Project Title	Lower Sandia Canyon Aggregate Area and Lower Mortandad/Cedro Canyons Aggregate Area Investigations				
Solid Waste Management Unit or Area of Concern #	SWMUs: 05-003, 05-004, 05-005(b), 05-006(c), 20-001(a), 20-001(b), 20-001(c), 20-002(a), 20-002(b), 20-002(c), 20-002(d), 20-005, 53-001(a), 53-001(b), 53-005, 53-006(f) AOCs: 20-003(b), 20-003(c), 20-004, 53-008, 53-009, 53-010, 53-012(e), 53-013				
Activity Type	Investigation and Remediation				
	Jacinto Garduno				
LATA Task Manager	Jacinto Garduno				
LATA Task Manager Waste Management Coordinator	Jacinto Garduno Michael Le Scouarnec				
LATA Task Manager Waste Management Coordinator Completed by	Jacinto Garduno Michael Le Scouarnec Kevin Krause				

Waste Characterization Strategy Form

1.0 Description of Activity

The work will be performed in accordance the New Mexico Environment Department (NMED)-approved Investigation Work Plan for Lower Sandia Canyon Aggregate Area, the Investigation Work Plan for Lower Mortandad/Cedro Canyons Aggregate Area and EXHIBIT "D" Scope of Work and Technical Implementation of the Lower Sandia Canyon Aggregate Area, Subcontract No. 82819-001-10, R0, 01/14/2010.

This waste characteristic strategy form (WCSF) describes the management of investigation-derived waste (IDW) that is expected to be generated during the investigation and limited remediation in Technical Area (TA)-05, TA-20, and TA-53. The IDW may include, but is not limited to, drill cuttings, contact waste, excavated environmental media and debris, decontamination fluids, petroleum-contaminated soils, and all other waste that has potentially come into contact with contaminants.

2.0 Relevant Site History and Description

2.1 TA-05

TA-05, also known as Beta Site, was established in 1944 as an adjunct test firing site to TA-04 (Alpha Site). Firing activities were conducted at two small firing sites located within the Middle Mortandad/Ten Site portion of TA-05 and one large firing site, known as Far Point Site, within the Lower Mortandad/Cedro portion of TA-05. Far Point Site was used briefly during 1944 and 1945 for half-scale mockup tests of the Trinity device. TA-05 was used as a firing site for implosion studies until 1947. After firing activities were halted, several Laboratory groups used the site for a variety of experiments, including the study of hydrogen fires, animal radiation experiments, and beryllium combustion experiments. In late 1959, two experimental reactors known as "Little Eva" and "Godiva" were brought to TA-05 and operated briefly. Little Eva was located inside a trailer, and Godiva was located in an underground chamber

(SWMU 05-003). TA-05 was taken out of service in 1959 and underwent decontamination and demolition in 1985 as part of the Los Alamos Site Characterization Program (LASCP).

2.2 Former TA-20

Former TA-20 was located near the west end of Sandia Canyon and the SWMUs and AOCs associated with it are now contained within TA-53 and TA-72. The TA-20 site consisted of a series of firing areas spaced along a small road heading west from NM 4. TA-20 was used from 1945 to 1948 to test initiators (devices used to generate neutrons needed to initiate nuclear chain reactions) and to conduct implosion studies.

2.3 TA-53

TA-53 is located in the northeast portion of the Laboratory on Mesita de Los Alamos, which is the mesa bounded by Los Alamos Canyon to the north and Sandia Canyon to the south. TA-53 is the location of the Los Alamos Neutron Science Center (LANSCE). The primary component of LANSCE is a 0.5-mi-long linear proton accelerator that produces subatomic particles for experimental physics activities and isotope production. TA-53 also contains office buildings, laboratories, and other facilities associated with the operation of the accelerator.

3.0 Characterization Strategy

This WCSF identifies the types of wastes expected, based on the data from previous investigations; however, other types of wastes may be encountered. An amendment to this strategy form will be prepared and submitted for review and approval if any of the waste streams change in description or characterization approach or a new waste stream is generated. All IDW will be managed in accordance with Los Alamos National Laboratory (LANL) Standard Operating Procedure (SOP) 5238, *Characterization and Management of Environmental Program Waste.*

In accordance with the work plan, waste will initially be managed as hazardous or non-hazardous (unless stored within an Area of Contamination) in accordance with the due diligence reviews already prepared for all potential release sites covered by these investigations. Table 3.0-1 identifies whether initial management should be hazardous or non-hazardous. Waste accumulation area postings, regulated storage duration, and inspection requirements will be based on the type waste and its regulatory classification. The selection of waste containers will be based on U.S. Department of Transportation requirements, waste types, and estimated volumes of IDW to be generated. Immediately following containerization, each waste container will be individually labeled with a unique identification number and with information such as waste classification, contents, radioactivity, and date generated, if applicable. A non-hazardous waste label, date of generation, the generator's name, and container contents should be placed on non-hazardous waste containers as a best management practice. Waste streams with the same regulatory classification that are destined for the same receiving facility may be combined into a single container for disposal (e.g. contact waste with drill cuttings).

IDW characterization will be completed using investigation sampling data or by direct sampling of the IDW. If the waste is directly sampled, it will be sampled within 10 days of generation, and a 21 day turnaround time for analyses will be requested, unless the waste is generated and managed in an Area of Contamination. Samples must be collected using the methods described in this WCSF by trained and qualified sampling personnel. Sampling personnel must record waste sampling information in accordance with LANL's procedure, EP-ERSS-SOP-5058, *Sample Control and Field Documentation* and EP-ERSS-SOP-5181, Documentation of Waste and Environmental Technical Field Activities.

A waste determination will be made within 45 days of the generation date of waste unless the waste is stored in a Satellite Accumulation Area or an approved Area of Contamination. A Waste Acceptance Criteria (WAC) exception form (WEF) can be used if the generator does not meet the 45 day deadline. The generation of no path forward wastes must be approved by Department of Energy (DOE) prior to generation of the waste; however, no such wastes are anticipated for this project.

If documentation exist that the contaminant(s) originated from a listed source but the levels are below residential screening levels and the land disposal restriction treatment standards, a "contained-in" request may be submitted to the New Mexico Environment Department (NMED), who may approve removing the listings from the waste stream. A request to submit a "contained-in" determination to NMED must be submitted to Environmental Protection (ENV-RCRA) through the Subcontract Technical Representative (STR) within 70 days of generating the waste. A copy of the due diligence reviews already prepared for this investigation or the NMED "contained-in" approval letter should accompany all waste profiles prepared for the waste(s) with potentially listed contaminants.

Investigation activities will be conducted in a manner that minimizes the generation of waste. Waste minimization will be accomplished by implementing the most recent version of the "Los Alamos National Laboratory Hazardous Waste Minimization Report.: Waste streams will be recycled/reused, as appropriate.

3.1 Waste # 1: Drill Cuttings (IDW)

This waste stream consists of soil and rock cuttings generated from the drilling of boreholes. This may include small chips or unused core samples collected with a hollow-stem auger core barrel. Drill cuttings may include excess core samples not submitted for analysis and any returned drill cutting samples. Drill cuttings may be land applied if they meet the criteria in Quality Procedure QP-011, Land Application of Drill Cuttings. Approximately 20 yd³ of drill cuttings are expected to be generated.

Anticipated Regulatory Status: Industrial, Beryllium, Hazardous, Low-level radioactive waste (LLW), Mixed low-level radioactive waste (MLLW), New Mexico Special Waste (NMSW), Land Applied

Characterization Approach: The drill cuttings will be characterized by direct sampling of the containerized cuttings. Cuttings not generated and managed within an Area of Contamination will be sampled within 10 days of generation and submitted for analysis with a 21 day turnaround time. A hand auger or thin-wall tube sampler will be used in accordance with LANL SOP-06.10, *Hand Auger and Thin-Wall Tube Sampler* to collect waste material from each container, augering from the surface to the bottom of the waste in a sufficient number of locations to obtain a representative sample. Samples will be analyzed for volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), radionuclides, total metals, and toxicity characteristic (TCLP) metals, if needed (see Table 3.1-1). Herbicides and pesticides will be analyzed only if the work plan requires analysis of these contaminants in investigation samples. High explosives (HE), perchlorates, nitrate, and total cyanide will be analyzed only for SWMUs 20-001(a,b,c). If process knowledge, odors, or staining indicate the cuttings may be contaminated with petroleum products, the materials will also be analyzed for total petroleum hydrocarbons (TPH [DRO/GRO]) and polychlorinated biphenyls (PCBs). Other constituents may be analyzed as necessary to meet the WAC for a receiving facility.

Storage and Disposal Method: Drill cuttings will be containerized at the point of generation in LANL approved 55-gallon steel drums, 1 yd³ Wrangler Bags or other containers appropriate for the quantity of waste generated. Wastes will be stored in secure, designated areas. Drill cuttings from a single potential release site (PRS) may be combined into a single container before sampling but cuttings from different PRSs will not be combined before sampling. If container sizes are small, the representative sample may be collected from more than one container (e.g., one sample for every 20 cy³ generated from a single

potential release site). Waste generated and managed within an Area of Contamination will initially be managed as non-hazardous. Wastes generated outside an Area of Contamination will initially be managed as hazardous or non-hazardous in accordance with Table 3.0-1. If analytical data changes the waste classification (e.g., PCB waste) or hazardous wastes are moved outside the boundary of the Area of Contamination, the waste will be stored in an area appropriate for the type of waste. Cuttings may be land applied if they meet the criteria of the NMED-approved NOI decision tree for land application. Land application will be conducted in accordance with ENV-RCRA-QP-011, *Land Application of Drill Cuttings*. Drill cuttings that cannot be land applied will be treated and/or disposed of at authorized off-site facilities appropriate for the waste classification.

3.2 Waste # 2: Contact Waste

This waste stream includes personnel protective equipment (PPE), contaminated sampling supplies, and dry decontamination waste that may have come in contact with contaminated environmental media and cannot be decontaminated. This includes, but is not limited to plastic sheeting (e.g., tarps and liners), gloves, coveralls (e.g. Tyvek), booties, paper towels, plastic and glass sample bottles, and disposable sampling supplies. Approximately 1 yd³ of contact waste are expected to be generated.

Anticipated Regulatory Status: Industrial, Beryllium, Hazardous, LLW, MLLW, Green is Clean

Characterization Approach: Contact waste will be characterized using AK based on data from the media with which they came into contact, as follows:

- If generated during drilling, data from the associated drill cuttings will be used.
- If generated during hand augering, associated investigation sample data will be used.
- If generated during excavations, data from the associated excavated environmental media will be used.

All contact waste will be inspected before being placed in containers to determine if environmental media or staining is present, indicating contamination. If staining is present, an estimate of the portion or percentage of the item stained will be recorded. Results from the analytical data will be weighted by the extent of contamination for determining whether wastes are characteristic. If the material with which the contact waste came into contact is listed, the contact waste will be assumed to be listed unless a "container-in" approval is obtained.

Storage and Disposal Method: The contact waste may be separately containerized in drums or it may be placed into the same containers as the media with which it is contaminated if the media will not be land applied. Wastes will be stored within secure, designated areas. Waste generated and managed within an Area of Contamination will initially be managed as non-hazardous. Wastes generated outside an Area of Contamination will initially be managed as hazardous or non-hazardous in accordance with Table 3.0-1. If analytical data changes the waste classification, the waste will be stored in an area appropriate for the type of waste. For disposal, separately containerized contact waste may also be combined with the material that it contacted (the WPF will document the decision to combine the waste streams). Wastes will be treated and/or disposed of in authorized off-site facilities appropriate for the waste classification.

3.3 Waste #3: Decontamination Fluids (potential)

The decontamination fluids waste stream will consist of liquid wastes generated from decontamination of excavation, sampling and drilling equipment. Consistent with waste minimization practices, the Laboratory employs dry decontamination methods to the extent possible. If dry decontamination cannot be

performed, liquid decontamination wastes will be collected in appropriate containers at the point of generation. Less than 55 gal of decontamination fluids are expected to be generated.

Anticipated Regulatory Status: Industrial, Hazardous, LLW, MLLW

Characterization Approach: All drilling equipment and tooling will be steam-cleaned by the drilling subcontractor prior to arriving onsite. If tooling appears unclean or odors are detected, the equipment must be steam-clean onsite in accordance with EP-ERSS-SOP-5061, Field Decontamination of Equipment or an approved equivalent procedure. The rinsate must be separately collected and sampled (do <u>not</u> mix with any other decontamination fluids).

Decontamination fluids will be characterized by investigation samples from the media they contacted or by direct sampling. Unless decontamination fluids are generated and managed within an Area of Contamination, representative samples (if sampling is required) will be collected within 10 days of generation and submitted for analysis with a 21 day turnaround time. Samples will be collected from the storage container in accordance with LANL SOP-06.15, COLIWASA Sampler for Liquids and Slurries. If the container does not permit COLIWASA or bailer sampling, the type of sampling equipment used will be appropriate for the waste container and properly operated in accordance with Chapter 7 and Appendix E of the RCRA Waste Sampling Draft Technical Guidance (EPA 530-D-02-002, August 2002, http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/rwsdtg.pdf). Samples will be analyzed for VOCs, SVOCs, radionuclides, and total metals (see Table 3.1-1). HE will be analyzed only if the decontamination water is generated from potential release site for which the work plan requires HE analysis for investigation samples. Other constituents may be analyzed as necessary to meet the WAC for a receiving facility. If wastes will be treated on-site at the Sanitary Waste Water System (SWWS) or the Radioactive Liquid Waste Treatment Facility (RLWTF), submit a sampling request to http://esp-esh-as01f5.lanl.gov/~esh19/database/rfa form.shtml for additional constituents identified in Table 3.1-1, footnote 1. If the fluids cannot be treated on-site, they may be solidified for disposal off-site. The Material Safety Data Sheet (MSDS) for any absorbent used for solidification will be used as AK for waste characterization.

Storage and Disposal Method: Decontamination fluids will be collected in appropriate containers at the point of generation and managed in secure, designated waste areas. Waste generated and managed within an Area of Contamination will initially be managed as non-hazardous. Wastes generated outside an Area of Contamination will initially be managed as hazardous or non-hazardous in accordance with Table 3.0-1. If analytical data changes the waste classification (e.g., PCB wastes) or hazardous wastes are moved outside the Area of Contamination boundaries, the waste will be stored in an area appropriate for the type of waste. It is expected that the decontamination fluids will be treated on-site at the TA-16 High Explosives Wastewater Treatment Facility (HEWTF), the TA-50 Radioactive Liquid Waste Treatment Facility (RLWTF), or the Sanitary Waste Water System (SWWS). Decontamination wastes not meeting the WAC for on-site facilities will be treated and/or disposed of in authorized off-site treatment/disposal facilities. If solidification of decontamination fluids is required for disposal, it may be solidified using an approved absorbent. Solidification activities must be reviewed by the ENV-RCRA before being conducted.

3.4 Waste #4: Excavated Media

Layback and overburden spoils (including environmental media mixed with buried debris after the debris is segregated from the media) will consist of soil and rock removed from within or next to (e.g., from benching to stabilize a trench) areas to be excavated. The amount of media removed is expected to be approximately 25 yd³.

Anticipated Regulatory Status: Industrial, Beryllium, Hazardous, LLW, MLLW, NMSW, PCB, Fill

Characterization Approach: Because the amount of soil to be excavated from each location is estimated to be less than 5 yd³, a minimum of one incremental sample of the spoils will be collected for each excavation location as the spoils are excavated. More frequent samples will be collected if screening or visual observations indicate areas with potentially higher contamination. The incremental samples will be collected in accordance with SOP-06.11, *Spade and Scoop Method for Collection of Soil Samples.* Representative samples will be submitted for analysis with a 21 day turnaround time. Samples will be analyzed for VOCs, SVOCs, radionuclides, total metals, and TCLP metals, as needed (see Table 3.1-1). Herbicides and pesticides will be analyzed only if the work plan requires analysis of these contaminants in investigation samples. HE, perchlorates, nitrate, and total cyanide will be analyzed only if the work plan requires HE analysis for investigation samples from the potential release site. If process knowledge, odors, or staining indicate the excavated media may be contaminated with petroleum products, the materials will also be analyzed for TPH and PCBs. Other constituents may be analyzed as necessary to meet the WAC for a receiving facility.

Storage and Disposal Method: An Area of Contamination will be requested for each excavation area and materials generated and managed within the area will be managed as non-hazardous waste. If the material is removed from the Area of Contamination, it will be managed as hazardous or non-hazardous in accordance with Table 3.0-1 unless data are available to show that it is non-hazardous. This material will be field screened for radioactivity and VOCs during the excavation process. If contamination is not detected during screening, the spoils will be stored either in rolloff bins other suitable containers or on the ground surface with appropriate best management practices. If field screening indicates the potential for contamination, the layback and overburden spoils will be placed in rolloff bins or other suitable containers of the Area of Contamination, the waste classification or hazardous waste is moved outside the boundaries of the Area of Contamination, the waste will be stored in an area appropriate for the type of waste. If the spoils are determined to be suitable for reuse (i.e., meets residential cleanup standards as determined using NMED's and DOE's soil screening guidance), the Laboratory will segregate any man-made debris from the soil, if practical, and use the soil to backfill the excavations. If the spoils do not meet residential cleanup standards, they will be treated and/or disposed of at an authorized facility appropriate for the waste regulatory classification.

3.5 Waste #5: Excavated Man-Made Debris

Excavated man-made debris may be generated during excavation of test pits at SWMUs 20-001(c) and 53-005, during remediation of AOC 53-013, and during cleanup of the surface debris at SWMUs 05-005(b) and 05-006(c). The amount of debris removed is expected to be approximately 4 yd³.

Anticipated Regulatory Status: Industrial, Beryllium, Hazardous, LLW, MLLW, PCB, NMSW, Recycle

Characterization Approach: Debris will be segregated as it is excavated, to the extent practical, based on factors such as the type and size of debris, field screening, process knowledge, and/or staining or odors. For debris that is difficult to characterize; acceptable knowledge (AK) will be used whenever possible, supplemented by sampling as needed. Sampling methods may be identified on a case-by-case basis by qualified sampling personnel. All decisions will be documented in the field activity notebook. If generated outside an Area of Contamination, samples must be collected within 10 days of waste generation and a 21-day analytical turnaround must be requested. Samples will be analyzed for asbestos for articles expected to be asbestos-containing, VOCs, SVOCs, radionuclides, total metals, and TCLP metals, if necessary (see Table 3.1-1). PCBs will be analyzed if oil staining on debris or PCB articles (e.g., capacitors) is unearthed. HE on the external portions of the debris generated at SWMU 20-001(c) will initially be analyzed by HE screening (DX HE Spot Test) or if the investigation samples indicate that HE is present. Waste configurations, process knowledge and additional HE analysis will be performed as needed to identify whether the debris is detonable. Other constituents may be analyzed as necessary to

meet the WAC for a receiving facility. Non-radioactive materials (no LANL-added radioactivity) or those that can be decontaminated will be recycled, if practicable. For the lead shot and other non-porous debris with only surface, non-fixed contamination, smears will be used to detect the presence of radiation. If the lead shot cannot be recycled/reused, it will be assumed to be hazardous for lead.

Storage and Disposal Method: Debris will be containerized at the point of generation in LANL approved 55-gallon steel drums or other appropriate containers. Any debris that leaks as it is excavated must immediately be placed in an area with secondary contamination. The debris will initially be managed in a secure, designated area within the Area of Contamination. If analytical data changes the waste classification (e.g., PCB wastes) or the waste is hazardous and is moved outside the Area of Contamination boundaries, the waste will be stored in an area appropriate for the type of waste. The waste will be treated and/or disposed of at an authorized off-site facility appropriate for the waste classification.

3.6 Waste #6: Municipal Solid Waste (MSW)

This waste stream primarily consists of non- contact trash including, but not limited to paper, cardboard, wood, plastic, food and beverage containers, empty solution containers, but may also include commercial solid wastes which are derived from project activities. It is estimated that less than 1 yd³ of MSW will be generated, but may change if vegetation removal is required.

Anticipated Regulatory Status: MSW

Characterization Approach: MSW will be characterized based on acceptable knowledge (AK) of the waste materials (including MSDS) and methods of generation.

Management and Disposal Method: MSW will be segregated from all other waste streams and managed in approved containers. It is anticipated that the waste will be stored in plastic trash bags or other appropriate containers and disposed of at the County of Los Alamos Transfer Station or other authorized solid waste landfill.

3.7 Waste #7: Petroleum Contaminated Soils (PCS), (potential)

PCS may be generated from releases of products such as hydraulic fluid, motor oil, unleaded gasoline, or diesel fuel (e.g. from the rupture of hydraulic or fuel hoses, or spills during maintenance or filling equipment) onto soil. PCS created by legacy contamination may also be encountered during investigations. Absorbent padding, paper towels, spill pillows or other absorbent material used to contain the released material may be added to the PCS waste for storage and disposal. It is estimated that less than one cubic yard of PCS will be generated.

Anticipated Regulatory Status: NMSW, Beryllium, Industrial, Hazardous, LLW, MLLW, PCB

Characterization Approach: The contaminated soil may either be sampled in-place (by gridding the spill location and collecting and combining incremental samples into one sample) or after containerization in accordance with LANL SOP-06.10, *Hand Auger and Thin-Wall Tube Sampler*. If the spill is shallow (in-place sampling) or containers are small, Spade and Scoop Method for Collection of Soil Samples (LANL SOP-06.11) may also be appropriate. If the spill is new, it must be immediately reported to ENV-RCRA and the contaminated material must be containerized the same day it is spilled unless permission is received from ENV-RCRA to leave it longer (generally only granted for large spills). Representative samples of containerized waste will be collected within 10 days of generation and submitted for analysis with a 21 day turnaround time. Samples will be analyzed at a minimum for VOCs, SVOCs, TPH (DRO/GRO), and total metals (see Table 3.1-1). Herbicides and pesticides will be analyzed only if the work plan requires analysis of these contaminants for investigation samples. HE, perchlorates, nitrate,

and total cyanide will be analyzed only if screening indicates the presence of HE or if analysis of these constituents is required by the work plan for the contaminated area. If legacy petroleum contamination is present, the soils will also be analyzed for PCBs. Other constituents may be analyzed as necessary to meet the WAC for a receiving facility.

Storage and Disposal Method: PCS will be stored in clearly marked and appropriately constructed waste accumulation areas. Waste accumulation area postings, regulated storage duration, and inspection requirements will be based on the most restrictive waste classification appropriate to the area where the spill occurred. If the PCS is suspect or known hazardous or MLLW, it will initially be managed in a registered hazardous waste accumulation area pending analysis. All PCS will be treated and/or disposed of, at an authorized off-site facility appropriate for the waste classification.

3.8 Waste #8: Returned or Excess Samples

This waste stream consists of soil and tuff samples returned from a laboratory or samples collected but not submitted to the analytical laboratory. It is estimated that less than approximately 0.5 yd³ of material will be generated from this activity.

Anticipated Regulatory Status: Industrial, Beryllium, Hazardous, LLW, MLLW, NMSW

Characterization Approach: Waste characterization will be based upon analytical results obtained from the direct sampling of containerized waste or from investigation or characterization data from media associated with the returned/excess samples. Direct sampling will be conducted in accordance with LANL SOP-06.10, *Hand Auger and Thin-Wall Tube Sampler* or SOP-06.09, *Spade and Scoop Method for Collection of Soil Samples*. Representative samples will be collected within 10 days of the return of the samples and submitted for analysis with a 21 day turnaround time. Samples will be analyzed for VOCs, SVOCs, total metals, and TCLP metals, as needed (see Table 3.1-1). Herbicides and pesticides will be analyzed only if the work plan requires analysis of these contaminants for investigation samples. HE, perchlorates, nitrate, and total cyanide will be analyzed only if the work plan requires Knowledge, odors, or staining indicate the returned samples may be contaminated with petroleum products, the materials will also be analyzed for TPH and PCBs. Other constituents may be analyzed as necessary to meet the WAC for a receiving facility.

Storage and Disposal Method: These wastes will be containerized in 5 gallon buckets, 55 gallon drums, or placed into the same containers as the environmental media from which they were taken. They will initially be stored in secure, designated waste areas as hazardous or non-hazardous waste in accordance with Table 3.0-1. If analytical data changes the waste classification, the waste will be stored in an area appropriate for the type of waste. The wastes will be sent to an authorized on-site or off-site treatment or disposal facilities, as appropriate to their waste regulatory classification.

4.0 References

LANL (Los Alamos National Laboratory) 2007. "Los Alamos National Laboratory Hazardous Waste Minimization Report," (LANL,2007).

EP2010-0211 Integrated Work Document (IWD) – Implementation of the Investigation Work Plan for Lower Sandia Canyon Aggregate Area

EP2010-0212-Site-Specific Health and Safety Plan (SSHASP) – Implementation of the Investigation Work Plan for Lower Sandia Canyon Aggregate Area

LANL (Los Alamos National Laboratory), July 2009. "Investigation Work Plan for Lower Sandia Canyon Aggregate, Revision 1," Los Alamos, New Mexico. (LANL 2009, 106660)

Potential Release Site	Initial Management	Comments
SWMU 05-005(b). Outfall	Non-hazardous	
SWMU 05-006(c). Former Building 05-5	Non-hazardous	
SWMU 05-003, Former Calibration Chamber	Non-hazardous	
SWMU 05-004(c), Outfall and Septic Tank, Former Building 05-1	Non-hazardous	
SWMU 20-001 (a), Landfill	Non-hazardous	
SWMU 20-001(b), Landfill	Non-hazardous	
SWMU 20-001 (c), Landfill	Non-hazardous	
SWMU 20-002(a), Former Firing Pit	Non-hazardous	
SWMU 20-002(b), Former Steel Tanks (Firing Site)	Non-hazardous	
SWMU 20-002(c), Former Firing Point	Non-hazardous	
SWMU 20-002(d), Former Firing Point	Non-hazardous	
AOC 20-003(b), Former 20-mm Gun- Firing Site	Non-hazardous	
AOC 20-003(c), Former U.S. Navy Gun Site	Non-hazardous	
AOC 20-004, Septic System	Non-hazardous	
SWMU 20-005, Septic System	Non-hazardous	
SWMU 53-001 (a), Former Waste Storage Area	Non-hazardous	
SWMU 53-001 (b), Waste Storage Area	Non-hazardous	
SWMU 53-005, Former Waste Disposal Pit	Hazardous	
SWMU 53-006(f), Underground Storage Tank	Hazardous	
AOC 53-008, Storage Area	Non-hazardous	Analyze IDW for toxicity characteristic metals (lead)
AOC 53-009, Former Storage	Non-hazardous	
AOC 53-010, Former Storage Area	Non-hazardous	
AOC 53-012(e), Outfall	Non-hazardous	
AOC 53-013, Lead Shot Area	Hazardous	Analyze IDW for toxicity characteristic metals (lead), Recycle if possible.

Table 3.0-1 Initial Waste Management

Table 3.1-1Waste Characterization Table

Waste Description	Waste Stream # 1 Drill Cuttings	Waste Stream #2 Contact Waste	Waste Stream #3 Decon. Fluids	Waste Stream #4 Excavated Media
Estimated Volume	20 CY	1 CY	< 55 gallons	25 CY
Packaging	55-gallon steel drums or 1 yd ³ Wrangler Bags	55 gallon drums	30 or 55 gallon drums	Roll-offs or on ground
Regulatory Classification				
Radioactive Waste	х	х	Х	Х
Municipal Solid Waste (MSW)				
Waste destined for LANL's SWWS or RLWTF or HEWTF ¹			Х	
Hazardous Waste	Х	Х	Х	Х
Mixed (hazardous and radioactive) Waste	Х	х	Х	Х
Beryllium	Х	х		Х
Polychlorinated Biphenyls-Contaminated Waste (PCBs)				Х
New Mexico Special Waste	Х			Х
Industrial Waste	Х	х	Х	Х
Characterization Method				
Acceptable knowledge (AK): Existing Data/Documentation		х	Х	Х
AK: Site Characterization		х	х	х
Direct Sampling of Waste	x		х	х
Analytical Testing			·····	
Volatile Organic Compounds (VOCs) (EPA 8260-B)	X		х	х
Semivolatile Organic Compounds (SVOCs) (EPA 8270-C)	x		х	х
Organic Pesticides (EPA 8081-A)	X ⁴		X ⁴	X ⁴
Organic Herbicides (EPA 8151-A)	X4		X ⁴	X ⁴
PCBs (EPA 8082)	X ⁴		X ⁴	X ⁴
Total Metals (EPA 6010-B/7471-A or EPA 6020)	X		х	х
Total Cyanide (EPA 9012-A)	X ⁴		X ⁴	X4
High Explosives Constituents (EPA 8330/8321-A)	X ⁴		X ⁴	X ⁴
Asbestos (EPA 600M4)				
Total petroleum hydrocarbon (TPH)-GRO (EPA 8015-M)	X ⁴			X ⁴
TPH-DRO (EPA 8015-M)	X ⁴		X ⁴	X ⁴
Toxicity characteristic leaching procedure (TCLP) Metals (EPA 1311/6010-B)	X ⁴		X ⁴	X ⁴

Waste Description	Waste Stream # 1 Drill Cuttings	Waste Stream #2 Contact Waste	Waste Stream #3 Decon. Fluids	Waste Stream #4 Excavated Media
TCLP Organics (EPA 1311/8260-B & 1311/8270-C)				
TCLP Pest. & Herb. (EPA 1311/8081-A/1311/8151-A)				
Gross Alpha (alpha counting) (EPA 900)	X ⁴		X ⁴	X ⁴
Gross Beta (beta counting) (EPA 900)	X ⁴		X ⁴	X ⁴
Tritium (liquid scintillation) (EPA 906.0)	X		х	x
Gamma spectroscopy (EPA 901.1)	X ⁴		X4	X ⁴
Isotopic plutonium (HASL-300)	X		х	x
Isotopic uranium (HASL-300)	Х		х	х
Total uranium (EPA 6020)	X		х	X
Strontium-90 (EPA 905)	X		х	X
Americium-241 (HASL-300)	X		х	x
Perchlorates (EPA 6850)	X ⁴		X ⁴	X ⁴
Nitrates/Nitrites (EPA 300.09-soil or 343.2-water)	X ⁴		X ^{1,4}	X ⁴
Oil / Grease (EPA 1665)			X ¹	
Fluorine, Chorine, Sulfate (EPA 300)			X ¹	
TTO (EPA 8260-B and EPA 8270-C) ²	Request VOCs and SVOCs above			ve
Total Suspended & Dissolved Solids (TSS) and Total Dissolved Solids (TDS) (EPA 160.1 and 160.2)			X ¹	
Chemical Oxygen Demand (COD) (EPA 410.4)			X ¹	
pH (EPA 904c)		<u></u>	X ¹	
Microtox or Biological Oxygen Demand (BOD) ³			X ¹	

Table 3.1-1 (continued)

Table 3.1-1 (continued)

Waste Description	Waste Stream # 5 Excavated Man Made Debris	Waste Stream #6 Municipal Solid Waste	Waste Stream #7 Petroleum Contam Soils	Waste Stream #8 Returned or Excess Samples
Estimated Volume	4 CY	< 1 CY	< 1 CY	0.5 CY
Packaging	55-gallon drums or other containers	Plastic trash bags	30 or 55 gallon drums	Same containers as the environmental media from which they were taken or other drums.
Regulatory Classification				
Radioactive Waste	X		х	X
Municipal Solid Waste (MSW)		Х		
Waste destined for LANL's SWWS or RLWTF ¹				
Hazardous Waste	X		Х	x
Mixed (hazardous and radioactive) Waste	Х		X	x
Beryllium	X		Х	х
Polychlorinated Biphenyls-Contaminated Waste (PCBs)	X		х	
New Mexico Special Waste	X		Х	x
Industrial Waste	х		Х	x
Characterization Method				
Acceptable knowledge (AK): Existing Data/Documentation	. x	х		
AK: Site Characterization	Х			x
Direct Sampling of Waste	X		Х	X
Analytical Testing				
Volatile Organic Compounds (VOCs) (EPA 8260-B)	Х		Х	x
Semivolatile Organic Compounds (SVOCs) (EPA 8270-C)	Х		Х	x
Organic Pesticides (EPA 8081-A)	X ⁴		X ⁴	X ⁴
Organic Herbicides (EPA 8151-A)	X ⁴		X ⁴	X ⁴
PCBs (EPA 8082)	X ⁴		X ⁴	X ⁴
Total Metals (EPA 6010-B/7471-A or EPA 6020)	Х	· · · · · · · · · · · · · · · · · · ·	Х	x
Total Cyanide (EPA 9012-A)	X ⁴		X ⁴	X ⁴
High Explosives Constituents (EPA 8330/8321-A)	X ⁴		X ⁴	X ⁴
Asbestos (EPA 600M4)	X ⁴			-
Total petroleum hydrocarbon (TPH)-GRO (EPA 8015-M)	X ⁴		х	X ⁴

Table 3.1-1 (continued)	Table	3.1-1	(continued)
-------------------------	-------	-------	-------------

Waste Description	Waste Stream # 5 Excavated Man Made Debris	Waste Stream #6 Municipal Solid Waste	Waste Stream #7 Petroleum Contam Soils	Waste Stream #8 Returned or Excess Samples
TPH-DRO (EPA 8015-M)	X ⁴		Х	X ⁴
Toxicity characteristic leaching procedure (TCLP) Metals (EPA 1311/6010-B)	X ⁴		X ⁴	X ⁴
TCLP Organics (EPA 1311/8260-B & 1311/8270-C)				
TCLP Pest. & Herb. (EPA 1311/8081-A/1311/8151-A)				
Gross Alpha (alpha counting) (EPA 900)	X ⁴		X ⁴	X ⁴
Gross Beta (beta counting) (EPA 900)	X ⁴		X ⁴	X⁴
Tritium (liquid scintillation) (EPA 906.0)	x		Х	x
Gamma spectroscopy (EPA 901.1)	X ⁴		X ⁴	X⁴
Isotopic plutonium (HASL-300)	x		Х	х
Isotopic uranium (HASL-300)	x		Х	x
Total uranium (EPA 6020)	X		Х	х
Strontium-90 (EPA 905)	X		Х	х
Americium-241 (HASL-300)	x		Х	X
Perchlorates (EPA 6850)	x		Х	x
Nitrates/Nitrites (EPA 300.09-soil or 343.2-water)	x		Х	x
Oil / Grease (EPA 1665)				
Fluorine, Chorine, Sulfate (EPA 300)				
TTO (EPA 8260-B and EPA 8270-C) ²	F	Request VOCs ar	nd SVOCs above)
Total Suspended & Dissolved Solids (TSS) and Total Dissolved Solids (TDS) (EPA 160.1 and 160.2)				
Chemical Oxygen Demand (COD) (EPA 410.4)				
pH (EPA 904c)				
Microtox or Biological Oxygen Demand (BOD) ³				

¹in addition to other analytes needed to characterize the waste (e.g., VOC, SVOC, total metals), analyze for TSS, TDS, Oil and Grease, gross alpha, gross beta, tritium, and pH for liquids destined for the LANL sanitary waste water system (SWWS). For wastes destined for the RLWTF additional constituents include TTO,TSS, COD, pH, total nitrates/nitrites, and gross alpha, gross beta (not including tritium), and gross gamma or the sum of individual alpha-, beta-, and gamma-emitting nuclides. Submit a sampling request to http://esp-esh-as01-f5.lanl.gov/~esh19/database/rfa_form.shtml.

²TTO is the total of volatile organic and semi-volatile organic compound contaminants. Request methods EPA 8260-B (VOCs) and EPA 8270-C (SVOCs).

³ If Microtox analysis is not available, request BOD. Submit a sampling request to <u>http://esp-esh-as01-f5.lanl.gov/~esh19/database/rfa_form.shtml</u>.

⁴ If needed

Signatures	Date
Project Manager: Kent Rich	6/23/10
Preparer: Kevin Krause	6/24/10
Waste Management Coordinator: Michael Le Scouarnec	6/23/10
ENV-RCRA Representative: Ann Sherrard	
ann Therrid	6/23/10
Waste Acceptance Representative: Andy Alecio	<i>6</i> 1 1
Chip. Of For Andy Elicio	6/23/10
Waste Certification Program Representative: Michelle Coriz	
Michelle L. Conie	6/23/10

Waste Profile Form

For rapid processing, complete all sections in black or blue ink and mail to: Waste Acceptance Group at MS J496. For assistance with completing this form, contact your WMC. Click <u>here</u> for instruction in completing the form.

Contact (if other than given below)

Reference Number

(for Waste Acceptance Group Use Only)

Generator's Z Number Waste Gene	rator's Name (<i>print</i>))	WMC's Z Nu	mber	WMC's Name (pri	nť)		Generator's Phone
Generator's Mail Stop Waste Gene	rating Group	Waste Str	eam Technica	l Area	Building	Room		WMC Phone
Waste Accumulation (check only one) Satellite Accumulation Area Less-than-90-days Storage Area TSDF Universal Waste Storage Area Used Oil for Recycle ER Use Only ER Site Method of Characterization (check as million) Chemical Physical Analysis PCB Analysis Acceptable Knowledge Documentation MSDS	Site N Site N Site N Site N Site N Site N SWM any as apply) A A A A A A A A A	lo: lo:		Sample N Sample N Sample N Sample N Documen	PCBs Storage NM Special W Rad Staging A Rad Storage A None of the At	Area aste rea bove	Site N Site N Site N	0: 0: 0: 0:
Can hazard segregation, elimination, or ma Can any of the materials in the waste streat Has waste minimization been incorporated Can this waste be generated outside a RC Comments:	aterial substitution t am be recycled or re l into procedures or A? Yes (be used? eused? other proce provide com	Yes (pr Yes (pr ess controls? nments)	rovide comn rovide comn Yes No	nents)	comments	3)	
Section 2 – Chemical and Physical Inform Waste Type (check only one) Unused/Unspent Chemical (complete all sections as appropriate) Process Waste/Spent Chemical/Other (complete all sections) Radiological Information Was Waste generated in a RCA? Yes No Non-radioactive Radioactive – Low Level Radioactive – Transuranic Waste Destination (check only one) SWWS (complete Attachment 1) RLWTF (complete Attachment 2) RLWTP (complete Attachment 3) TA-16/HE (complete Attachment 4) NTS (complete Attachment 5) Classification Information Unclassified Classified/Sensitive	Mation Waste Category Inorganic Organic Solvent* Degreaser* Dioxin Electroplating Treated Hazz No-Longer Cr Explosive Pro Infectious/Mee Biological Beryllium Empty Conta Battery (see i Asbestos PCB Source Cor PCB < 50 pp	r (check all t or (check all t ardous Wast ontained-In ocess dical iner (see ins nstructions) iable on-friable icentration m 500 ppm yaste Contar zardous De Solid Waste be below)	that apply) te or Residue structions) minated Soil bris	Waste So Waste So Decon Materi Resea Sched Spill C Sampl Other Waste So Abatel Constr Decon Investi Orpha Remee Repac Unsch House Spill C Usch House	urce (check only or urce A als Processing Proc rch/Development/To uled Maintenance keeping - Routine leanup - Routine ing – Routine Monit (describe below) urce B ment uction/Upgrades ition /Decom gative Derived n/Legacy diation/Restoration king (secondary) eduled Maintenanca keeping (non-routine etroleum Tanks eum Tanks	ne) duction esting oring e e e e)	Waste Mar Gas	trix (check only one) mospheres Pressure mospheres Pressure ed Compressed Gas us ueous nded Solids/Aqueous nded Solids/Non-Aqueous nded Solidified Liquid ed/Solidified Liquid pe (check only one) eneous geneous jelow)

Section 3 – Process and Waste Description Process Description:

Waste Description:

Section 4 – Characteristics							
Ignitability (check only one)	Corrosiv	ity (check	only one)	(pH)	Reactivity (check as many as apply)	Boiling Poi	nt (check only one)
(°F) (°C)	$\Box < 2.0$, (••••••	,,	(1)	\Box BCBA [Instable (°C)		(°C)
$\Box < 73$ < 22.8	$\Box 2.1 -$	4.0			Water Reactive	□ < 95	< 35
\Box 73 - 99 228 - 372		6.0			Cvanide Bearing	$\square > 95$	> 35
\Box 100 - 139 37.8 - 59.4		9.0 9.0			Sulfide Bearing		2 00
$\Box 140 - 200 = 60.0 - 93.3$		12 /					
		5			Shock Sensitive		
EPA Ignitable Non liquid		J d oorrocivo	to staal				
DOT Elammable Cas			IO SIEEI				ia a h la
		aqueous					icable
	C	haracteriz	ation Met	hod	Concentration of Contamina	nts	
	-			None or	Contaminant present at		
Identify for all contaminants listed.	AK	TCLP	Total	Non-detect	Minimum Maximum		Regulatory Limit
Toxicity Characteristic Metals		-			(10,000 ppm = 1%)		
Arsenic					to	maa	5.0 ppm
Barium					to	ppm	100.0 ppm
Cadmium					to	nnm	1.0 ppm
Chromium (Total)		⊢ ¦ –	+		to	nnm	5.0 ppm
		<u> </u>			to	ppm	5.0 ppm
Ledu		<u> </u>			10	ppm	5.0 ppm
					10	ррпі	0.2 ppm
Selenium					to	ppm	1.0 ppm
Silver					to	ppm	5.0 ppm
Toxicity Characteristic Organics							
Benzene					to	ppm	0.5 ppm
Carbon Tetrachloride					to	ppm	0.5 ppm
Chlorobenzene					to	ppm	100.0 ppm
Chloroform					to	ppm	6.0 ppm
o – cresol					to	ppm	200.0 ppm
m - cresol					to	ppm	200.0 ppm
p – cresol					to	ppm	200.0 ppm
Cresol – mixed					to	maa	200.0 ppm
1.4-Dichlorobenzene					to	maa	7.5 ppm
1 2-Dichloroethane		⊢ -			to	nnm	0.5 ppm
1 1-Dichloroethylene					to	nnm	0.7 ppm
2 4-Dinitrotoluene					to	nnm	0.13 nnm
Hevachlorobenzene		⊢ ¦ –	+		to	nnm	0.13 ppm
Hexachlorobutadiona		<u> </u>			to	ppm	0.10 ppm
		⊢ ⊢ ⊢			10	ppm	0.5 ppm
Methyl ethyl ketene	\square	⊢ ⊣ –	<u> </u>		10	ppm	3.0 ppm
					10	ppm	200.0 ppm
Nitrobenzene					to	ppm	2.0 ppm
Pentachlorophenol					to	ppm	100.0 ppm
Pyridine					to	ppm	5.0 ppm
letrachloroethylene					to	ppm	0.7 ppm
Trichloroethylene					to	ppm	0.5 ppm
2,4,5-Trichlorophenol					to	ppm	400.0 ppm
2,4,6-Trichlorophenol					to	ppm	2.0 ppm
Vinyl chloride					to	ppm	0.2 ppm
Herbicides and Pesticides							
Chlordane					to	ppm	0.03 ppm
2.4-D					to	maa	10.0 ppm
Endrin					to	nom	0.02 nnm
Hentachlor (& its enovide)		⊢∺-	\vdash		to	nnm	0.02 ppm 0.008 nnm
		<u> </u>			to	nnm	0.000 ppill
Methowychlor		<u>⊢ </u>	┝ ่ -	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	10 to	ppin	0.4 ppili 10.0 ppm
Тохорьоро	⊢ ⊣ –	⊢ ⊢ ⊢	┝─ ┝┤─	┝┝╧		ppill	10.0 ppm
	<u>⊢ Ц</u>	<u>⊢ </u>	⊢ Ц		10	ppm	0.5 ppm
2,4,5-1P (SIIVEX)					tO	ppm	1.0 ppm

Section 5 – Additional Constituents and Contaminants

Additional Constituents and Contaminants. Please account for 100% of waste. Range should be given within guidelines of individual constituents. List all other constituents (including inerts) not identified above and attach any applicable analysis. No chemical formula allowed in this field. Continue in Section 3 Additional information as necessary. CAS numbers are needed for all chemical constituents, for material without a CAS number, enter "No CAS Number." Contact Waste Acceptance at 5-4000 for assistance.

CAS No.	Name of constituent	Minimum	Maximum
		to	%
		to	/o
		to	/o %
		to	%
		to	%
	Total of max, ranges of this section and page 2		in %
If additional information is availab	Additional Information (Use additional sheet if necessary.) ole on the chemical, physical, or radiological character of the waste not covered on this	form, provide it below	
Section 6 - Work Control Docume	entation (answer all questions)		
Do the procedures for this proces	ss cover how to manage this waste? Yes No (<i>provide comments</i>)	lition or romoval of wast	a ta/from
containers?	\square No (provide comments)		
Comments:	— <u> </u>		
Section 7 – Packaging and Storag	ge Control		
Describe how the waste will be pa	ackaged in according to the applicable WAC.		
Tamper Indication Devices	Limited use locks with log-in for waste Locked cabinet or building	Other (describe)	
Waste appears to meet WAC	attachment for:		
Waste stream needs exceptio	n/exemption for treatment, storage, or disposal at:		
Waste does not meet the crite [PADWP] for assistance.)	eria for any known TSDF. (DOE approval is required. Contact the office of the Principle	Associate Director for W	eapons Programs
Waste Generator Certification: this form is correct and that it men regulatory agencies and that ther violations.	Based on my knowledge of the waste and/or chemical/physical analysis, I certify that the tes the requirements of the applicable waste acceptance criteria. I understand that this e are significant penalties for submitting false information, including the possibility of fin	ne waste characterization information will be made les and imprisonment for	n information on available to r knowing
Signature:	Date:	-	
Waste Management Coordinate complete and accurate. I certify, t of the applicable WAC.	or: I have reviewed this form and any associated attachments and the characterization to the best of my knowledge, that the waste characterization information provided by the	information provided app e waste generator meets	bears to be the requirements
Signature:	Date:	-	

Attachment 4 - LDR and UHC Information
--

Identify category and presence of any constituents listed below (equal to or above limit)								
Non-Wastowator/Wastowa	tor Catagory (chock only one)							
NOII-Wastewater/wastewa	un-wastewater/wastewater Category (check unity une)							
Non Wastewater	Wastewater [as defined by 40 CFR 268.2(f)]	Lab Pack [40 CFR 268.42(c)]	Sign Certification #1					
Notifications and Certifica	tions – Check the applicable boxes							
Generator Requirements								
This shipment contains h	pazardous waste contaminated soil that does not meet	treatment standards	Sign Certification #2					
This shipmont contains I	intracted bazardous dobris to be tracted to 10 CED 260	A 5 treatment standards	(No contification)					
	initiated hazardous dephis to be treated to 40 GFH 200	han	(NO Certification)					
Hazardous wastes (exce	pt soil) meeting treatment standards at point of genera	uon	Sign Certification #3					
Hazardous wastes conta	minated soil meeting treatment standards at point of ge	eneration	Sign Certification #4					
TSDF or Generator Treatm	ent:							
TSDF Treated hazardou	s debris meeting the alternative treatment standards of	40 CFR 268.45	Sign Certification #5					
Generator Treated hazar	rdous debris meeting the alternative treatment standard	Is of 40 CFR 268.45	Sign Certification #6					
Hazardous wastes conta	minated soil treated to 40 CFR 268.49		Sign Certification #7					
Wastes or Residues from	atment standards and UTS	Sign Certification #8						
Wastes or Residues from characteristic hazardous waste treatment not meeting UTS Sign Certification #9								
Other TSDF wastes meet	Other TSDF wastes meeting the more stringent 40 CFR 268.40 treatment standards to be land disposed Sign Certification #10							
Other Generator wastes	meeting the more stringent 40 CFR 268.40 treatment s	standards to be land disposed	Sign Certification #11					
Notification of Underlying Hazardous Constituents								

Notification of Underlying Hazardous Constituents (Check the applicable underlying constituents above the concentration levels for D001 through D043 characteristic wastes only)

□ No Underlying Hazardous Constituents in this waste stream.

Organic Constituents	CASRN ¹	Wastewater Standard (mg/l)	Non Wastewater Standard (mg/kg unless noted otherwise)	Hazardous Soil 10Xs UTS Nonwastewater (mg/kg unless noted otherwise)
Acenaphthylene	208-96-8	0.059	3.4	34
Acenaphthene	83-32-9	0.059	3.4	34
Acetone	67-64-1	0.28	160	1600
Acetonitrile	75-05-8	5.6	38	380
Acetophenone	96-86-2	0.010	9.7	97
2-Acetylaminofluorene	53-96-3	0.059	140	1400
Acrolein	107-02-8	0.29	NA	NA
Acrylamide	79-06-1	19	23	230
Acrylonitrile	107-13-1	0.24	84	840
Aldicarb sulfone	1646-88-4	0.056	0.28	2.8
Aldrin	309-00-2	0.021	0.066	0.66
4-Aminobiphenyl	92-67-1	0.13	NA	NA
Aniline	62-53-3	0.81	14	140
o-Anisidine (2-methoxyaniline)	90-04-0	0.010	0.66	6.6
Anthracene	120-12-7	0.059	3.4	34
Aramite	140-57-8	0.36	NA	NA
alpha-BHC	319-84-6	0.00014	0.066	0.66
beta-BHC	319-85-7	0.00014	0.066	0.66
delta-BHC	319-86-8	0.023	0.066	0.66
gamma-BHC	58-89-9	0.0017	0.066	0.66
Barban	101-27-9	0.056	1.4	14
Bendiocarb	22781-23-3	0.056	1.4	14
Benomyl	17804-35-2	0.056	1.4	14
Benzene	71-43-2	0.14	10	100
Benz(a)anthracene	56-55-3	0.059	3.4	34
Benzal chloride	98-87-3	0.055	6.0	60
Benzo(b)fluoranthene	205-99-2	0.11	6.8	68
Benzo(k)fluoranthene	207-08-9	0.11	6.8	68

Waste Profile Form

For rapid processing, complete all sections in black or blue ink and mail to: Waste Acceptance Group at MS J496. For assistance with completing this form, contact your WMC. Click <u>here</u> for instruction in completing the form.

Contact (if other than given below)

Reference Number

(for Waste Acceptance Group Use Only)

Generator's Z Number Waste Gene	rator's Name (<i>print</i>))	WMC's Z Nu	mber	WMC's Name (pri	nť)		Generator's Phone
Generator's Mail Stop Waste Gene	rating Group	Waste Str	eam Technica	l Area	Building	Room		WMC Phone
Waste Accumulation (check only one) Satellite Accumulation Area Less-than-90-days Storage Area TSDF Universal Waste Storage Area Used Oil for Recycle ER Use Only ER Site Method of Characterization (check as million) Chemical Physical Analysis PCB Analysis Acceptable Knowledge Documentation MSDS	Site N Site N Site N Site N Site N Site N SWM any as apply) A A A A A A A A A	lo: lo:		Sample N Sample N Sample N Sample N Documen	PCBs Storage NM Special W Rad Staging A Rad Storage A None of the At	Area aste rea bove	Site N Site N Site N	0: 0: 0: 0:
Can hazard segregation, elimination, or ma Can any of the materials in the waste streat Has waste minimization been incorporated Can this waste be generated outside a RC Comments:	aterial substitution t am be recycled or re l into procedures or A? Yes (be used? eused? other proce provide com	Yes (pr Yes (pr ess controls? nments)	rovide comn rovide comn Yes No	nents)	comments	3)	
Section 2 – Chemical and Physical Inform Waste Type (check only one) Unused/Unspent Chemical (complete all sections as appropriate) Process Waste/Spent Chemical/Other (complete all sections) Radiological Information Was Waste generated in a RCA? Yes No Non-radioactive – Low Level Radioactive – Low Level Radioactive – Transuranic Waste Destination (check only one) SWWS (complete Attachment 1) RLWTF (complete Attachment 2) RLWTP (complete Attachment 3) TA-16/HE (complete Attachment 4) NTS (complete Attachment 5) Classification Information Unclassified Classified/Sensitive	Mation Waste Category Inorganic Organic Solvent* Degreaser* Dioxin Electroplating Treated Hazz No-Longer Cr Explosive Pro Infectious/Mee Biological Beryllium Empty Conta Battery (see i Asbestos PCB Source Cor PCB < 50 pp	r (check all t or (check all t ardous Wast ontained-In ocess dical iner (see ins nstructions) iable on-friable icentration m 500 ppm yaste Contar zardous De Solid Waste be below)	that apply) te or Residue structions) minated Soil bris	Waste So Waste So Decon Materi Resea Sched Spill C Sampl Other Waste So Abatel Constr Decon Investi Orpha Remee Repac Unsch House Spill C Usch House	urce (check only or urce A als Processing Proc rch/Development/To uled Maintenance keeping - Routine leanup - Routine ing – Routine Monit (describe below) urce B ment uction/Upgrades ition /Decom gative Derived n/Legacy diation/Restoration king (secondary) eduled Maintenanca keeping (non-routine etroleum Tanks eum Tanks	ne) duction esting oring e e e e)	Waste Mar Gas	trix (check only one) mospheres Pressure mospheres Pressure ed Compressed Gas us ueous nded Solids/Aqueous nded Solids/Non-Aqueous nded Solidified Liquid ed/Solidified Liquid pe (check only one) eneous geneous jelow)

Section 3 – Process and Waste Description Process Description:

Waste Description:

Section 4 – Characteristics							
Ignitability (check only one)	Corrosiv	ity (check	only one)	(pH)	Reactivity (check as many as apply)	Boiling Poi	nt (check only one)
(°F) (°C)	$\Box < 2.0$, (••••••	,,	(1)	RCRA Unstable	(°F)	(°C)
$\Box < 73$ < 22.8	$\Box 2.1 -$	4.0			Water Reactive	□ < 95	< 35
\Box 73 - 99 228 - 372		6.0			Cvanide Bearing	$\square > 95$	> 35
\Box 100 - 139 37.8 - 59.4		9.0 9.0			Sulfide Bearing		2 00
$\Box 140 - 200 = 60.0 - 93.3$		12 /					
		5			Shock Sensitive		
EPA Ignitable Non liquid		J d oorrocivo	to staal				
DOT Elammable Cas			IO SIEEI				ia a h la
		aqueous					icable
	C	haracteriz	ation Met	hod	Concentration of Contaminants		
	-			None or	Contaminant present at		
Identify for all contaminants listed.	AK	TCLP	Total	Non-detect	Minimum Maximum		Regulatory Limit
Toxicity Characteristic Metals		-			(10,000 ppm = 1%)		
Arsenic					to	maa	5.0 ppm
Barium					to	ppm	100.0 ppm
Cadmium					to	nnm	1.0 ppm
Chromium (Total)		⊢ ¦ –	+		to	nnm	5.0 ppm
		<u> </u>			to	ppm	5.0 ppm
Ledu		<u> </u>			10	ppm	5.0 ppm
					10	ррпі	0.2 ppm
Selenium					to	ppm	1.0 ppm
Silver					to	ppm	5.0 ppm
Toxicity Characteristic Organics							
Benzene					to	ppm	0.5 ppm
Carbon Tetrachloride					to	ppm	0.5 ppm
Chlorobenzene					to	ppm	100.0 ppm
Chloroform					to	ppm	6.0 ppm
o – cresol					to	ppm	200.0 ppm
m - cresol					to	ppm	200.0 ppm
p – cresol					to	ppm	200.0 ppm
Cresol – mixed					to	maa	200.0 ppm
1.4-Dichlorobenzene					to	maa	7.5 ppm
1 2-Dichloroethane		⊢ -			to	nnm	0.5 ppm
1 1-Dichloroethylene					to	nnm	0.7 ppm
2 4-Dinitrotoluene					to	nnm	0.13 nnm
Hevachlorobenzene		⊢ ¦ –	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$		to	nnm	0.13 ppm
Hexachlorobutadiona		<u> </u>			to	ppm	0.10 ppm
		⊢ ⊢ ⊢			10	ppm	0.5 ppm
Methyl ethyl ketene	\square	⊢ ⊣ –	<u> </u>		10	ppm	3.0 ppm
					10	ppm	200.0 ppm
Nitrobenzene					to	ppm	2.0 ppm
Pentachlorophenol					to	ppm	100.0 ppm
Pyridine					to	ppm	5.0 ppm
letrachloroethylene					to	ppm	0.7 ppm
Trichloroethylene					to	ppm	0.5 ppm
2,4,5-Trichlorophenol					to	ppm	400.0 ppm
2,4,6-Trichlorophenol					to	ppm	2.0 ppm
Vinyl chloride					to	ppm	0.2 ppm
Herbicides and Pesticides							
Chlordane					to	ppm	0.03 ppm
2.4-D					to	maa	10.0 ppm
Endrin					to	nom	0.02 nnm
Hentachlor (& its enovide)		⊢∺-	\vdash		to	nnm	0.02 ppm 0.008 nnm
		<u> </u>			to	nnm	0.000 ppill
Methowychlor		<u>⊢ </u>	┝ ่ -		10 to	ppin	0.4 ppili 10.0 ppm
Тохорьоро	⊢ ⊣ –	⊢ ⊢ ⊢	┝─ ┝┤─	┝┝╧		ppill	10.0 ppm
	<u>⊢ Ц</u>	<u>⊢ </u>	⊢ Ц		10	ppm	0.5 ppm
2,4,5-1 P (SIIVEX)					tO	ppm	1.0 ppm

Section 5 – Additional Constituents and Contaminants

Additional Constituents and Contaminants. Please account for 100% of waste. Range should be given within guidelines of individual constituents. List all other constituents (including inerts) not identified above and attach any applicable analysis. No chemical formula allowed in this field. Continue in Section 3 Additional information as necessary. CAS numbers are needed for all chemical constituents, for material without a CAS number, enter "No CAS Number." Contact Waste Acceptance at 5-4000 for assistance.

CAS No.	Name of constituent	Minimum	Maximum				
		to	%				
		to	%				
		to	%				
		to	%				
		to	%				
		to	%				
		to	/o 				
		to	/o %				
		to	%				
		to	%				
	Total of max, ranges of this section and page 2		in %				
Additional Information (Use additional sheet if necessary.) If additional information is available on the chemical, physical, or radiological character of the waste not covered on this form, provide it below							
Section 6 - Work Control Docume	entation (answer all questions)						
Do the procedures for this proces	ss cover how to manage this waste? Yes No (<i>provide comments</i>)	lition or romoval of wast	a ta/from				
containers?	\square No (provide comments)						
Comments:	— <u> </u>						
Section 7 – Packaging and Storag	ge Control						
Describe how the waste will be packaged in according to the applicable WAC.							
Tamper Indication Devices	Limited use locks with log-in for waste Locked cabinet or building	Other (describe)					
Waste appears to meet WAC	attachment for:						
Waste stream needs exceptio	n/exemption for treatment, storage, or disposal at:						
Waste does not meet the crite [PADWP] for assistance.)	eria for any known TSDF. (DOE approval is required. Contact the office of the Principle	Associate Director for W	eapons Programs				
Waste Generator Certification: this form is correct and that it men regulatory agencies and that ther violations.	Based on my knowledge of the waste and/or chemical/physical analysis, I certify that the tes the requirements of the applicable waste acceptance criteria. I understand that this e are significant penalties for submitting false information, including the possibility of fin	ne waste characterization information will be made les and imprisonment for	n information on available to r knowing				
Signature:	Date:	-					
Waste Management Coordinate complete and accurate. I certify, t of the applicable WAC.	or: I have reviewed this form and any associated attachments and the characterization to the best of my knowledge, that the waste characterization information provided by the	information provided app e waste generator meets	bears to be the requirements				
Signature:	Date:	-					

Attachment 4 - LDR and UHC Information
--

Identify category and presence of any constituents listed below (equal to or above limit)								
Non-Wastowator/Wastowa	tor Catagory (chock only one)							
NOII-Wastewater/wastewa	un-wastewater/wastewater Category (check unity une)							
Non Wastewater	Wastewater [as defined by 40 CFR 268.2(f)]	Lab Pack [40 CFR 268.42(c)]	Sign Certification #1					
Notifications and Certifica	tions – Check the applicable boxes							
Generator Requirements								
This shipment contains h	pazardous waste contaminated soil that does not meet	treatment standards	Sign Certification #2					
This shipmont contains I	intracted bazardous dobris to be tracted to 10 CED 260	A 5 treatment standards	(No contification)					
	initiated hazardous dephis to be treated to 40 GFH 200	han	(NO Certification)					
Hazardous wastes (exce	pt soil) meeting treatment standards at point of genera	uon	Sign Certification #3					
Hazardous wastes conta	minated soil meeting treatment standards at point of ge	eneration	Sign Certification #4					
TSDF or Generator Treatm	ent:							
TSDF Treated hazardou	s debris meeting the alternative treatment standards of	40 CFR 268.45	Sign Certification #5					
Generator Treated hazar	rdous debris meeting the alternative treatment standard	Is of 40 CFR 268.45	Sign Certification #6					
Hazardous wastes conta	minated soil treated to 40 CFR 268.49		Sign Certification #7					
Wastes or Residues from	atment standards and UTS	Sign Certification #8						
Wastes or Residues from characteristic hazardous waste treatment not meeting UTS Sign Certification #9								
Other TSDF wastes meet	Other TSDF wastes meeting the more stringent 40 CFR 268.40 treatment standards to be land disposed Sign Certification #10							
Other Generator wastes	meeting the more stringent 40 CFR 268.40 treatment s	standards to be land disposed	Sign Certification #11					
Notification of Underlying Hazardous Constituents								

Notification of Underlying Hazardous Constituents (Check the applicable underlying constituents above the concentration levels for D001 through D043 characteristic wastes only)

□ No Underlying Hazardous Constituents in this waste stream.

Organic Constituents	CASRN ¹	Wastewater Standard (mg/l)	Non Wastewater Standard (mg/kg unless noted otherwise)	Hazardous Soil 10Xs UTS Nonwastewater (mg/kg unless noted otherwise)
Acenaphthylene	208-96-8	0.059	3.4	34
Acenaphthene	83-32-9	0.059	3.4	34
Acetone	67-64-1	0.28	160	1600
Acetonitrile	75-05-8	5.6	38	380
Acetophenone	96-86-2	0.010	9.7	97
2-Acetylaminofluorene	53-96-3	0.059	140	1400
Acrolein	107-02-8	0.29	NA	NA
Acrylamide	79-06-1	19	23	230
Acrylonitrile	107-13-1	0.24	84	840
Aldicarb sulfone	1646-88-4	0.056	0.28	2.8
Aldrin	309-00-2	0.021	0.066	0.66
4-Aminobiphenyl	92-67-1	0.13	NA	NA
Aniline	62-53-3	0.81	14	140
o-Anisidine (2-methoxyaniline)	90-04-0	0.010	0.66	6.6
Anthracene	120-12-7	0.059	3.4	34
Aramite	140-57-8	0.36	NA	NA
alpha-BHC	319-84-6	0.00014	0.066	0.66
beta-BHC	319-85-7	0.00014	0.066	0.66
delta-BHC	319-86-8	0.023	0.066	0.66
gamma-BHC	58-89-9	0.0017	0.066	0.66
Barban	101-27-9	0.056	1.4	14
Bendiocarb	22781-23-3	0.056	1.4	14
Benomyl	17804-35-2	0.056	1.4	14
Benzene	71-43-2	0.14	10	100
Benz(a)anthracene	56-55-3	0.059	3.4	34
Benzal chloride	98-87-3	0.055	6.0	60
Benzo(b)fluoranthene	205-99-2	0.11	6.8	68
Benzo(k)fluoranthene	207-08-9	0.11	6.8	68

	Organic Constituents		Wastewater Standard	Non Wastewater Standard	Hazardous Soil 10Xs UTS Nonwastewater (mg/kg unless noted otherwise)
	Benzo(a.h.l)pervlene	191-24-2	0.0055	1.8	18
	Benzo(a)pyrene	50-32-8	0.061	3.4	34
	Bromodichloromethane	75-27-4	0.35	15	150
	Bromomethane (Methyl bromide)	74-83-9	0.11	15	150
	4-Bromophenyl phenyl ether	101-55-3	0.055	15	150
Ē	n-Butyl alcohol	71-36-3	5.6	2.6	26
	Butylate	2008-41-5	0.042	1.4	14
Ē	Butyl benzyl phthalate	85-68-7	0.017	28	280
	2-sec-Butyl-4,6-dinitrophenol (Dinoseb)	88-85-7	0.066	2.5	25
	Carbaryl	63-25-2	0.006	0.14	1.4
	Carbenzadim	10605-21-7	0.056	1.4	14
	Carbofuran	1563-66-2	0.006	0.14	1.4
	Carbofuran phenol	1563-38-8	0.056	1.4	14
	Carbon disulfide	75-15-0	3.8	4.8 mg/l TCLP	48 mg/I TCLP
	Carbon tertachloride	56-23-5	0.057	6.0	60
	Carbosulfan	55285-14-8	0.028	1.4	14
	Chlordane (alpha & gamma isomers)	57-74-9	0.0033	0.26	2.6
	p-Chloroaniline	106-47-8	0.46	16	160
	Chlorobenzene	108-90-7	0.057	6.0	60
	Chlorobenzilate	510-15-6	0.10	NA	NA
	2-Chloro-1,3-butadiene	126-99-8	0.057	0.28	2.8
	Chlorodibromomethane	124-48-1	0.057	15	150
	Chloroethane	75-00-3	0.27	6.0	60
	bis(2-Chloroethoxy) methane	111-91-1	0.036	7.2	72
	bis(2-Chloroethyl) ether	111-44-4	0.033	6.0	60
	Chloroform	67-66-3	0.046	6.0	60
	bis(2-Chloroisopropyl) ether	108-60-1	0.055	7.2	72
	p-Chloro-m-cresol	59-50-7	0.018	14	140
	2-Chloroethyl vinyl ether	110-75-8	0.062	NA	NA
	Chloromethane (Methyl chloride)	74-87-3	0.19	30	300
	2-Chloronaphthalene	91-58-7	0.055	5.6	56
	2-Chlorophenol	95-57-8	0.044	5.7	57
	3-Chloropropylene	107-05-1	0.036	30	300
	Chrysene	218-01-9	0.059	3.4	34
	p-Cresidine	120-71-8	0.010	0.66	6.6
	o-Cresol	95-48-7	0.11	5.6	56
	m-Cresol	108-39-4	0.77	5.6	56
	p-Cresol	106-44-5	0.77	5.6	56
	m-Cumenyl methylcarbamate	64-00-6	0.056	1.4	14
	Cyclohexanone	108-94-1	0.36	0.75 mg/l TCLP	7.5 mg/l TCLP
	o,p'-ddd	53-19-0	0.023	0.087	0.87
	p,p'-ddd	72-54-8	0.023	0.087	0.87
	o,p'-dde	3424-82-6	0.031	0.087	0.87
	p,p'-dde	72-55-9	0.031	0.087	0.87
	o,p'-ddt	789-02-6	0.0039	0.087	0.87
	p,p'-ddt	50-29-3	0.0039	0.087	0.87
	Dibenz(a,h)anthracene	53-70-3	0.055	8.2	82
	Dibenz(a,e)pyrene	192-65-4	0.061	NA	NA

Organic Constituents	CASRN ¹	Wastewater Standard (mg/l)	Non Wastewater Standard (mg/kg unless noted otherwise)	Hazardous Soil 10Xs UTS Nonwastewater (mg/kg unless noted otherwise)
1,2-Dibromo-3-chloropropane	96-12-8	0.11	15	150
1,2-Dibromoethane (Ethylene dibromide)	106-93-4	0.028	15	150
Dibromomethane	74-95-3	0.11	15	150
m-Dichlorobenzene	541-73-1	0.036	6.0	60
o-Dichlorobenzene	95-50-1	0.088	6.0	60
p-Dichlorobenzene	106-46-7	0.090	6.0	60
Dichlorodifluoromethane	75-71-8	0.23	7.2	72
1,1-Dichloroethane	75-34-3	0.059	6.0	60
1,2-Dichloroethane	107-06-2	0.21	6.0	60
1,1-Dichloroethylene	75-35-4	0.025	6.0	60
trans-1,2-Dichloroethylene	156-60-5	0.054	30	300
2,4-Dichlorophenol	120-83-2	0.044	14	140
2,6-Dichlorophenol	87-65-0	0.044	14	140
2,4-Dichlorophenoxyacetic acid (2,4-D)	94-75-7	0.72	10	100
1,2-Dichloropropane	78-87-5	0.85	18	180
cis-1,3-Dichloropropylene	10061-01-5	0.036	18	180
trans-1,3-Dichloropropylene	10061-02-6	0.036	18	180
Dieldrin	60-57-1	0.017	0.13	1.3
Diethyl phthalate	84-66-2	0.20	28	280
p-Dimethylaminoazobenzene	60-11-7	0.13	NA	NA
2,4-Dimethylaniline (2,4-xylidine)	95-68-1	0.010	0.66	6.6
2,4-Dimethyl phenol	105-67-9	0.036	14	140
Dimethyl phthalate	131-11-3	0.047	28	280
Di-n-butyl phthalate	84-74-2	0.057	28	280
1,4-Dinitrobenzene	100-25-4	0.32	2.3	23
4,6-Dinitro-o-cresol	534-52-1	0.28	160	1600
2,4-Dinitrophenol	51-28-5	0.12	160	1600
2,4-Dinitrotoluene	121-14-2	0.32	140	1400
2,6-Dinitrotoluene	606-20-2	0.55	28	280
Di-n-octyl phthalate	117-84-0	0.017	28	280
Di-n-propylnitrosamine	621-64-7	0.40	14	140
1,4-Dioxane	123-91-1	12.0	170	1700
Diphenylamine	122-39-4	0.92	13	130
DiphenyInitrosamine	86-30-6	0.92	13	130
1,2-Diphenylhydrazine	122-66-7	0.087	NA	NA
Disulfoton	298-04-4	0.017	6.2	62
Dithiocarbamates (total)	NA	0.028	28	280
Endosulfan I	959-98-8	0.023	0.066	0.66
Endosulfan II	33213-65-9	0.029	0.13	1.3
Endosulfan sulfate	1031-07-8	0.029	0.13	1.3
Endrin	72-20-8	0.0028	0.13	1.3
Endrin aldehyde	7421-93-4	0.025	0.13	1.3
EPTC	759-94-4	0.042	1.4	14
Ethyl acetate	141-78-6	0.34	33	330
Ethyl benzene	100-41-4	0.057	10	100
Ethyl cyanide (Propanenitrile)	107-12-0	0.24	360	3600

Organic Constituents	CASRN ¹	Wastewater Standard (mg/l)	Non Wastewater Standard (mg/kg unless noted otherwise)	Hazardous Soil 10Xs UTS Nonwastewater (mg/kg unless noted otherwise)
Ethyl ether	60-29-7	0.12	160	1600
bis(2-Ethylhexyl)phthalate	117-81-7	0.28	28	280
Ethyl methacrylate	97-63-2	0.14	160	1600
Ethylene oxide	75-21-8	0.12	NA	NA
Famphur	52-85-7	0.017	15	150
Fluoranthene	206-44-0	0.068	3.4	34
Fluorene	86-73-7	0.059	3.4	34
Formetanate hydrochloride	23422-53-9	0.056	1.4	14
Heptachlor	76-44-8	0.0012	0.066	0.66
Heptachlor epoxide	1024-57-3	0.016	0.066	0.66
1,2,3,4,6,7,8-Heptachlorodibenzo-pdioxin	35822-46-9	0.000035	0.0025	0.025
1,2,3,4,6,7,8-Heptachlorodibenzofuran	67562-39-4	0.000035	0.0025	0.025
1,2,3,4,7,8,9-Heptachlorodibenzofuran	55673-89-7	0.000035	0.0025	0.025
Hexachlorobenzene	118-74-1	0.055	10	100
Hexachlorobutadiene	87-68-3	0.055	5.6	56
Hexachlorocyclopentadiene	77-47-4	0.057	2.4	24
Hexachlorodibenzo-p-dioxins (HxCDDs)	NA	0.000063	0.001	0.01
Hexachlorodibenzo-furans (HxCDFs)	NA	0.000063	0.001	0.01
Hexachloroethane	67-72-1	0.055	30	300
Hexachloropropylene	1888-71-7	0.035	30	300
Indeno (1,2,3-c,d) pyrene	193-39-5	0.0055	3.4	34
lodomethane	74-88-4	0.19	65	650
Isobutyl alcohol	78-83-1	5.6	170	1700
Isodrin	465-73-6	0.021	0.066	0.66
Isosafrole	120-58-1	0.081	2.6	26
Kepone	143-50-0	0.0011	0.13	1.3
Methacrylonitrile	126-98-7	0.24	84	840
Methanol	67-56-1	5.6	0.75 mg/l TCLP	7.5 mg/I TCLP
Methapyrilene	91-80-5	0.081	1.5	15
Methiocarb	2032-65-7	0.056	1.4	14
Methomyl	16752-77-5	0.028	0.14	1.4
Methoxychlor	72-43-5	0.25	0.18	1.8
3-Methylchlolanthrene	56-49-5	0.0055	15	150
4,4-Methylene bis(2-chloroaniline)	101-14-4	0.50	30	300
Methylene chloride	75-09-2	0.089	30	300
Methyl ethyl ketone	78-93-3	0.28	36	360
Methyl isobutyl ketone	108-10-1	0.14	33	330
Methyl methacrylate	80-62-6	0.14	160	1600
Methyl methansulfonate	66-27-3	0.018	NA	NA
Methyl parathion	298-00-0	0.014	4.6	46
Metolcarb	1129-41-5	0.056	1.4	14
Mexacarbate	315-18-4	0.056	1.4	14
Molinate	2212-67-1	0.042	1.4	14
Naphthalene	91-20-3	0.059	5.6	56
2-Naphthylamine	91-59-8	0.52	NA	NA
o-Nitroaniline	88-74-4	0.27	14	140

Organic Constituents	CASRN ¹	Wastewater Standard (mg/l)	Non Wastewater Standard (mg/kg unless noted otherwise)	Hazardous Soil 10Xs UTS Nonwastewater (mg/kg unless noted otherwise)
p-Nitroaniline	100-01-6	0.028	28	280
Nitrobenzene	98-95-3	0.068	14	140
5-Nitro-o-toluidine	99-55-8	0.32	28	280
o-Nitrophenol	88-75-5	0.028	13	130
p-Nitrophenol	100-02-7	0.12	29	290
N-Nitrosodiethylamine	55-18-5	0.40	28	280
N-Nitrosodimethylamine	62-75-9	0.40	2.3	23
N-Nitroso-di-n-butylamine	924-16-3	0.40	17	170
N-Nitrosomethylethylamine	10595-95-6	0.40	2.3	23
N-Nitrosomorpholine	59-89-2	0.40	2.3	23
N-Nitrosopiperidine	100-75-4	0.013	35	350
N-Nitrosopyrrolidine	930-55-2	0.013	35	350
1,2,3,4,6,7,8,9-Octachlorodibenzo-pdioxin	3268-87-9	0.000063	0.005	0.05
1,2,3,4,6,7,8,9-Octachlorodibenzofuran	39001-02-0	0.000063	0.005	0.05
Oxamyl	23135-22-0	0.056	0.28	2.8
Parathion	56-38-2	0.014	4.6	46
PCBs (total)	1336-36-3	0.10	10	100
Pebulate	1114-71-2	0.042	1.4	14
Pentachlorobenzene	608-93-5	0.055	10	100
Pentachlorodibenzo-p-dioxins (PeCDDs)	NA	0.000063	0.001	0.01
Pentachlorodibenzo-furans (PeCDFs)	NA	0.000035	0.001	0.01
Pentachloroethane	76-01-7	0.055	6.0	60
Pentachloronitrobenzene	82-68-8	0.055	4.8	48
Pentachlorophenol	87-86-5	0.089	7.4	74
Phenacetin	62-44-2	0.081	16	160
Phenanthrene	85-01-8	0.059	5.6	56
Phenol	108-95-2	0.039	6.2	62
1,3-Phenylenediamine	108-45-2	0.01	0.66	6.6
Phorate	298-02-2	0.021	4.6	46
Phthalic acid	100-21-0	0.055	28	280
Phthalic anhydride	85-44-9	0.055	28	280
Physostigmine	57-47-6	0.056	1.4	14
Physostigmine salicylate	57-64-7	0.056	1.4	14
Promecarb	2631-37-0	0.056	1.4	14
Pronamide	23950-58-5	0.093	1.5	15
Propham	122-42-9	0.056	1.4	14
Propoxur	114-26-1	0.056	1.4	14
Prosulfocarb	52888-80-9	0.042	1.4	14
Pyrene	129-00-0	0.067	8.2	82
Pyridine	110-86-1	0.014	16	160
Safrole	94-59-7	0.081	22	220
Silvex (2,4,5-TP)	93-72-1	0.72	7.9	79
1,2,4,5-Tetrachlorobenzene	95-94-3	0.055	14	140
Tetrachlorodibenzo-p-dioxins (TCDDs)	NA	0.000063	0.001	0.01
Tetrachlorodibenzofurans (TCDFs)	NA	0.000063	0.001	0.01
1,1,1,2-Tetrachloroethane	630-20-6	0.057	6.0	60

Organic Constituents	CASRN ¹	Wastewater Standard (mg/l)	Non Wastewater Standard (mg/kg unless noted otherwise)	Hazardous Soil 10Xs UTS Nonwastewater (mg/kg unless noted otherwise)
1,1,2,2-Tetrachloroethane	79-34-5	0.057	6.0	60
Tetrachloroethylene	127-18-4	0.056	6.0	60
2,3,4,6-Tertachlorophenol	58-90-2	0.030	7.4	74
Thiodicarb	59669-26-0	0.019	1.4	14
Thiophanate-methyl	23564-05-8	0.056	1.4	14
Toluene	108-88-3	0.080	10	100
Toxaphene	8001-35-2	0.0095	2.6	26
Triallate	2303-17-5	0.042	1.4	14
Tribromomethane (Bromoform)	75-25-2	0.63	15	150
2,4,6-Tribromophenol	118-79-6	0.035	7.4	74
1,2,4-Trichlorobenzene	120-82-1	0.055	19	190
1,1,1-Trichloroethane	71-55-6	0.054	6.0	60
1,1,2-Trichloroethane	79-00-5	0.054	6.0	60
Trichloroethylene	79-01-6	0.054	6.0	60
Trichloromonofluoromethane	75-69-4	0.020	30	300
2,4,5-Trichlorophenol	95-95-4	0.18	7.4	74
2,4,6-Trichlorophenol	88-06-2	0.035	7.4	74
2,4,5-Trichlorophenoxyacetic acid (2,4,5-T)	93-76-5	0.72	7.9	79
1,2,3-Trichloropropane	96-18-4	0.85	30	300
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	0.057	30	300
Triethylamine	121-44-8	0.081	1.5	15
tris-(2,3-Dibromopropyl) phosphate	126-72-7	0.11	0.10	1.0
Vernolate	1929-77-7	0.042	1.4	14
Vinyl chloride	75-01-4	0.27	6.0	60
Xylenes (total)	1330-20-7	0.32	30	300
Antimony	7440-36-0	1.9	1.15 mg/I TCLP	11.5 mg/I TCLP
Arsenic	7440-38-2	1.4	5.0 mg/l TCLP	50 mg/I TCLP
Barium	7440-39-3	1.2	21 mg/I TCLP	210 mg/I TCLP
Beryllium	7440-41-7	0.82	1.22 mg/l TCLP	12.2 mg/I TCLP
Cadmium	7440-43-9	0.69	0.11 mg/l TCLP	1.1 mg/I TCLP
Chromium (Total)	7440-47-3	2.77	0.60 mg/l TCLP	6.0 mg/I TCLP
Cyanides (Total) ⁴	57-12-5	1.2	590	5900
Cyanides (Amenable) ^₄	57-12-5	0.86	30	300
Fluoride	16984-48-8	35	NA	NA
Lead	7439-92-1	0.69	0.75 mg/l TCLP	7.5 mg/l TCLP
Mercury (Retort residues)	7439-97-6	NA	0.20 mg/l TCLP	2.0 mg/l TCLP
Mercury - All others	7439-97-6	0.15	0.025 mg/I TCLP	0.25 mg/I TCLP
Nickel	7440-02-0	3.98	11 mg/I TCLP	110 mg/I TCLP
Selenium	7782-49-2	0.82	5.7 mg/l TCLP	57 mg/I TCLP
Silver	7440-22-4	0.43	0.14 mg/I TCLP	1.4 mg/l TCLP
Sulfide	18496-25-8	14	NA	NA
Thallium	7440-28-0	1.4	0.20 mg/I TCLP	2.0 mg/l TCLP
Vanadium	7440-62-2	4.3	1.6 mg/l TCLP	16 mg/I TCLP
Zinc ³	7440-66-6	2.61	4.3 mg/I TCLP	43 mg/I TCLP

Waste Profile Form

For rapid processing, complete all sections in black or blue ink and mail to: Waste Acceptance Group at MS J496. For assistance with completing this form, contact your WMC. Click <u>here</u> for instruction in completing the form.

Contact (if other than given below)

Reference Number

(for Waste Acceptance Group Use Only)

Generator's Z Number Waste Gene	rator's Name (<i>print</i>))	WMC's Z Nu	mber	WMC's Name (pri	nť)		Generator's Phone
Generator's Mail Stop Waste Gene	rating Group	Waste Str	eam Technica	l Area	Building	Room		WMC Phone
Waste Accumulation (check only one) Satellite Accumulation Area Less-than-90-days Storage Area TSDF Universal Waste Storage Area Used Oil for Recycle ER Use Only ER Site Method of Characterization (check as million) Chemical Physical Analysis PCB Analysis Acceptable Knowledge Documentation MSDS	Site N Site N Site N Site N Site N Site N SWM any as apply) A A A A A A A A A	lo: lo:		Sample N Sample N Sample N Sample N Documen	PCBs Storage NM Special W Rad Staging A Rad Storage A None of the At	Area aste rea bove	Site N Site N Site N	0: 0: 0: 0:
Can hazard segregation, elimination, or ma Can any of the materials in the waste streat Has waste minimization been incorporated Can this waste be generated outside a RC Comments:	aterial substitution t am be recycled or re l into procedures or A? Yes (be used? eused? other proce provide com	Yes (pr Yes (pr ess controls? nments)	rovide comn rovide comn Yes No	nents)	comments	3)	
Section 2 – Chemical and Physical Inform Waste Type (check only one) Unused/Unspent Chemical (complete all sections as appropriate) Process Waste/Spent Chemical/Other (complete all sections) Radiological Information Was Waste generated in a RCA? Yes No Non-radioactive – Low Level Radioactive – Low Level Radioactive – Transuranic Waste Destination (check only one) SWWS (complete Attachment 1) RLWTF (complete Attachment 2) RLWTP (complete Attachment 3) TA-16/HE (complete Attachment 4) NTS (complete Attachment 5) Classification Information Unclassified Classified/Sensitive	Mation Waste Category Inorganic Organic Solvent* Degreaser* Dioxin Electroplating Treated Hazz No-Longer Cr Explosive Pro Infectious/Mee Biological Beryllium Empty Conta Battery (see i Asbestos PCB Source Cor PCB < 50 pp	r (check all t or (check all t ardous Wast ontained-In ocess dical iner (see ins nstructions) iable on-friable icentration m 500 ppm yaste Contar zardous De Solid Waste be below)	that apply) te or Residue structions) minated Soil bris	Waste So Waste So Decon Materi Resea Sched Spill C Sampl Other Waste So Abatel Constr Decon Investi Orpha Remee Repac Unsch House Spill C Usch House	urce (check only or urce A als Processing Proc rch/Development/To uled Maintenance keeping - Routine leanup - Routine ing – Routine Monit (describe below) urce B ment uction/Upgrades ition /Decom gative Derived n/Legacy diation/Restoration king (secondary) eduled Maintenanca keeping (non-routine etroleum Tanks eum Tanks	ne) duction esting oring e e e e)	Waste Mar Gas	trix (check only one) mospheres Pressure mospheres Pressure ed Compressed Gas us ueous nded Solids/Aqueous nded Solids/Non-Aqueous nded Solidified Liquid ed/Solidified Liquid pe (check only one) eneous geneous jelow)

Section 3 – Process and Waste Description Process Description:

Waste Description:

Section 4 – Characteristics							
Ignitability (check only one)	Corrosivity (check only one) (pH)				Reactivity (check as many as apply)	nt (check only one)	
(°F) (°C)	$\Box < 2.0$, (••••••	,,	(1)	RCRA Unstable	(°F)	(°C)
$\Box < 73$ < 22.8	$\Box 2.1 -$	4.0			Water Reactive	□ < 95	< 35
\Box 73 - 99 228 - 372		6.0			Cvanide Bearing	$\square > 95$	> 35
\Box 100 - 139 37.8 - 59.4		9.0 9.0			Sulfide Bearing		2 00
$\Box 140 - 200 = 60.0 - 93.3$		12 /					
		5			Shock Sensitive		
EPA Ignitable Non liquid		J d oorrocivo	to staal				
DOT Elammable Cas			IO SIEEI				ia a h la
		aqueous					icable
	C	haracteriz	ation Met	hod	Concentration of Contamina	nts	
	-			None or	Contaminant present at		
Identify for all contaminants listed.	AK	TCLP	Total	Non-detect	Minimum Maximum		Regulatory Limit
Toxicity Characteristic Metals		-			(10,000 ppm = 1%)		
Arsenic					to	maa	5.0 ppm
Barium					to	ppm	100.0 ppm
Cadmium					to	nnm	1.0 ppm
Chromium (Total)		⊢ ¦ –	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$		to	nnm	5.0 ppm
		<u> </u>			to	ppm	5.0 ppm
Ledu		<u> </u>			10	ppm	5.0 ppm
					10	ррпі	0.2 ppm
Selenium					to	ppm	1.0 ppm
Silver					to	ppm	5.0 ppm
Toxicity Characteristic Organics							
Benzene					to	ppm	0.5 ppm
Carbon Tetrachloride					to	ppm	0.5 ppm
Chlorobenzene					to	ppm	100.0 ppm
Chloroform					to	ppm	6.0 ppm
o – cresol					to	ppm	200.0 ppm
m - cresol					to	ppm	200.0 ppm
p – cresol					to	ppm	200.0 ppm
Cresol – mixed					to	maa	200.0 ppm
1.4-Dichlorobenzene					to	maa	7.5 ppm
1 2-Dichloroethane		⊢ -			to	nnm	0.5 ppm
1 1-Dichloroethylene					to	nnm	0.7 ppm
2 4-Dinitrotoluene					to	nnm	0.13 nnm
Hevachlorobenzene		⊢ ¦ –	+		to	nnm	0.13 ppm
Hexachlorobutadiona		<u> </u>			to	ppm	0.10 ppm
		⊢ ⊢ ⊢			10	ppm	0.5 ppm
Methyl ethyl ketene	\square	⊢ ⊣ –	<u> </u>		10	ppm	3.0 ppm
					10	ppm	200.0 ppm
Nitrobenzene					to	ppm	2.0 ppm
Pentachlorophenol					to	ppm	100.0 ppm
Pyridine					to	ppm	5.0 ppm
letrachloroethylene					to	ppm	0.7 ppm
Trichloroethylene					to	ppm	0.5 ppm
2,4,5-Trichlorophenol					to	ppm	400.0 ppm
2,4,6-Trichlorophenol					to	ppm	2.0 ppm
Vinyl chloride					to	ppm	0.2 ppm
Herbicides and Pesticides							
Chlordane					to	ppm	0.03 ppm
2.4-D					to	maa	10.0 ppm
Endrin					to	nom	0.02 nnm
Hentachlor (& its enovide)		⊢∺-	\vdash		to	nnm	0.02 ppm 0.008 nnm
		<u> </u>			to	nnm	0.000 ppill
Methowychlor		<u>⊢ </u>	┝ ่ -	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	10 to	ppin	0.4 ppili 10.0 ppm
Тохорьоро	⊢ ⊣ –	⊢ ⊢ ⊢	┝─ ┝┤─	┝┝╧		ppill	10.0 ppm
	<u>⊢ Ц</u>	<u>⊢ </u>	⊢ Ц		10	ppm	0.5 ppm
2,4,5-1 P (SIIVEX)					tO	ppm	1.0 ppm

Section 5 – Additional Constituents and Contaminants

Additional Constituents and Contaminants. Please account for 100% of waste. Range should be given within guidelines of individual constituents. List all other constituents (including inerts) not identified above and attach any applicable analysis. No chemical formula allowed in this field. Continue in Section 3 Additional information as necessary. CAS numbers are needed for all chemical constituents, for material without a CAS number, enter "No CAS Number." Contact Waste Acceptance at 5-4000 for assistance.

CAS No.	Name of constituent	Minimum	Maximum					
		to	%					
		to	%					
		to	%					
		to	%					
		to	%					
		to	%					
		to	/o 					
		to	/o %					
		to	%					
		to	%					
	Total of max, ranges of this section and page 2		in %					
Additional Information (Use additional sheet if necessary.) If additional information is available on the chemical, physical, or radiological character of the waste not covered on this form, provide it below								
Section 6 - Work Control Docume	entation (answer all questions)							
Do the procedures for this proces	ss cover how to manage this waste? Yes No (<i>provide comments</i>)	lition or romoval of wast	a ta/from					
containers?	\square No (provide comments)							
Comments:	— <u> </u>							
Section 7 – Packaging and Storag	ge Control							
Describe how the waste will be pa	Describe how the waste will be packaged in according to the applicable WAC.							
Tamper Indication Devices	Limited use locks with log-in for waste Locked cabinet or building	Other (describe)						
Waste appears to meet WAC	attachment for:							
Waste stream needs exceptio	n/exemption for treatment, storage, or disposal at:							
Waste does not meet the crite [PADWP] for assistance.)	eria for any known TSDF. (DOE approval is required. Contact the office of the Principle	Associate Director for W	eapons Programs					
Waste Generator Certification: this form is correct and that it men regulatory agencies and that ther violations.	Based on my knowledge of the waste and/or chemical/physical analysis, I certify that the tes the requirements of the applicable waste acceptance criteria. I understand that this e are significant penalties for submitting false information, including the possibility of fin	ne waste characterization information will be made les and imprisonment for	n information on available to r knowing					
Signature:	Date:	-						
Waste Management Coordinate complete and accurate. I certify, t of the applicable WAC.	or: I have reviewed this form and any associated attachments and the characterization to the best of my knowledge, that the waste characterization information provided by the	information provided app e waste generator meets	bears to be the requirements					
Signature:	Date:	-						

Attachment 4 - LDR and UHC Information
--

Identify category and presence of any constituents listed below (equal to or above limit)							
Non-Wastowator/Wastowa	tor Catagory (chock only one)						
NOII-Wastewater/wastewa			0. 0				
Non Wastewater	Wastewater [as defined by 40 CFR 268.2(f)]	Lab Pack [40 CFR 268.42(c)]	Sign Certification #1				
Notifications and Certifica	tions – Check the applicable boxes						
Generator Requirements							
This shipment contains h	pazardous waste contaminated soil that does not meet	treatment standards	Sign Certification #2				
This shipmont contains I	intracted bazardous dobris to be tracted to 10 CED 260	A 5 treatment standards	(No contification)				
	initiated hazardous dephis to be treated to 40 GFH 200	han	(NO Certification)				
Hazardous wastes (exce	pt soil) meeting treatment standards at point of genera	uon	Sign Certification #3				
Hazardous wastes conta	eneration	Sign Certification #4					
TSDF or Generator Treatm	ent:						
TSDF Treated hazardou	s debris meeting the alternative treatment standards of	40 CFR 268.45	Sign Certification #5				
Generator Treated hazar	rdous debris meeting the alternative treatment standard	Is of 40 CFR 268.45	Sign Certification #6				
Hazardous wastes conta	minated soil treated to 40 CFR 268.49		Sign Certification #7				
Wastes or Residues from	atment standards and UTS	Sign Certification #8					
Wastes or Residues from	Sign Certification #9						
Other TSDF wastes meet	Other TSDF wastes meeting the more stringent 40 CFR 268.40 treatment standards to be land disposed Sign Certification #10						
Other Generator wastes	meeting the more stringent 40 CFR 268.40 treatment s	standards to be land disposed	Sign Certification #11				
Notification of Underlying Hazardous Constituents							

Notification of Underlying Hazardous Constituents (Check the applicable underlying constituents above the concentration levels for D001 through D043 characteristic wastes only)

□ No Underlying Hazardous Constituents in this waste stream.

Organic Constituents	CASRN ¹	Wastewater Standard (mg/l)	Non Wastewater Standard (mg/kg unless noted otherwise)	Hazardous Soil 10Xs UTS Nonwastewater (mg/kg unless noted otherwise)
Acenaphthylene	208-96-8	0.059	3.4	34
Acenaphthene	83-32-9	0.059	3.4	34
Acetone	67-64-1	0.28	160	1600
Acetonitrile	75-05-8	5.6	38	380
Acetophenone	96-86-2	0.010	9.7	97
2-Acetylaminofluorene	53-96-3	0.059	140	1400
Acrolein	107-02-8	0.29	NA	NA
Acrylamide	79-06-1	19	23	230
Acrylonitrile	107-13-1	0.24	84	840
Aldicarb sulfone	1646-88-4	0.056	0.28	2.8
Aldrin	309-00-2	0.021	0.066	0.66
4-Aminobiphenyl	92-67-1	0.13	NA	NA
Aniline	62-53-3	0.81	14	140
o-Anisidine (2-methoxyaniline)	90-04-0	0.010	0.66	6.6
Anthracene	120-12-7	0.059	3.4	34
Aramite	140-57-8	0.36	NA	NA
alpha-BHC	319-84-6	0.00014	0.066	0.66
beta-BHC	319-85-7	0.00014	0.066	0.66
delta-BHC	319-86-8	0.023	0.066	0.66
gamma-BHC	58-89-9	0.0017	0.066	0.66
Barban	101-27-9	0.056	1.4	14
Bendiocarb	22781-23-3	0.056	1.4	14
Benomyl	17804-35-2	0.056	1.4	14
Benzene	71-43-2	0.14	10	100
Benz(a)anthracene	56-55-3	0.059	3.4	34
Benzal chloride	98-87-3	0.055	6.0	60
Benzo(b)fluoranthene	205-99-2	0.11	6.8	68
Benzo(k)fluoranthene	207-08-9	0.11	6.8	68

	Organic Constituents		Wastewater Standard	Non Wastewater Standard	Hazardous Soil 10Xs UTS Nonwastewater (mg/kg unless noted otherwise)
	Benzo(a.h.l)pervlene	191-24-2	0.0055	1.8	18
	Benzo(a)pyrene	50-32-8	0.061	3.4	34
	Bromodichloromethane	75-27-4	0.35	15	150
	Bromomethane (Methyl bromide)	74-83-9	0.11	15	150
	4-Bromophenyl phenyl ether	101-55-3	0.055	15	150
Ē	n-Butyl alcohol	71-36-3	5.6	2.6	26
	Butylate	2008-41-5	0.042	1.4	14
Ē	Butyl benzyl phthalate	85-68-7	0.017	28	280
	2-sec-Butyl-4,6-dinitrophenol (Dinoseb)	88-85-7	0.066	2.5	25
	Carbaryl	63-25-2	0.006	0.14	1.4
	Carbenzadim	10605-21-7	0.056	1.4	14
	Carbofuran	1563-66-2	0.006	0.14	1.4
	Carbofuran phenol	1563-38-8	0.056	1.4	14
	Carbon disulfide	75-15-0	3.8	4.8 mg/l TCLP	48 mg/I TCLP
	Carbon tertachloride	56-23-5	0.057	6.0	60
	Carbosulfan	55285-14-8	0.028	1.4	14
	Chlordane (alpha & gamma isomers)	57-74-9	0.0033	0.26	2.6
	p-Chloroaniline	106-47-8	0.46	16	160
	Chlorobenzene	108-90-7	0.057	6.0	60
	Chlorobenzilate	510-15-6	0.10	NA	NA
	2-Chloro-1,3-butadiene	126-99-8	0.057	0.28	2.8
	Chlorodibromomethane	124-48-1	0.057	15	150
	Chloroethane	75-00-3	0.27	6.0	60
	bis(2-Chloroethoxy) methane	111-91-1	0.036	7.2	72
	bis(2-Chloroethyl) ether	111-44-4	0.033	6.0	60
	Chloroform	67-66-3	0.046	6.0	60
	bis(2-Chloroisopropyl) ether	108-60-1	0.055	7.2	72
	p-Chloro-m-cresol	59-50-7	0.018	14	140
	2-Chloroethyl vinyl ether	110-75-8	0.062	NA	NA
	Chloromethane (Methyl chloride)	74-87-3	0.19	30	300
	2-Chloronaphthalene	91-58-7	0.055	5.6	56
	2-Chlorophenol	95-57-8	0.044	5.7	57
	3-Chloropropylene	107-05-1	0.036	30	300
	Chrysene	218-01-9	0.059	3.4	34
	p-Cresidine	120-71-8	0.010	0.66	6.6
	o-Cresol	95-48-7	0.11	5.6	56
	m-Cresol	108-39-4	0.77	5.6	56
	p-Cresol	106-44-5	0.77	5.6	56
	m-Cumenyl methylcarbamate	64-00-6	0.056	1.4	14
	Cyclohexanone	108-94-1	0.36	0.75 mg/l TCLP	7.5 mg/l TCLP
	o,p'-ddd	53-19-0	0.023	0.087	0.87
	p,p'-ddd	72-54-8	0.023	0.087	0.87
	o,p'-dde	3424-82-6	0.031	0.087	0.87
	p,p'-dde	72-55-9	0.031	0.087	0.87
	o,p'-ddt	789-02-6	0.0039	0.087	0.87
	p,p'-ddt	50-29-3	0.0039	0.087	0.87
	Dibenz(a,h)anthracene	53-70-3	0.055	8.2	82
	Dibenz(a,e)pyrene	192-65-4	0.061	NA	NA

Organic Constituents	CASRN ¹	Wastewater Standard (mg/l)	Non Wastewater Standard (mg/kg unless noted otherwise)	Hazardous Soil 10Xs UTS Nonwastewater (mg/kg unless noted otherwise)
1,2-Dibromo-3-chloropropane	96-12-8	0.11	15	150
1,2-Dibromoethane (Ethylene dibromide)	106-93-4	0.028	15	150
Dibromomethane	74-95-3	0.11	15	150
m-Dichlorobenzene	541-73-1	0.036	6.0	60
o-Dichlorobenzene	95-50-1	0.088	6.0	60
p-Dichlorobenzene	106-46-7	0.090	6.0	60
Dichlorodifluoromethane	75-71-8	0.23	7.2	72
1,1-Dichloroethane	75-34-3	0.059	6.0	60
1,2-Dichloroethane	107-06-2	0.21	6.0	60
1,1-Dichloroethylene	75-35-4	0.025	6.0	60
trans-1,2-Dichloroethylene	156-60-5	0.054	30	300
2,4-Dichlorophenol	120-83-2	0.044	14	140
2,6-Dichlorophenol	87-65-0	0.044	14	140
2,4-Dichlorophenoxyacetic acid (2,4-D)	94-75-7	0.72	10	100
1,2-Dichloropropane	78-87-5	0.85	18	180
cis-1,3-Dichloropropylene	10061-01-5	0.036	18	180
trans-1,3-Dichloropropylene	10061-02-6	0.036	18	180
Dieldrin	60-57-1	0.017	0.13	1.3
Diethyl phthalate	84-66-2	0.20	28	280
p-Dimethylaminoazobenzene	60-11-7	0.13	NA	NA
2,4-Dimethylaniline (2,4-xylidine)	95-68-1	0.010	0.66	6.6
2,4-Dimethyl phenol	105-67-9	0.036	14	140
Dimethyl phthalate	131-11-3	0.047	28	280
Di-n-butyl phthalate	84-74-2	0.057	28	280
1,4-Dinitrobenzene	100-25-4	0.32	2.3	23
4,6-Dinitro-o-cresol	534-52-1	0.28	160	1600
2,4-Dinitrophenol	51-28-5	0.12	160	1600
2,4-Dinitrotoluene	121-14-2	0.32	140	1400
2,6-Dinitrotoluene	606-20-2	0.55	28	280
Di-n-octyl phthalate	117-84-0	0.017	28	280
Di-n-propylnitrosamine	621-64-7	0.40	14	140
1,4-Dioxane	123-91-1	12.0	170	1700
Diphenylamine	122-39-4	0.92	13	130
DiphenyInitrosamine	86-30-6	0.92	13	130
1,2-Diphenylhydrazine	122-66-7	0.087	NA	NA
Disulfoton	298-04-4	0.017	6.2	62
Dithiocarbamates (total)	NA	0.028	28	280
Endosulfan I	959-98-8	0.023	0.066	0.66
Endosulfan II	33213-65-9	0.029	0.13	1.3
Endosulfan sulfate	1031-07-8	0.029	0.13	1.3
Endrin	72-20-8	0.0028	0.13	1.3
Endrin aldehyde	7421-93-4	0.025	0.13	1.3
EPTC	759-94-4	0.042	1.4	14
Ethyl acetate	141-78-6	0.34	33	330
Ethyl benzene	100-41-4	0.057	10	100
Ethyl cyanide (Propanenitrile)	107-12-0	0.24	360	3600

Organic Constituents	CASRN ¹	Wastewater Standard (mg/l)	Non Wastewater Standard (mg/kg unless noted otherwise)	Hazardous Soil 10Xs UTS Nonwastewater (mg/kg unless noted otherwise)
Ethyl ether	60-29-7	0.12	160	1600
bis(2-Ethylhexyl)phthalate	117-81-7	0.28	28	280
Ethyl methacrylate	97-63-2	0.14	160	1600
Ethylene oxide	75-21-8	0.12	NA	NA
Famphur	52-85-7	0.017	15	150
Fluoranthene	206-44-0	0.068	3.4	34
Fluorene	86-73-7	0.059	3.4	34
Formetanate hydrochloride	23422-53-9	0.056	1.4	14
Heptachlor	76-44-8	0.0012	0.066	0.66
Heptachlor epoxide	1024-57-3	0.016	0.066	0.66
1,2,3,4,6,7,8-Heptachlorodibenzo-pdioxin	35822-46-9	0.000035	0.0025	0.025
1,2,3,4,6,7,8-Heptachlorodibenzofuran	67562-39-4	0.000035	0.0025	0.025
1,2,3,4,7,8,9-Heptachlorodibenzofuran	55673-89-7	0.000035	0.0025	0.025
Hexachlorobenzene	118-74-1	0.055	10	100
Hexachlorobutadiene	87-68-3	0.055	5.6	56
Hexachlorocyclopentadiene	77-47-4	0.057	2.4	24
Hexachlorodibenzo-p-dioxins (HxCDDs)	NA	0.000063	0.001	0.01
Hexachlorodibenzo-furans (HxCDFs)	NA	0.000063	0.001	0.01
Hexachloroethane	67-72-1	0.055	30	300
Hexachloropropylene	1888-71-7	0.035	30	300
Indeno (1,2,3-c,d) pyrene	193-39-5	0.0055	3.4	34
lodomethane	74-88-4	0.19	65	650
Isobutyl alcohol	78-83-1	5.6	170	1700
Isodrin	465-73-6	0.021	0.066	0.66
Isosafrole	120-58-1	0.081	2.6	26
Kepone	143-50-0	0.0011	0.13	1.3
Methacrylonitrile	126-98-7	0.24	84	840
Methanol	67-56-1	5.6	0.75 mg/l TCLP	7.5 mg/I TCLP
Methapyrilene	91-80-5	0.081	1.5	15
Methiocarb	2032-65-7	0.056	1.4	14
Methomyl	16752-77-5	0.028	0.14	1.4
Methoxychlor	72-43-5	0.25	0.18	1.8
3-Methylchlolanthrene	56-49-5	0.0055	15	150
4,4-Methylene bis(2-chloroaniline)	101-14-4	0.50	30	300
Methylene chloride	75-09-2	0.089	30	300
Methyl ethyl ketone	78-93-3	0.28	36	360
Methyl isobutyl ketone	108-10-1	0.14	33	330
Methyl methacrylate	80-62-6	0.14	160	1600
Methyl methansulfonate	66-27-3	0.018	NA	NA
Methyl parathion	298-00-0	0.014	4.6	46
Metolcarb	1129-41-5	0.056	1.4	14
Mexacarbate	315-18-4	0.056	1.4	14
Molinate	2212-67-1	0.042	1.4	14
Naphthalene	91-20-3	0.059	5.6	56
2-Naphthylamine	91-59-8	0.52	NA	NA
o-Nitroaniline	88-74-4	0.27	14	140

Organic Constituents	CASRN ¹	Wastewater Standard (mg/l)	Non Wastewater Standard (mg/kg unless noted otherwise)	Hazardous Soil 10Xs UTS Nonwastewater (mg/kg unless noted otherwise)
p-Nitroaniline	100-01-6	0.028	28	280
Nitrobenzene	98-95-3	0.068	14	140
5-Nitro-o-toluidine	99-55-8	0.32	28	280
o-Nitrophenol	88-75-5	0.028	13	130
p-Nitrophenol	100-02-7	0.12	29	290
N-Nitrosodiethylamine	55-18-5	0.40	28	280
N-Nitrosodimethylamine	62-75-9	0.40	2.3	23
N-Nitroso-di-n-butylamine	924-16-3	0.40	17	170
N-Nitrosomethylethylamine	10595-95-6	0.40	2.3	23
N-Nitrosomorpholine	59-89-2	0.40	2.3	23
N-Nitrosopiperidine	100-75-4	0.013	35	350
N-Nitrosopyrrolidine	930-55-2	0.013	35	350
1,2,3,4,6,7,8,9-Octachlorodibenzo-pdioxin	3268-87-9	0.000063	0.005	0.05
1,2,3,4,6,7,8,9-Octachlorodibenzofuran	39001-02-0	0.000063	0.005	0.05
Oxamyl	23135-22-0	0.056	0.28	2.8
Parathion	56-38-2	0.014	4.6	46
PCBs (total)	1336-36-3	0.10	10	100
Pebulate	1114-71-2	0.042	1.4	14
Pentachlorobenzene	608-93-5	0.055	10	100
Pentachlorodibenzo-p-dioxins (PeCDDs)	NA	0.000063	0.001	0.01
Pentachlorodibenzo-furans (PeCDFs)	NA	0.000035	0.001	0.01
Pentachloroethane	76-01-7	0.055	6.0	60
Pentachloronitrobenzene	82-68-8	0.055	4.8	48
Pentachlorophenol	87-86-5	0.089	7.4	74
Phenacetin	62-44-2	0.081	16	160
Phenanthrene	85-01-8	0.059	5.6	56
Phenol	108-95-2	0.039	6.2	62
1,3-Phenylenediamine	108-45-2	0.01	0.66	6.6
Phorate	298-02-2	0.021	4.6	46
Phthalic acid	100-21-0	0.055	28	280
Phthalic anhydride	85-44-9	0.055	28	280
Physostigmine	57-47-6	0.056	1.4	14
Physostigmine salicylate	57-64-7	0.056	1.4	14
Promecarb	2631-37-0	0.056	1.4	14
Pronamide	23950-58-5	0.093	1.5	15
Propham	122-42-9	0.056	1.4	14
Propoxur	114-26-1	0.056	1.4	14
Prosulfocarb	52888-80-9	0.042	1.4	14
Pyrene	129-00-0	0.067	8.2	82
Pyridine	110-86-1	0.014	16	160
Safrole	94-59-7	0.081	22	220
Silvex (2,4,5-TP)	93-72-1	0.72	7.9	79
1,2,4,5-Tetrachlorobenzene	95-94-3	0.055	14	140
Tetrachlorodibenzo-p-dioxins (TCDDs)	NA	0.000063	0.001	0.01
Tetrachlorodibenzofurans (TCDFs)	NA	0.000063	0.001	0.01
1,1,1,2-Tetrachloroethane	630-20-6	0.057	6.0	60

Organic Constituents	CASRN ¹	Wastewater Standard (mg/l)	Non Wastewater Standard (mg/kg unless noted otherwise)	Hazardous Soil 10Xs UTS Nonwastewater (mg/kg unless noted otherwise)
1,1,2,2-Tetrachloroethane	79-34-5	0.057	6.0	60
Tetrachloroethylene	127-18-4	0.056	6.0	60
2,3,4,6-Tertachlorophenol	58-90-2	0.030	7.4	74
Thiodicarb	59669-26-0	0.019	1.4	14
Thiophanate-methyl	23564-05-8	0.056	1.4	14
Toluene	108-88-3	0.080	10	100
Toxaphene	8001-35-2	0.0095	2.6	26
Triallate	2303-17-5	0.042	1.4	14
Tribromomethane (Bromoform)	75-25-2	0.63	15	150
2,4,6-Tribromophenol	118-79-6	0.035	7.4	74
1,2,4-Trichlorobenzene	120-82-1	0.055	19	190
1,1,1-Trichloroethane	71-55-6	0.054	6.0	60
1,1,2-Trichloroethane	79-00-5	0.054	6.0	60
Trichloroethylene	79-01-6	0.054	6.0	60
Trichloromonofluoromethane	75-69-4	0.020	30	300
2,4,5-Trichlorophenol	95-95-4	0.18	7.4	74
2,4,6-Trichlorophenol	88-06-2	0.035	7.4	74
2,4,5-Trichlorophenoxyacetic acid (2,4,5-T)	93-76-5	0.72	7.9	79
1,2,3-Trichloropropane	96-18-4	0.85	30	300
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	0.057	30	300
Triethylamine	121-44-8	0.081	1.5	15
tris-(2,3-Dibromopropyl) phosphate	126-72-7	0.11	0.10	1.0
Vernolate	1929-77-7	0.042	1.4	14
Vinyl chloride	75-01-4	0.27	6.0	60
Xylenes (total)	1330-20-7	0.32	30	300
Antimony	7440-36-0	1.9	1.15 mg/I TCLP	11.5 mg/I TCLP
Arsenic	7440-38-2	1.4	5.0 mg/l TCLP	50 mg/I TCLP
Barium	7440-39-3	1.2	21 mg/I TCLP	210 mg/I TCLP
Beryllium	7440-41-7	0.82	1.22 mg/I TCLP	12.2 mg/I TCLP
Cadmium	7440-43-9	0.69	0.11 mg/l TCLP	1.1 mg/I TCLP
Chromium (Total)	7440-47-3	2.77	0.60 mg/l TCLP	6.0 mg/I TCLP
Cyanides (Total) ⁴	57-12-5	1.2	590	5900
Cyanides (Amenable) ^₄	57-12-5	0.86	30	300
Fluoride	16984-48-8	35	NA	NA
Lead	7439-92-1	0.69	0.75 mg/l TCLP	7.5 mg/l TCLP
Mercury (Retort residues)	7439-97-6	NA	0.20 mg/l TCLP	2.0 mg/l TCLP
Mercury - All others	7439-97-6	0.15	0.025 mg/I TCLP	0.25 mg/I TCLP
Nickel	7440-02-0	3.98	11 mg/I TCLP	110 mg/I TCLP
Selenium	7782-49-2	0.82	5.7 mg/l TCLP	57 mg/I TCLP
Silver	7440-22-4	0.43	0.14 mg/I TCLP	1.4 mg/l TCLP
Sulfide	18496-25-8	14	NA	NA
Thallium	7440-28-0	1.4	0.20 mg/I TCLP	2.0 mg/l TCLP
Vanadium	7440-62-2	4.3	1.6 mg/l TCLP	16 mg/I TCLP
Zinc ³	7440-66-6	2.61	4.3 mg/I TCLP	43 mg/I TCLP
СІ		دل اه	-hai	
----	-----	--------------	------	---
	eai	IПd	ruo	S
÷				

WASTE MATERIAL PROFILE SHEET

Clean Harbors Profile No. CH497210

A. GENERAL INFORMATION GENERATOR EPA ID #/REGISTRATION # GENERATOR CODE (Assigned by Clean Harbors) ADDRESS Los Alamos National Laboratory	NONEREQUIRED LO1741 Bikini Atoll Road	GEI CIT
CUSTOMER CODE (Assigned by Clean Harbors) ADDRESS 999 Central Avenue Suite 300	LO1647	CU: CIT

GENERATOR NAME: CITY Los Alamos

CUSTOMER NAME: CITY **Los Alamos** Los Alamos National Laboratory STATE/PROVINCE NM ZIP/POSTAL CODE 87544 PHONE: (505) 662-9080 Los Alamos Technical Associates STATE/PROVINCE NM ZIP/POSTAL CODE 87544

B. WASTE DESCRIPTION

WASTE DESCRIPTION: Non-Haz; Non-Rad Industrial Waste

PROCESS GENERATING WASTE: Non-rad debris waste associated with remediation activities at LANL TA-05, Lower Mortandad Canyon
IS THIS WASTE CONTAINED IN SMALL PACKAGING CONTAINED WITHIN A LARGER SHIPPING CONTAINER ? No

C. PHYSICAL PROPERTIES (at 25C or 77F)

,				
IQUID S	NUMBER OF PHASES/LAYERS 1 2 3 TOF % BY VOLUME (Approx.) MID BOT	р 0.00 DLE 0.00 ТОМ 0.00	VISCOSITY (If liquid present) 1 - 100 (e.g. Water) 101 - 500 (e.g. Motor Oil) 501 - 10,000 (e.g. Molasses)	COLOR <u>VARIES</u>
ODOR BOILING POINT °F (°C) TLED SOLID MILD <= 95 (<=35)		> 10,000 MELTING POINT °F (°C) < 140 (<60) 140-200 (60-93) ✓ > 200 (>93)	TOTAL ORGANIC CARBON <= 1% 1-9% >= 10%	
pH <= 2 2.1 - 6.9 ✓ 7 (Neutral) 7.1 - 12.4 >= 12.5	SPECIFIC GRAVITY < 0.8 (e.g. Gasoline) 0.8-1.0 (e.g. Ethanol) 1.0 (e.g. Water) 1.0-1.2 (e.g. Antifreeze) > 1.2 (e.g. Methylene Chloride)	ASH ✓ < 0.1 22 0.1 - 1.0 0 1.1 - 5.0 5.1 - 20.0	> 20 Unknown S,000-10,000 Actual:	5) (4.6-11.6)) (11.6-23.2) 3.2)
	QUID SOLID SOLID ✓ 7 (Neutral) 7.1 - 12.4 >= 12.5	IQUID NUMBER OF PHASES/LAYERS 1 2 3 TOF % BY VOLUME (Approx.) MID BOT BOT SOLID Image: Comparison of the system BOT SOLID Image: Comparison of the system MILD STRONG Describe: SPECIFIC GRAVITY <= 2	IQUID NUMBER OF PHASES/LAYERS 1 2 3 TOP 0.00 % BY VOLUME (Approx.) MIDDLE 0.00 BOTTOM 0.00 SOLID MILD BOILING POINT °F (°C) <= 95 (<=35)	IQUID NUMBER OF PHASES/LAYERS VISCOSITY (if liquid present) 1 2 3 TOP 0.00 % BY VOLUME (Approx.) MIDDLE 0.00 101 - 500 (e.g. Water) % BY VOLUME (Approx.) BOTTOM 0.00 501 - 10,000 (e.g. Motor Oil) SOLID ODOR BOILING POINT °F (°C) >10,000 (e.g. Molasses) MILD STRONG BOILING POINT °F (°C) < 140 (<60)

D. COMPOSITION	b. COMPOSITION (List the complete composition of the waste, include any inert components and/or debris. Ranges for individual components are acceptable. If a trade name is used, please supply an MSDS. Please do not use abbreviations.)						
CHEMICAL	MIN		MAX	UOM			
CARBON	-			Trace			
IRON	99.5000000	100.000	0000	%			
MAGANESE (AS	PART OF ALLOY)			Trace			
NICKEL	-			Trace			
TUNGSTEN CAR	3IDE			Trace			
DOES THIS WASTE LONG, METAL REII PIECES OF CONCF	CONTAIN ANY HEAVY GAUGE METAL DEBRIS OR OTHER LARGE OBJECTS (EX., METAL PLATE OR PIPING >1/4" THICK OR >12" FORCED HOSE >12" LONG, METAL WIRE >12" LONG, METAL VALVES, PIPE FITTINGS, CONCRETE REINFORCING BAR OR RETE >3")?	YES	~	NO			
If yes, descri	be, including dimensions:						
DOES THIS WASTE	CONTAIN ANY METALS IN POWDERED OR OTHER FINELY DIVIDED FORM?	YES	✓	NO			
DOES THIS WASTE FLUIDS, MICROBIC POTENTIALLY INFI	E CONTAIN OR HAS IT CONTACTED ANY OF THE FOLLOWING; ANIMAL WASTES, HUMAN BLOOD, BLOOD PRODUCTS, BODY DIOGICAL WASTE, PATHOLOGICAL WASTE, HUMAN OR ANIMAL DERIVED SERUMS OR PROTEINS OR ANY OTHER ECTIOUS MATERIAL?	YES	✓	NO			
l acknowledg based on my	the this waste material is neither infectious nor does it contain any organism known to be a threat to human health. This certification is knowledge of the material. Select the answer below that applies:						
The waste w	as never exposed to potentially infectious material.	YES		NO			
Chemical dis	infection or some other form of sterilization has been applied to the waste.	YES		NO			
I ACKNOWLEDGE	THAT THIS PROFILE MEETS THE CLEAN HARBORS BATTERY PACKAGING REQUIREMENTS.	YES		NO			
I ACKNOWLEDGE	THAT MY FRIABLE ASBESTOS WASTE IS DOUBLE BAGGED AND WETTED.	YES		NO			
SPECIFY THE SOU	RCE CODE ASSOCIATED WITH THE WASTE. G49 SPECIFY THE FORM CODE ASSOCIATED WITH THE WAST	E. W002					

E. CONSTITUENTS

Are these values based on testing or knowledge?

Knowledge Testing

If based on knowledge, please describe in detail, the rationale applied to identify and characterize the waste material. Please include reference to Material Safety Data Sheets (MSDS) when applicable. Include the chemical or trade-name represented by the MSDS, and or detailed process or operating procedures which generate the waste.

Per review of historical docuemnts, and site characterization analysis, there are no hazardous constituents present. This waste consists of inorganic debris such carbon steel nails, wire, etc.

Please indicate which constituents below apply. Concentrations must be entered when applicable to assist in accurate review and expedited approval of your waste profile. Please note that the total regulated metals and other constituents sections require answers.

RCRA	REGULATED METALS	REGULATORY LEVEL (mg/l)	TCLP mg/l	TOTAL	UOM	NOT APPLIC	ABLE			
D004	ARSENIC	5.0				~				
D005	BARIUM	100.0				 ✓ 				
D006	CADMIUM	1.0				✓				
D007	CHROMIUM	5.0								
D008	LEAD	5.0				v				
D009	MERCURY	0.2				V				
D010	SELENIUM	1.0								
D011	SILVER	5.0				····· 🗹 ··				
					·····					-
D018	BENZENE	0.5		OTHER CONSTITUENT	5	WAX	UOW	APF	'LIC/	ABLE
D019	CARBON TETRACHI ORIDE	0.5		BROMINE					✓	
D021		100.0		CHLORINE					নি	
D022	CHLOROFORM	6.0		FLUORINE					7	
D022		0.5	• • • • • • • • • •	IODINE					নি	
D020		0.0		SUILEUR					নি	
D029				POTASSILIM					টা	
D035		200.0		SODIUM					÷.	
D039	TETRACHLOROETHYLENE	0.7							븅.	
D040	TRICHLOROETHYLENE	0.5							븕.	
D043	VINYL CHLORIDE	0.2							븝.	
	SEMI-VOLATILE COMPOUND	S							.	
D023	o-CRESOL	200.0		CYANIDE TOTAL					₩.	
D024	m-CRESOL	200.0		SULFIDE REACTIVE						<u></u>
D025	p-CRESOL	200.0		HOCs		PCBs				
D026	CRESOL (TOTAL)	200.0					:			
D027	1,4-DICHLOROBENZENE	7.5					DM			
D030	2,4-DINITROTOLUENE	0.13		>= 1000 PPM		>=501	PPM			
D032	HEXACHLOROBENZENE	0.13							_	
D033	HEXACHLOROBUTADIENE	0.5				WASTE RE	GULATED	BY TSCA	<u>-</u> 40	
D034	HEXACHLOROETHANE	3.0				CFR 761?				
D036	NITROBENZENE	2.0				YES	s 🗸	NO		
D037	PENTACHLOROPHENOL	100.0								
D038	PYRIDINE	5.0								
D041	2,4,5-TRICHLOROPHENOL	400.0								
D042	2,4,6-TRICHLOROPHENOL	2.0								
	PESTICIDES AND HERBICIDE	S								
D012	ENDRIN	0.02								
D013	LINDANE	0.4	0.0001							
D014	METHOXYCHLOR	10.0								
D015	ΤΟΧΑΡΗΕΝΕ	0.5								
D016	2.4-D	10.0								
D017	2 4 5-TP (SILVEX)	10	•••••							
D020		0.03								
D031	HEPTACHLOR (AND ITS EPOXIDE	E) 0.008	0.0001							
		., 0.000	0.0001							
DOES THIS	WASTE HAVE ANY UNDISCLOSED I	HAZARDS OR PRIOR I	NCIDENTS ASS	SOCIATED WITH IT, WHICH C	OULD AFFEC	CT THE WAY IT S	HOULD BE	HANDLE	D?	
YES	NO (If yes, explain)									
CHOOSE AI	LL THAT APPLY									
DEA R	EGULATED SUBSTANCE	EXPLOSIVE		FUMING		OSHA	REGULATI	ED CARC	INOG	ENS

POLYMERIZABLE

REACTIVE MATERIAL

RADIOACTIVE

✓

NONE OF THE ABOVE

F. REGULATORY STATUS

YES	V NO	USEPA HAZARDOUS WASTE?							
YES	V NO	DO ANY STATE WASTE CODES APPLY?							
		Texas Waste Code outs0021							
YES	V NO	DO ANY CANADIAN PROVINCIAL WASTE CODES APPLY?							
YES	MO	IS THIS WASTE PROHIBITED FROM LAND DISPOSAL WITHOUT FURTHER TREATMENT PER 40 CFR PART 268?							
		LDR CATEGORY: Not subject to LDR VARIANCE INFO:							
YES	V NO	IS THIS A UNIVERSAL WASTE?							
YES	V NO	IS THE GENERATOR OF THE WASTE CLASSIFIED AS CONDITIONALLY EXEMPT SMALL QUANTITY GENERATOR (CESQG)?							
YES	NO	IS THIS MATERIAL GOING TO BE MANAGED AS A RCRA EXEMPT COMMERCIAL PRODUCT, WHICH IS FUEL (40 CFR 261.2 (C)(2)(II))?							
YES	V NO	DOES TREATMENT OF THIS WASTE GENERATE A F006 OR F019 SLUDGE?							
YES	NO	IS THIS WASTE STREAM SUBJECT TO THE INORGANIC METAL BEARING WASTE PROHIBITION FOUND AT 40 CFR 268.3(C)?							
YES	V NO	DOES THIS WASTE CONTAIN VOC'S IN CONCENTRATIONS >=500 PPM?							
YES	NO	DOES THE WASTE CONTAIN GREATER THAN 20% OF ORGANIC CONSTITUENTS WITH A VAPOR PRESSURE >= .3KPA (.044 PSIA)?							
YES	V NO	DOES THIS WASTE CONTAIN AN ORGANIC CONSTITUENT WHICH IN ITS PURE FORM HAS A VAPOR PRESSURE > 77 KPA (11.2 PSIA)?							
YES	V NO	IS THIS CERCLA REGULATED (SUPERFUND) WASTE ?							
YES	V NO	IS THE WASTE SUBJECT TO ONE OF THE FOLLOWING NESHAP RULES?							
		Hazardous Organic NESHAP (HON) rule (subpart G) Pharmaceuticals production (subpart GGG)							
YES	NO	IF THIS IS A US EPA HAZARDOUS WASTE, DOES THIS WASTE STREAM CONTAIN BENZENE?							
	YES	NO Does the waste stream come from a facility with one of the SIC codes listed under benzene NESHAP or is this waste regulated under the benzene NESHAP rules because the original source of the waste is from a chemical manufacturing, coke by-product recovery, or petroleum refinery process?							
	YES	NO Is the generating source of this waste stream a facility with Total Annual Benzene (TAB) >10 Mg/year?							
	What is the	e TAB quantity for your facility? Megagram/year (1 Mg = 2,200 lbs)							
	The basis	for this determination is: Knowledge of the Waste Or Test Data Knowledge Testing							
	Describe t	ne knowledge :							
G. DOT/TDG	INFORMAT	ION							

DOT/TDG PROPER SHIPPING NAME:

NONE, NON HAZARDOUS, NON D.O.T. REGULATED, (INDUSTRIAL WASTE), N/A

H. TRANSPORTATION REQUIREME ESTIMATED SHIPMENT FREQUENC	ENTS CY 🔽 ONE TIME	WEEKLY MONTHLY	QUARTERLY YEARLY	OTH	ĒR		
	ED		BULK LIQUID		BULK SOLID		
1-3 CONTAINERS/SHIPMEN	IT	GALLONS/SHIPMENT	: 0 Min -0 Max	GAL.	SHIPMENT UOM:	TON	YARD
STORAGE CAPACITY: 2 CONTAINER TYPE: 2					TONS/YARDS/SHIPMENT:	0 Min - 0 Max	
CUBIC YARD BOX	PALLET						
TOTE TANK	DRUM						
DRUM	SIZE: 30	I			1		

I. SPECIAL REQUEST

COMMENTS OR REQUESTS:

GENERATOR'S CERTIFICATION

I hereby certify that all information submitted in this and attached documents is correct to the best of my knowledge. I also certify that any samples submitted are representative of the actual waste. If								
Clean Harbors discovers a discrepancy during the app	proval process, Generator grants Clean Harbors the a	uthority to amend the profile, as Clean Harbors deem	is necessary, to reflect the discrepancy.					
			0.475					
AUTHORIZED SIGNATURE	NAME (PRINT)	TITLE	DATE					
koman@thelakeworthgroup.com								
Konnan@thelakewortilgroup.com								
This waste profile has been submitted using Clean I	Harbors' electronic signature system.							
"40 CFR Sec. 264.12 required notice:								

As required by Federal Resource Conservation and Recovery Act regulations found in 40 CFR Part 264.12(b) and all equivalent State hazardous waste regulations, notice is hereby provided that all Clean Harbors facilities that may be used to treat, store, and /or dispose of the hazardous waste described on this waste profile have the appropriate permits and the capacity to manage these wastes.

Please note this profile must be submitted for re-evaluation if there has been a change in the waste generating process or when there have been changes in the chemical composition or physical characteristics of the material.

CL.	Law	h a ve
I IE	паг	DORS
5		

WASTE MATERIAL PROFILE SHEET

	C	lean Harbors Pr	ofile	No. CH492	2236					
A. GENERAL INFORMATIO GENERATOR EPA ID #/REG GENERATOR CODE (Assig ADDRESS Los Alamos	N GISTRATION # ned by Clean Harbors) National Laboratory	NONEREQUIRED LO1741 Bikini Atoll Road	GENER/ CITY	ATOR NAME: Los Alamos	Los Ala STATE/P	mos Nationa PROVINCE PHONE: (50	II Laboratory NM ZIP/POST 5) 662-9080	AL CODE	87544	
CUSTOMER CODE (Assign ADDRESS 999 Central A	ed by Clean Harbors) Avenue Suite 300	LO1647	CUSTON	MER NAME: Los Alamos	Los Ala STATE/P	mos Technic ROVINCE	Associates	AL CODE	87544	
B. WASTE DESCRIPTION WASTE DESCRIPTION:	Elemental Lead									
PROCESS GENERATING V	VASTE: Waste	e was generated during er	nvironn	nental restoration a	activities	at LANL, Te	chnical Area 05	-		
IS THIS WASTE CONTAINE	D IN SMALL PACKAGIN	IG CONTAINED WITHIN A LAF	RGER SI	HIPPING CONTAINER	? No					
C. PHYSICAL PROPERTIES	S (at 25C or 77F)									
PHYSICAL STATE SOLID WITHOUT FREE LIQUID POWDER MONOLITHIC SOLID LIQUID WITH NO SOLIDS LIQUID/SOLID MIXTURE % FREE LIQUID % SETTLED SOLID % TOTAL SUSPENDED SOLID SLUDGE GAS/AEROSOL		NUMBER OF PHASES/LAY 1 2 3 % BY VOLUME (Approx.)	YERS TOP MIDI	0.00 DLE 0.00		VISCOSITY (I 1 - 100 (e 101 - 500	f liquid present) .g. Water) (e.g. Motor Oil)		COLOR <u>varies</u>	
		ODOR NONE MILD STRONG Describe:	BOT	TOM 0.00 BOILING POINT °F <= 95 (<=3 95 - 100 (3 101 - 129 >= 130 (>5	(°C) 35) 35-38) (38-54) 54)	501 - 10,0 > 10,000 MELTING PO < 140-2 V > 200	00 (e.g. Molasses) INT ºF (ºC) 0 (<60) 200 (60-93) 0 (>93)	TOTAL C CARBON	RGANIC <= 1% 1-9% >= 10%	
FLASH POINT °F (°C) < 73 (<23) 73 - 100 (23-38) 101 -140 (38-60) 141 -200 (60-93) > 200 (>93)	 pH <= 2 2.1 - 6.9 ✓ 7 (Neutral) 7.1 - 12.4 >= 12.5 	SPECIFIC GRAVITY < 0.8 (e.g. Gasoline)	lloride)	ASH < 0.1 0.1 - 1.0 1.1 - 5.0 5.1 - 20.0	> (> 20 Jnknown	BTU/LB (MJ/kg) <2,000 (< 2,000-5,00 5,000-10,0 > 10,000 (Actual:	4.6))0 (4.6-11.6)00 (11.6-23) >23.2)) 3.2)	
D. COMPOSITION (List in used, CHEMICAL	he complete compositior please supply an MSDS	n of the waste, include any inert b. Please do not use abbreviatio	compon ns.)	ents and/or debris. Ra	nges for ir	ndividual compo	onents are acceptab	ole. If a trad	e name is MAX	UOM
LEAD DOES THIS WASTE CONT LONG, METAL REINFORC PIECES OF CONCRETE >: If yes, describe, incl	AIN ANY HEAVY GAUG ED HOSE >12" LONG, N 3")? uding dimensions:	E METAL DEBRIS OR OTHER IETAL WIRE >12" LONG, MET	LARGE	OBJECTS (EX., MET. /ES, PIPE FITTINGS,	AL PLATE CONCRE	or Piping > Te reinforc	99.0000000 1/4" THICK OR >12 ING BAR OR	100.0 ″ Y	ES 🔽	
DOES THIS WASTE CONT	AIN ANY METALS IN PO	OWDERED OR OTHER FINEL	y divide	ED FORM?				Y	es 🗸	NO

DOES THIS WASTE CONTAIN OR HAS IT CONTACTED ANY OF THE FOLLOWING; ANIMAL WASTES, HUMAN BLOOD, BLOOD PRODUCTS, BODY FLUIDS, MICROBIOLOGICAL WASTE, PATHOLOGICAL WASTE, HUMAN OR ANIMAL DERIVED SERUMS OR PROTEINS OR ANY OTHER POTENTIALLY INFECTIOUS MATERIAL? I acknowledge that this waste material is neither infectious nor does it contain any organism known to be a threat to human health. This certification is based on my knowledge of the material. Select the answer below that applies:

The waste was never exposed to potentially infectious material.

YES NO YES NO Chemical disinfection or some other form of sterilization has been applied to the waste. I ACKNOWLEDGE THAT THIS PROFILE MEETS THE CLEAN HARBORS BATTERY PACKAGING REQUIREMENTS. YES NO I ACKNOWLEDGE THAT MY FRIABLE ASBESTOS WASTE IS DOUBLE BAGGED AND WETTED. YES NO SPECIFY THE SOURCE CODE ASSOCIATED WITH THE WASTE. SPECIFY THE FORM CODE ASSOCIATED WITH THE WASTE. G49 W319

🖌 NO

YES

E. CONSTITUENTS

Are these values based on testing or knowledge?

Knowledge Testing

If based on knowledge, please describe in detail, the rationale applied to identify and characterize the waste material. Please include reference to Material Safety Data Sheets (MSDS) when applicable. Include the chemical or trade-name represented by the MSDS, and or detailed process or operating procedures which generate the waste

Per historical documentation, this material was once lead shielding inside a building which burned down during the 1960s. The lead melted, and then solidified into "puddles" as it cooled.

Please indicate which constituents below apply. Concentrations must be entered when applicable to assist in accurate review and expedited approval of your waste profile. Please note that the total regulated metals and other constituents sections require answers.

RCRA	REGULATED METALS	REGULATORY LEVEL (mg/l)	TCLP mg/l	TOTAL	UOM	NOT APPLICABLE	
D004	ARSENIC	5.0				✓	
D005	BARIUM	100.0					
D006	CADMIUM	1.0					
D007	CHROMIUM	5.0				✓	
D008	I FAD	5.0	5 0000	10000 0000000			
D009	MERCURY	0.2	0.0000	10000.0000000			
D010		1.0					
D010		1.0 					
D011	SILVER	5.0					
				OTHER CONSTITUENTS	6	MAX UOM	NOT
D018	BENZENE	0.5					APPLICABLE
D019	CARBON TETRACHLORIDE	0.5		BROMINE			·····
D021	CHLOROBENZENE	100.0		CHLORINE			<u> </u>
D022	CHLOROFORM	6.0		FLUORINE			
D028	1,2-DICHLOROETHANE	0.5		IODINE			<u> </u>
D029	1,1-DICHLOROETHYLENE	0.7		SULFUR			<u> </u>
D035	METHYL ETHYL KETONE	200.0		POTASSIUM			✓
D039	TETRACHLOROETHYLENE	0.7		SODIUM			✓
D040	TRICHLOROETHYLENE	0.5		AMMONIA			✓
D043	VINYL CHLORIDE	0.2		CYANIDE AMENABLE			
		 S		CYANIDE REACTIVE			
D023	o-CRESOL	200.0		CYANIDE TOTAL			✓
D024	m-CRESOL	200.0		SULFIDE REACTIVE			v
D024		200.0				<u> </u>	
D025		200.0		HOCs		PCBs	
D026		200.0		✓ NONE		NONE	
D027	1,4-DICHLOROBENZENE	7.5		< 1000 PPM		< 50 PPM	
D030	2,4-DINITROTOLUENE	0.13		>= 1000 PPM		>=50 PPM	
D032	HEXACHLOROBENZENE	0.13				IF PCBS ARE PRESE	NT IS THE
D033	HEXACHLOROBUTADIENE	0.5				WASTE REGULATED	BY TSCA 40
D034	HEXACHLOROETHANE	3.0				CFR 761?	
D036	NITROBENZENE	2.0				YES	NO
D037	PENTACHLOROPHENOL	100.0					
D038	PYRIDINE	5.0					
D041	2,4,5-TRICHLOROPHENOL	400.0					
D042	2,4,6-TRICHLOROPHENOL	2.0					
	PESTICIDES AND HERBICIDE	ES					
D012	ENDRIN	0.02					
D013		0.4					
D014	METHOXYCHLOR	10.0					
D015	ΤΟΧΑΡΗΕΝΕ	0.5					
D016	24-D	10.0					
D017		10.0					
		1.0					
D020		0.03					
D031	HEPTACHLOR (AND ITS EPOXIDE	=) 0.008					
ADDITIONA DOES THIS	L HAZARDS WASTE HAVE ANY UNDISCLOSED	HAZARDS OR PRIOR II	NCIDENTS ASS	SOCIATED WITH IT, WHICH CO	OULD AFFECT	THE WAY IT SHOULD B	E HANDLED?
YES	NO (If yes, explain)						
CHOOSE A	LL THAT APPLY						
DEA R	EGULATED SUBSTANCE	EXPLOSIVE		FUMING		OSHA REGULAT	TED CARCINOGENS

POLYMERIZABLE

REACTIVE MATERIAL

RADIOACTIVE

NONE OF THE ABOVE

✓

F. REGULATORY STATUS

	YES	JAT	NO	USEPA HAZARDOUS WASTE?							
	0			08							
	YES	•	NO	DO ANY STATE WASTE CODES APPLY?							
				Texas Waste Code							
	YES	✓	NO	DO ANY CANADIAN PROVINCIAL WASTE CODES APPLY?							
✓	YES		NO	L IS THIS WASTE PROHIBITED FROM LAND DISPOSAL WITHOUT FURTHER TREATMEN	NT PER 40 CFR PART 268?						
				LDR CATEGORY: Alternate Soil Std-does not meet std. (with characteri	stic hazardous waste only)						
	YES	✓	NO	IS THIS A UNIVERSAL WASTE?							
	YES		NO	IS THE GENERATOR OF THE WASTE CLASSIFIED AS CONDITIONALLY EXEMPT SMA	LL QUANTITY GENERATOR (CESQG)?						
	YES		NO	IS THIS MATERIAL GOING TO BE MANAGED AS A RCRA EXEMPT COMMERCIAL PRO	DUCT, WHICH IS FUEL (40 CFR 261.2 (C)(2)(II))?						
	YES	✓	NO	DOES TREATMENT OF THIS WASTE GENERATE A F006 OR F019 SLUDGE?							
✓	YES		NO	IS THIS WASTE STREAM SUBJECT TO THE INORGANIC METAL BEARING WASTE PR	OHIBITION FOUND AT 40 CFR 268.3(C)?						
	YES	✓	NO	DOES THIS WASTE CONTAIN VOC'S IN CONCENTRATIONS >=500 PPM?							
	YES		NO	DOES THE WASTE CONTAIN GREATER THAN 20% OF ORGANIC CONSTITUENTS WI	TH A VAPOR PRESSURE >= .3KPA (.044 PSIA)?						
	YES	✓	NO	DOES THIS WASTE CONTAIN AN ORGANIC CONSTITUENT WHICH IN ITS PURE FOR	M HAS A VAPOR PRESSURE > 77 KPA (11.2 PSIA)?						
	YES	✓	NO	IS THIS CERCLA REGULATED (SUPERFUND) WASTE ?							
	YES	✓	NO	IS THE WASTE SUBJECT TO ONE OF THE FOLLOWING NESHAP RULES?							
				Hazardous Organic NESHAP (HON) rule (subpart G) Pharmaceuticals	production (subpart GGG)						
	YES	✓	NO	IF THIS IS A US EPA HAZARDOUS WASTE, DOES THIS WASTE STREAM CONTAIN BE	NZENE?						
		YES		NO Does the waste stream come from a facility with one of the SIC codes listed under NESHAP rules because the original source of the waste is from a chemical manufa	benzene NESHAP or is this waste regulated under the benzene acturing, coke by-product recovery, or petroleum refinery process?						
		YES		NO Is the generating source of this waste stream a facility with Total Annual Benzene	(TAB) >10 Mg/year?						
		Wha	at is the	he TAB quantity for your facility? Megagram/year (1 Mg = 2,200 l	bs)						
		The	basis	s for this determination is: Knowledge of the Waste Or Test Data	Knowledge Testing						
		Des	cribe th	the knowledge :							
G. DC	DT/TDG	INFO	RMAT	TION							

OT/TDG PROPER SHIPPING NAME

NA3077	, HAZARDOUS WASTE,	, SOLID, N.O.S.,	(LEAD), 9, PG III

H. TRANSPORTATION REC ESTIMATED SHIPMENT FRE	QUIREMENTS	WEEKLY MONTHLY QUARTERLY YEARLY	OTHE	R		
CONTAINERIZED 1-1 CONTAINERS/SHIPMENT				BULK SOLID		
STORAGE CAPACITY: CONTAINER TYPE:	10	GALLONS/SHIPMENT: UMIN -UMAX	GAL.	TONS/YARDS/SHIPMENT:	0 Min - 0 Max	TARD
CUBIC YARD BOX	PALLET					
TOTE TANK	✓ DRUM					
OTHER:	DRUM SIZE: 16	I	I			
I. SPECIAL REQUEST						
COMMENTS OR REQUESTS:						

GENERATOR'S CERTIFICATION I hereby certify that all information submitted in this and Clean Harbors discovers a discrepancy during the appr	attached documents is correct to the best of my oval process, Generator grants Clean Harbors th	knowledge. I also certify that any samples submitted are r e authority to amend the profile, as Clean Harbors deems	epresentative of the actual waste. If necessary, to reflect the discrepancy.
AUTHORIZED SIGNATURE	NAME (PRINT)	TITLE	DATE
koman@thelakeworthgroup.com			
This waste profile has been submitted using Clean Ha	rbors' electronic signature system		

CleanHarbors	WASTE MAT	ERIAL P	ROF	ILE SHEET
	Clean Harbors F	Profile No.	CH49	92232
A. GENERAL INFORMATION GENERATOR EPA ID #/REGISTRATION # GENERATOR CODE (Assigned by Clean Harbo ADDRESS Los Alamos National Labora	NONEREQUIRED ors) LO1741 tory Bikini Atoll Road	GENERATOR N CITY Los A	AME: Jamos	Los Alamos Nationa STATE/PROVINCE PHONE: (50
CUSTOMER CODE (Assigned by Clean Harbors ADDRESS 999 Central Avenue Suite 30	s) LO1647 00	CUSTOMER NA CITY Los A	ME: lamos	Los Alamos Techni STATE/PROVINCE
B. WASTE DESCRIPTION WASTE DESCRIPTION: Lead Impacted	Soil			
PROCESS GENERATING WASTE:	xcavated material removed	during site rem	ediation a	ctivities at Lower Mort
IS THIS WASTE CONTAINED IN SMALL PACK	AGING CONTAINED WITHIN A L	ARGER SHIPPING	G CONTAINI	ER ? No
C. PHYSICAL PROPERTIES (at 25C or 77F)				
PHYSICAL STATE ✓ SOLID WITHOUT FREE LIQUID POWDER MONOLITHIC SOLID LIQUID WITH NO SOLIDS LIQUID WITH NO SOLIDS	NUMBER OF PHASES/L 1 2 3 % BY VOLUME (Approx.	AYERS TOP MIDDLE BOTTOM	0.00 0.00 0.00	VISCOSITY (1 - 100 (e 101 - 500 501 - 10,l
% FREE LIQUID	ODOR			> 10,000

	oratory	nal Labo	Los Alamos Nation			
87544	ZIP/POSTAL CODE	NM	STATE/PROVINCE			
	PHONE: (505) 662-9080					
	sociates	nical As	Los Alamos Techr			
87544	ZIP/POSTAL CODE	NM	STATE/PROVINCE			

n activities at Lower Mortandad TA-05. AINER ? No

,				
IQUID	NUMBER OF PHASES/LAYERS 1 2 3 TOF % BY VOLUME (Approx.) MID BOT	DLE 0.00 TTOM 0.00	VISCOSITY (If liquid present) 1 - 100 (e.g. Water) 101 - 500 (e.g. Motor Oil) 501 - 10,000 (e.g. Molasses	COLOR <u>varies</u>
SOLID	ODOR NONE MILD STRONG Describe:	BOILING POINT °F (°C) <= 95 (<=35) 95 - 100 (35-38) 101 - 129 (38-54) >= 130 (>54)	> 10,000 MELTING POINT °F (°C) < 140 (<60) 140-200 (60-93) ✓ > 200 (>93)	TOTAL ORGANIC CARBON (= 1%) 1-9% >= 10%
<pre>pH <= 2 2.1 - 6.9 ✓ 7 (Neutral) 7.1 - 12.4 >= 12 5</pre>	SPECIFIC GRAVITY < 0.8 (e.g. Gasoline) 0.8-1.0 (e.g. Ethanol) 1.0 (e.g. Water) 1.0-1.2 (e.g. Antifreeze) ✓ > 1.2 (e.g. Methylene Chloride)	ASH ✓ < 0.1 0.1 - 1.0 1.1 - 5.0 5.1 - 20.0	> 20 Unknown → 20 2,000-5,0 5,000-10 → 10,000 Actual:	<4.6) 000 (4.6-11.6) ,000 (11.6-23.2) (>23.2)
	QUID SOLID SOLID ✓ 7 (Neutral) 7.1 - 12.4 >= 12.5	QUID NUMBER OF PHASES/LAYERS 1 2 3 TOF % BY VOLUME (Approx.) MID % BY VOLUME (Approx.) BOT % BY VOLUME (Approx.) BOT ODOR NONE MILD STRONG Describe: OB ✓ 7 (Neutral) 7.1 - 12.4 1.0 (e.g. Mater) > 12.5 > 12 (e.g. Methylene Chloride)	QUID NUMBER OF PHASES/LAYERS 1 2 3 TOP 0.00 % BY VOLUME (Approx.) MIDDLE 0.00 BOTTOM 0.00 BOILING POINT °F (°C) $= 95 (<=35)$ $= 95 (<=35)$ $95 - 100 (35 - 38)$ $= 95 (<=35)$ $95 - 100 (35 - 38)$ $= 125 (<=22)$ $2.1 - 6.9$ $= 12.5$ $= 12.5$	DUID NUMBER OF PHASES/LAYERS VISCOSITY (If liquid present) 1 2 3 TOP 0.00 % BY VOLUME (Approx.) MIDDLE 0.00 $1 - 100$ (e.g. Water) SOLID MILD BOTTOM 0.00 ØDOR MIDD BOILING POINT °F (°C) $501 - 10,000$ (e.g. Motor Oil) MILD STRONG BOILING POINT °F (°C) < 140 (<60)

D. COMPOSITIO	 (List the complete composition of the waste, include any inert components and/or debris. Ranges for individual com used, please supply an MSDS. Please do not use abbreviations.) 	ponents are acceptable	e. If a trade nan	ne is	
CHEMICAL		MIN	· M	IAX UO	M
LEAD		0.1000000	1.0000	000 %	6
PPE		0.0100000	0.1000	000 %	6
SOIL		99.0000000	100.0000	000 %	6
DOES THIS WAS LONG, METAL R PIECES OF COM	TE CONTAIN ANY HEAVY GAUGE METAL DEBRIS OR OTHER LARGE OBJECTS (EX., METAL PLATE OR PIPING EINFORCED HOSE >12" LONG, METAL WIRE >12" LONG, METAL VALVES, PIPE FITTINGS, CONCRETE REINFOF CRETE >3")?	>1/4" THICK OR >12" RCING BAR OR	YES	✓ NO)
If yes, des	cribe, including dimensions:				
DOES THIS WAS	TE CONTAIN ANY METALS IN POWDERED OR OTHER FINELY DIVIDED FORM?		YES	V NO)
DOES THIS WAS FLUIDS, MICRO POTENTIALLY II	STE CONTAIN OR HAS IT CONTACTED ANY OF THE FOLLOWING; ANIMAL WASTES, HUMAN BLOOD, BLOOD PF BIOLOGICAL WASTE, PATHOLOGICAL WASTE, HUMAN OR ANIMAL DERIVED SERUMS OR PROTEINS OR ANY (IFECTIOUS MATERIAL?	ODUCTS, BODY OTHER	YES	✓ NO)
l acknowl based on	edge that this waste material is neither infectious nor does it contain any organism known to be a threat to human health my knowledge of the material. Select the answer below that applies:	. This certification is			
The wast	was never exposed to potentially infectious material.		YES	NO)
Chemical	disinfection or some other form of sterilization has been applied to the waste.		YES	NO)
I ACKNOWLED	E THAT THIS PROFILE MEETS THE CLEAN HARBORS BATTERY PACKAGING REQUIREMENTS.		YES	NC)
I ACKNOWLED	E THAT MY FRIABLE ASBESTOS WASTE IS DOUBLE BAGGED AND WETTED.		YES	NO)
SPECIFY THE S	DURCE CODE ASSOCIATED WITH THE WASTE. G49 SPECIFY THE FORM CODE ASSOCIA	TED WITH THE WAST	E. W301		

Clean Harbors Profile No. CH492232

E. CONSTITUENTS

Are these values based on testing or knowledge?

Knowledge 🗹 Testing

If constituent concentrations are based on analytical testing, analysis must be provided. Please attach document(s) using the link on the Submit tab.

Please indicate which constituents below apply. Concentrations must be entered when applicable to assist in accurate review and expedited approval of your waste profile. Please note that the total regulated metals and other constituents sections require answers.

RCRA	REGULATED METALS	REGULATORY LEVEL (mg/l)	TCLP mg/l	TOTAL	UOM	NOT AP	PLICABLE		
D004	ARSENIC	5.0				•	•		
D005	BARIUM	100.0				V	2		
D006	CADMIUM	1.0					2		
D007	CHROMIUM	5.0				V	2		
D008	LEAD	5.0	533.0000	1.000000	%				
D009	MERCURY	0.2				V	1		
D010	SELENIUM	1.0							
D011	SILVER	50					ā		
	VOLATILE COMPOUNDS			OTHER CONSTITUENTS	 3	 МА	X UOM	N	от
D018	BENZENE	0.5						APPLI	
D019	CARBON TETRACHLORIDE	0.5		BROMINE					4
D021	CHLOROBENZENE	100.0		CHLORINE					<u>4</u>
D022	CHLOROFORM	6.0		FLUORINE				_	<u>'</u>
D028	1,2-DICHLOROETHANE	0.5		IODINE				✓]
D029	1,1-DICHLOROETHYLENE	0.7		SULFUR				Image:	<u>.</u>
D035	METHYL ETHYL KETONE	200.0		POTASSIUM					1
D039	TETRACHLOROETHYLENE	0.7		SODIUM					1
D040	TRICHLOROETHYLENE	0.5		AMMONIA					1
D043		02		CYANIDE AMENABLE				· · · · · · · · · · · · · · · · · · ·	1
		2		CYANIDE REACTIVE				·····	- 1
D023		200.0		CYANIDE TOTAL					สี่
D023		200.0		SUI FIDE REACTIVE					ส์
D024		200.0				<u></u>		<u> </u>	<u></u>
D025	p-CRESOL	200.0		HOCs		PCBs			
D026	CRESOL (TOTAL)	200.0		✓ NONE			NONE		
D027	1,4-DICHLOROBENZENE	7.5		< 1000 PPM			< 50 PPM		
D030	2,4-DINITROTOLUENE	0.13		>= 1000 PPM			>=50 PPM		
D032	HEXACHLOROBENZENE	0.13							
D033	HEXACHLOROBUTADIENE	0.5				WAST	E REGULATED	BY TSCA 40	1
D034	HEXACHLOROETHANE	3.0				CFR 7	61?		
D036	NITROBENZENE	2.0					YES	NO	
D037	PENTACHLOROPHENOL	100.0							
D038	PYRIDINE	5.0							
D041	2,4,5-TRICHLOROPHENOL	400.0							
D042	2,4,6-TRICHLOROPHENOL	2.0							
	PESTICIDES AND HERBICIDE	S							
D012		0.02							
D013		0.4							
D014		10.0							
D014		0.5							
D015	IOXAPHENE	0.5							
D016	2,4-D	10.0							
D017	2,4,5-TP (SILVEX)	1.0							
D020	CHLORDANE	0.03							
D031	HEPTACHLOR (AND ITS EPOXIDE)	0.008							
ADDITIONA DOES THIS	L HAZARDS WASTE HAVE ANY UNDISCLOSED H	IAZARDS OR PRIOR I	NCIDENTS ASS	OCIATED WITH IT, WHICH CO	OULD AFFECT	THE WAY	IT SHOULD B	E HANDLED?	,
YES	NO (If yes, explain)								
CHOOSE A									
DEA R	EGULATED SUBSTANCE	EXPLOSIVE		FUMING		✓ c	SHA REGULAT	ED CARCINO	JGENS
POLYN	/IERIZABLE	RADIOACTIVE		REACTIVE MATER	IAL	N	IONE OF THE A	BOVE	

F. R	EGULAT	ORY STA	AIUS								
~	YES	NC	່ມ	SEPA HAZARDOUS \	NASTE?						
			D	008							
	YES	V NC		D ANY STATE WAST	E CODES AI	PPLY?					
			Τe	xas Waste Code	OUTS301H	I					
	YES	V NC	ם כ	O ANY CANADIAN PI		WASTE CODES APPLY?					
~	YES	NC	L D IS	THIS WASTE PROH		M LAND DISPOSAL WITHOUT FU	RTHER TREATMENT	PER 40 CER PAR	 F 268?		
				LDR CATEGORY:	Alternat	e Soil Std-does not meet std.	(with characterist	ic hazardous wa	ste only)		
				VARIANCE INFO.							
	YES	M NC) IS	THIS A UNIVERSAL	WASTE?						
	YES	NC) IS	THE GENERATOR (OF THE WAS	STE CLASSIFIED AS CONDITIONA	LLY EXEMPT SMALL	QUANTITY GENE	RATOR (CESQG	3)?	
	YES	NC) IS	THIS MATERIAL GO	ING TO BE I	MANAGED AS A RCRA EXEMPT (COMMERCIAL PRODU	JCT, WHICH IS FU	EL (40 CFR 261.)	2 (C)(2)(II))?	
_	YES	V NC	D D	DES TREATMENT O	THIS WAS	TE GENERATE A F006 OR F019 S	LUDGE?				
✓	YES) IS	THIS WASTE STRE	AM SUBJEC	T TO THE INORGANIC METAL BE	ARING WASTE PROF	HIBITION FOUND A	T 40 CFR 268.3((C)?	
	YES	V NC	D D	DES THIS WASTE CO	ONTAIN VOO	C'S IN CONCENTRATIONS >=500	PPM?				
	YES	NC	D D	DES THE WASTE CO	NTAIN GRE	ATER THAN 20% OF ORGANIC C	ONSTITUENTS WITH	A VAPOR PRESS	JRE >= .3KPA (.4	044 PSIA)?	
	YES	V NC	D D	DES THIS WASTE CO	ONTAIN AN (ORGANIC CONSTITUENT WHICH	IN ITS PURE FORM I	HAS A VAPOR PRE	SSURE > 77 KP	PA (11.2 PSIA)?	
	YES	V NC) IS	THIS CERCLA REG	JLATED (SU	IPERFUND) WASTE ?					
	YES	V NC) IS	THE WASTE SUBJE	CT TO ONE	OF THE FOLLOWING NESHAP R	ULES?				
				Hazardous Organi	ic NESHAP (HON) rule (subpart G)	Pharmaceuticals pr	oduction (subpart G	GG)		
	YES	V NC) IF	THIS IS A US EPA H	AZARDOUS	WASTE, DOES THIS WASTE STR	REAM CONTAIN BENZ	ZENE?			
		YES	١	IO Does the wast NESHAP rules	e stream cor s because the	ne from a facility with one of the SIC e original source of the waste is fror	C codes listed under be n a chemical manufact	enzene NESHAP or turing, coke by-prod	is this waste regulated in the second s	ulated under the b petroleum refinery	enzene process?
		YES	٢	IO Is the generati	ng source of	this waste stream a facility with Tot	al Annual Benzene (T	AB) >10 Mg/year?			
		What is	the TA	B quantity for your fa	cility?	Megagram/	year (1 Mg = 2,200 lbs)			
		The bas	is for t	his determination is: ł	Knowledge of	f the Waste Or Test Data		Knowled	dge Test	ling	_
		Describe	e the k	nowledge :							
G. D	OT/TDG	INFORM	ATION								
DOT	/TDG PR	OPER SH	HIPPIN	G NAME:							
	NA30	077, HAZ	ZARD	OUS WASTE, SOI	_ID, N.O.S.	, (SOIL AND LEAD), 9, PG III					
H. EST	TRANSP TIMATED	ORTATIC SHIPME	DN RE NT FR	QUIREMENTS EQUENCY V ONI	ETIME WI	EEKLY MONTHLY QUARTEF	RLY YEARLY O	THER			
		v (CONT	AINERIZED		BULK LIG	QUD		BULK SOLID		
	4-6	CONTAIN	NERS/	SHIPMENT		GALLONS/SHIPMENT: 0 Min -	0 Max GA	L. SHIPMENT U	CM:	TON	YARD
COL	NTAINEF	R TYPE:	r:	10				TONS/YARDS	SHIPMENT: 0	Min - 0 Max	
	CU	BIC YARE	о вох	PALLET							
	TO	TE TANK		V DRUM							
	OTI	HER:		DRUM SIZE: 55				I			

I. SPECIAL REQUEST

COMMENTS OR REQUESTS:

GENERATOR'S CERTIFICATION

I hereby certify that all information submitted in this and attached documents is correct to the best of my knowledge. I also certify that any samples submitted are representative of the actual waste. If Clean Harbors discovers a discrepancy during the approval process, Generator grants Clean Harbors the authority to amend the profile, as Clean Harbors deems necessary, to reflect the discrepancy. DATE AUTHORIZED SIGNATURE NAME (PRINT) TITLE koman@thelakeworthgroup.com This waste profile has been submitted using Clean Harbors' electronic signature system. *40 CFR Sec. 264.12 required notice: As required by Federal Resource Conservation and Recovery Act regulations found in 40 CFR Part 264.12(b) and all equivalent State hazardous waste regulations, notice is hereby provided that all Clean Harbors facilities that may be used to treat, store, and /or dispose of the hazardous waste described on this waste profile have the appropriate permits and the capacity to manage these wastes.

Please note this profile must be submitted for re-evaluation if there has been a change in the waste generating process or when there have been changes in the chemical composition or physical characteristics of the material.

CleanHarbors

Non-Radioactive Profile Addendum

Clean Harbors Deer Trail Facility

General Information

Waste Name NON-Haz; NON-Rad Industrial Wastle
Profile Number: (14497210
Generator Name: 103 Alamas National Laboratory
EPAID: $NM0890010515$
Mailing Address: 999 Contral Ave Suite 300 (Los Alamos Technical Associates
LOS Alamos NM 87544
Site Address: LANL TH-05

Waste Information (Please check yes or no)		
Does the waste exhibit any radioactivity above background?	Yes	No 🗹
Does the waste contain any manmade radioactive material above background even at exempt concentrations?	Yes	No 🗸
Does the waste contain smoke detectors?	Yes	No 🔽
Does the waste contain any Tritium-filled exit signs or instruments?	Yes	No 🔽
Does the waste contain Tritium or Carbon 14 at exempt levels?	Yes	No 🗹
Are any other exempt radioactive materials present?	Yes	No 🔽

If the answer to any of these questions is yes, please list the radioactive materials which are present and their concentrations below.

Process Information	(Please check yes or no)		
Was the waste generated at	a biomedical research facility?	Yes	No 🗹
Was the waste generated at	a medical facility utilizing radioactive materials for patient diagnosis or therapy?	Yes	No 🔽
Was the waste generated at	a nuclear power plant?	Yes	No 🔽

Generators Certification

I Hereby certify that all information submitted in this and attached documents is correct to the best of my knowledge. I also certify that any samples submitted are representative of the actual waste.

Authorized Signature

impor Iman

Name (Print)

Title

Date · 4/18/11

Please Return to: Clean Harbors Deer Trail, LLC, 108555 East Highway 36, Deer Trail, CO 80105 Phone 970-386-2293 Fax 970-386-2262

Non-Radioactive Profile Addendum

Clean Harbors Deer Trail Facility

29955				0.0
Gene	ral	Info	rma	tion
Gen	a a l	шю	пша	uon

normation	1
Waste Name	Elemental Lead
Profile Number:	CH492236
Generator Name:	LOS Alamos National Laboratory
EPA ID:	NM0890010515
Mailing Address:	999 Central Ave. Swife 300 (Los Alamos Technical Associates
_	LOS Alamos, NM 87544
Site Address:	LANL TA-05

Waste Information (Please check yes or no)		1
Does the waste exhibit any radioactivity above background?	Yes	No 🔽
Does the waste contain any manmade radioactive material above background even at exempt concentrations?	Yes	No 🗸
Does the waste contain smoke detectors?	Yes	No 🔽
Does the waste contain any Tritium-filled exit signs or instruments?	Yes	No 🗸
Does the waste contain Tritium or Carbon 14 at exempt levels?	Yes	No 🗸
Are any other exempt radioactive materials present?	Yes	No 🔽

If the answer to any of these questions is yes, please list the radioactive materials which are present and their concentrations below.

Process Information (Please check yes or no)		1
Was the waste generated at a biomedical research facility?	Yes	No 🗹
Was the waste generated at a medical facility utilizing radioactive materials for patient diagnosis or therapy?	Yes	No 🔽
Was the waste generated at a nuclear power plant?	Yes	No 🔽

Generators Certification

I Hereby certify that all information submitted in this and attached documents is correct to the best of my knowledge. I also certify that any samples submitted are representative of the actual waste.

Authorized Signature liman

Name (Print) <u> Fimberly Oman</u>

Sr. Waste Mgt.

Title

3/301

Date

Please Return to: Clean Harbors Deer Trail, LLC, 108555 East Highway 36, Deer Trail, CO 80105 Phone 970-386-2293 Fax 970-386-2262

Non-Radioactive Profile Addendum

Clean Harbors Deer Trail Facility

General Information

mation	
Waste Name	Lead (mpacted. Soll
Profile Number:	CH492232
Generator Name:	Los Alames National Labs
EPA ID:	NM0890010515
Mailing Address:	999 Central Ave. Suite 300 (Los Alamos Technical Associates
	LOSALAMOS, NM 87544
Site Address:	LANL JA-05

Waste Information (Please check yes or no)		
Does the waste exhibit any radioactivity above background?	Yes	No 🗹
Does the waste contain any manmade radioactive material above background even at exempt concentrations?	Yes	No V
Does the waste contain smoke detectors?	Yes	No 🗹
Does the waste contain any Tritium-filled exit signs or instruments?	Yes	No 🗹
Does the waste contain Tritium or Carbon 14 at exempt levels?	Yes	No 🗹
Are any other exempt radioactive materials present?	Yes	No 🗹

If the answer to any of these questions is yes, please list the radioactive materials which are present and their concentrations below.

Michael Mc Naughlen PhD ('HP NORON - to attach omal chom PIDASO 2014

Process Information (Please check yes or no)		
Was the waste generated at a biomedical research facility?	Yes	No 🗹
Was the waste generated at a medical facility utilizing radioactive materials for patient diagnosis or therapy?	Yes	No 🗹 🦯
Was the waste generated at a nuclear power plant?	Yes	No 🗹

Generators Certification

I Hereby certify that all information submitted in this and attached documents is correct to the best of my knowledge. I also certify that any samples submitted are representative of the actual waste.

Authorized Signature UN Imax

Name (Print) Kimberle (

Title <u>Ar. Was</u>te Mel Spitalist

Date

4/121

Please Return to: Clean Harbors Deer Trail, LLC, 108555 East Highway 36, Deer Trail, CO 80105 Phone 970-386-2293 Fax 970-386-2262

Request for Land Application of Drill Cuttings Form

ENV-RCRA must approve any deviation(s) from this request prior to land application.

Date: 4/1/11 Project: LOWER Mortandad / Cedruc (Anylon
Location of Land Application: Within Project Footprint TA: 05 (SWMU05 oct, 5-003)
Estimated Quantity: (cubic feet or tons)
Composition (e.g., 98% tuff and 2% quick gel, etc.): <u>9870 Soil</u> 270 TUFF
Proposed Method of Land Application (describe): (14/10/9 WILL be land applied within profile)
footplint on Drotept access roads or point of alnowhon and
MANDROD LINHON A MANDAGE FORTH O MANDAGE
Covertee with a clayere of touceres.

Note: An EX-ID Permit is required prior to land application.

Decision Tree—Decision Point Evaluation		
The following questions require yes or no answers.	Yes	No
1. D1: Is existing characterization data consistent with WCSF? Attach a summary table of results, validated raw data, etc.		
2. D2: Do drill cuttings contain RCRA Hazardous Waste or Hazard constituents above RCRA limits? If yes:		
Has a Due Diligence been conducted for this waste? Attach a copy of the due diligence documentation.		
Has a No Longer Contained In been approved for this waste? Attach a copy of the No Longer		
Contained In approval.		
3. D6: Do drill cuttings meet the 5 criteria in D6, Attachment 1?	\checkmark	
4. Do drill cuttings meeting the criteria in the Radiological Decision Tree, Attachment 3?		

Generator or Project Leader Certification: I certify that the drill cuttings described in this request meet the criteria for land application per the Decision Tree and that the drill cuttings will be land applied as described.

Name (Print)	Signature	Title	Date
Kent Rich	KA D	Proj Mgr.	4/4/11

ENV-RCRA Review (below):

Does request provide all the required information, and do the drill cuttings meet all the criteria for land application? Yes <u>No</u> Note deficiency in the space provided:

ENV-RCRA Reviewer Name (Print) Socelyn Burkley	Signature Jack Ling Date	4/4/11
	<i></i>	
Package Expiration Date: 0 1 V- 1		

Sampling event ID 3344 SV/MU ev 3344 Stockpile Number ev 3344

Solid Waste Evaluation

Vaste Evaluation page 1 of 5 Summary associated Excel file: ev3344.awd.3.16.2011(1).xism evaluation date: 3/16/2011

RCRA
41 analytes passbetween these38 analytes pass as undetected0 analytes fail
Detects
PCBs: none detected Non-wastewater LDR: 13 pass 0 FAIL 4 analytes with potential F-code Non-wastewater LDR: 13 pass 0 FAIL 5 analytes with potential K-code Hazardous soil LDR: 13 pass 0 FAIL 3 analytes with potential U-code 0 analytes with potential P-code 0 analytes with potential P-code 0 analytes with potential P-code
1 analyte - compound detected in blank
Residential Soil (mg/kg): 22 pass0 FAILIndustrial/ Occupational Soil (mg/kg): 22 pass0 FAILConstruction Worker Soil (mg/kg): 16 pass1 FAILRecreational Soil (mg/kg): 21 pass0 FAILsoil background:20 pass0 FAIL
Canyon Sediment background: 19 pass 1 FAIL Obt 2,3,4 background: 19 pass 1 FAIL Obt 1v background: 18 pass 2 FAIL
Qbt 1g, Qct,Qbo background: 15 pass 5 FAIL
RAD total dose: 0.6223 mRem/year
analysed for H-3 analysed for Pu-239 32 isotopes, 12 were detected 19 undetected
Residen-tial SAL: 4 pass 0 FAIL Indust-rial SAL: 4 pass 0 FAIL
Constr. Worker SAL : 6 pass 0 FAIL Decrete SAL : 6 pass 0 FAIL
Soil: 9 pass 2 FAIL
Canyon Sedi-ment: 9 pass 2 FAIL QBT2,3,4: 9 pass 2 FAIL
Qbt 1g, Qct, Qbo: 11 pass 0 FAIL

Remark: The Evaluator may overwrite any result of automatic evaluation, but a short written explanation must be added Imported data files eV3344.3.16.2011.txt

associated duplicate		
associated blanks	WST05-11-4237	WST05-11-4237
Sample ID	WST05-11-4234	WST05-11-4235

Sampling event ID 3344 SVVMU ev 3344 Stockpile Number ev 3344

Detected Chemicals Form

page 3 of 5 associated Excel file: ev3344.awd.3.16.2011(1).xism evaluation date: 3/16/2011

Analyte Symbol Tation Measure LDR Soit LDR Potential Haz F-codes A 0.0150 mg/kg pass pass pcocol		-ueuu	unit of	Non- wastewater	Hazardous				Potential Haz		
Filt 0.0122 mg/kg pass pass FG022,F034,F035, A 0.779 mg/kg pass pass FG022,F034,F035, B 1.900 mg/kg pass pass FG022,F034,F035, B 1.58 0.779 mg/kg pass pass FG022,F034,F035,F037,F038, B 1.58 0.34 mg/kg pass pass pass FG022,F034,F035,F037,F038, B 1.58 0.37 mg/kg pass pass pass pass B 0.37 mg/kg pass pass pass FG02,F034,F035,F037,F038, B 0.37 mg/kg pass pass pass pass B 0.37 mg/kg pass pass FG02,F034,F035,F037,F038, B 0.37 mg/kg pass pass FG02,F034,F035,F037,F038, B 0.37 mg/kg pass pass FG02,F034,F035,F037,F038, B 0.31 mg/kg	alyte Symbol ti	ration	measure	LDR	Soil LDR	Potential Haz F-codes	Potential Haz K-codes	Potential Haz U-codes	P-codes	comments	
67-64-1 0.0123 mgkg pass pass pass AI 1960 mgkg pass pass pass pass AI 1960 mgkg pass pass pass pass AI 1128 mg/kg pass pass pass pass BE 0.378 mg/kg pass pass pass pass BE 0.377 mg/kg pass pass pass pass BE 0.377 mg/kg pass pass pass pass BE 0.377 mg/kg pass pass pass pass BE 1.0003 pass pass pass pass pass									1.12	F003,U002 codes not	
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	67-64-1	0.0152 n	ng/kg	pass	pass			detected in blank		applicable	
As 0.779 mg/kg pass FG32, F034, F036, Ba 15,8 mg/kg pass pass pass pass Ba 15,8 mg/kg pass pass pass pass Ba 0.378 mg/kg pass pass pass pass Ba 0.378 mg/kg pass pass pass pass Ba 0.378 mg/kg pass pass pass pass Ba 0.071 mg/kg pass pass pass pass Co 0.677 mg/kg pass pass pass pass Co 0.671 mg/kg pass pass pass pass Fe 0.871 mg/kg pass pass pass pass Mg 2.37 mg/kg pass pass pass pass Mg 2.31 mg/kg pass pass pass pass Mg 2.31 mg/kg pass pass pass pass Mg	A	1960 n	ng/kg								
Ea 15.6 mg/kg pass pass pass E 0.54 mg/kg pass pass pass pass E 0.120 mg/kg pass pass pass pass E 0.120 mg/kg pass pass pass pass C 5.37 mg/kg pass pass pass pass C 591-76-6 0.871 mg/kg pass pass pass Mg 437 mg/kg pass pass pass pros, pass Mg 233 mg/kg pass pass pass pass Mg 233 mg/kg pass pass pass pass	AS	0 779 1	a/ka	Dass	Dass	F032 F034 F035	K031,K060,K161,K171,K172,K176,K 084,K101,K102				
65-85-0 0.54 mg/kg pass pass pass Be 0.378 mg/kg pass pass pass pass C 0.378 mg/kg pass pass pass pass C 0.371 mg/kg pass pass pass pass C 0.677 mg/kg pass pass pass pass Pb 8.51 mg/kg pass pass pods, pass pass Mg 2381mg/kg pass pass pods, pass pods, pass Mg 2381mg/kg pass pass pods, pass pods, pass Mg 2381mg/kg pass pass pass pass <	Ba	15.8 m	na/ka	Dass	Dass						
Be 0.378 mg/kg pass pass pass Ca 1120 mg/kg pass pass F032, F034, F035, F037, F038, Ca 1120 mg/kg pass pass F032, F034, F035, F037, F038, Cr 5.37 mg/kg pass pass F032, F034, F035, F037, F038, Co 0.617 mg/kg pass pass F032, F034, F035, F037, F038, Co 0.617 mg/kg pass pass F002, F036, F037, F038, Co 0.617 mg/kg pass pass F005, F037, F036, Fe 0.817 mg/kg pass pass F006, Mg 293 mg/kg pass pass F006, Mg 2033 mg/kg pass pass F006, Mg 283 mg/kg pass pass F006, Mg 283 0.0063 pass pass F006, Mg 314 SU 0.0063 <t< td=""><td>65-85-0</td><td>0.54 n</td><td>na/ka</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></t<>	65-85-0	0.54 n	na/ka								-
Image Image <th< td=""><td>Be</td><td>0.378 n</td><td>ng/kg</td><td>pass</td><td>pass</td><td></td><td></td><td></td><td></td><td></td><td>-</td></th<>	Be	0.378 n	ng/kg	pass	pass						-
alene[2-] 91-58-7 0.073 mgkg pass F032_F034_F035_F037_F038 Cr 5.37 mgkg pass F032_F034_F035_F037_F038 Cu 2.51 mgkg pass F032_F034_F035_F037_F038 1 591-78-6 0.871 mgkg pass F003_F037_F038 1 591-78-6 0.871 mgkg pass F005_F037_F038 1 591-78-6 0.871 mgkg pass F005_F037_F038 1 591-78-6 0.871 mgkg pass F006_F Mg 437 mgkg pass pass F006_F Mg 233 mgkg pass pass F006_F P1 85.744 0.166 pass pass F006_F P1 81.74 914SU pass pass F006_F P1 81.74 0.0633 pass pass F006_F P1 81.74 914SU pass pass F006_F	Ca	1120 n	ng/kg								
Cr 5.37 mg/kg pass pass F032, F033, F035, F037, F036, Co 0.677 mg/kg hex F037, F036, 0.677 mg/kg hex Cu 0.677 mg/kg hex F037, F036, Hex <	alene[2-] 91-58-7	0.073 n	ng/kg	pass	pass			U047,	100		
Co 0 677 mg/kg 0 0 Cu 2.51 mg/kg Fe 6.031 mg/kg Fe 6.031 mg/kg Fe 6.031 mg/kg Pb 8.51 mg/kg Ma 233 mg/kg Min 233 mg/kg	Cr	5.37 n	ng/kg	pass	pass	F032,F034,F035,F037,F038,	K090,				
Cu 25 mg/kg 0.871 mg/kg 0.851 mg/kg 0.851 mg/kg 0.855 F037 F036, 0.871 mg/kg 0.855 mg/kg 0.85 mg/kg 0	Co	0.677 n	ng/kg								_
j 581-78-6 0 871 mgkq i i Fe 6530 mgkq e530 mgkq i i Pb 8.51 mgkq pass F035,F037,F038, i Mg 437 mgkq pass F036,F037,F038, i Mg 233 mgkq pass F036,F037,F038, i Mg 233 mgkq pass F036,F037,F038, i M 1.7 mgkq pass pass F036,F037,F038, L 8.51 mgkq pass pass F036, L 8.4 0.166 mgkq pass F036, L 8.4 0.166 pass pass F036, L 10.4 9.14 SU pass F036, image L 11 0.0063 pass pass F036, image L 11 0.0063 mgkq pass pass pass	Cu	2.5 n	ng/kg								_
Fe 6530 mg/kg pass FD35, F035, F035, F037, F036, Pb 8.51 mg/kg pass FD35, F037, F036, Mg 437 mg/kg pass FD35, F037, F036, Mn 233 mg/kg pass pass Mn 17 mg/kg pass pass Ni 1.7 mg/kg pass pass 2-1 8.74 0.0063 mg/kg pass P 0.0063 mg/kg pass pass P 0.0061 mg/kg pass pass N 11 0.0061 mg/kg pass N 0.0061 mg/kg pass pass <td>591-78-6</td> <td>0.871 n</td> <td>ng/kg</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td>	591-78-6	0.871 n	ng/kg								_
Pb 8.51 mg/kg pass FD035, F037, F038, Min 233 mg/kg pass FD06, Nin 0.063 mg/kg pass FD06, PH 0.166 mg/kg pass FD06, PH 914 8U pass pass FD06, PH 914 8U pass pass pass PD06, V 0.0661 mg/kg pass pass pass PD06, V 0.0661 mg/kg pass pass pass Mun V 0.0661 mg/kg pass pass pass Mun V 0.0661 mg/kg pass pass pass pass pass V 0.0661	e Ł	6530 n	ng/kg								r
Pb 8.51 mg/kg pass F035,F037,F036, Mg 437 mg/kg pass F035,F037,F036, Mg 437 mg/kg pass F036,F037,F036, Mg 137 mg/kg pass F036,F037,F036, Mg 17 mg/kg pass Pass Ni 1.7 mg/kg pass Pass Ni 1.7 mg/kg pass Pass PH 0.0053 mg/kg pass pass PH 9.14 SU 9.14 SU N 1.1 mg/kg pass pass N 1.1 0.0061 pass pass N 1.1 0.0061 pass pass N 0.0061 pass pass <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>K002,K003,K005,K048,K049,K051,K 062,K064,K086,K100,K176,K046,K0</td> <td></td> <td></td> <td></td> <td></td>							K002,K003,K005,K048,K049,K051,K 062,K064,K086,K100,K176,K046,K0				
Mg 437 mg/kg mg/kg mg/kg pass pass <th< td=""><td>Pb</td><td>8.51 n</td><td>ng/kg</td><td>pass</td><td>pass</td><td>F035,F037,F038,</td><td>52,K061,K069,</td><td></td><td></td><td></td><td></td></th<>	Pb	8.51 n	ng/kg	pass	pass	F035,F037,F038,	52,K061,K069,				
Mn 233 mg/kg bess bess pess p	BM	437 n	ng/kg								
Hg 0.0063 mg/kg pass F006 2-1 88.74.4 0.16 mg/kg pass F006 2-1 88.74.4 0.17 mg/kg pass pass 2-1 88.74.4 0.16 pass pass pass 2-1 8.4 0.17 mg/kg pass pass 2-1 8.4 0.0003 mg/kg pass pass 2-1 8.14 9.14 Su 361 mg/kg pass pass 2-3 9.14 9.14 Su 321 mg/kg pass pass pass Na 3.23 mg/kg pass pass <td< td=""><td>Mn</td><td>293 n</td><td>ng/kg</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Mn	293 n	ng/kg								
Ni 17 mg/kg pass F006, 1 88-74.4 0.0156 mg/kg pass F006, 1 CIO4 0.0156 mg/kg pass pass pass PH 9.14 SU 9.14 SU pass pass K 417 mg/kg pass pass pass pass Na 0.331 mg/kg pass pass pass pass Na 0.333 mg/kg pass pass pass pass pass N 1 0.0661 mg/kg pass pass pass pass pass N 1 0.0661 mg/kg pass	BH	0.0063 n	ng/kg	pass	pass		K175,K071,K106,	0.424 , 0.000 (0.000)		1997 - Antonio Antonio (1997), antonio da	_
-] 38-744 0.156 mg/kg pass pass CIO4 0.0003 mg/kg pass pass EH 9.14 Nu 14 Nu pass K 417 mg/kg pass pass K 314 Nu 233 mg/kg pass Ma 323 mg/kg pass pass pass Um Hydrocarbons Trl 0.0661 mg/kg pass pass Um Hydrocarbons TPH-GRO 0.34 mg/kg pass pass Um Hydrocarbons TPH-GRO 0.34 mg/kg pass pass	Z	1.7 n	ng/kg	pass	pass	F006,					
CIO4 0.00053 mg/kg End	-] 88-74-4	0.156 n	ng/kg	pass	pass						-
pH 9.14 SU 9 K 417 mg/kg pass Se 0.33 mg/kg pass Na 3.23 mg/kg pass IT 0.0661 mg/kg pass Na 3.23 mg/kg pass Na 0.0661 mg/kg pass Na 0.0661 mg/kg pass Na 0.0661 mg/kg pass N 11 0.0661 mg/kg N 16,7 mg/kg pass N 19,4 pass N 10,34 mg/kg pass	CI04 C	0.00053 n	ng/kg								_
K 417 mg/kg se 0.385 mg/kg pass se pass pass </td <td>Hq</td> <td>9.14 5</td> <td><u></u></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>	Hq	9.14 5	<u></u>								-
Se 0.385 mg/kg pass pass Na 323 mg/kg pass pass IT 0.0661 mg/kg pass pass um Hydrocarbons TPH-DRO 16.7 mg/kg pass e Organics TPH-GRO 0.34 mg/kg pass ge Org. V 2.54 pass pass	×	417 n	ng/kg								
Na 323 mg/kg Na Ti 0.0661 mg/kg Na um Hydrocarbons TPH-DRO 16.7 mg/kg e Organics TPH-DRO 16.7 mg/kg num Hydrocarbons TPH-GRO 0.34 mg/kg num Hydrocarbons V 2.54 mg/kg nge Org. V 2.54 pass	Se	0.385 n	ng/kg	pass	pass						
Ti 0.0661 mg/kg 1 um Hydrocarbons TPH-DRO 16.7 mg/kg 16.7 e Organics TPH-DRO 16.7 mg/kg 16.7 um Hydrocarbons TPH-GRO 0.34 mg/kg 16.7 age Org. V 2.54 mg/kg 16.5	Na	323 n	ng/kg								
um Hydrocarbons e Organics TPH-DRO 16.7 mg/kg um Hydrocarbons TPH-GRO 0.34 mg/kg nge Org. V 2.54 mg/kg pass pass	Ti	0.0661 n	ng/kg				K178,				-
e Organics TPH-DRO 16.7 mg/kg e Crganics TPH-DRO 0.34 mg/kg bass pass 2.54 mg/kg bass pass	um Hydrocarbons										
um Hydrocarbons nge Org. TPH-GRO 0.34 mg/kg pass pass V 2.54 mg/kg pass	+ Organics TPH-DRO	16.7 n	ng/kg								;
ge Org. TPH-GRO 0.34 mg/kg pass V 2.54 mg/kg pass pass -2, 14 mg/kg pass pass	um Hydrocarbons										
V 2.54 mg/kg pass the pass of	ige Org. TPH-GRO	0.34 n	ng/kg								
	>	2.54 n	ng/kg	pass	pass				1		
	Zn	21.4 n	ng/kg	pass	pass						

check
Background
SSL and I
Chemicals:
Detected (

	CASI	concen-	unit of	Residential	Industrial/ Occupational	Construction Worker Soil	Recreational	soil	Canyon Sediment	Qbt 2,3,4	Qbt 1v	Qbt 1g, Qct,Qbo
Analyte	Symbol	tration	measure	Soil (mg/kg)	Soil (mg/kg)	(mg/kg)	Soil (mg/kg)	background	background	background	background	background
Acetone	67-64-1	0.0152	ma/ka	pass	pass	pass	pass	AN	NA	NA	NA	AA
Aluminum	A	1960	mg/kg	pass	pass	pass	pass	pass	pass	pass	pass	pass
Arsenic	As	0.779	ma/ka	pass	pass	pass	pass	pass	pass	pass	pass	FAIL
Barium	Ba	15.8	mg/kg	pass	pass	pass	pass	pass	pass	pass	pass	pass
Benzoic Acid	65-85-0	0.54	mg/kg	pass	pass	NA	pass	NA	NA	NA	NA	NA
Beryllium	Be	0.378	mg/kg	pass	pass	pass	pass	pass	pass	pass	pass	pass
Calcium	Ca	1120	mg/kg	NA	NA	NA	NA	pass	pass	pass	pass	pass
Chloronaphthalene[2-]	91-58-7	0.073	mg/kg	pass	pass	pass	pass	NA	NA	NA	NA	NA
Chromium	ر ۲	5.37	mg/kg	pass	pass	NA	pass	pass	pass	pass	FAIL	FAIL
Cobalt	ප ප	0.677	mg/kg	pass	pass	pass	pass	pass	pass	pass	pass	pass
Copper	Cu	2.5	mg/kg	pass	pass	pass	pass	pass	pass	pass	pass	pass
Hexanone[2-]	591-78-6	0.871	mg/kg	pass	pass	pass	pass	NA	NA	NA	NA	NA
Iron	Fe	6530	mg/kg	pass	pass	pass	pass	pass	pass	pass	pass	FAIL
Lead	Pb	8.51	mg/kg	pass	pass	pass	pass	pass	pass	pass	pass	pass
Magnesium	Mg	437	mg/kg	NA	NA	NA	NA	pass	pass	pass	pass	pass
Manganese	Mn	293	mg/kg	pass	pass	FAIL	pass	pass	pass	pass	pass	FAIL
Mercury	Hg	0.0063	mg/kg	pass	pass	NA	pass	pass	pass	pass	pass	pass
Nickel	īz	1.7	mg/kg	pass	pass	pass	pass	pass	pass	pass	pass	pass
Nitroaniline[2-]	88-74-4	0.156	mg/kg	pass	pass	NA	NA	NA	NA	NA	NA	NA
Perchlorate	CI04	0.00053	mg/kg	pass	pass	NA	pass	NA	NA	NA	NA	NA
Hd	РН	9.14	su	NA	NA	NA	NA	NA	NA	NA	NA	NA
Potassium	¥	417	mg/kg	NA	NA	NA	NA	pass	pass	pass	pass	pass
Selenium	Se	0.385	mg/kg	pass	pass	pass	pass	pass	FAIL	FAIL	FAIL	FAIL
Sodium	Na	323	mg/kg	NA	NA	NA	NA	pass	pass	pass	pass	pass
Thallium	П	0.0661	mg/kg	pass	pass	pass	pass	pass	pass	pass	pass	pass
Total Petroleum Hydrocarbons Diesel Range Organics	TPH-DRO	16.7	ma/ka	AA	NA	AN AN	AA	AA	NA	NA	NA	AN
Total Petroleum Hvdrocarbons												
Gasoline Range Org.	TPH-GRO	0.34	mg/kg	NA	NA	NA	AN	NA	NA	NA	NA	NA
Vanadium	<u>۷</u>	2.54	mg/kg	pass	pass	pass	pass	pass	pass	pass	pass	pass
Zinc	Zn	21.4	mg/kg	pass	pass	pass	pass	pass	pass	pass	pass	pass

page 3 of 5

3344

SAL and background comparison Excel file: ev3344.awd.3.16.2011(1).xlsm

evaluation date: 3/16/2011

SWMU ev 3344 Stockpile Number ev 3344

Sampling event ID

	Analyte	CAS/ Symbol	concen- tration	unit of measur e	Residen- tial SAL	Indust- rial SAL	Constr. Worker SAL	Recrea- tional SAL	Soil	Canyon Sedi- ment	QBT2, 3,4	QBt 1v	Qbt 1g, Qct, Qbo
	Bismuth-214	Bi-214	1.35	pCi/g				\square	pass	pass	pass	pass	pass
	Lead-212	Pb-212	2.19	pCi/g	/	/			pass	pass	pass	pass	pass
	Lead-214	Pb-214	1.74	pCi/g	//	/	/	/	pass	pass	pass	pass	pass
	Potassium-40	K-40	37.1	pCi/g		/	/		FAIL	FAIL	FAIL	FAIL	pass
	Radium 226/228	calc.	3.55	pCi/g		/	/	/	\smallsetminus	/		\geq	\sim
	Radium-226	Ra-226	1.35	pCi/g	/	/	pass	pass	pass	pass	pass	pass	pass
	Radium-228	Ra-228	2.2	pCi/g	/	\backslash	pass	pass	pass	pass	pass	pass	pass
	Thallium-208	TI-208	0.613	pCi/g		/	/	\sim	pass	pass	pass	pass	pass
NA	Thorium-234	Th-234	2.56	pCi/g		/	/		FAIL	FAIL	FAIL	pass	pass
111	Tritium	H-3	0.02402	pCi/g	pass	pass	pass	pass	pass	pass	pass	pass	pass
	Uranium-234	U-234	0.889	pCi/g	pass	pass	pass	pass	pass	pass	pass	pass	pass
	Uranium-235/236	U-235/236	0.0678	pCi/g	pass	pass	pass	pass	Ϊ	/	/	\leq	\square
	Uranium-238	U-238	1.04	pCi/g	pass	pass	pass	pass	pass	pass	pass	pass	pass
	Americium-241	Am-241	-0.00602	pCi/g	/	/	/		\langle	\square	/	\geq	\square
	Cerium-139	Ce-139	-0.0113	pCi/g			\backslash	\sim	\langle	\langle	/	\leq	
	Cesium-134	Cs-134	0.0875	pCi/g		\sim		\backslash	\backslash		\backslash	\sim	\sum
	Cesium-137	Cs-137	-0.00595	pCi/g		/		$\langle \rangle$	\backslash	\backslash	/	\leq	\sim
	Cobalt-60	Co-60	-0.0356	pCi/g		/			/	\backslash	/	\sim	\square
	Europium-152	Eu-152	-0.0461	pCi/g					/	/	/	\sum	
	Lanthanum-140	La-140	-0.129	pCi/g		/	/	/	/	/	/	\square	\square
	Mercury-203	Hg-203	0.0345	pCi/g		\backslash	$\langle \rangle$		\backslash	\square	/	\sim	
	Plutonium-238	Pu-238	0	pCi/g	//	\square		\backslash	\langle	\square	/	\square	\sim
	Plutonium-239/240	Pu-239/240	0.00388	pCi/g		\sim	$\langle \rangle$	\square	\geq	/	\backslash	\sum	\square
	Radium-223	Ra-223	-0.351	pCi/g			\square		Ζ	\backslash	/	\leq	\square
	Ruthenium-106	Ru-106	-0.109	pCi/g	\backslash	\square			7	\square	/	\leq	\square
	Sodium-22	Na-22	0.00091	pCi/g		\backslash			\langle		\backslash	\sum	\square
	Strontium-90	Sr-90	-0.117	pCi/g		\sim	\square		\smallsetminus	\square		\sim	\square
	Thorium-227	Th-227	0.0387	pCi/g	\square	\sim	\backslash		\square		/	\sim	
	Thorium-231	Th-231	-0.351	pCi/g		\sim	\square			\backslash	/	\square	\square
	Tin-113	Sn-113	-0.00893	pCi/g		\square	\sim		\sim	\sim	\geq	\sum	\sum
	Uranium-235	U-235	0.235	pCi/g	\square	\sim	\sim	\square	\sim	\sim	\sim	\sum	\sim
	Yttrium-88	Y-88	0.0165	pCi/a		\sim	\backslash		\smallsetminus	\sim	\sim	\sim	\sim

K40 37.1 - 36.8 = 0.3 2 1200 OK to land apply

PRS Number: May	SWMU 05-004 2010	
Source of contaminants:	Yes	No
F-listed		Х
U- or P-listed		Х
K-listed		Х
PRS De	scription	

SWMU 05-004 is a former septic tank (structure 05-13), associated lines, and outfall that received industrial waste from a laboratory (Building 05-1) from 1948 to 1959. Historical information determined that the tank was free of radiation and HE contamination, but noted that it contained unspecified toxic chemicals. No evidence of radioactively contaminated soil was detected when the tank was removed in 1960. As-built drawings show the presence of a discharge line running from Building 05-1 and discharging south into Cañada del Buey. Notes taken during a 1988 radiation survey show evidence of an outfall near the former location of structure 05-13. Building 05-1 was removed during LASCP activities conducted in 1985. At that time, the building was determined to be free of radioactive and HE contamination. The 1985 LASCP investigation confirmed removal of the tank and piping by excavation, and no evidence of radioactively contaminated soil was detected at that time. A 1988 survey detected slightly above-background gamma activity. The potential contaminants at the site include radionuclides, VOCs, SVOCs, inorganic chemicals, and HE.

	Documents Reviewed		
Document Date	Title	LAUR No.	ERId No.
1/1/2010	Investigation Work Plan for Lower Mortandad/Cedro Canyons Aggregate Area, Revision 1	<u>10-0048</u>	<u>108290</u>
10/1/2009	Investigation Work Plan for Lower Mortandad/Cedro Canyons Aggregate Area [IWP]	09-6567	107103
10/1/2009	Historical Investigation Report for Lower Mortandad/Cedro Canyons Aggregate Area [HIR]	09-6566	107102
5/18/1992	RFI Work Plan for Operable Unit 1129	92-0800	007666

Summary of Listed Status

According to the October 2009 Investigation Work Plan (ERID 107102), no metals were detected above BG or had detection limits above background during the 1995 RFI, and the only organic detected was benzoic acid. Decision level data from the 1988 RFI show no metals detected above background during the 1988 sampling. Mercury had a detection limit above BV is 3 samples and selenium had detection limits above background in two samples.

According to the Historical Investigation Report (October 2009 ERID 107102), it is unknown what chemicals were discharged to the septic tank from building 05-1. No listed sources of the contaminants identified in previous investigations were identified, nor were any F, K-, P-, or U-listed sources identified in the documents reviewed for this SWMU.

PRS Number: 05-003 May 2010							
Source of contaminants:	Yes No						
F-listed	X						
U- or P-listed	X						
K-listed	X						
PRS De	scription						

SWMU 05-003 (structure 05-20) is a former calibration chamber. The construction of the 10-ft x 10-ft chamber was completed in 1960, and was used to calibrate neutron detector systems for experiments at TA-49. No engineering drawings of the facility have been located. Approximate dimensions and layout of the facility have been obtained through conversations with people who worked on the project and personal logs. The facility consisted of a 6-ft-diameter, 35-ft-deep shaft with an approximately 10-ft cubical room located to the west, at the base of the shaft. The shaft and room were connected by an 8ft-tall, 7-ft-long tunnel. The connecting tunnel may have had a downward slope toward the room. A second 24-in.-diameter shaft extended from the center of the room to the surface. The shafts were separated by 15 ft (center to center). The smaller shaft was lined with 16-in.-diameter casing and capped with concrete. The floor of the tunnel and chamber may have been covered with wood planking. The neutron source used in the calibration facility was a critical assembly called Godiva. This assembly consisted of highly enriched uranium that was operated in the underground chamber. Borated paraffin and lead bricks were used as shielding. The use of the chamber was discontinued before 1974, and it is not known when the Godiva assembly was removed. However, the Godiva assembly was not present during a 1976 radiological survey of the chamber. The building over the chamber was removed at an unknown date. The concrete shaft is the only original Beta Site structure remaining at TA-05.

Document Date	Title	LAUR No.	ERId No.
1/1/2010	Investigation Work Plan for Lower Mortandad/Cedro Canyons Aggregate Area, Revision 1	<u>10-0048</u>	<u>108290</u>
10/1/2009	Submittal of the Investigation Work Plan and the Historical Investigation Report for Lower Mortandad/Cedro Canyons Aggregate Area [IWP]	<u>09-6567</u>	107103
10/1/2009	Investigation Work Plan and the Historical Investigation Report for Lower Mortandad/Cedro Canyons Aggregate Area [HIR]	09-6566	<u>107102</u>
5/18/1992	RFI Work Plan for Operable Unit 1129	92-0800	007666

Summary of Listed Status

Calibration was the only process identified for this SWMU. Calibration is not a listed source. No F, K-, P-, or U-listed sources were identified in the documentation of the processes occurring at this SWMU.

WASTE MATERIAL PROFILE SHEET

Clean Harbors Profile No. CH444863

A. GENERAL INFORMATION	
GENERATOR EPA ID #/REGISTRATION #	NONEREQUIRED
GENERATOR CODE (Assigned by Clean Harbors)	LO1741
ADDRESS Los Alamos National Laboratory	Bikini Atoll Road
CUSTOMER CODE (Assigned by Clean Harbors)	LO1647
ADDRESS 999 Central Avenue Suite 300	

GENERATOR NAME: CITY Los Alamos

CUSTOMER NAME: CITY Los Alamos Los Alamos National Laboratory STATE/PROVINCE NM ZIP/POSTAL CODE 87544 PHONE: (505) 662-9080 Los Alamos Technical Associates STATE/PROVINCE NM ZIP/POSTAL CODE 87544

B. WASTE DESCRIPTION

WASTE DESCRIPTION: Excavated Environmental Media

PROCESS GENERATING WASTE: Site remediation activities.

IS THIS WASTE CONTAINED IN SMALL PACKAGING CONTAINED WITHIN A LARGER SHIPPING CONTAINER ? No

C. PHYSICAL PROPERTIES (at 25C or 77F)

PHYSICAL STATE ✓ SOLID WITHOUT FREE POWDER MONOLITHIC SOLID LIQUID WITH NO SOLIE LIQUID (SOLID MIXTURE)		NUMBER OF PHASES/LAYERS 1 2 3 TOF % BY VOLUME (Approx.) MID BO	DDLE 0.00 TTOM 0.00	VISCOSITY (If liquid present) 1 - 100 (e.g. Water) 101 - 500 (e.g. Motor Oil) 501 - 10,000 (e.g. Molasses)	COLOR <u>Varies</u>
% FREE LIQUID % SETTLED SOLID % TOTAL SUSPENDE SLUDGE GAS/AEROSOL	d Solid	ODOR NONE MILD STRONG Describe:	BOILING POINT °F (°C) <= 95 (<=35) 95 - 100 (35-38) 101 - 129 (38-54) >= 130 (>54)	> 10,000 MELTING POINT °F (°C) T < 140 (<60) 140-200 (60-93) ✓ > 200 (>93)	OTAL ORGANIC CARBON ✓ <= 1% 1-9% >= 10%
FLASH POINT °F (°C) < 73 (<23) 73 - 100 (23-38) 101 -140 (38-60) 141 -200 (60-93) > 200 (>93)	pH <= 2 2.1 - 6.9 ✓ 7 (Neutral) 7.1 - 12.4 >= 12.5	SPECIFIC GRAVITY < 0.8 (e.g. Gasoline)	ASH < 0.1 ⇒ 0.1 - 1.0 ✓ U 1.1 - 5.0 5.1 - 20.0	> 20 Jnknown Jnhorrown Jnhorrown Jnhorrown Jnhorrown Jnhorrown Jnhorrown Jnhorrown Jnhorrown Jnhorrown Jnhorrown Jnhorown Jnhorrown Jnhorrown Jnhorrown Jnhorrown Jnhorrown Jnhorrown	;) 4.6-11.6) (11.6-23.2) 3.2)

D. COMPOSITION (List the complete composition of the waste, include any inert components and/or debris. Ranges for individual components are acceptable. If a trade name is used, please supply an MSDS. Please do not use abbreviations.)

CHEMICAL	MIN		MAX	UOM
EXCAVATED SOIL	100.000000	100.000	00000	%
DOES THIS WASTE CONTAIN ANY HEAVY GAUGE METAL DEBRIS OR OTHER LARGE OBJECTS (EX., METAL PLATE OR PIPING LONG, METAL REINFORCED HOSE >12" LONG, METAL WIRE >12" LONG, METAL VALVES, PIPE FITTINGS, CONCRETE REINFOR PIECES OF CONCRETE >3")?	>1/4" THICK OR >12 RCING BAR OR	2" YES	~	NO
If yes, describe, including dimensions:				
DOES THIS WASTE CONTAIN ANY METALS IN POWDERED OR OTHER FINELY DIVIDED FORM?		YES	✓	NO
DOES THIS WASTE CONTAIN OR HAS IT CONTACTED ANY OF THE FOLLOWING; ANIMAL WASTES, HUMAN BLOOD, BLOOD PF FLUIDS, MICROBIOLOGICAL WASTE, PATHOLOGICAL WASTE, HUMAN OR ANIMAL DERIVED SERUMS OR PROTEINS OR ANY POTENTIALLY INFECTIOUS MATERIAL?	RODUCTS, BODY OTHER	YES	~	NO
I acknowledge that this waste material is neither infectious nor does it contain any organism known to be a threat to human health based on my knowledge of the material. Select the answer below that applies:	. This certification is			
The waste was never exposed to potentially infectious material.		YES		NO
Chemical disinfection or some other form of sterilization has been applied to the waste.		YES		NO
I ACKNOWLEDGE THAT THIS PROFILE MEETS THE CLEAN HARBORS BATTERY PACKAGING REQUIREMENTS.		YES		NO
I ACKNOWLEDGE THAT MY FRIABLE ASBESTOS WASTE IS DOUBLE BAGGED AND WETTED.		YES	i	NO
SPECIFY THE SOURCE CODE ASSOCIATED WITH THE WASTE. G19 SPECIFY THE FORM CODE ASSOCIA	ATED WITH THE WA	STE. W301		

E. CONSTITUENTS

Are these values based on testing or knowledge?

Knowledge 🗹 Testing

If constituent concentrations are based on analytical testing, analysis must be provided. Please attach document(s) using the link on the Submit tab.

Please indicate which constituents below apply. Concentrations must be entered when applicable to assist in accurate review and expedited approval of your waste profile. Please note that the total regulated metals and other constituents sections require answers.

RCRA	REGULATED METALS	REGULATORY LEVEL (mg/l)	TCLP mg/l	TOTAL	UOM		CABLE	
D004	ARSENIC	5.0				~		
D005	BARIUM	100.0	0.3000	0.3000000	PPM			
D006	CADMIUM	1.0						
D007	CHROMIUM	5.0						
D008	LEAD	5.0	0.1940	0.1940000	PPM			
D009	MERCURY	0.2	0.0020	0.0020000	PPM			
D010	SELENIUM	1.0						
D011	SILVER	5.0						
	VOLATILE COMPOUNDS			OTHER CONSTITUE	NTS	МАХ	UOM	NOT
D018	BENZENE	0.5						APPLICABLE
D019	CARBON TETRACHLORIDE	0.5		BROMINE				<u>M</u>
D021	CHLOROBENZENE	100.0		CHLORINE				<u>v</u>
D022	CHLOROFORM	6.0		FLUORINE				
D028	1,2-DICHLOROETHANE	0.5		IODINE				<u> </u>
D029	1,1-DICHLOROETHYLENE	0.7		SULFUR				<u> </u>
D035	METHYL ETHYL KETONE	200.0		POTASSIUM		401.0000	PPM	
D039	TETRACHLOROETHYLENE	0.7		SODIUM		92.8000	PPM	
D040	TRICHLOROETHYLENE	0.5		AMMONIA				✓
D043	VINYL CHLORIDE	0.2		CYANIDE AMENABLE				<
	SEMI-VOLATILE COMPOUND)S		CYANIDE REACTIVE				✓
D023	o-CRESOL	200.0		CYANIDE TOTAL				 Image: A second s
D024	m-CRESOL	200.0		SULFIDE REACTIVE				
D025	p-CRESOI	200.0				<u> </u>		<u></u>
D026		200.0		HOCs		PCBs		
D027		75		NONE		NON	Ē	
D027		0.12		< 1000 PPM		< 50	PPM	
D030		0.13		>= 1000 PPM		>=50	PPM	
D032		0.13				IF PCBS A	RE PRESEN	T, IS THE
D033		0.5				WASTE RE	GULATED	BY TSCA 40
D034	HEXACHLOROETHANE	3.0						
D036	NIIROBENZENE	2.0		I		I YE	s 🗸	NO
D037	PENTACHLOROPHENOL	100.0						
D038	PYRIDINE	5.0						
D041	2,4,5-TRICHLOROPHENOL	400.0						
D042	2,4,6-TRICHLOROPHENOL	2.0						
	PESTICIDES AND HERBICID	ES						
D012	ENDRIN	0.02						
D013	LINDANE	0.4						
D014	METHOXYCHLOR	10.0						
D015	TOXAPHENE	0.5						
D016	2,4-D	10.0						
D017	2,4,5-TP (SILVEX)	1.0						
D020	CHLORDANE	0.03						
D031	HEPTACHLOR (AND ITS EPOXID	E) 0.008						
DDITIONA OES THIS	DITIONAL HAZARDS DES THIS WASTE HAVE ANY UNDISCLOSED HAZARDS OR PRIOR INCIDENTS ASSOCIATED WITH IT, WHICH COULD AFFECT THE WAY IT SHOULD BE HANDLED?							
YES	NO (If yes evoluin)			,	_		_	
HOOSE A								
DEA R	EGULATED SUBSTANCE	EXPLOSIVE		FUMING		OSHA	REGULATE	D CARCINOGENS
POLYN	MERIZABLE	RADIOACTIVE		REACTIVE MAT	ERIAL	V NONE	OF THE AE	OVE

A D

С

F. REGULATORY STATUS

YES	✓ NO	USEPA HAZARDOUS WASTE?							
YES	✓ NO	DO ANY STATE WASTE CODES APPLY?							
		Turne Waste Oads							
YES	MO NO	DO ANY CANADIAN PROVINCIAL WASTE CODES APPLY?							
YES	V NO	IS THIS WASTE PROHIBITED FROM LAND DISPOSAL WITHOUT FURTHER TREATMENT PER 40 CFR PART 268?							
		LDR CATEGORY: VARIANCE INFO: Not subject to LDR							
YES	V NO	IS THIS A UNIVERSAL WASTE?							
VES		IS THE GENERATOR OF THE WASTE OLASSIFIED AS CONDITIONALLY EXEMPT SMALL OLIANTITY GENERATOR (CESOG)?							
VEO									
YES	NO	IS THIS MATERIAL GOING TO BE MANAGED AS A RCRA EXEMPT COMMERCIAL PRODUCT, WHICH IS FUEL (40 CFR 261.2 (C)(2)(II))?							
YES	V NO	DOES TREATMENT OF THIS WASTE GENERATE A F006 OR F019 SLUDGE?							
YES	NO	IS THIS WASTE STREAM SUBJECT TO THE INORGANIC METAL BEARING WASTE PROHIBITION FOUND AT 40 CFR 268.3(C)?							
YES	🖌 NO	DOES THIS WASTE CONTAIN VOC'S IN CONCENTRATIONS >=500 PPM?							
YES	NO	DOES THE WASTE CONTAIN GREATER THAN 20% OF ORGANIC CONSTITUENTS WITH A VAPOR PRESSURE >= .3KPA (.044 PSIA)?							
YES	V NO	DOES THIS WASTE CONTAIN AN ORGANIC CONSTITUENT WHICH IN ITS PURE FORM HAS A VAPOR PRESSURE > 77 KPA (11.2 PSIA)?							
YES	V NO	IS THIS CERCLA REGULATED (SUPERFUND) WASTE ?							
YES	🖌 NO	IS THE WASTE SUBJECT TO ONE OF THE FOLLOWING NESHAP RULES?							
		Hazardous Organic NESHAP (HON) rule (subpart G) Pharmaceuticals production (subpart GGG)							
YES	NO	IF THIS IS A US EPA HAZARDOUS WASTE, DOES THIS WASTE STREAM CONTAIN BENZENE?							
	YES	NO Does the waste stream come from a facility with one of the SIC codes listed under benzene NESHAP or is this waste regulated under the benzene NESHAP rules because the original source of the waste is from a chemical manufacturing, coke by-product recovery, or petroleum refinery process?							
	YES	NO Is the generating source of this waste stream a facility with Total Annual Benzene (TAB) >10 Mg/year?							
	What is the	e TAB quantity for your facility? Megagram/year (1 Mg = 2,200 lbs)							
	The basis	for this determination is: Knowledge of the Waste Or Test Data Knowledge Testing							
	Describe tl	ne knowledge :							
	INFORMAT								

DOT/TDG PROPER SHIPPING NAME:

G.

NONE, NON D. O. T. REGULATED, N/A, (SOIL) NONE, NON RCRA HAZARDOUS WASTE SOLIDS, (SOIL CUTTINGS), N/A

ESTIMATED SHIPMENT FREQUENCY ONE TIME	WEEKLY MONTHLY QUARTERLY YEARLY O	THER <u>As needed.</u>
	BULK LIQUID	BULK SOLID
5-5 CONTAINERS/SHIPMENT STORAGE CAPACITY: CONTAINER TYPE: CUBIC YARD BOX PALLET TOTE TANK I DRUM OTHER: DRUM SIZE: 55	GALLONS/SHIPMENT: 0 Min -0 Max GA	IL. SHIPMENT UOM: TON YARD TONS/YARDS/SHIPMENT: 0 Min - 0 Max

I. SPECIAL REQUEST

the material

COMMENTS OR REQUESTS:

As required by Federal Resource Conservation and Recovery Act regulations found in 40 CFR Part 264.12(b) and all equivalent State hazardous waste regulations, notice is hereby provided that all Clean Harbors facilities that may be used to treat, store, and /or dispose of the hazardous waste described on this waste profile have the appropriate permits and the capacity to manage these wastes. Please note this profile must be submitted for re-evaluation if there has been a change in the waste generating process or when there have been changes in the chemical composition or physical characteristics of

Waste Profile Form

For rapid processing, complete all sections in black or blue ink and mail to: Waste Acceptance Group at MS J496. For assistance with completing this form, contact your WMC. Click <u>here</u> for instruction in completing the form.

Contact (if other than given below)

Reference Number

(for Waste Acceptance Group Use Only)

Generator's Z Number Waste Gene	erator's Name (<i>print</i>) WMC's Z		WMC's Z Nu	mber	WMC's Name (<i>print</i>)			Generator's Phone
Generator's Mail Stop Waste Gene	rating Group	Waste Str	eam Technica	l Area	Building	Room		WMC Phone
Waste Accumulation (check only one) PCBs Storage Area Site No: Satellite Accumulation Area Site No: NM Special Waste Site No: Less-than-90-days Storage Area Site No: Rad Staging Area Site No: TSDF Site No: Rad Staging Area Site No:								
Can hazard segregation, elimination, or ma Can any of the materials in the waste streat Has waste minimization been incorporated Can this waste be generated outside a RC Comments:	aterial substitution t am be recycled or re l into procedures or A? Yes (be used? eused? other proce provide com	Yes (pr Yes (pr ess controls? nments)	rovide comn rovide comn Yes No	nents)	comments	3)	
Section 2 – Chemical and Physical Inform Waste Type (check only one) Unused/Unspent Chemical (complete all sections as appropriate) Process Waste/Spent Chemical/Other (complete all sections) Radiological Information Was Waste generated in a RCA? Yes No Non-radioactive Radioactive – Low Level Radioactive – Transuranic Waste Destination (check only one) SWWS (complete Attachment 1) RLWTF (complete Attachment 2) RLWTP (complete Attachment 3) TA-16/HE (complete Attachment 4) NTS (complete Attachment 5) Classification Information Unclassified Classified/Sensitive	Mation Waste Category Inorganic Organic Solvent* Degreaser* Dioxin Electroplating Treated Hazz No-Longer Cr Explosive Pro Infectious/Mee Biological Beryllium Empty Conta Battery (see i Asbestos PCB Source Cor PCB < 50 pp	r (check all t or (check all t ardous Wast ontained-In ocess dical iner (see ins nstructions) iable on-friable icentration m 500 ppm yaste Contar zardous De Solid Waste be below)	that apply) te or Residue structions) minated Soil bris	Waste So Waste So Decon Materi Resea Sched Spill C Sampl Other Waste So Abatel Constr Decon Investi Orpha Remee Repac Unsch House Spill C Usch House	urce (check only or urce A als Processing Proc rch/Development/To uled Maintenance keeping - Routine leanup - Routine ing – Routine Monit (describe below) urce B ment uction/Upgrades ition /Decom gative Derived n/Legacy diation/Restoration king (secondary) eduled Maintenanca keeping (non-routine etroleum Tanks eum Tanks	ne) duction esting oring e e e e)	Waste Mar Gas	trix (check only one) mospheres Pressure mospheres Pressure ed Compressed Gas us ueous nded Solids/Aqueous nded Solids/Non-Aqueous nded Solidified Liquid ed/Solidified Liquid pe (check only one) eneous geneous jelow)

Section 3 – Process and Waste Description Process Description:

Waste Description:

Section 4 – Characteristics							
Ignitability (check only one)	Corrosiv	ity (check	only one)	(pH)	Reactivity (check as many as apply)	Boiling Poi	nt (check only one)
(°F) (°C)	$\Box < 2.0$, (••••••	,,	(1)	RCRA Unstable	(°F)	(°C)
$\Box < 73$ < 22.8	$\Box 2.1 -$	4.0			Water Reactive	□ < 95	< 35
\Box 73 - 99 228 - 372		6.0			Cvanide Bearing	$\square > 95$	> 35
\Box 100 - 139 37.8 - 59.4		9.0 9.0			Sulfide Bearing		2 00
$\Box 140 - 200 = 60.0 - 93.3$		12 /					
		5			Shock Sensitive		
EPA Ignitable Non liquid		J d oorrocivo	to staal				
DOT Elammable Cas			IO SIEEI				ia a h la
		aqueous					icable
	C	haracteriz	ation Met	hod	Concentration of Contamina	nts	
	-			None or	Contaminant present at		
Identify for all contaminants listed.	AK	TCLP	Total	Non-detect	Minimum Maximum		Regulatory Limit
Toxicity Characteristic Metals		-			(10,000 ppm = 1%)		
Arsenic					to	maa	5.0 ppm
Barium					to	ppm	100.0 ppm
Cadmium					to	nnm	1.0 ppm
Chromium (Total)		⊢ ¦ –	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$		to	nnm	5.0 ppm
		<u> </u>			to	ppm	5.0 ppm
Ledu		<u> </u>			10	ppm	5.0 ppm
					10	ррпі	0.2 ppm
Selenium					to	ppm	1.0 ppm
Silver					to	ppm	5.0 ppm
Toxicity Characteristic Organics							
Benzene					to	ppm	0.5 ppm
Carbon Tetrachloride					to	ppm	0.5 ppm
Chlorobenzene					to	ppm	100.0 ppm
Chloroform					to	ppm	6.0 ppm
o – cresol					to	ppm	200.0 ppm
m - cresol					to	ppm	200.0 ppm
p – cresol					to	ppm	200.0 ppm
Cresol – mixed					to	maa	200.0 ppm
1.4-Dichlorobenzene					to	maa	7.5 ppm
1 2-Dichloroethane		⊢ -			to	nnm	0.5 ppm
1 1-Dichloroethylene					to	nnm	0.7 ppm
2 4-Dinitrotoluene					to	nnm	0.13 nnm
Hevachlorobenzene		⊢ ¦ –	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$		to	nnm	0.13 ppm
Hexachlorobutadiona		<u> </u>			to	ppm	0.10 ppm
		⊢ ⊢ ⊢			10	ppm	0.5 ppm
Methyl ethyl ketene	\square	⊢ ⊣ –	<u> </u>		10	ppm	3.0 ppm
					10	ppm	200.0 ppm
Nitrobenzene					to	ppm	2.0 ppm
Pentachlorophenol					to	ppm	100.0 ppm
Pyridine					to	ppm	5.0 ppm
letrachloroethylene					to	ppm	0.7 ppm
Trichloroethylene					to	ppm	0.5 ppm
2,4,5-Trichlorophenol					to	ppm	400.0 ppm
2,4,6-Trichlorophenol					to	ppm	2.0 ppm
Vinyl chloride					to	ppm	0.2 ppm
Herbicides and Pesticides							
Chlordane					to	ppm	0.03 ppm
2.4-D					to	maa	10.0 ppm
Endrin					to	nom	0.02 nnm
Hentachlor (& its enovide)		⊢∺-	\vdash		to	nnm	0.02 ppm 0.008 nnm
		<u> </u>			to	nnm	0.000 ppill
Methowychlor		<u>⊢ </u>	┝ ┝┤		10 to	ppin	0.4 ppili 10.0 ppm
Тохорьоро	⊢ ⊣ –	⊢ ⊢ ⊢	┝ ┝┤	┝┝╧		ppill	10.0 ppm
	<u>⊢ Ц</u>	<u>⊢ </u>	⊢ Ц		10	ppm	0.5 ppm
2,4,5-1 P (SIIVEX)					tO	ppm	1.0 ppm

Section 5 – Additional Constituents and Contaminants

Additional Constituents and Contaminants. Please account for 100% of waste. Range should be given within guidelines of individual constituents. List all other constituents (including inerts) not identified above and attach any applicable analysis. No chemical formula allowed in this field. Continue in Section 3 Additional information as necessary. CAS numbers are needed for all chemical constituents, for material without a CAS number, enter "No CAS Number." Contact Waste Acceptance at 5-4000 for assistance.

CAS No.	Name of constituent	Minimum	Maximum					
		to	%					
		to	%					
		to	%					
		to	%					
		to	%					
		to	%					
		to	/o 					
		to	/o %					
		to	%					
		to	%					
	Total of max, ranges of this section and page 2		in %					
Additional Information (Use additional sheet if necessary.) If additional information is available on the chemical, physical, or radiological character of the waste not covered on this form, provide it below								
Section 6 - Work Control Docume	entation (answer all questions)							
Do the procedures for this proces	ss cover how to manage this waste? Yes No (<i>provide comments</i>)	lition or romoval of wast	a ta/from					
containers?	\square No (provide comments)							
Comments:	— <u> </u>							
Section 7 – Packaging and Storag	ge Control							
Describe how the waste will be packaged in according to the applicable WAC.								
Tamper Indication Devices	Limited use locks with log-in for waste Locked cabinet or building	Other (describe)						
Waste appears to meet WAC	attachment for:							
Waste stream needs exceptio	n/exemption for treatment, storage, or disposal at:							
Waste does not meet the crite [PADWP] for assistance.)	eria for any known TSDF. (DOE approval is required. Contact the office of the Principle	Associate Director for W	eapons Programs					
Waste Generator Certification: this form is correct and that it men regulatory agencies and that ther violations.	Waste Generator Certification: Based on my knowledge of the waste and/or chemical/physical analysis, I certify that the waste characterization information on this form is correct and that it meets the requirements of the applicable waste acceptance criteria. I understand that this information will be made available to regulatory agencies and that there are significant penalties for submitting false information, including the possibility of fines and imprisonment for knowing violations.							
Signature:	Date:	-						
Waste Management Coordinate complete and accurate. I certify, t of the applicable WAC.	or: I have reviewed this form and any associated attachments and the characterization to the best of my knowledge, that the waste characterization information provided by the	information provided app e waste generator meets	bears to be the requirements					
Signature:	Date:	-						

Attachment 4 - LDR and UHC Information
--

Identify category and presence of any constituents listed below (equal to or above limit)							
Non-Wastowator/Wastowa	tor Catagory (chock only one)						
NOII-Wastewater/wastewa			0. 0				
Non Wastewater	Wastewater [as defined by 40 CFR 268.2(f)]	Lab Pack [40 CFR 268.42(c)]	Sign Certification #1				
Notifications and Certifica	tions – Check the applicable boxes						
Generator Requirements							
This shipment contains h	pazardous waste contaminated soil that does not meet	treatment standards	Sign Certification #2				
This shipmont contains I	intracted bazardous dobris to be tracted to 10 CED 260	A 5 treatment standards	(No contification)				
	initiated hazardous dephis to be treated to 40 GFH 200	han	(NO Certification)				
Hazardous wastes (exce	pt soil) meeting treatment standards at point of genera	uon	Sign Certification #3				
Hazardous wastes conta	minated soil meeting treatment standards at point of ge	eneration	Sign Certification #4				
TSDF or Generator Treatm	ent:						
TSDF Treated hazardou	s debris meeting the alternative treatment standards of	40 CFR 268.45	Sign Certification #5				
Generator Treated hazar	rdous debris meeting the alternative treatment standard	Is of 40 CFR 268.45	Sign Certification #6				
Hazardous wastes conta	minated soil treated to 40 CFR 268.49		Sign Certification #7				
Wastes or Residues from	atment standards and UTS	Sign Certification #8					
Wastes or Residues from characteristic hazardous waste treatment not meeting UTS Sign Certification #9							
Other TSDF wastes meet] Other TSDF wastes meeting the more stringent 40 CFR 268.40 treatment standards to be land disposed Sign Certification #10						
Other Generator wastes	meeting the more stringent 40 CFR 268.40 treatment s	standards to be land disposed	Sign Certification #11				
Notification of Underlying Hazardous Constituents							

Notification of Underlying Hazardous Constituents (Check the applicable underlying constituents above the concentration levels for D001 through D043 characteristic wastes only)

□ No Underlying Hazardous Constituents in this waste stream.

Organic Constituents	CASRN ¹	Wastewater Standard (mg/l)	Non Wastewater Standard (mg/kg unless noted otherwise)	Hazardous Soil 10Xs UTS Nonwastewater (mg/kg unless noted otherwise)
Acenaphthylene	208-96-8	0.059	3.4	34
Acenaphthene	83-32-9	0.059	3.4	34
Acetone	67-64-1	0.28	160	1600
Acetonitrile	75-05-8	5.6	38	380
Acetophenone	96-86-2	0.010	9.7	97
2-Acetylaminofluorene	53-96-3	0.059	140	1400
Acrolein	107-02-8	0.29	NA	NA
Acrylamide	79-06-1	19	23	230
Acrylonitrile	107-13-1	0.24	84	840
Aldicarb sulfone	1646-88-4	0.056	0.28	2.8
Aldrin	309-00-2	0.021	0.066	0.66
4-Aminobiphenyl	92-67-1	0.13	NA	NA
Aniline	62-53-3	0.81	14	140
o-Anisidine (2-methoxyaniline)	90-04-0	0.010	0.66	6.6
Anthracene	120-12-7	0.059	3.4	34
Aramite	140-57-8	0.36	NA	NA
alpha-BHC	319-84-6	0.00014	0.066	0.66
beta-BHC	319-85-7	0.00014	0.066	0.66
delta-BHC	319-86-8	0.023	0.066	0.66
gamma-BHC	58-89-9	0.0017	0.066	0.66
Barban	101-27-9	0.056	1.4	14
Bendiocarb	22781-23-3	0.056	1.4	14
Benomyl	17804-35-2	0.056	1.4	14
Benzene	71-43-2	0.14	10	100
Benz(a)anthracene	56-55-3	0.059	3.4	34
Benzal chloride	98-87-3	0.055	6.0	60
Benzo(b)fluoranthene	205-99-2	0.11	6.8	68
Benzo(k)fluoranthene	207-08-9	0.11	6.8	68

	Organic Constituents		Wastewater Standard	Non Wastewater Standard	Hazardous Soil 10Xs UTS Nonwastewater (mg/kg unless noted otherwise)
	Benzo(a.h.l)pervlene	191-24-2	0.0055	1.8	18
	Benzo(a)pyrene	50-32-8	0.061	3.4	34
	Bromodichloromethane	75-27-4	0.35	15	150
	Bromomethane (Methyl bromide)	74-83-9	0.11	15	150
	4-Bromophenyl phenyl ether	101-55-3	0.055	15	150
Ē	n-Butyl alcohol	71-36-3	5.6	2.6	26
	Butylate	2008-41-5	0.042	1.4	14
Ē	Butyl benzyl phthalate	85-68-7	0.017	28	280
	2-sec-Butyl-4,6-dinitrophenol (Dinoseb)	88-85-7	0.066	2.5	25
	Carbaryl	63-25-2	0.006	0.14	1.4
	Carbenzadim	10605-21-7	0.056	1.4	14
	Carbofuran	1563-66-2	0.006	0.14	1.4
	Carbofuran phenol	1563-38-8	0.056	1.4	14
	Carbon disulfide	75-15-0	3.8	4.8 mg/l TCLP	48 mg/I TCLP
	Carbon tertachloride	56-23-5	0.057	6.0	60
	Carbosulfan	55285-14-8	0.028	1.4	14
	Chlordane (alpha & gamma isomers)	57-74-9	0.0033	0.26	2.6
	p-Chloroaniline	106-47-8	0.46	16	160
	Chlorobenzene	108-90-7	0.057	6.0	60
	Chlorobenzilate	510-15-6	0.10	NA	NA
	2-Chloro-1,3-butadiene	126-99-8	0.057	0.28	2.8
	Chlorodibromomethane	124-48-1	0.057	15	150
	Chloroethane	75-00-3	0.27	6.0	60
	bis(2-Chloroethoxy) methane	111-91-1	0.036	7.2	72
	bis(2-Chloroethyl) ether	111-44-4	0.033	6.0	60
	Chloroform	67-66-3	0.046	6.0	60
	bis(2-Chloroisopropyl) ether	108-60-1	0.055	7.2	72
	p-Chloro-m-cresol	59-50-7	0.018	14	140
	2-Chloroethyl vinyl ether	110-75-8	0.062	NA	NA
	Chloromethane (Methyl chloride)	74-87-3	0.19	30	300
	2-Chloronaphthalene	91-58-7	0.055	5.6	56
	2-Chlorophenol	95-57-8	0.044	5.7	57
	3-Chloropropylene	107-05-1	0.036	30	300
	Chrysene	218-01-9	0.059	3.4	34
	p-Cresidine	120-71-8	0.010	0.66	6.6
	o-Cresol	95-48-7	0.11	5.6	56
	m-Cresol	108-39-4	0.77	5.6	56
	p-Cresol	106-44-5	0.77	5.6	56
	m-Cumenyl methylcarbamate	64-00-6	0.056	1.4	14
	Cyclohexanone	108-94-1	0.36	0.75 mg/l TCLP	7.5 mg/l TCLP
	o,p'-ddd	53-19-0	0.023	0.087	0.87
	p,p'-ddd	72-54-8	0.023	0.087	0.87
	o,p'-dde	3424-82-6	0.031	0.087	0.87
	p,p'-dde	72-55-9	0.031	0.087	0.87
	o,p'-ddt	789-02-6	0.0039	0.087	0.87
	p,p'-ddt	50-29-3	0.0039	0.087	0.87
	Dibenz(a,h)anthracene	53-70-3	0.055	8.2	82
	Dibenz(a,e)pyrene	192-65-4	0.061	NA	NA

Organic Constituents	CASRN ¹	Wastewater Standard (mg/l)	Non Wastewater Standard (mg/kg unless noted otherwise)	Hazardous Soil 10Xs UTS Nonwastewater (mg/kg unless noted otherwise)
1,2-Dibromo-3-chloropropane	96-12-8	0.11	15	150
1,2-Dibromoethane (Ethylene dibromide)	106-93-4	0.028	15	150
Dibromomethane	74-95-3	0.11	15	150
m-Dichlorobenzene	541-73-1	0.036	6.0	60
o-Dichlorobenzene	95-50-1	0.088	6.0	60
p-Dichlorobenzene	106-46-7	0.090	6.0	60
Dichlorodifluoromethane	75-71-8	0.23	7.2	72
1,1-Dichloroethane	75-34-3	0.059	6.0	60
1,2-Dichloroethane	107-06-2	0.21	6.0	60
1,1-Dichloroethylene	75-35-4	0.025	6.0	60
trans-1,2-Dichloroethylene	156-60-5	0.054	30	300
2,4-Dichlorophenol	120-83-2	0.044	14	140
2,6-Dichlorophenol	87-65-0	0.044	14	140
2,4-Dichlorophenoxyacetic acid (2,4-D)	94-75-7	0.72	10	100
1,2-Dichloropropane	78-87-5	0.85	18	180
cis-1,3-Dichloropropylene	10061-01-5	0.036	18	180
trans-1,3-Dichloropropylene	10061-02-6	0.036	18	180
Dieldrin	60-57-1	0.017	0.13	1.3
Diethyl phthalate	84-66-2	0.20	28	280
p-Dimethylaminoazobenzene	60-11-7	0.13	NA	NA
2,4-Dimethylaniline (2,4-xylidine)	95-68-1	0.010	0.66	6.6
2,4-Dimethyl phenol	105-67-9	0.036	14	140
Dimethyl phthalate	131-11-3	0.047	28	280
Di-n-butyl phthalate	84-74-2	0.057	28	280
1,4-Dinitrobenzene	100-25-4	0.32	2.3	23
4,6-Dinitro-o-cresol	534-52-1	0.28	160	1600
2,4-Dinitrophenol	51-28-5	0.12	160	1600
2,4-Dinitrotoluene	121-14-2	0.32	140	1400
2,6-Dinitrotoluene	606-20-2	0.55	28	280
Di-n-octyl phthalate	117-84-0	0.017	28	280
Di-n-propylnitrosamine	621-64-7	0.40	14	140
1,4-Dioxane	123-91-1	12.0	170	1700
Diphenylamine	122-39-4	0.92	13	130
DiphenyInitrosamine	86-30-6	0.92	13	130
1,2-Diphenylhydrazine	122-66-7	0.087	NA	NA
Disulfoton	298-04-4	0.017	6.2	62
Dithiocarbamates (total)	NA	0.028	28	280
Endosulfan I	959-98-8	0.023	0.066	0.66
Endosulfan II	33213-65-9	0.029	0.13	1.3
Endosulfan sulfate	1031-07-8	0.029	0.13	1.3
Endrin	72-20-8	0.0028	0.13	1.3
Endrin aldehyde	7421-93-4	0.025	0.13	1.3
EPTC	759-94-4	0.042	1.4	14
Ethyl acetate	141-78-6	0.34	33	330
Ethyl benzene	100-41-4	0.057	10	100
Ethyl cyanide (Propanenitrile)	107-12-0	0.24	360	3600

Organic Constituents	CASRN ¹	Wastewater Standard (mg/l)	Non Wastewater Standard (mg/kg unless noted otherwise)	Hazardous Soil 10Xs UTS Nonwastewater (mg/kg unless noted otherwise)
Ethyl ether	60-29-7	0.12	160	1600
bis(2-Ethylhexyl)phthalate	117-81-7	0.28	28	280
Ethyl methacrylate	97-63-2	0.14	160	1600
Ethylene oxide	75-21-8	0.12	NA	NA
Famphur	52-85-7	0.017	15	150
Fluoranthene	206-44-0	0.068	3.4	34
Fluorene	86-73-7	0.059	3.4	34
Formetanate hydrochloride	23422-53-9	0.056	1.4	14
Heptachlor	76-44-8	0.0012	0.066	0.66
Heptachlor epoxide	1024-57-3	0.016	0.066	0.66
1,2,3,4,6,7,8-Heptachlorodibenzo-pdioxin	35822-46-9	0.000035	0.0025	0.025
1,2,3,4,6,7,8-Heptachlorodibenzofuran	67562-39-4	0.000035	0.0025	0.025
1,2,3,4,7,8,9-Heptachlorodibenzofuran	55673-89-7	0.000035	0.0025	0.025
Hexachlorobenzene	118-74-1	0.055	10	100
Hexachlorobutadiene	87-68-3	0.055	5.6	56
Hexachlorocyclopentadiene	77-47-4	0.057	2.4	24
Hexachlorodibenzo-p-dioxins (HxCDDs)	NA	0.000063	0.001	0.01
Hexachlorodibenzo-furans (HxCDFs)	NA	0.000063	0.001	0.01
Hexachloroethane	67-72-1	0.055	30	300
Hexachloropropylene	1888-71-7	0.035	30	300
Indeno (1,2,3-c,d) pyrene	193-39-5	0.0055	3.4	34
lodomethane	74-88-4	0.19	65	650
Isobutyl alcohol	78-83-1	5.6	170	1700
Isodrin	465-73-6	0.021	0.066	0.66
Isosafrole	120-58-1	0.081	2.6	26
Kepone	143-50-0	0.0011	0.13	1.3
Methacrylonitrile	126-98-7	0.24	84	840
Methanol	67-56-1	5.6	0.75 mg/l TCLP	7.5 mg/I TCLP
Methapyrilene	91-80-5	0.081	1.5	15
Methiocarb	2032-65-7	0.056	1.4	14
Methomyl	16752-77-5	0.028	0.14	1.4
Methoxychlor	72-43-5	0.25	0.18	1.8
3-Methylchlolanthrene	56-49-5	0.0055	15	150
4,4-Methylene bis(2-chloroaniline)	101-14-4	0.50	30	300
Methylene chloride	75-09-2	0.089	30	300
Methyl ethyl ketone	78-93-3	0.28	36	360
Methyl isobutyl ketone	108-10-1	0.14	33	330
Methyl methacrylate	80-62-6	0.14	160	1600
Methyl methansulfonate	66-27-3	0.018	NA	NA
Methyl parathion	298-00-0	0.014	4.6	46
Metolcarb	1129-41-5	0.056	1.4	14
Mexacarbate	315-18-4	0.056	1.4	14
Molinate	2212-67-1	0.042	1.4	14
Naphthalene	91-20-3	0.059	5.6	56
2-Naphthylamine	91-59-8	0.52	NA	NA
o-Nitroaniline	88-74-4	0.27	14	140

Organic Constituents	CASRN ¹	Wastewater Standard (mg/l)	Non Wastewater Standard (mg/kg unless noted otherwise)	Hazardous Soil 10Xs UTS Nonwastewater (mg/kg unless noted otherwise)
p-Nitroaniline	100-01-6	0.028	28	280
Nitrobenzene	98-95-3	0.068	14	140
5-Nitro-o-toluidine	99-55-8	0.32	28	280
o-Nitrophenol	88-75-5	0.028	13	130
p-Nitrophenol	100-02-7	0.12	29	290
N-Nitrosodiethylamine	55-18-5	0.40	28	280
N-Nitrosodimethylamine	62-75-9	0.40	2.3	23
N-Nitroso-di-n-butylamine	924-16-3	0.40	17	170
N-Nitrosomethylethylamine	10595-95-6	0.40	2.3	23
N-Nitrosomorpholine	59-89-2	0.40	2.3	23
N-Nitrosopiperidine	100-75-4	0.013	35	350
N-Nitrosopyrrolidine	930-55-2	0.013	35	350
1,2,3,4,6,7,8,9-Octachlorodibenzo-pdioxin	3268-87-9	0.000063	0.005	0.05
1,2,3,4,6,7,8,9-Octachlorodibenzofuran	39001-02-0	0.000063	0.005	0.05
Oxamyl	23135-22-0	0.056	0.28	2.8
Parathion	56-38-2	0.014	4.6	46
PCBs (total)	1336-36-3	0.10	10	100
Pebulate	1114-71-2	0.042	1.4	14
Pentachlorobenzene	608-93-5	0.055	10	100
Pentachlorodibenzo-p-dioxins (PeCDDs)	NA	0.000063	0.001	0.01
Pentachlorodibenzo-furans (PeCDFs)	NA	0.000035	0.001	0.01
Pentachloroethane	76-01-7	0.055	6.0	60
Pentachloronitrobenzene	82-68-8	0.055	4.8	48
Pentachlorophenol	87-86-5	0.089	7.4	74
Phenacetin	62-44-2	0.081	16	160
Phenanthrene	85-01-8	0.059	5.6	56
Phenol	108-95-2	0.039	6.2	62
1,3-Phenylenediamine	108-45-2	0.01	0.66	6.6
Phorate	298-02-2	0.021	4.6	46
Phthalic acid	100-21-0	0.055	28	280
Phthalic anhydride	85-44-9	0.055	28	280
Physostigmine	57-47-6	0.056	1.4	14
Physostigmine salicylate	57-64-7	0.056	1.4	14
Promecarb	2631-37-0	0.056	1.4	14
Pronamide	23950-58-5	0.093	1.5	15
Propham	122-42-9	0.056	1.4	14
Propoxur	114-26-1	0.056	1.4	14
Prosulfocarb	52888-80-9	0.042	1.4	14
Pyrene	129-00-0	0.067	8.2	82
Pyridine	110-86-1	0.014	16	160
Safrole	94-59-7	0.081	22	220
Silvex (2,4,5-TP)	93-72-1	0.72	7.9	79
1,2,4,5-Tetrachlorobenzene	95-94-3	0.055	14	140
Tetrachlorodibenzo-p-dioxins (TCDDs)	NA	0.000063	0.001	0.01
Tetrachlorodibenzofurans (TCDFs)	NA	0.000063	0.001	0.01
1,1,1,2-Tetrachloroethane	630-20-6	0.057	6.0	60

Organic Constituents	CASRN ¹	Wastewater Standard (mg/l)	Non Wastewater Standard (mg/kg unless noted otherwise)	Hazardous Soil 10Xs UTS Nonwastewater (mg/kg unless noted otherwise)
1,1,2,2-Tetrachloroethane	79-34-5	0.057	6.0	60
Tetrachloroethylene	127-18-4	0.056	6.0	60
2,3,4,6-Tertachlorophenol	58-90-2	0.030	7.4	74
Thiodicarb	59669-26-0	0.019	1.4	14
Thiophanate-methyl	23564-05-8	0.056	1.4	14
Toluene	108-88-3	0.080	10	100
Toxaphene	8001-35-2	0.0095	2.6	26
Triallate	2303-17-5	0.042	1.4	14
Tribromomethane (Bromoform)	75-25-2	0.63	15	150
2,4,6-Tribromophenol	118-79-6	0.035	7.4	74
1,2,4-Trichlorobenzene	120-82-1	0.055	19	190
1,1,1-Trichloroethane	71-55-6	0.054	6.0	60
1,1,2-Trichloroethane	79-00-5	0.054	6.0	60
Trichloroethylene	79-01-6	0.054	6.0	60
Trichloromonofluoromethane	75-69-4	0.020	30	300
2,4,5-Trichlorophenol	95-95-4	0.18	7.4	74
2,4,6-Trichlorophenol	88-06-2	0.035	7.4	74
2,4,5-Trichlorophenoxyacetic acid (2,4,5-T)	93-76-5	0.72	7.9	79
1,2,3-Trichloropropane	96-18-4	0.85	30	300
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	0.057	30	300
Triethylamine	121-44-8	0.081	1.5	15
tris-(2,3-Dibromopropyl) phosphate	126-72-7	0.11	0.10	1.0
Vernolate	1929-77-7	0.042	1.4	14
Vinyl chloride	75-01-4	0.27	6.0	60
Xylenes (total)	1330-20-7	0.32	30	300
Antimony	7440-36-0	1.9	1.15 mg/I TCLP	11.5 mg/I TCLP
Arsenic	7440-38-2	1.4	5.0 mg/l TCLP	50 mg/I TCLP
Barium	7440-39-3	1.2	21 mg/I TCLP	210 mg/I TCLP
Beryllium	7440-41-7	0.82	1.22 mg/l TCLP	12.2 mg/I TCLP
Cadmium	7440-43-9	0.69	0.11 mg/l TCLP	1.1 mg/I TCLP
Chromium (Total)	7440-47-3	2.77	0.60 mg/l TCLP	6.0 mg/I TCLP
Cyanides (Total) ⁴	57-12-5	1.2	590	5900
Cyanides (Amenable) ⁴	57-12-5	0.86	30	300
Fluoride	16984-48-8	35	NA	NA
Lead	7439-92-1	0.69	0.75 mg/l TCLP	7.5 mg/l TCLP
Mercury (Retort residues)	7439-97-6	NA	0.20 mg/l TCLP	2.0 mg/l TCLP
Mercury - All others	7439-97-6	0.15	0.025 mg/I TCLP	0.25 mg/I TCLP
Nickel	7440-02-0	3.98	11 mg/I TCLP	110 mg/I TCLP
Selenium	7782-49-2	0.82	5.7 mg/l TCLP	57 mg/I TCLP
Silver	7440-22-4	0.43	0.14 mg/I TCLP	1.4 mg/l TCLP
Sulfide	18496-25-8	14	NA	NA
Thallium	7440-28-0	1.4	0.20 mg/I TCLP	2.0 mg/l TCLP
Vanadium	7440-62-2	4.3	1.6 mg/l TCLP	16 mg/I TCLP
Zinc ³	7440-66-6	2.61	4.3 mg/I TCLP	43 mg/I TCLP

Non-Radioactive Profile Addendum

Clean Harbors Deer Trail Facility

General Information

Waste Name	Industrial Soil
Profile Number:	CH444863
Generator Name:	Los Alamos National Laboratory
EPA ID:	NM0890010515
Mailing Address:	999 Central Ave. Suite 300 (Los Alamos Technical Associates)
	Los Alamos, NM 87544
Site Address:	LANL TA-05

Waste Information (Please check yes or no)		
Does the waste exhibit any radioactivity above background?	Yes	No 🗸
Does the waste contain any manmade radioactive material above background even at exempt concentrations?	Yes	No 🗸
Does the waste contain smoke detectors?	Yes	No 🗸
Does the waste contain any Tritium-filled exit signs or instruments?	Yes	No 🗸
Does the waste contain Tritium or Carbon 14 at exempt levels?	Yes	No 🗸
Are any other exempt radioactive materials present?	Yes	No 🗸

If the answer to any of these questions is yes, please list the radioactive materials which are present and their concentrations below.

Process Information (Please check yes or no)		
Was the waste generated at a biomedical research facility?	Yes	No 🗸
Was the waste generated at a medical facility utilizing radioactive materials for patient diagnosis or therapy?	Yes	No 🗸
Was the waste generated at a nuclear power plant?	Yes	No 🗸

Generators Certification

I Hereby certify that all information submitted in this and attached documents is correct to the best of my knowledge. I also certify that any samples submitted are representative of the actual waste.

Authorized Signature

uthorized Signature <u>Kimberty Oman</u> <u>Senior Waste</u> management Specialiot

Name (Print)

Title

Date 8/15/1

19.7

Request for Land Application of Drill Cuttings Form

Date: State Project: Location of Land Application: Lot thus Composition (e.g., 9% tuff and 2% quick gel, etc.): COTO Tuff (QBT-3) Propoed Method of Land Application (describe): Cuttings will be Vand Application Note: An EX-ID Permit is required prior to land application. IOX OS 10 - 05 Oxp 10/05/200 Decision Tree—Decision Point Evaluation The following questions require yes or no answers. Yes No 1.D: Is existing characterization data consistent with WCSF? Attach aummary table of results, validated raw data, etc. 2.D: Do drill cuttings contain RCRA Hazardous Waste or Hazard constituents above RCRA Imits? If yes: In a One Diligence been conducted for this waste? Attach a copy of the due diligence documentation. Has a No Longer Contained In been approved for this waste? Attach a copy of the No Longer Contained In approval. 3. D6: Do drill cuttings meet the 5 criteria in D6, Attachment 1? Imits? 4. Do drill cuttings meeting the criteria in the Radiological Decision Tree, Attachment 3? Imits? Generator or Project Leader Certification: 1 Certify that the drill cuttings described. Mary Mary <td <="" colspan="2" th=""><th>ENV-RCRA must approve any deviation(s) from this request prior to la</th><th>nd applicatio</th><th>n.</th></td>	<th>ENV-RCRA must approve any deviation(s) from this request prior to la</th> <th>nd applicatio</th> <th>n.</th>		ENV-RCRA must approve any deviation(s) from this request prior to la	nd applicatio	n.
Location of Land Application: When project featprint TA: 05(SUMUL Estimated Quantity: 14 CF (cubic feet or tons) Composition (e.g., 98% tuff and 2% quick gel, etc.): CCC0 Tuff (QBT-3) Proposed Method of Land Application (describe): Cuthings will be land application application. Note: An EX-ID Permit is required prior to land application. IOX 08 10 - 05 exp 10/05/20 Decision Tree—Decision Point Evaluation The following questions require yes or no answers. Yes No 1.01: Is existing characterization data consistent with WCSF? Attach a summary table of results, validated raw data, etc. 2. D2: Do drill cuttings contain RCRA Hazardous Waste or Hazard constituents above RCRA limits? If yes: Has a No Longer Contained In been approved for this waste? Attach a copy of the No Longer Contained In approval. 3. D6: Do drill cuttings meet the 5 criteria in D6, Attachment 1? 1 4. Do drill cuttings meet the criteria in the Radiological Decision Tree, Attachment 3? 1 ENV-RCRA Review (below): Ontained In the critification: I certify that the drill cuttings will be land applied as described. Myes Myes Myes Myes <	Date: 8 1 1 Project:				
Estimated Quantity:	Location of Land Application: Within Dhorock feetonint TA: 05(SIN	2011			
Composition (e.g., 98% full and 2% quick gel, etc.): ICCTCTuff (QBT-3) Proposed Method of Land Application (describe): Culturgs will be land applied. Proposed Method of Land Application (describe): Culturgs will be land applied. Note: An EX-ID Permit is required prior to land application. IOX 08 10 - 05 exp 10105/200 Decision Tree—Decision Point Evaluation The following questions require yes or no answers. Yes No 1.0X 08 10 - 05 exp 10105/200 Decision Tree—Decision Point Evaluation The following questions require yes or no answers. Yes No 1.0X 08 10 - 05 exp 10105/200 Decision Tree—Decision Point Evaluation The following questions require yes or no answers. Yes No 1.0X 08 10 - 05 exp 10105/200 Decision Tree—Decision Point Evaluation The following questions require yes or no answers. Yes No 1.0X 08 10 - 05 exp 10105/200 Dotill cuttings contain RCRA Hazardous Waste or Hazard c	Estimated Quantity: 14 Cf 3 (cubic feet or tons)				
Proposed Method of Land Application (describe): Liftings Will 10, and application Note: An EX-ID Permit is required prior to land application. IOX 08 10 - 05 application Decision Tree—Decision Point Evaluation The following questions require yes or no answers. Yes No 1. D1: Is existing characterization data consistent with WCSF? Attach a summary table of results, validated raw data, etc. 2. D2: Do drill cuttings contain RCRA Hazardous Waste or Hazard constituents above RCRA limits? If yes: Has a Due Diligence been conducted for this waste? Attach a copy of the due diligence documentation. Has a No Longer Contained In been approved for this waste? Attach a copy of the No Longer Contained In approval. 3. D6: Do drill cuttings meet the 5 criteria in D6, Attachment 1? 4. Do drill cuttings meet the 5 criteria in the Radiological Decision Tree, Attachment 3? Generator or Project Leader Certification: I certify that the drill cuttings described in this request meet the criteria for land application per the Decision Tree and that the drill cuttings will be land applied as described. Mame (Print) Signature Proj. Mgr. 8/2/11 Date ENV-RCRA Review (below): Does request provide all the required information, and do the drill cuttings meet all the criteria for land application?<	Composition (e.g., 98% tuff and 2% quick gel. etc.):	١.			
Note: An EX-ID Permit is required prior to land application. IOX 08 10 - 05 exp 10/05/20 Decision Tree—Decision Point Evaluation The following questions require yes or no answers. Yes No 1. D1: Is existing characterization data consistent with WCSF? Attach a summary table of results, validated raw data, etc. 2. D2: Do drill cuttings contain RCRA Hazardous Waste or Hazard constituents above RCRA limits? If yes: Has a Due Diligence been conducted for this waste? Attach a copy of the due diligence documentation. Image: Contained In been approved for this waste? Attach a copy of the No Longer Contained In approval. 3. D6: Do drill cuttings meet the 5 criteria in D6, Attachment 1? Image: Contained In the Radiological Decision Tree, Attachment 3? 4. Do drill cuttings meet the 5 criteria in the Radiological Decision Tree, Attachment 3? Image: Start	Proposed Method of Land Application (describe): Cuttings will be land ap the the Swhill where they were generated a could Japen of hoad base	plicely	a		
Decision Tree—Decision Point Evaluation The following questions require yes or no answers. Yes No 1. D1: Is existing characterization data consistent with WCSF? Attach a summary table of results, validated raw data, etc. Yes No 2. D2: Do drill cuttings contain RCRA Hazardous Waste or Hazard constituents above RCRA limits? If yes: Image: Contained In RCRA Hazardous Waste or Hazard constituents above RCRA Image: Contained In Been approved for this waste? Attach a copy of the due diligence documentation. Image: Contained In Been approved for this waste? Attach a copy of the No Longer Contained In approval. Image: Contained In Been approved for this waste? Attach a copy of the No Longer Contained In approval. Image: Contained In Been approved for this waste? Attach a copy of the No Longer Contained In approval. Image: Contained In Been approved for this waste? Attach a copy of the No Longer Contained In approval. 3. D6: Do drill cuttings meet the 5 criteria in D6, Attachment 1? Image: Contained In Been approved for the Radiological Decision Tree, Attachment 3? Image: Contained In Been approved for the requires will be land applied as described. Mame (Print) Signature True Image: Contained In Been application Project Leader Certification: I certify that the drill cuttings described. B/2/4/1 Name (Print) Signature True Date ENV-RCRA Review (below): Date Note deficiency in the spa	Note: An EX-ID Permit is required prior to land application. $1000810 - 05$	exp 1	0/05/2011		
The following questions require yes or no answers. Yes No 1. D1: Is existing characterization data consistent with WCSF? Attach a summary table of results, validated raw data, etc. Image: Constant of the summary table of results, validated raw data, etc. 2. D2: Do drill cuttings contain RCRA Hazardous Waste or Hazard constituents above RCRA limits? If yes: Image: Contained In RCRA Hazardous Waste or Hazard constituents above RCRA limits? If yes: Has a Due Diligence been conducted for this waste? Attach a copy of the due diligence documentation. Image: Contained In been approved for this waste? Attach a copy of the No Longer Contained In approval. 3. D6: Do drill cuttings meet the 5 criteria in D6, Attachment 1? Image: Contained In approval. 4. Do drill cuttings meet the 5 criteria in the Radiological Decision Tree, Attachment 3? Image: Contained In the criteria in the Radiological Decision Tree, Attachment 3? Generator or Project Leader Certification: I certify that the drill cuttings described in this request meet the criteria for land application per the Decision Tree and that the drill cuttings will be land applied as described. Image: Contained In Date Mame (Print) Signature Title Date ENV-RCRA Review (below): Does request provide all the required information, and do the drill cuttings meet all the criteria for land application? Yes No	Decision Tree —Decision Point Evaluation				
1. D1: Is existing characterization data consistent with WCSF? Attach a summary table of results, validated raw data, etc. 2. D2: Do drill cuttings contain RCRA Hazardous Waste or Hazard constituents above RCRA limits? If yes: Has a Due Diligence been conducted for this waste? Attach a copy of the due diligence documentation. Has a No Longer Contained In been approved for this waste? Attach a copy of the No Longer Contained In approval. 3. D6: Do drill cuttings meet the 5 criteria in D6, Attachment 1? 4. Do drill cuttings meeting the criteria in the Radiological Decision Tree, Attachment 3? Generator or Project Leader Certification: I certify that the drill cuttings described in this request meet the criteria for land application per the Decision Tree and that the drill cuttings will be land applied as described. Hammer (Print) Signature ENV-RCRA Review (below): Does request provide all the required information, and do the drill cuttings meet all the criteria for land application? Yes Note deficiency in the space provided:	The following questions require yes or no answers.	Ves	No		
a summary table of results, validated raw data, etc. 2. D2: Do drill cuttings contain RCRA Hazardous Waste or Hazard constituents above RCRA limits? If yes: Has a Due Diligence been conducted for this waste? Attach a copy of the due diligence documentation. Has a No Longer Contained In been approved for this waste? Attach a copy of the No Longer Contained In approval. 3. D6: Do drill cuttings meet the 5 criteria in D6, Attachment 1? 4. Do drill cuttings meeting the criteria in the Radiological Decision Tree, Attachment 3? Generator or Project Leader Certification: I certify that the drill cuttings described in this request meet the criteria for land application per the Decision Tree and that the drill cuttings will be land applied as described. Kart R. M. Review (below): Does request provide all the required information, and do the drill cuttings meet all the criteria for land application? Yes NoNote deficiency in the space provided:	1. D1: Is existing characterization data consistent with WCSF? Attach	103	NO		
 2. D2: Do drill cuttings contain RCRA Hazardous Waste or Hazard constituents above RCRA limits? If yes: Has a Due Diligence been conducted for this waste? Attach a copy of the due diligence documentation. Has a No Longer Contained In been approved for this waste? Attach a copy of the No Longer Contained In approval. 3. D6: Do drill cuttings meet the 5 criteria in D6, Attachment 1? 4. Do drill cuttings meeting the criteria in the Radiological Decision Tree, Attachment 3? Generator or Project Leader Certification: I certify that the drill cuttings described in this request meet the criteria for land application per the Decision Tree and that the drill cuttings will be land applied as described. Watch RCRA Review (below): Does request provide all the required information, and do the drill cuttings meet all the criteria for land application? Yes No	a summary table of results, validated raw data, etc.	14			
Has a Due Diligence been conducted for this waste? Attach a copy of the due diligence documentation. Has a No Longer Contained In been approved for this waste? Attach a copy of the No Longer Contained In approval. 3. D6: Do drill cuttings meet the 5 criteria in D6, Attachment 1? 4. Do drill cuttings meeting the criteria in the Radiological Decision Tree, Attachment 3? Generator or Project Leader Certification: I certify that the drill cuttings described in this request meet the criteria for land application per the Decision Tree and that the drill cuttings will be land applied as described. Hamme (Print) Signature ENV-RCRA Review (below): Does request provide all the required information, and do the drill cuttings meet all the criteria for land application? Yes Note deficiency in the space provided:	2. D2: Do drill cuttings contain RCRA Hazardous Waste or Hazard constituents above RCRA limits? If yes:	٦	T		
Has a No Longer Contained In been approved for this waste? Attach a copy of the No Longer Contained In approval. 3. D6: Do drill cuttings meet the 5 criteria in D6, Attachment 1? 4. Do drill cuttings meeting the criteria in the Radiological Decision Tree, Attachment 3? Generator or Project Leader Certification: I certify that the drill cuttings described in this request meet the criteria for land application per the Decision Tree and that the drill cuttings will be land applied as described. A. H.	Has a Due Diligence been conducted for this waste? Attach a copy of the due diligence documentation.	-	Γ		
Contained In approval. 3. D6: Do drill cuttings meet the 5 criteria in D6, Attachment 1? 4. Do drill cuttings meeting the criteria in the Radiological Decision Tree, Attachment 3? Generator or Project Leader Certification: I certify that the drill cuttings described in this request meet the criteria for land application per the Decision Tree and that the drill cuttings will be land applied as described. Kant Radiological Decision Tree and that the drill cuttings will be land applied as described. Mame (Print) Signature Proj Mgr. $3/2/11$ Date ENV-RCRA Review (below): Does request provide all the required information, and do the drill cuttings meet all the criteria for land application? Yes No	Has a No Longer Contained In been approved for this waste? Attach a copy of the No Longer				
3. D6: Do drill cuttings meet the 5 criteria in D6, Attachment 1? 4. Do drill cuttings meeting the criteria in the Radiological Decision Tree, Attachment 3? Generator or Project Leader Certification: I certify that the drill cuttings described in this request meet the criteria for land application per the Decision Tree and that the drill cuttings will be land applied as described. Kent Rich Name (Print) Roj Mgr. 8/2/11 Date Decision Tree and that the drill cuttings meet all the criteria for land application? No Note deficiency in the space provided:	Contained In approval.		[]		
4. Do drill cuttings meeting the criteria in the Radiological Decision Tree, Attachment 3? Generator or Project Leader Certification: I certify that the drill cuttings described in this request meet the criteria for land application per the Decision Tree and that the drill cuttings will be land applied as described. Kent R. R. Review (below): Does request provide all the required information, and do the drill cuttings meet all the criteria for land application? Yes No Note deficiency in the space provided:	3. D6: Do drill cuttings meet the 5 criteria in D6, Attachment 1?				
Generator or Project Leader Certification: I certify that the drill cuttings described in this request meet the criteria for land application per the Decision Tree and that the drill cuttings will be land applied as described. Kart Review Roj Mgr. 8/2/1/ Name (Print) Signature Title B/2/1/ Does request provide all the required information, and do the drill cuttings meet all the criteria for land application? Note deficiency in the space provided:	4. Do drill cuttings meeting the criteria in the Radiological Decision Tree, Attachment 3?				
Name (Print) Signature Troj Mgr. 8/2/1/ Signature Title Date ENV-RCRA Review (below): Does request provide all the required information, and do the drill cuttings meet all the criteria for land application? Yes No Note deficiency in the space provided:	Generator or Project Leader Certification: I certify that the drill cuttings described in this requarplication per the Decision Tree and that the drill cuttings will be land applied as described.	est meet the cr	iteria for land		
ENV-RCRA Review (below): Does request provide all the required information, and do the drill cuttings meet all the criteria for land application? YesNo Note deficiency in the space provided:	Name (Print) Signature Title	<u> </u>			
ENV-RCRA Review (below): Does request provide all the required information, and do the drill cuttings meet all the criteria for land application? Yes <u>No</u> Note deficiency in the space provided:			vate		
Does request provide all the required information, and do the drill cuttings meet all the criteria for land application? Yes No Note deficiency in the space provided:	ENV-RCRA Review (below):				
	Does request provide all the required information, and do the drill cuttings meet all the criteria f Yes No Note deficiency in the space provided:	or land application	ation?		
ENV-RCRA Reviewer Name (Print) Jore Jon Sutter Signature Jel 200 Date 8 2/11	ENV-RCRA Reviewer Name (Print) Jock Jon Signature Sel	Der Dat	e_8 2/11		

Package Expiration Date:_____

Water	Quality	and	RCRA	Group
Los Alam	os Nationa	I Labo	oratory	

Post Land Application Field Certification Sheet

Date(s) of land application:	Project:	
Location of land application:		TA: 05
EX-ID Number: 10 X 0810-05	EX-ID Expiration Date:	10/05/2011
Please explain any deviations from original application	ion (Attachment 2) in the spa	ce provided:
Note: ENV-RCRA must approve any deviations fro	m Attachment 2 prior to land	application.

Generator or Project Leader Certification (below):

I certify that

- land application complied with the requirements of this procedure (ENV-RCRA-SOP-011.1),
- no free liquids were applied during land application,
- an inspection was conducted to ensure the requirements in Attachment 2 of this procedure was met, and
- the land application of drill cuttings complied with the excavation permit.

Name (Print)

Signature

Title

Date

Sampling event ID 3535 SWMU ev 3535 Stockpile Number ev 3535

Solid Waste Evaluation page 1 or page 1 or Solid Waste Evaluation ssociated Excel file: ev3535.awd.7.26.2011(1).xis evaluation date: 7/26/2011

RCRA	
41 analytes pass41 analytes pass as undetected36 analytes pass as undetected0 analytes fail	
Detects	
PCBs: none detected analytes with potential F-code analytes with potential K-code analytes with potential U-code analytes with potential P-code	0 Non-wastewater LDR: 10 pass 0 FAIL Hazardous soil LDR: 10 pass 0 FAIL
	:
Residential Soil (mg/kg) : 19 Industrial/ Occupational Soil (mg/kg) : 19 Construction Worker Soil (ma/kg) : 16	pass 0 FAIL pass 0 FAIL pass 1 FAIL
Recreational Soil (mg/kg) : 19	pass 0 FAIL
Canyon Sediment background: 17	pass of FAIL
Qbt 2,3,4 background: 17 Qbt 1v background: 15 Qbt 1g, Qct,Qbo background: 12	pass 0 FAIL pass 2 FAIL pass 5 FAIL
RAD total dose: 0	0.0110 mRem/year
2	
analysed for H-3 analysed for Pu-239 20 isofores	8 were detected
	12 undetected
Residen-tial SAL: 2 pass 0 F	AIL
Indust-rial SAL: 2 pass 0 F	AIL
Constr. Worker SAL: 2 pass	AIL
	AIL
Canyon Sedi-ment: 7 pass 0 F	AIL
QBT2,3,4: 7 pass 0 F	AIL
QBt 1v: 7 pass 0 F	AIL
Qbt 1g, Qct, Qbo: 7 pass 0 F	AIL
Remark: The Evaluator may overwrite any result of	automatic evaluation,
but a short written explanation must be ad	Ided
Imported data files ev3535.7.26.2011.txt

Sampling event ID 3535 SVMMU ev 3535 Stockpile Number ev 3535

Detected Chemicals Form

page 3 of 5 associated Excel file: ev3535.awd.7.26.2011(1).xls evaluation date: 7/26/2011

Analyte	CAS/ Symbol	concen- tration	unit of measure	Non- wastewater LDR	Hazardous Soil LDR	Potential Haz F-codes	Potential Haz K-codes	Potential Haz U-codes	Potential Haz P-codes	comments
Aluminum		2230 n	ng/ka							
Arsenic	s	0.743 n	na/ka	pass	pass	F032,F034,F035,	K031,K060,K161,K171,K172,K176,K 084,K101,K102,			
Barium	co.	19.5 n	ng/kg	pass	pass					
Beryllium	e	0.373 n	ng/kg	pass	pass					
Calcium	a	1820 n	ng/kg							
Chlordane[gamma-] 5	103-74-2	0.00141 n	ng/kg				K097,			
6 Chloroform	7-66-3	0.00074 n	ng/ka	pass	pass	F024,F025,	K009,K010,K019,K020,K021,K029,K 073,K116,K149,K150,K151,K158,	U044,		
Chromium	-	6.36 n	ng/kg	pass	pass	F032, F034, F035, F037, F038,	K090,			
Cobalt	0	0.808 n	ng/kg							
Copper	n	1.85 n	ng/kg							
Iron	e	5340 n	ng/kg							
Isopropyltoluene[4-] [9	9-87-6	0.00041 r	ng/kg							
_ Ъ Геаd	٩	6.75 n	ng/kg	pass	pass	F035,F037,F038,	K002,K003,K005,K048,K049,K051,K 062,K064,K086,K100,K176,K046,K0 52,K061,K069,			
Magnesium	la I	573 n	ng/kg							
Manganese	Ļ	245 n	ng/kg							
Nickel		2.08 r	ng/kg	pass	pass	F006,				
Nitrate	103	1.59 r	ng/kg							
Perchlorate C	104	0.00053 r	ng/kg							
d Hd	н	9.47 5	SU							
Potassium		450 r	ng/kg							
Sodium	a	478 r	ng/kg							
Tetrachloroethene	27-18-4	0.00064	ng/kg	pass	pass	F001,F002,F024,F025,	K016,K019,K020,K073,K116,K150,K 151,	U210,		
Total Petroleum Hydrocarbons Diesel Range Organics	PH-DRO	16.1	ng/kg							
Vanadium		3.31 r	mg/kg	pass	pass					
Zinc	c	26.8 r	mg/kg	pass	pass					

Detected Chemicals: SSL and Background check

	CAS/	concen-	unit of	Residential	Industrial/ Occupational	Construction Worker Soil	Recreational	soil	Canyon Sediment	Qbt 2,3,4	Qbt 1v	Qbt 1g, Qct,Qbo
Analyte	Symbol	tration	measure	Soil (mg/kg)	Soil (mg/kg)	(mg/kg)	Soil (mg/kg)	background	background	background	background	background
	AI	2230	mg/kg	pass	pass	pass	pass	pass	pass	pass	pass	oass
	As	0.743	ma/ka	pass	pass	pass	Dass	pass	pass	Dass	Dass	FAIL
	Ba	19.5	mg/kg	pass	pass	pass	pass	pass	pass	pass	pass	oass
	Be	0.373	mg/kg	pass	pass	pass	pass	pass	pass	pass	pass	oass
	Ca	1820	mg/kg	NA	NA	NA	NA	pass	pass	pass	pass	oass
[gamma-]	5103-74-2	0.00141	mg/kg	pass	pass	pass	pass	NA	NA	NA	NA	NA
	67-66-3	0.00074	ma/ka	Dass	Dass	ssed	Dass	AN	AN	AN	NA	AN
	ر د	6.36	mg/kg	pass	pass	NA	pass	pass	pass	pass	FAIL	FAIL
	S	0.808	mg/kg	pass	pass	pass	pass	pass	pass	pass	pass	oass
	Cu	1.85	mg/kg	pass	pass	pass	pass	pass	pass	pass	pass	oass
	Fe	5340	mg/kg	pass	pass	pass	pass	pass	pass	pass	pass	FAIL
oluene[4-]	99-87-6	0.00041	mg/kg	pass	pass	pass	pass	NA	NA	NA	NA	NA
	PD	6.75	ma/ka	Dass	pass	Dass	pass	pass	pass	Dass	pass	oass
E	Mg	573	mg/kg	NA	NA	NA	NA	pass	pass	pass	pass	pass
se	Mn	245	mg/kg	pass	pass	FAIL	pass	pass	pass	pass	pass	FAIL
	Ĭ	2.08	mg/kg	pass	pass	pass	pass	pass	pass	pass	FAIL	FAIL
	NO3	1.59	mg/kg	pass	pass	pass	pass	NA	NA	NA	NA	NA
e	CI04	0.00053	mg/kg	pass	pass	NA	pass	NA	NA	NA	NA	NA
	Hd	9.47	SU	NA	NA	NA	NA	NA	NA	NA	NA	NA
	¥	450	mg/kg	NA	NA	NA	NA	pass	pass	pass	pass	pass
	Na	478	mg/kg	NA	NA	NA	NA	pass	pass	pass	pass	pass
oethene	127-18-4	0.00064	mg/kg	pass	pass	pass	pass	NA	NA	NA	NA	NA
oleum Hydrocarbons nge Organics	TPH-DRO	16.1	ma/ka	NA	NA	AN	AN	NA	NA	AN	AN	AN
	>	3.31	ma/ka	Dass	pass	pass	pass	pass	pass	pass	pass	pass
	Zn	26.8	mg/kg	pass	pass	pass	pass	pass	pass	pass	pass	pass

page 3 of 5

3535

SAL and background compatisolited Excel file: ev3535.awd.7.26.2011(1).xls evaluation date: 7/26/2011

SWMU ev 3535 Stockpile Number ev 3535

			unit of		Indust-	Constr.	Recrea-		Canyon			Qbt 1g,
	CAS/	concen-	measur	Residen-	rial	Worker	tional		Sedi-	QBT2,	QBt	Qct,
Analyte	Symbol	tration	е	tial SAL	SAL	SAL	SAL	Soil	ment	3,4	1v	Qbo
Actinium-228	Ac-228	2	pCi/g			\backslash			\backslash	\backslash		
Bismuth-214	Bi-214	1.65	pCi/g					pass	pass	pass	pass	pass
Lead-212	Pb-212	2.19	pCi/g					pass	pass	pass	pass	pass
Lead-214	Pb-214	1.62	pCi/g	/				pass	pass	pass	pass	pass
Potassium-40	K-40	32.3	pCi/g					pass	pass	pass	pass	pass
Thallium-208	TI-208	0.685	pCi/g			/		pass	pass	pass	pass	pass
Uranium-234	U-234	0.903	pCi/g	pass	pass	pass	pass	pass	pass	pass	pass	pass
Uranium-238	U-238	0.946	pCi/g	pass	pass	pass	pass	pass	pass	pass	pass	pass
Americium-241	Am-241	0.0131	pCi/g	/		/						
Cesium-137	Cs-137	-0.0228	pCi/g	/		/		/	/			
Cobalt-60	Co-60	-0.0251	pCi/g						/			
Plutonium-238	Pu-238	-0.0024	pCi/g	/		/			/			
Plutonium-239/240	Pu-239/240	-0.0012	pCi/g									
Protactinium-234m	Pa-234m	3.11	pCi/g						/			
Sodium-22	Na-22	-0.0009	pCi/g		\backslash				/	\backslash		
Strontium-90	Sr-90	-0.0618	pCi/g									
Thorium-234	Th-234	1.63	pCi/g		\backslash				/			
Tritium	H-3	0.002999	pCi/g		\backslash							
Uranium-235	U-235	0.107	pCi/g									
Uranium-235/236	U-235/236	0.0744	pCi/g		\backslash							

All rad levels are below background for QBT3. No calculations necessary. OK Joh Samol OPP.

Sampling event ID

PRS Number: May	SWMU 05-004 2010	
Source of contaminants:	Yes	No
F-listed		Х
U- or P-listed		X
K-listed		X

SWMU 05-004 is a former septic tank (structure 05-13), associated lines, and outfall that received industrial waste from a laboratory (Building 05-1) from 1948 to 1959. Historical information determined that the tank was free of radiation and HE contamination, but noted that it contained unspecified toxic chemicals. No evidence of radioactively contaminated soil was detected when the tank was removed in 1960. As-built drawings show the presence of a discharge line running from Building 05-1 and discharging south into Cañada del Buey. Notes taken during a 1988 radiation survey show evidence of an outfall near the former location of structure 05-13. Building 05-1 was removed during LASCP activities conducted in 1985. At that time, the building was determined to be free of radioactive and HE contamination. The 1985 LASCP investigation confirmed removal of the tank and piping by excavation, and no evidence of radioactively contaminated soil was detected at that time. A 1988 survey detected slightly above-background gamma activity. The potential contaminants at the site include radionuclides, VOCs, SVOCs, inorganic chemicals, and HE.

	Documents Reviewed		1.4
Document Date	Title	LAUR No.	ERId No.
1/1/2010	Investigation Work Plan for Lower Mortandad/Cedro Canyons Aggregate Area, Revision 1	<u>10-0048</u>	<u>108290</u>
10/1/2009	Investigation Work Plan for Lower Mortandad/Cedro Canyons Aggregate Area [IWP]	09-6567	<u>107103</u>
10/1/2009	Historical Investigation Report for Lower Mortandad/Cedro Canyons Aggregate Area [HIR]	<u>09-6566</u>	<u>107102</u>
5/18/1992	RFI Work Plan for Operable Unit 1129	92-0800	007666

Summary of Listed Status

According to the October 2009 Investigation Work Plan (ERID 107102), no metals were detected above BG or had detection limits above background during the 1995 RFI, and the only organic detected was benzoic acid. Decision level data from the 1988 RFI show no metals detected above background during the 1988 sampling. Mercury had a detection limit above BV is 3 samples and selenium had detection limits above background in two samples.

According to the Historical Investigation Report (October 2009 ERID 107102), it is unknown what chemicals were discharged to the septic tank from building 05-1. No listed sources of the contaminants identified in previous investigations were identified, nor were any F, K-, P-, or U-listed sources identified in the documents reviewed for this SWMU.