<br>to the polynom                             | ial equation                                       |                                              |
| (psi) Linear<br>Polynom                        | r Gage Factor (G)<br>ial Gage Factors:        | : <u>-0.007199</u><br>: A:_<br>Therm          | (psi/ digit)<br>-2.298E-08                    | B:                                                                  | -0.006808                                        | . c:                                               |                                              |
|                                                | Calculate                                     | C by setting P=0                              | and R <sub>1</sub> = initial                  | field zero reading i                                                | into the polyno                                  | mial equation                                      |                                              |
| Calculated                                     | d Pressures:                                  |                                               | Linear, P = G(                                | R <sub>1</sub> -R <sub>0</sub> )+K(T <sub>1</sub> -T <sub>0</sub> ) | )-(S <sub>1</sub> -S <sub>0</sub> )*             | 1.4                                                |                                              |
|                                                |                                               | c pressures expressed in                      | Polynomial, P =                               | $= \mathbf{AR}_1^2 + \mathbf{BR}_1 + \mathbf{C}$                    | + $K(T_1 - T_0) - (S)$                           | 1 -S <sub>0</sub> )*<br>transducers                |                                              |
|                                                | *Barometric                                   | Frank and Frank and                           |                                               |                                                                     |                                                  |                                                    |                                              |

|                                                | Model Number:                                 | 4500AL-170 k                                  | Pa                                            | Date of Calib                                                                          | pration: Ap                                                                     | ril 19, 2016                                       |                                                 |
|------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------|
|                                                | Serial Number:                                | 1612743                                       |                                               | Tempe                                                                                  | rature:                                                                         | 23.10 °C                                           |                                                 |
| Calibra                                        | tion Instruction:                             | VW Pressure Tran                              | sducers                                       | Barometric Pr                                                                          | essure: 99                                                                      | 06.3 mbar                                          |                                                 |
|                                                | Cable Length:                                 | 60 feet                                       |                                               | Tech                                                                                   | nician: Karli                                                                   | y Rogers -                                         |                                                 |
| Applied<br>Pressure<br>(kPa)                   | Gage<br>Reading<br>1st Cycle                  | Gage<br>Reading<br>2nd Cycle                  | Average<br>Gage<br>Reading                    | Calculated<br>Pressure<br>(Linear)                                                     | Error<br>Linear<br>(%FS)                                                        | Calculated<br>Pressure<br>(Polynomial)             | Error<br>Polynomial<br>(%FS)                    |
| 0.0<br>34.0<br>68.0<br>102.0<br>136.0<br>170.0 | 10108<br>9428<br>8743<br>8055<br>7364<br>6676 | 10109<br>9428<br>8744<br>8056<br>7364<br>6676 | 10109<br>9428<br>8744<br>8056<br>7364<br>6676 | 0.223<br>33.90<br>67.77<br>101.8<br>136.0<br>170.1                                     | 0.13<br>-0.06<br>-0.12<br>-0.09<br>0.04<br>0.07                                 | 0.050<br>33.95<br>67,93<br>102.0<br>136.1<br>169.9 | 0.03<br>-0.03<br>-0.03<br>0.00<br>0.07<br>-0.04 |
|                                                | Calculate (                                   | Thermal<br>C by setting P=0 a                 | Factor (K):<br>nd R <sub>1</sub> = initial fi | 0.05486 (kPa/ %                                                                        | C)<br>to the polynom                                                            | uial equation                                      |                                                 |
| (psi) Linea                                    | r Gage Factor (G)                             | 0.007177                                      | (psi/ digit)                                  | P.                                                                                     | 0.002000                                                                        | <b>C</b>                                           |                                                 |
| Folynon                                        | nai Gage Factors.                             | Therm                                         | -1./22E-08                                    | -0.007957 (psi/ °                                                                      | -0.000888                                                                       | - u <u> </u>                                       |                                                 |
| _                                              | Calculate                                     | C by setting P=0                              | and R <sub>1</sub> = initial                  | field zero reading i                                                                   | into the polyno                                                                 | mial equation                                      |                                                 |
| Calculate                                      | d Pressures:                                  |                                               | Linear, P = G(<br>Polynomial, P =             | $R_1 - R_0$ )+K( $T_1 - T_0$ )<br>= AR <sub>1</sub> <sup>2</sup> + BR <sub>1</sub> + C | )-(S <sub>1</sub> -S <sub>0</sub> )*<br>+ K(T <sub>1</sub> -T <sub>0</sub> )-(S | 1-S <sub>0</sub> )*                                |                                                 |
|                                                | *Barometrie                                   | c pressures expressed in                      | n kPa or psi. Barometr                        | ic compensation is not re                                                              | quired with vented                                                              | transducers.                                       |                                                 |
|                                                |                                               |                                               |                                               |                                                                                        |                                                                                 |                                                    |                                                 |

|                                                | Model Number:                                | 4500AL-1701                                  | Pa                                                     | Date of Calib                                      | ration: Ap                                       | ril 19, 2016                                       |                                              |
|------------------------------------------------|----------------------------------------------|----------------------------------------------|--------------------------------------------------------|----------------------------------------------------|--------------------------------------------------|----------------------------------------------------|----------------------------------------------|
|                                                | Serial Number                                | 1612744                                      |                                                        | This calibration h                                 | as been verified/val                             | idated as of 05/06/2016                            |                                              |
| ~ 10                                           | Serial Humber.                               | 1012/44                                      |                                                        | Tempe                                              | rature                                           | 23.10 C                                            |                                              |
| Calibra                                        | ation Instruction:                           | W Pressure Tran                              | sducers                                                | Barometric Pro                                     | essure: 99                                       | 06.3 mbar                                          |                                              |
|                                                | Cable Length:                                | 20 feet                                      |                                                        | Tech                                               | nician: Kerla                                    | y Rogers                                           | -                                            |
| Applied<br>Pressure<br>(kPa)                   | Gage<br>Reading<br>1st Cycle                 | Gage<br>Reading<br>2nd Cycle                 | Average<br>Gage<br>Reading                             | Calculated<br>Pressure<br>(Linear)                 | Error<br>Linear<br>(%FS)                         | Calculated<br>Pressure<br>(Polynomial)             | Error<br>Polynomial<br>(%FS)                 |
| 0.0<br>34.0<br>68.0<br>102.0<br>136.0<br>170.0 | 9991<br>9313<br>8632<br>7947<br>7259<br>6567 | 9992<br>9314<br>8633<br>7948<br>7260<br>6568 | 9992<br>9314<br>8633<br>7948<br>7260<br>6568           | 0.273<br>33.93<br>67.74<br>101.7<br>135.9<br>170.2 | 0.16<br>-0.05<br>-0.14<br>-0.14<br>-0.05<br>0.16 | 0.005<br>34.00<br>67.98<br>102.0<br>136.0<br>170.0 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 |
|                                                | Calculate (                                  | Thermal<br>C by setting P=0 a                | Factor (K): <u>-</u><br>nd R <sub>1</sub> = initial fi | 0.05942 (kPa/ °<br>eld zero reading in             | C)<br>to the polynom                             | ial equation                                       |                                              |
| (psi) Linea                                    | r Gage Factor (G)                            | -0.007200                                    | _(psi/ digit)                                          |                                                    |                                                  |                                                    |                                              |
| Polynon                                        | nial Gage Factors:                           | A:                                           | -2.628E-08                                             | В:                                                 | -0.006765                                        | C:                                                 |                                              |
|                                                |                                              | Therm                                        | al Factor (K): _                                       | -0.008618 (psi/ %                                  | C)                                               |                                                    |                                              |
|                                                | Calculate                                    | C by setting P=0                             | and R <sub>1</sub> = initial                           | field zero reading i                               | nto the polyno                                   | mial equation                                      |                                              |
|                                                | d Pressures:                                 |                                              | Linear, P = G(                                         | $R_1 - R_0 + K(T_1 - T_0)$                         | )-(S <sub>1</sub> -S <sub>0</sub> )*             |                                                    |                                              |
| Calculate                                      |                                              |                                              | Polynomial, P =                                        | $= \mathbf{AR}_1^2 + \mathbf{BR}_1 + \mathbf{C}$   | + K(T <sub>1</sub> -T <sub>0</sub> )-(S          | 1-S <sub>0</sub> )*                                |                                              |
| Calculate                                      |                                              | pressures expressed in                       | kPa or psi. Barometr                                   | ic compensation is not re                          | quired with vented                               | transducers.                                       |                                              |
| Calculate                                      | *Barometric                                  |                                              |                                                        |                                                    |                                                  |                                                    |                                              |

|                                                                     | <u>vib</u>                                                                                                                       | rating wire                                  | ressure If                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ansuucer Cal                                                                                                                                                                                                                                               | IDIATION N                                                                                                                                                   | oport                                              |                                                |  |
|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------|--|
| 14                                                                  | Model Number:                                                                                                                    | 4500AL-170 k                                 | Pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Date of Calib<br>This calibration h                                                                                                                                                                                                                        | as been verified/val                                                                                                                                         | ril 19, 2016<br>idated as of 05/06/2016            |                                                |  |
| Serial Number:<br>Calibration Instruction:                          |                                                                                                                                  | 1612745<br>VW Pressure Transducers           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Temperature:   23.10   °C     Barometric Pressure:   996.3   mbar                                                                                                                                                                                          |                                                                                                                                                              |                                                    |                                                |  |
|                                                                     |                                                                                                                                  |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                            |                                                                                                                                                              |                                                    |                                                |  |
| Applied<br>Pressure<br>(kPa)                                        | Gage<br>Reading<br>Ist Cycle                                                                                                     | Gage<br>Reading<br>2nd Cycle                 | Average<br>Gage<br>Reading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Calculated<br>Pressure<br>(Linear)                                                                                                                                                                                                                         | Error<br>Linear<br>(%FS)                                                                                                                                     | Calculated<br>Pressure<br>(Polynomial)             | Error<br>Polynomial<br>(%FS)                   |  |
| 0.0<br>34.0<br>68.0<br>102.0<br>136.0<br>170.0                      | 9674<br>8964<br>8250<br>7532<br>6811<br>6084                                                                                     | 9675<br>8965<br>8250<br>7532<br>6811<br>6085 | 9675<br>8965<br>8250<br>7532<br>6811<br>6085                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.308<br>33.92<br>67.75<br>101.7<br>135.9<br>170.3                                                                                                                                                                                                         | 0.18<br>-0.05<br>-0.13<br>-0.14<br>-0.05<br>0.18                                                                                                             | 0.010<br>33.98<br>67.99<br>102.0<br>135.9<br>170.0 | 0.00<br>-0.01<br>0.01<br>0.01<br>-0.01<br>0.01 |  |
| (kPa) Lineau<br>Polynomial                                          | Gage Factor (G)<br>Gage factors:                                                                                                 | ): <u>-0.04735</u> (<br>A:                   | (kPa/ digit)<br>-1.743E-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B:                                                                                                                                                                                                                                                         | -0.04460                                                                                                                                                     | C:                                                 | ;                                              |  |
| (kPa) Linean<br>Polynomial                                          | Gage Factor (G)<br>Gage factors:<br>Calculate (                                                                                  | ):A:<br>A:<br>Thermal<br>C by setting P=0 a  | (kPa/ digit)<br>- <u>1.743E-07</u><br>Factor (K):<br>nd R <sub>1</sub> = initial fi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | B:<br>0.01276(kPa/ %<br>eld zero reading in                                                                                                                                                                                                                | -0.04460<br>C)<br>to the polynom                                                                                                                             | C:                                                 |                                                |  |
| (kPa) Linean<br>Polynomial<br>(psi) Linean<br>Polynom               | Gage Factor (G<br>Gage factors:<br>Calculate C<br>Gage Factor (G)<br>ial Gage Factors:                                           | ): -0.04735 (<br>A:                          | (kPa/ digit)<br>- <u>1.743E-07</u><br>Factor (K):<br>nd R <sub>1</sub> = initial fi<br>_(psi/ digit)<br>- <u>2.528E-08</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B:<br>0.01276(kPa/ %<br>eld zero reading in<br>B:                                                                                                                                                                                                          | <u>-0.04460</u><br>C)<br>to the polynon<br>-0.006469                                                                                                         | C:<br>nial equation<br>C:                          |                                                |  |
| (kPa) Lineau<br>Polynomial<br>(psi) Lineau<br>Polynom               | Gage Factor (G<br>Gage factors:<br>Calculate C<br>Gage Factor (G)<br>ial Gage Factors:<br>Calculate                              | ):                                           | (kPa/ digit)<br>-1.743E-07<br>Factor (K):<br>and $R_1 =$ initial fi<br>_(psi/ digit)<br>-2.528E-08<br>al Factor (K):<br>and $R_1 =$ initial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B:                                                                                                                                                                                                                                                         | <u>-0.04460</u><br>C)<br>to the polynom<br><u>-0.006469</u><br>C)<br>into the polyno                                                                         | C:                                                 |                                                |  |
| (kPa) Lineau<br>Polynomial<br>(psi) Lineau<br>Polynom<br>Calculated | Gage Factor (G<br>Gage factors:<br>Calculate C<br>Gage Factor (G)<br>ial Gage Factors:<br>Calculate<br>I Pressures:              | ):                                           | (kPa/ digit)<br>-1.743E-07<br>Factor (K):<br>and $R_1$ = initial final | B:                                                                                                                                                                                                                                                         | <u>-0.04460</u><br>C)<br>to the polynom<br><u>-0.006469</u><br>C)<br>into the polyno                                                                         | C:                                                 |                                                |  |
| (kPa) Lineau<br>Polynomial<br>(psi) Lineau<br>Polynom<br>Calculated | Gage Factor (G<br>Gage factors:<br>Calculate C<br>Gage Factor (G)<br>ial Gage Factors:<br>Calculate<br>Pressures:<br>*Barometric | ):                                           | (kPa/ digit)<br>-1.743E-07<br>Factor (K):<br>and $R_1$ = initial fination (psi/ digit)<br>-2.528E-08<br>al Factor (K):<br>and $R_1$ = initial<br>Linear, P = G(<br>Polynomial, P = mathematical (Particular)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B:<br>0.01276 (kPa/ °<br>eld zero reading in<br>B:<br>0.001851 (psi/ °<br>field zero reading i<br>R <sub>1</sub> -R <sub>0</sub> )+K(T <sub>1</sub> -T <sub>0</sub> )<br>= AR <sub>1</sub> <sup>2</sup> + BR <sub>1</sub> + C<br>ic compensation is not re | <u>-0.04460</u><br>C)<br>to the polynom<br><u>-0.006469</u><br>C)<br>into the polyno<br>$(S_1 - S_0)^*$<br>+ $K(T_1 - T_0) - (S_0)^*$<br>equired with vented | C:<br>nial equation<br>C:<br>mial equation<br><br> |                                                |  |

|                                                | Model Number: _                              | 4500AL-170 k                                 | Pa                                           | Date of Calib                                      | ration: Ap                                       | ril 19, 2016                                       |                                                 |
|------------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------------|--------------------------------------------------|----------------------------------------------------|-------------------------------------------------|
|                                                | Serial Number:                               | 1612746                                      |                                              | Tempe                                              | rature:                                          | 23.10 °C                                           |                                                 |
| Calibra                                        | ation Instruction:                           | VW Pressure Tran                             | sducers                                      | Barometric Pro                                     | essure: 99                                       | 06.3 mbar                                          |                                                 |
|                                                | Cable Length:                                | 20 feet                                      | _                                            | Tech                                               | nician: Kork                                     | y Rogen                                            |                                                 |
| Applied<br>Pressure<br>(kPa)                   | Gage<br>Reading<br>Ist Cycle                 | Gage<br>Reading<br>2nd Cycle                 | Average<br>Gage<br>Reading                   | Calculated<br>Pressure<br>(Linear)                 | Error<br>Linear<br>(%FS)                         | Calculated<br>Pressure<br>(Polynomial)             | Error<br>Polynomial<br>(%FS)                    |
| 0.0<br>34.0<br>68.0<br>102.0<br>136.0<br>170.0 | 9815<br>9114<br>8407<br>7701<br>6991<br>6276 | 9816<br>9114<br>8408<br>7702<br>6992<br>6276 | 9816<br>9114<br>8408<br>7702<br>6992<br>6276 | 0.216<br>33.91<br>67.84<br>101.8<br>135.9<br>170.2 | 0.13<br>-0.06<br>-0.08<br>-0.13<br>-0.07<br>0.15 | 0.001<br>33.97<br>68.05<br>102.0<br>135.9<br>170.0 | 0.00<br>-0.02<br>0.04<br>-0.01<br>-0.03<br>0.02 |
|                                                | Calculate (                                  | Thermal<br>C by setting P=0 a                | Factor (K):                                  | 0.02558 (kPa/ %                                    | C)<br>to the polynom                             | ial equation                                       |                                                 |
| (psi) Linea<br>Polynon                         | r Gage Factor (G)<br>nial Gage Factors       | ): -0.006966<br>: A:<br>Thern                | _(psi/ digit)<br>2.031E-08                   | B:                                                 | -0.006639                                        | C;                                                 |                                                 |
|                                                | Calculate                                    | C by setting P=0                             | and R <sub>1</sub> = initial                 | field zero reading i                               | nto the polyno                                   | mial equation                                      |                                                 |
| Calculate                                      | d Pressures:                                 |                                              | Linear, P = G(                               | $R_1 - R_0 + K(T_1 - T_0)$                         | )-(S <sub>1</sub> -S <sub>0</sub> )*             |                                                    |                                                 |
|                                                | *Barometri                                   | c pressures expressed in                     | Polynomial, P =                              | $= \mathbf{AR}_1^2 + \mathbf{BR}_1 + \mathbf{C}$   | + $K(T_1 - T_0) - (S)$                           | 1 -S 0)*<br>transducers.                           |                                                 |
|                                                |                                              |                                              |                                              |                                                    |                                                  |                                                    |                                                 |

|                                                                     | <u>vi</u>                                                                                                                              | rating wire.                                                                                                                    | Fressure II                                                                                                                                                                     | ansuucer Cal                                                                                                                                                             | IDFALION K                                                                                                                                                               | eport                                               |                                                 |
|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------|
| 1                                                                   | Model Number:                                                                                                                          | 4500AL-170 k                                                                                                                    | Pa                                                                                                                                                                              | Date of Calib<br>This calibration h                                                                                                                                      | pration: Ap                                                                                                                                                              | ril 19, 2016<br>lidated as of 05/06/2016            |                                                 |
|                                                                     | Serial Number:                                                                                                                         | 1612747                                                                                                                         |                                                                                                                                                                                 | Tempe                                                                                                                                                                    | erature:                                                                                                                                                                 | 23.10 °C                                            |                                                 |
| Calibration Instruction: VW Pressure Transducers                    |                                                                                                                                        | sducers                                                                                                                         | Barometric Pressure: 996.3 mbar                                                                                                                                                 |                                                                                                                                                                          |                                                                                                                                                                          |                                                     |                                                 |
|                                                                     | Cable Length:                                                                                                                          | 20 feet                                                                                                                         |                                                                                                                                                                                 | Tech                                                                                                                                                                     | nician: Kerli                                                                                                                                                            | 4 Rogen                                             |                                                 |
| Applied<br>Pressure<br>(kPa)                                        | Gage<br>Reading<br>1st Cycle                                                                                                           | Gage<br>Reading<br>2nd Cycle                                                                                                    | Average<br>Gage<br>Reading                                                                                                                                                      | Calculated<br>Pressure<br>(Linear)                                                                                                                                       | Error<br>Linear<br>(%FS)                                                                                                                                                 | Calculated<br>Pressure<br>(Polynomial)              | Error<br>Polynomial<br>(%FS)                    |
| 0.0<br>34.0<br>68.0<br>102.0<br>136.0<br>170.0                      | 10081<br>9367<br>8650<br>7929<br>7204<br>6473                                                                                          | 10082<br>9368<br>8651<br>7930<br>7204<br>6473                                                                                   | 10082<br>9368<br>8651<br>7930<br>7204<br>6473                                                                                                                                   | 0.306<br>33.94<br>67.72<br>101.7<br>135.9<br>170.3                                                                                                                       | 0.18<br>-0.04<br>-0.15<br>-0.17<br>-0.06<br>0.20                                                                                                                         | -0.010<br>34.02<br>67.99<br>102.0<br>135.9<br>170.0 | -0.01<br>0.01<br>0.01<br>-0.01<br>-0.01<br>0.01 |
| (kPa) Linea<br>Polynomial                                           | r Gage Factor (G<br>Gage factors:                                                                                                      | ): <u>-0.04711 (</u><br>A: <u></u>                                                                                              | kPa/ digit)<br>-1.886E-07                                                                                                                                                       | B:                                                                                                                                                                       | -0.04399                                                                                                                                                                 | C:                                                  |                                                 |
| (kPa) Linea<br>Polynomial                                           | r Gage Factor (G<br>Gage factors:<br>Calculate (                                                                                       | ):A:<br>A:<br>Thermal<br>C by setting P=0 a                                                                                     | kPa/ digit)<br>- <u>1.886E-07</u><br>Factor (K):<br>nd R <sub>1</sub> = initial fi                                                                                              | B:<br>0.02696 (kPa/ %                                                                                                                                                    | -0.04399<br>C)<br>to the polynon                                                                                                                                         | C:                                                  |                                                 |
| (kPa) Linea<br>Polynomial<br>(psi) Linea                            | r Gage Factor (G<br>Gage factors:<br>Calculate (<br>r Gage Factor (G)                                                                  | ):0.04711 (<br>A:<br>Thermal<br>C by setting P=0 a<br>):0.006833                                                                | kPa/ digit)<br>- <u>1.886E-07</u><br>Factor (K):<br>nd R <sub>1</sub> = initial fi<br>_(psi/ digit)                                                                             | B:<br>0.02696(kPa/ %                                                                                                                                                     | -0.04399<br>C)<br>to the polynon                                                                                                                                         | C:                                                  |                                                 |
| (kPa) Linea<br>Polynomial<br>(psi) Linea<br>Polynom                 | r Gage Factor (G<br>Gage factors:<br>Calculate (<br>r Gage Factor (G)<br>ial Gage Factors                                              | ): <u>-0.04711 (</u><br>A: <u>-</u><br>Thermal<br>C by setting P=0 a<br>): <u>-0.006833</u><br>: A:<br>Therm                    | kPa/ digit)<br>- <u>1.886E-07</u><br>Factor (K):<br>nd R <sub>1</sub> = initial fi<br>_(psi/ digit)<br>_ <u>-2.736E-08</u><br>nal Factor (K):                                   | B:                                                                                                                                                                       | -0.04399<br>C)<br>to the polynon<br>-0.006380<br>C)                                                                                                                      | C:                                                  |                                                 |
| (kPa) Linea<br>Polynomial<br>(psi) Linea<br>Polynom                 | r Gage Factor (G<br>Gage factors:<br>Calculate (<br>r Gage Factor (G)<br>ial Gage Factors<br>Calculate                                 | ): <u>-0.04711 (</u><br>A: <u>-</u><br>Thermal<br>C by setting P=0 a<br>: <u>-0.006833</u><br>: A:<br>Therm<br>C by setting P=0 | kPa/ digit)<br>-1.886E-07<br>Factor (K):<br>nd R <sub>1</sub> = initial fi<br>_(psi/ digit)<br>-2.736E-08<br>nal Factor (K): _<br>and R <sub>1</sub> = initial                  | B:                                                                                                                                                                       | <u>-0.04399</u><br>C)<br>ito the polynon<br><u>-0.006380</u><br>C)<br>into the polyno                                                                                    | C:<br>nial equation<br>C:<br>mial equation          |                                                 |
| (kPa) Linear<br>Polynomial<br>(psi) Linear<br>Polynom<br>Calculated | r Gage Factor (G<br>Gage factors:<br>Calculate (<br>r Gage Factor (G)<br>tial Gage Factors<br>Calculate<br>d Pressures:                | ):0.04711 (<br>A:<br>Thermal<br>C by setting P=0 a<br>):0.006833<br>:A:<br>Therm<br>C by setting P=0                            | kPa/ digit)<br>-1.886E-07<br>Factor (K):<br>nd $R_1 = initial finitial finitial finitial _(psi/ digit) -2.736E-08 and Factor (K): and R_1 = initialLinear, P = G($              | B:<br>-0.02696 (kPa/ %<br>ield zero reading in<br>B:<br>-0.003910 (psi/ %<br>field zero reading i<br>R <sub>1</sub> -R <sub>0</sub> )+K(T <sub>1</sub> -T <sub>0</sub> ) | <u>-0.04399</u><br>C)<br>ito the polynon<br><u>-0.006380</u><br>C)<br>into the polyno<br>)-(S <sub>1</sub> -S <sub>0</sub> )*                                            | C:                                                  |                                                 |
| (kPa) Linead<br>Polynomial<br>(psi) Linead<br>Polynom<br>Calculated | r Gage Factor (G<br>Gage factors:<br>Calculate (<br>r Gage Factor (G)<br>tial Gage Factors:<br>Calculate<br>d Pressures:<br>*Barometri | ):(<br>A:<br>Thermal<br>C by setting P=0 a<br>:<br>:O006833<br>: A:<br>Therm<br>C by setting P=0                                | kPa/ digit)<br>-1.886E-07<br>Factor (K):<br>nd $R_1 = initial fi _(psi/ digit) -2.736E-08 nal Factor (K): and R_1 = initialLinear, P = G(Polynomial, P =i kPa or psi. Barometr$ | B:                                                                                                                                                                       | <u>-0.04399</u><br>C)<br>ito the polynom<br><u>-0.006380</u><br>C)<br>into the polyno<br>)-(S <sub>1</sub> -S <sub>0</sub> )*<br>+ K(T <sub>1</sub> -T <sub>0</sub> )-(S | C:<br>mial equation<br>C:<br>mial equation          |                                                 |





# Geokon, Inc. Statement of Calibration Practices

Geokon, Inc. certifies that this product has been calibrated and accepted using measurement standards traceable to the NIST in compliance with ANSI/NCSL Z540-1.

We further certify this product meets or exceeds Geokon, Inc. design and technical specifications for measurement accuracy.

Calibration operations are controlled using procedures that are a part of Geokon's certified ISO 9001:2008 quality system.

Model Number: 8002-4-2

Serial Number: 1614894

Signed by:

actin of Silson

Date: May 06, 2016





# Geokon, Inc. Statement of Calibration Practices

Geokon, Inc. certifies that this product has been calibrated and accepted using measurement standards traceable to the NIST in compliance with ANSI/NCSL Z540-1.

We further certify this product meets or exceeds Geokon, Inc. design and technical specifications for measurement accuracy.

Calibration operations are controlled using procedures that are a part of Geokon's certified ISO 9001:2008 quality system.

Model Number: 8002-4-2

Serial Number: 1614895

Signed by:

Warten of Gilson

Date: May 06, 2016







# Geokon, Inc. Statement of Calibration Practices

Geokon, Inc. certifies that this product has been calibrated and accepted using measurement standards traceable to the NIST in compliance with ANSI/NCSL Z540-1.

We further certify this product meets or exceeds Geokon, Inc. design and technical specifications for measurement accuracy.

Calibration operations are controlled using procedures that are a part of Geokon's certified ISO 9001:2008 quality system.

Model Number: 8002-4-2

Serial Number: 1614896

Signed by:

Martin of Gilson

Date: May 06, 2016





# Geokon, Inc. Statement of Calibration Practices

Geokon, Inc. certifies that this product has been calibrated and accepted using measurement standards traceable to the NIST in compliance with ANSI/NCSL Z540-1.

We further certify this product meets or exceeds Geokon, Inc. design and technical specifications for measurement accuracy.

Calibration operations are controlled using procedures that are a part of Geokon's certified ISO 9001:2008 quality system.

Model Number: 8002-4-2

Serial Number: 1614897

Signed by:

Warten J. Gilson

Date: May 06, 2016





#### Geokon, Inc. Statement of Calibration Practices

Geokon, Inc. certifies that this product has been calibrated and accepted using measurement standards traceable to the NIST in compliance with ANSI/NCSL Z540-1.

We further certify this product meets or exceeds Geokon, Inc. design and technical specifications for measurement accuracy.

Calibration operations are controlled using procedures that are a part of Geokon's certified ISO 9001:2008 quality system.

Model Number: 8002-4-2

Serial Number: 1614898

Signed by:

Martin J. Gilson

Date: May 06, 2016







48 Spencer St. Leolandn, MH 03705 USA

# Geokon, Inc. Statement of Calibration Practices

Geokon, Inc. certifies that this product has been calibrated and accepted using measurement standards traceable to the NIST in compliance with ANSI/NCSL Z540-1.

We further certify this product meets or exceeds Geokon, Inc. design and technical specifications for measurement accuracy.

Calibration operations are controlled using procedures that are a part of Geokon's certified ISO 9001:2008 quality system.

Model Number: 8002-4-2

Serial Number: 1614899

Signed by:

Warten of Gilson

Date: May 06, 2016





# Geokon, Inc. Statement of Calibration Practices

Geokon, Inc. certifies that this product has been calibrated and accepted using measurement standards traceable to the NIST in compliance with ANSI/NCSL Z540-1.

We further certify this product meets or exceeds Geokon, Inc. design and technical specifications for measurement accuracy.

Calibration operations are controlled using procedures that are a part of Geokon's certified ISO 9001:2008 quality system.

Model Number: 8002-4-2

Serial Number: 1614900

Signed by:

Martin J. Silson

Date: May 06, 2016





# Geokon, Inc. Statement of Calibration Practices

Geokon, Inc. certifies that this product has been calibrated and accepted using measurement standards traceable to the NIST in compliance with ANSI/NCSL Z540-1.

We further certify this product meets or exceeds Geokon, Inc. design and technical specifications for measurement accuracy.

Calibration operations are controlled using procedures that are a part of Geokon's certified ISO 9001:2008 quality system.

Model Number: 8002-4-2

Serial Number: 1614901

Signed by:

Warten of Silson

Date: May 06, 2016





# Geokon, Inc. Statement of Calibration Practices

Geokon, Inc. certifies that this product has been calibrated and accepted using measurement standards traceable to the NIST in compliance with ANSI/NCSL Z540-1.

We further certify this product meets or exceeds Geokon, Inc. design and technical specifications for measurement accuracy.

Calibration operations are controlled using procedures that are a part of Geokon's certified ISO 9001:2008 quality system.

Model Number: 8002-4-2

Serial Number: 1614902

Signed by:

Jactin of Gilson

Date: May 06, 2016




# Geokon, Inc. Statement of Calibration Practices

Geokon, Inc. certifies that this product has been calibrated and accepted using measurement standards traceable to the NIST in compliance with ANSI/NCSL Z540-1.

We further certify this product meets or exceeds Geokon, Inc. design and technical specifications for measurement accuracy.

Calibration operations are controlled using procedures that are a part of Geokon's certified ISO 9001:2008 quality system.

Model Number: 8002-4-2

Serial Number: 1614903

Signed by:

Martin J. Gilson

Date: May 06, 2016





# Geokon, Inc. Statement of Calibration Practices

Geokon, Inc. certifies that this product has been calibrated and accepted using measurement standards traceable to the NIST in compliance with ANSI/NCSL Z540-1.

We further certify this product meets or exceeds Geokon, Inc. design and technical specifications for measurement accuracy.

Calibration operations are controlled using procedures that are a part of Geokon's certified ISO 9001:2008 quality system.

Model Number: 8002-4-2

Serial Number: 1614904

Signed by:

Martin of Gilson

Date: May 06, 2016





### Geokon, Inc. Statement of Calibration Practices

Geokon, Inc. certifies that this product has been calibrated and accepted using measurement standards traceable to the NIST in compliance with ANSI/NCSL Z540-1.

We further certify this product meets or exceeds Geokon, Inc. design and technical specifications for measurement accuracy.

Calibration operations are controlled using procedures that are a part of Geokon's certified ISO 9001:2008 quality system.

Model Number: 8002-4-2

Serial Number: 1614905

Signed by:

Martin J. Silson

Date: May 06, 2016







# Geokon, Inc. Statement of Calibration Practices

Geokon, Inc. certifies that this product has been calibrated and accepted using measurement standards traceable to the NIST in compliance with ANSI/NCSL Z540-1.

We further certify this product meets or exceeds Geokon, Inc. design and technical specifications for measurement accuracy.

Calibration operations are controlled using procedures that are a part of Geokon's certified ISO 9001:2008 quality system.

Model Number: 8002-4-2

Serial Number: 1614906

Signed by:

Martin J. Silson

Date: May 06, 2016





# Geokon, Inc. Statement of Calibration Practices

Geokon, Inc. certifies that this product has been calibrated and accepted using measurement standards traceable to the NIST in compliance with ANSI/NCSL Z540-1.

We further certify this product meets or exceeds Geokon, Inc. design and technical specifications for measurement accuracy.

Calibration operations are controlled using procedures that are a part of Geokon's certified ISO 9001:2008 quality system.

Model Number: 8002-4-2

Serial Number: 1614907

Signed by:

Warten of Silson

Date: May 06, 2016





# Geokon, Inc. Statement of Calibration Practices

Geokon, Inc. certifies that this product has been calibrated and accepted using measurement standards traceable to the NIST in compliance with ANSI/NCSL Z540-1.

We further certify this product meets or exceeds Geokon, Inc. design and technical specifications for measurement accuracy.

Calibration operations are controlled using procedures that are a part of Geokon's certified ISO 9001:2008 quality system.

Model Number: 8002-4-2

Serial Number: 1614908

Signed by:

Jactin of Silson

Date: May 06, 2016





# Geokon, Inc. Statement of Calibration Practices

Geokon, Inc. certifies that this product has been calibrated and accepted using measurement standards traceable to the NIST in compliance with ANSI/NCSL Z540-1.

We further certify this product meets or exceeds Geokon, Inc. design and technical specifications for measurement accuracy.

Calibration operations are controlled using procedures that are a part of Geokon's certified ISO 9001:2008 quality system.

Model Number: 8002-4-2

Serial Number: 1614909

Signed by:

Jactin of Silson

Date: May 06, 2016





### Geokon, Inc. Statement of Calibration Practices

Geokon, Inc. certifies that this product has been calibrated and accepted using measurement standards traceable to the NIST in compliance with ANSI/NCSL Z540-1.

We further certify this product meets or exceeds Geokon, Inc. design and technical specifications for measurement accuracy.

Calibration operations are controlled using procedures that are a part of Geokon's certified ISO 9001:2008 quality system.

Model Number: 8002-4-2

Serial Number: 1614910

Signed by:

Warten J. Gilson

Date: May 06, 2016

