## Environmental Programs (EP) Document Signature Form

### Document Catalog Number: EP2010-0456

(Please prefix the name of all electronic versions of this document with this number.)

Document Title/Subject: Phase III Material Disposal Area C Investigation at TA-50

## Associated Document Catalog Number(s):

| Author: Fuller, Stephanie                                 |                                                      | 606-1628     | sfuller@ia         | anl.gov                                                    |  |  |  |
|-----------------------------------------------------------|------------------------------------------------------|--------------|--------------------|------------------------------------------------------------|--|--|--|
| Organuzation: El                                          | P-CAP                                                |              |                    |                                                            |  |  |  |
| Document Team:                                            | Branch, John<br>Buckley, Jocelyn<br>De Sotel, Ronald | -            | 65 5209<br>62-7600 | jbranch@lata.com<br>jbuckley@lanl.gov<br>rdesotel@lanl.gov |  |  |  |
| Document Type: Waste Characterzation Strategy Form (WCSF) |                                                      |              |                    |                                                            |  |  |  |
| Date Due:                                                 | Date Final Complete:                                 |              |                    |                                                            |  |  |  |
| Date To ADEP:                                             |                                                      | Date To DOE: |                    |                                                            |  |  |  |
| Date To NMED:                                             |                                                      | Date To RP   | F:                 |                                                            |  |  |  |
| Comm Tracker #:                                           |                                                      | LAUR #       |                    | ERID #:                                                    |  |  |  |
| Status/Comments                                           | 5:                                                   |              |                    |                                                            |  |  |  |

Reviewer Signatures: By signing below, the reviewer indicates that he/she reviewed and approves the document.

Document Catalog Number: EP2010-0456

## Waste Characterization Strategy Form

| Project Title                | Phase III Material Disposal Area C Investigation at TA-50 |
|------------------------------|-----------------------------------------------------------|
| Solid Waste Management Unit  | SWMU 50-009                                               |
| Activity Type                | Site Investigation                                        |
| LATA Field Team Leader       | Jon Marin                                                 |
| Waste Management Coordinator | Ron DeSotel                                               |
| Completed by                 | John Branch, LATA                                         |
| Date                         | September 28, 2010                                        |

## 1.0 Description of Activity

The objectives of the proposed investigation activities are to define the lateral and vertical extent of subsurface volatile organic compound (VOC) vapor and tritium contamination at MDA C, install four vapor monitoring wells, collect pore-gas samples from the four new vapor monitoring wells and 14 existing vapor monitoring wells, and characterize background concentrations of inorganic chemicals detected in dacite lava. The data collected during the Phase III investigation will be used to support future corrective action decisions for MDA C. The work will be performed in accordance with the New Mexico Environment Department (NMED)-approved Phase III Investigation Work Plan for Material Disposal Area C, Solid Waste Management Unit 50-009, at Technical Area 50, Revision 1, and EXHIBIT "D" Scope of Work and Technical Implementation of the Material Disposal Area C, Solid Waste Management Unit 50-009, at Technical Area 50 Phase III, Subcontract No. 54907-001-07.

Trained and qualified Subcontractor Field Waste Management Technician(s) (FWMT), Waste Sampling Personnel (SP), and Hazardous Materials Packaging and Transportation (HMPT) personnel will be assigned to perform the duties outlined in EP-SOP-5238, *Characterization and Management of Environmental Program Waste*.

This waste characterization strategy form (WCSF) describes the management of investigation-derived waste (IDW) that is expected to be generated during the investigation in Technical Area (TA)-50. The IDW may include, but is not limited to, drill cuttings, contact waste, decontamination fluids, municipal solid waste, petroleum-contaminated soils, and returned or excess samples.

The following activities are planned:

<u>Pore Gas Sample Collection</u> – This activity includes collecting pore-gas samples from existing vapormonitoring well ports and from the proposed new vapor-monitoring well ports. The samples from each borehole will be collected in accordance with EP-ERSS-SOP-5074, Sampling for Sub-Atmospheric Air. Subsurface pore-gas samples will be collected in SUMMA canisters and submitted to the Sample Management Office (SMO) for shipment to the analytical laboratory for VOC analysis by EPA Method TO-15. Pore-gas samples will also be collected in silica gel sample tubes for analysis of tritium by EPA Method 906.0.

<u>Borehole Drilling</u> – This activity includes drilling four boreholes using the air rotary method of drilling. The air-rotary method uses a drill pipe or drill stem coupled to a drill bit that rotates and cuts through soil and rock. The cuttings produced from the rotation of the drill bit are transported to the surface by compressed air, which is forced down the borehole through the drill pipe and returns to the surface through the annular space between the drill pipe and the borehole wall. The each borehole will advance to approximately 660 ft bgs.

<u>Vapor-Monitoring Well Construction</u> – This activity includes constructing four vapor-monitoring wells at each of the four borehole locations. The wells will be constructed by installing sample screens within filter *Peer Review Draft WCSF Phase III Material Disposal Area C* Page 1 EP2010-0456

packs at target depth intervals. The sample screens will be connected to stainless-steel tubes that will extend to the ground surface.

<u>Waste Management</u> –This task involves the management of investigation-derived waste (IDW in accordance with this waste characteristic strategy form (WCSF) and all applicable procedures, including but not limited to SOP-5238, Characterization and Management of Environmental Program Waste; P930-1, LANL Waste Acceptance Criteria; P930-2, Waste Certification Program; and P-409, Waste Management. The IDW may include, but is not limited to drill cuttings, contact waste, sampling supplies, decontamination fluids, petroleum-contaminated soils, and all other waste that has potentially come into contact with contaminants.

<u>Site restoration</u> –This activity involves the restoration of sites to pre-investigation conditions to the degree practicable. This may involve patching concrete or asphalt pavement, land application of cuttings, or seeding or planting vegetation.

## 2.0 Relevant Site History and Description

MDA C is located in TA-50 at the head of Ten Site Canyon. TA-50 is bounded on the north by Effluent and Mortandad Canyons, on the east by the upper reaches of Ten Site Canyon, on the south by Twomile Canyon, and on the west by TA-55. Facilities at TA-50 include a radioactive liquid waste treatment facility (RLWTF), a waste reduction characterization facility, offices, several storage areas, other SWMUs, and MDA C.

MDA C is an inactive 11.8-acre landfill consisting of 6 disposal pits, a chemical disposal pit, and 108 shafts. Solid low-level radioactive wastes and chemical wastes were disposed of in the landfill between 1948 and 1974. The depths of the seven pits at MDA C range from 12 to 25 ft below the original ground surface. The depths of the 108 shafts range from 10 to 25 ft below the original ground surface. The original ground surface is defined as beneath the cover that was placed over the site in 1984. The pits and shafts are constructed in the Tshirege Member of the Bandelier Tuff.

MDA C is a decommissioned material disposal area established to replace MDA B at TA-21 as a disposal area for Laboratory-derived waste. MDA C operated from May 1948 to April 1974 but received waste only intermittently from 1968 until it was decommissioned in 1974. Wastes disposed of at MDA C consisted of liquids, solids, and containerized gases generated from a broad range of nuclear research and development activities conducted at the Laboratory. These wastes include uncontaminated classified materials, metals, hazardous materials, and radioactively contaminated materials. After closure, the pits and shafts were subsequently covered with varying amounts of fill material.

## 3.0 Characterization Strategy

This WCSF identifies the types of wastes expected, based on the data from previous investigations; however, other types of wastes may be encountered. An amendment to this WCSF will be prepared and submitted for review and approval if any of the waste streams change in description or characterization approach or a new waste stream is generated. All IDW will be managed in accordance with Los Alamos National Laboratory (LANL) Standard Operating Procedure (SOP) 5238, *Characterization and Management of Environmental Program Waste*.

Wastes will initially be managed as non-hazardous in accordance with the due diligence review already prepared for SWMU 50-009. Based on characterization and investigative data from the 2009 Phase II investigation report, the waste is also expected to be low-level. Waste accumulation area postings, regulated storage duration, and inspection requirements will be based on the type waste and its regulatory classification. The selection of waste containers will be based on U.S. Department of Transportation requirements, waste types, and estimated volumes of IDW to be generated. Immediately following containerization, each waste container will be individually labeled with a unique identification number and with information such as waste classification, contents, radioactivity, and date generated, if applicable. A non-hazardous waste label, date of generation, the generator's name, and container contents will be placed on non-hazardous waste containers as a best management practice. Waste

streams with the same regulatory classification that are destined for the same receiving facility may be combined into a single container for disposal (e.g. contact waste with drill cuttings).

IDW characterization will be completed using investigation sampling data or by direct sampling of the IDW. If the waste is directly sampled, it will be sampled within 10 days of generation, and a 21 day turnaround time for analyses will be requested. Samples will be collected using the methods described in this WCSF by trained and qualified sampling personnel. Sampling personnel will record waste sampling information in accordance with LANL's procedure, EP-ERSS-SOP-5058, Sample Control and Field Documentation and EP-ERSS-SOP-5181, Notebook and Logbook Documentation for Environmental Directorate Technical and Field Activities.

A waste determination will be made within 45 days of the generation date of waste. A Waste Acceptance Criteria Exception Form (WEF) can be used if the generator does not meet the 45 day deadline. The generation of no path forward wastes must be approved by Department of Energy (DOE) prior to generation of the waste; however, no such wastes are anticipated for this project.

A copy of the due diligence reviews already prepared for this investigation will accompany all waste profiles prepared for the waste(s) with potentially listed contaminants.

Investigation activities will be conducted in a manner that minimizes the generation of waste. Waste minimization will be accomplished by implementing the most recent version of the "Los Alamos National Laboratory Hazardous Waste Minimization Report." Waste streams will be recycled/reused, as appropriate.

## 3.1 Waste # 1: Drill Cuttings (IDW)

This waste stream consists of soil and rock cuttings generated from the drilling of boreholes. Drill cuttings may include excess core samples not submitted for analysis and any returned drill cutting samples. Drill cuttings may be land applied if they meet the criteria in Quality Procedure (QP)-011, *Land Application of Drill Cuttings*. Approximately 80 yd<sup>3</sup> of drill cuttings are expected to be generated.

Anticipated Regulatory Status: Industrial, Low-level radioactive waste (LLW), New Mexico Special Waste (NMSW), Land Applied

Characterization Approach: The drill cuttings will be characterized by direct sampling of the containerized cuttings. Cuttings will be sampled within 10 days of generation and submitted for analysis with a 21 day turnaround time. Drill cuttings from a single potential release site (PRS) may be combined into a single container before sampling. If container sizes are small, a representative sample may be collected from more than one container (e.g., one sample for every 20 cy<sup>3</sup> generated from a single potential release site). A hand auger or thin-wall tube sampler will be used in accordance with LANL SOP-06.10. Hand Auger and Thin-Wall Tube Sampler, to collect waste material from each container, augering from the surface to the bottom of the waste in a sufficient number of locations to obtain a representative sample. Cuttings will be analyzed for volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), radionuclides, total metals, perchlorates, nitrates, and toxicity characteristic (TCLP) metals, if needed (see Table 3.1-1). If process knowledge, odors, or staining indicate the cuttings may be contaminated with petroleum products, the materials will be analyzed for total petroleum hydrocarbons (TPH [DRO/GRO]) and polychlorinated biphenyls (PCBs). Other constituents may be analyzed as necessary to meet the WAC for a receiving facility. A final waste determination will be made using the automated waste determination tool (AWD) in accordance with SOP 5238, Characterization and Management of Environmental Program Waste. Each borehole location will use a different sampling event number to simplify AWD evaluations.

Storage and Disposal Method: Drill cuttings will be containerized at the point of generation in LANL approved 20 yd<sup>3</sup> roll-off bins, or other containers appropriate for the quantity of waste generated. The cuttings will initially be managed as non-hazardous. Because they will be directly sampled, they will be

managed as radioactive only if they cannot be land applied and the analytical data identify them as radioactive. If analytical data changes the waste classification (e.g., PCB waste), the waste will be stored in a secure, designated area appropriate for the type of waste. Cuttings may be land applied if they meet the criteria of the NMED-approved NOI decision tree for land application. Land application will be conducted in accordance with ENV-RCRA-QP-011, *Land Application of Drill Cuttings*. Drill cuttings that cannot be land applied will be used as attic cover at TA-54 or treated and/or disposed of at authorized off-site facilities appropriate for the waste classification.

## 3.2 Waste # 2: Contact Waste

This waste stream includes personnel protective equipment (PPE), contaminated sampling supplies, and dry decontamination waste that may have come in contact with contaminated environmental media and cannot be decontaminated. This includes, but is not limited to plastic sheeting (e.g., tarps and liners), gloves, coveralls (e.g. Tyvek), booties, paper towels, plastic and glass sample bottles, and disposable sampling supplies. Approximately 2 yd<sup>3</sup> of contact waste are expected to be generated.

## Anticipated Regulatory Status: Industrial, LLW, Green is Clean

*Characterization Approach:* Contact waste will be characterized using AK based on the data from the media with which it came into contact, as follows:

- If generated during drilling, data from the associated drill cuttings will be used.
- If generated during hand augering, associated 2009 or 2010 investigation data will be used.
- If generated during excavations, data from the associated excavated environmental media (using the 2009 investigation data and 2010 TCLP metals data) will be used.

The amount of media contaminating the contact waste can be estimated and the results from the analytical data may be weighted by the extent of contamination for determining whether wastes are characteristic. This calculation must be submitted with the WPF as acceptable knowledge.

**Storage and Disposal Method:** The contact waste may initially be separately containerized in drums or it may be placed into the same containers as the media with which it is contaminated if the media will not be land applied. Based on existing investigation and waste data, waste will initially be managed as radioactive if/when the waste with which it came into contact is being managed as radioactive. If analytical data changes the waste classification, the waste will be stored in an area appropriate for the type of waste (e.g., PCB waste). For disposal, separately containerized contact waste may also be combined with the material that it contacted (the WPF will document the decision to combine the waste streams). Wastes will be disposed of in authorized on-site or off-site facilities appropriate for the waste classification.

## 3.3 Waste #3: Decontamination Fluids (potential)

This waste stream consists of liquid wastes generated from decontamination of excavation, sampling and drilling equipment. Consistent with waste minimization practices, the Laboratory employs dry decontamination methods to the extent possible. If dry decontamination cannot be performed, liquid decontamination wastes will be collected in appropriate containers at the point of generation. It is estimated that less than 55 gal of decontamination fluids are expected to be generated from this activity.

## Anticipated Regulatory Status: Industrial, LLW

*Characterization Approach:* All drilling equipment and tooling will be steam-cleaned by the drilling subcontractor prior to arriving onsite. If tooling appears unclean or odors are detected, the equipment must be steam-clean onsite in accordance with EP-ERSS-SOP-5061, Field Decontamination of Equipment or an approved equivalent procedure. The rinsate will be separately collected and sampled (do <u>not</u> mix with any other decontamination fluids).

Decontamination fluids will be characterized by investigation samples from the media it contacted or by direct sampling. Representative samples will be collected within 10 days of generation and submitted for analysis with a 21 day turnaround time. Samples will be collected from the storage container in accordance with EP-ERSS-SOP-06.15, *COLIWASA Sampler for Liquids and Slurries.* If the container does not permit COLIWASA or bailer sampling, the type of sampling equipment used will be appropriate for the waste container and properly operated in accordance with Chapter 7 and Appendix E of the RCRA Waste Sampling Draft Technical Guidance (EPA 530-D-02-002, August 2002, available at <a href="http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/rwsdtg.pdf">http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/rwsdtg.pdf</a>). Samples will be analyzed in accordance with Table 3.1-2. Other constituents may be analyzed as necessary to meet the WAC for a receiving facility. If wastes will be treated on-site at the Sanitary Waste Water System (SWWS) or the Radioactive Liquid Waste Treatment Facility (RLWTF), submit a sampling request to <a href="http://esp-esh-as01-f5.lanl.gov/~esh19/database/rfa">http://esp-esh-as01-f5.lanl.gov/~esh19/database/rfa</a> form.shtml for additional constituents identified in Table 3.1-2, footnote 1. If the fluids cannot be treated on-site, they may be solidified for disposal off-site. The Material Safety Data Sheet (MSDS) for any absorbent used for solidification will be used as AK for waste characterization.

Storage and Disposal Method: Decontamination fluids will be collected in appropriate containers at the point of generation and managed in secure, designated waste areas. Waste will initially be managed as non-hazardous. If analytical data changes the waste classification (e.g., PCB or radioactive wastes), the waste will be stored in an area appropriate for the type of waste. It is expected that most of the decontamination fluids will be treated on-site at the Sanitary Waste Water System (SWWS) or TA-50 Radioactive Liquid Waste Treatment Facility (RLWTF). Decontamination fluids not meeting the WAC for on-site facilities will be treated and/or disposed of in authorized off-site treatment/disposal facilities. If solidification of decontamination fluids is required for transportation or disposal, it may be solidified using an approved absorbent. Solidification activities must be reviewed by the ENV-RCRA before being conducted.

## 3.4 Waste #4: Municipal Solid Waste (MSW)

This waste stream primarily consists of non- contact trash including, but not limited to paper, cardboard, wood, plastic, food and beverage containers, empty non-hazardous solution containers, and other non-contact trash. This waste stream may also include vegetation from sites with no radioactive contamination. It is estimated that approximately 2 yd<sup>3</sup> of MSW will be generated, but may change if vegetation removal is required.

## Anticipated Regulatory Status: MSW

*Characterization Approach:* MSW will be characterized based on acceptable knowledge (AK) of the waste materials (including MSDS) and methods of generation.

Management and Disposal Method: MSW will be segregated from all other waste streams and managed in approved containers. It is anticipated that the waste will be stored in plastic trash bags or other appropriate containers and disposed of at the County of Los Alamos Transfer Station or other authorized solid waste landfill.

## 3.5 Waste #5: Petroleum Contaminated Soils (PCS), (potential)

PCS may be generated from releases of products such as hydraulic fluid, motor oil, unleaded gasoline, or diesel fuel (e.g. from the rupture of hydraulic or fuel hoses, or spills during maintenance or filling equipment) onto soil. PCS created by legacy contamination may also be encountered during investigations. Absorbent padding, paper towels, spill pillows or other absorbent material used to contain the released material will be added to the PCS waste for storage and disposal. It is estimated that less than one cubic yard of PCS will be generated.

## Anticipated Regulatory Status: NMSW, Industrial, LLW, PCB

*Characterization Approach*: The contaminated soil may either be sampled in-place (by gridding the spill location and collecting and combining incremental samples into one sample) or after containerization in

accordance with LANL SOP-06.10, *Hand Auger and Thin-Wall Tube Sampler*. If the spill is shallow (inplace sampling) or containers are small, Spade and Scoop Method for Collection of Soil Samples (LANL SOP-06.09) may also be appropriate. If the spill is new, it must be reported to ENV-RCRA and the contaminated material must be containerized the same day it is spilled unless permission is received from ENV-RCRA to leave it longer (generally only granted for large spills). Representative samples of containerized waste will be collected within 10 days of generation and submitted for analysis with a 21 day turnaround time. Samples will be analyzed in accordance with Table 3.1-2. Other constituents will be considered significant only if analysis of these constituents is required by the work plan for the PRS (see Table 3.1-2). If legacy petroleum contamination is discovered, the soils will also be analyzed for PCBs and TPH DRO/GRO). Other constituents may be analyzed as necessary to meet the WAC for a receiving facility.

Storage and Disposal Method: PCS will be stored in clearly marked and appropriately constructed waste accumulation areas. Waste accumulation area postings, regulated storage duration, and inspection requirements will be based on the most restrictive waste classification appropriate to the area where the spill occurred. All PCS will be treated and/or disposed of, at an authorized on-site or off-site facility appropriate for the waste classification.

## 3.6 Waste #6: Returned or Excess Samples

This waste stream consists of soil and tuff samples returned from a laboratory or samples collected but not submitted to the analytical laboratory. It is estimated that less than approximately 0.5 yd<sup>3</sup> of material will be generated from this activity.

## Anticipated Regulatory Status: Industrial, LLW, NMSW

*Characterization Approach:* Waste characterization will be based upon analytical results obtained from the direct sampling of containerized waste or from investigation or characterization data from media associated with the returned/excess samples. Direct sampling will be conducted in accordance with LANL SOP-06.10, *Hand Auger and Thin-Wall Tube Sampler* or SOP-06.09, *Spade and Scoop Method for Collection of Soil Samples*. Representative samples will be sampled within 10 days of the return of the samples and and submitted for analysis with a 21 day turnaround time. Samples will be analyzed for the constituents identified in Table 3.1-2. If process knowledge, odors, or staining indicate the returned samples may be contaminated with petroleum products, the materials will also be analyzed for TPH and PCBs. Other constituents may be analyzed as necessary to meet the WAC for a receiving facility.

Storage and Disposal Method: These wastes will be containerized in 5 gallon buckets, 55 gallon drums, or placed into the same containers as the environmental media from which they were taken. They will initially be stored in the same manner as the media from which they originated. If analytical data changes the waste classification, the waste will be stored in an area appropriate for the type of waste. The wastes will be sent to an authorized on-site or off-site disposal facility, appropriate for the waste regulatory classification.

## REFERENCES

LANL (Los Alamos National Laboratory). "Los Alamos National Laboratory Hazardous Waste Minimization Report," (LANL, 2009).

EP2010-0445- Integrated Work Document (IWD) – Implementation of the Phase III Investigation Work Plan for Material Disposal Area C, Solid Waste Management Unit 50-009, at Technical Area 50, Rev.1

EP2010-0446- Site-Specific Health and Safety Plan (SSHASP) – Implementation of the Phase III Investigation Work Plan for Material Disposal Area C, Solid Waste Management Unit 50-009, at Technical Area 50, Revision 1

LANL (Los Alamos National Laboratory), April 2010. "Phase III Investigation Work Plan for Material Disposal Area C, Solid Waste Management Unit 50-009, at Technical Area 50, Revision 1," Los Alamos, New Mexico. (LANL 2010, EP2010-0197)

LANL (Los Alamos National Laboratory), May 2009. "Phase II Investigation Report for Material Disposal Area C, Solid Waste Management Unit 50-009, at Technical Area 50," Los Alamos, New Mexico. (LANL 2009, EP2009-0215)

|                                                                                             | Waste # 1                   | Waste #2             | Waste #3               |
|---------------------------------------------------------------------------------------------|-----------------------------|----------------------|------------------------|
| Waste Description                                                                           | Drill Cuttings              | Contact Waste        | Decontamination Fluids |
| Estimated Volume                                                                            | 80 CY                       | 2 CY                 | < 55 gallons           |
| Packaging                                                                                   | 20 yd <sup>3</sup> Roll-off | 55 gallon drums      | 30 or 55 gallon drums  |
|                                                                                             | Bins                        |                      |                        |
| Regulatory classification:                                                                  |                             |                      |                        |
| Radioactive Waste                                                                           | X                           | X                    | Х                      |
| Municipal Solid Waste (MSW)                                                                 |                             |                      |                        |
| Waste destined for LANL's SWWS or RLWTF <sup>1</sup>                                        |                             |                      | X                      |
| Hazardous Waste                                                                             |                             |                      |                        |
| Mixed (hazardous and radioactive) Waste                                                     |                             |                      |                        |
| Polychlorinated Biphenyls-Contaminated Waste (PCBs)                                         |                             |                      |                        |
| New Mexico Special Waste                                                                    | X                           |                      |                        |
| Industrial Waste                                                                            | X                           | X                    | X                      |
| Characterization Method                                                                     |                             | 1860 - Sec. Se       |                        |
| Acceptable knowledge (AK): Existing<br>Data/Documentation                                   |                             | x                    |                        |
| AK: Site Characterization                                                                   |                             | X                    |                        |
| Direct Sampling of Waste                                                                    | X                           |                      | X                      |
| Analytical Testing                                                                          |                             |                      |                        |
| Volatile Organic Compounds (VOCs) (EPA<br>8260-B)                                           | x                           |                      | x                      |
| Semivolatile Organic Compounds (SVOCs) (EPA 8270-C)                                         | x                           |                      | X                      |
| Organic Pesticides (EPA 8081-A)                                                             |                             |                      |                        |
| Organic Herbicides (EPA 8151-A)                                                             | _                           |                      |                        |
| PCBs (EPA 8082)                                                                             | X4                          |                      | X                      |
| Total Metals (EPA 6010-B/7471-A or EPA 6020)                                                | X                           |                      | X                      |
| Total Cyanide (EPA 9012-A)                                                                  |                             |                      | X                      |
| High Explosives Constituents (EPA 8330/8321-A)                                              |                             |                      |                        |
| Asbestos (EPA 600M4)                                                                        |                             |                      |                        |
| Total petroleum hydrocarbon (TPH)-GRO (EPA<br>8015-M)                                       | X⁴                          |                      |                        |
| TPH-DRO (EPA 8015-M)                                                                        | X⁴                          |                      |                        |
| Toxicity characteristic leaching procedure (TCLP)<br>Metals (EPA 1311/6010-B)               | X <sup>6</sup>              |                      |                        |
| TCLP Organics (EPA 1311/8260-B & 1311/8270-<br>C)                                           |                             |                      |                        |
| TCLP Pest. & Herb. (EPA 1311/8081-<br>A/1311/8151-A)                                        |                             |                      |                        |
| Gross Alpha (alpha counting) (EPA 900)                                                      | X <sup>4</sup>              |                      | X <sup>4</sup>         |
| Gross Beta (beta counting) (EPA 900)                                                        | X <sup>4</sup>              |                      | X <sup>4</sup>         |
| Tritium (liquid scintillation) (EPA 906.0)                                                  | X                           |                      | X                      |
| Gamma spectroscopy (EPA 901.1)                                                              | X                           |                      | X                      |
| Isotopic plutonium (HASL-300)                                                               | X                           |                      | X                      |
| Isotopic uranium (HASL-300)                                                                 | X                           |                      | X                      |
| Total uranium (EPA 6020)                                                                    | X                           |                      | X                      |
| Strontium-90 (EPA 905)                                                                      | Χ                           |                      | X                      |
| Americium-241 (HASL-300)                                                                    | X                           |                      | X                      |
| Perchlorates (EPA 6850)                                                                     | X                           |                      |                        |
| Nitrates/Nitrites (EPA 300.09-soil or 343.2-water)                                          | Χ                           |                      | X <sup>1</sup>         |
| Oil / Grease (EPA 1665)                                                                     |                             |                      | <u> </u>               |
| Fluonine, Chorine, Sulfate (EPA 300)                                                        |                             |                      | X <sup>1</sup>         |
| TTO (EPA 8260-B and EPA 8270-C) <sup>2</sup>                                                | R                           | equest VOC and SVOCs |                        |
| Total Suspended & Dissolved Solids (TSS) and<br>Total Dissolved Solids (TDS) (EPA 160.1 and |                             |                      | X <sup>1</sup>         |

|                                                             | 3.1-1. Waste Charac         | terization                |                                   |
|-------------------------------------------------------------|-----------------------------|---------------------------|-----------------------------------|
| Waste Description                                           | Waste # 1<br>Drill Cuttings | Waste #2<br>Contact Waste | Waste #3<br>Decontamination Fluid |
| Chemical Oxygen Demand (COD) (EPA 410.4)                    |                             |                           | X <sup>1</sup>                    |
| pH (EPA 904c)                                               |                             |                           | X <sup>1</sup>                    |
| Microtox or Biological Oxygen Demand (<br>BOD) <sup>3</sup> |                             |                           | X <sup>1</sup>                    |

| Table 3.1-2. Wa                                                               |                                      |                                                |                                                                                                      |
|-------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Waste Description                                                             | Waste #4<br>Municipal<br>Solid Waste | Waste #5<br>Petroleum<br>Contaminated<br>Soils | Waste #6<br>Returned or<br>Excess Samples                                                            |
| Estimated Volume                                                              | < 1 CY                               | < 1 CY                                         | 0.5 CY                                                                                               |
| Packaging                                                                     | Plastic<br>trash bags                | 30 or 55<br>gallon drums                       | Same containers<br>as the<br>environmental<br>media from which<br>they were taken or<br>other drums. |
| Regulatory classification:                                                    | tern Solitik all fan de skiller      |                                                |                                                                                                      |
| Radioactive Waste                                                             |                                      | X                                              | X                                                                                                    |
| Municipal Solid Waste (MSW)                                                   | X                                    |                                                |                                                                                                      |
| Waste destined for LANL's SWWS or RLWTF <sup>1</sup>                          |                                      |                                                |                                                                                                      |
| Hazardous Waste                                                               |                                      |                                                |                                                                                                      |
| Mixed (hazardous and radioactive) Waste                                       |                                      |                                                |                                                                                                      |
| Polychlorinated Biphenyls-Contaminated Waste (PCBs)                           | 1 1                                  | Х                                              |                                                                                                      |
| New Mexico Special Waste                                                      |                                      | X                                              | X                                                                                                    |
| Industrial Waste                                                              | <u> </u>                             | X                                              | X                                                                                                    |
| Characterization Method                                                       |                                      |                                                |                                                                                                      |
| Acceptable knowledge (AK): Existing                                           |                                      |                                                | T                                                                                                    |
| Data/Documentation                                                            | X                                    |                                                | X                                                                                                    |
| AK: Site Characterization                                                     |                                      |                                                | X                                                                                                    |
| Direct Sampling of Waste                                                      |                                      | X                                              | X                                                                                                    |
| Analytical Testing                                                            |                                      |                                                |                                                                                                      |
| Volatile Organic Compounds (VOCs) (EPA 8260-B)                                |                                      | X                                              | <b>x</b>                                                                                             |
| Semivolatile Organic Compounds (SVOCs) (EPA 8270-<br>C)                       |                                      | X                                              | X                                                                                                    |
| Organic Pesticides (EPA 8081-A)                                               |                                      |                                                |                                                                                                      |
| Organic Herbicides (EPA 8151-A)                                               |                                      |                                                | +                                                                                                    |
| PCBs (EPA 8082)                                                               |                                      | X4                                             | X <sup>4</sup>                                                                                       |
| Total Metals (EPA 6010-B/7471-A or EPA 6020)                                  | <u> </u>                             | X                                              | X                                                                                                    |
| Total Cyanide (EPA 9012-A)                                                    |                                      | X <sup>5</sup>                                 | X <sup>5</sup>                                                                                       |
| High Explosives Constituents (EPA 8330/8321-A)                                |                                      | ~                                              |                                                                                                      |
|                                                                               |                                      | • • • •                                        |                                                                                                      |
| Asbestos (EPA 600M4)                                                          |                                      |                                                | ¥                                                                                                    |
| Total petroleum hydrocarbon (TPH)-GRO (EPA 8015-M)                            |                                      | X                                              | X <sup>4</sup>                                                                                       |
| TPH-DRO (EPA 8015-M)                                                          |                                      | X                                              | X <sup>4</sup>                                                                                       |
| Toxicity characteristic leaching procedure (TCLP) Metals<br>(EPA 1311/6010-B) |                                      | X <sup>6</sup>                                 | X <sub>6</sub>                                                                                       |
| TCLP Organics (EPA 1311/8260-B & 1311/8270-C)                                 | +                                    | ····                                           |                                                                                                      |
| TCLP Pest. & Herb. (EPA 1311/8081-A/1311/8151-A)                              |                                      | ×4                                             |                                                                                                      |
| Gross Alpha (alpha counting) (EPA 900)                                        |                                      | X <sup>4</sup>                                 | X <sup>4</sup>                                                                                       |
| Gross Beta (beta counting) (EPA 900)                                          |                                      | X <sup>4</sup>                                 | X <sup>4</sup>                                                                                       |
| Tritium (liquid scintillation) (EPA 906.0)                                    |                                      | X                                              | X                                                                                                    |
| Gamma spectroscopy (EPA 901.1)                                                |                                      | X                                              | X                                                                                                    |
| Isotopic plutonium (HASL-300)                                                 |                                      | X                                              | X                                                                                                    |
| Isotopic uranium (HASL-300)                                                   |                                      | х                                              | X                                                                                                    |
| Total uranium (EPA 6020)                                                      |                                      | X                                              | X                                                                                                    |
| Strontium-90 (EPA 905)                                                        |                                      | X                                              | X                                                                                                    |
| Americium-241 (HASL-300)                                                      |                                      | X                                              | X                                                                                                    |
| Perchlorates (EPA 6850)                                                       |                                      |                                                | 1                                                                                                    |
| Nitrates/Nitrites (EPA 300.09-soil or 343.2-water)                            |                                      | X <sup>5</sup>                                 | X <sup>5</sup>                                                                                       |
| Oil / Grease (EPA 1665)                                                       |                                      | <u> </u>                                       |                                                                                                      |
| Fluorine, Chorine, Sulfate (EPA 300)                                          | <u> </u>                             |                                                |                                                                                                      |
| TTO (EPA 8260-B and EPA 8270-C) <sup>2</sup>                                  | L                                    |                                                | L                                                                                                    |

| Table 3.1-2. Wa                                                                                    | aste Characteriz | ation                 |                                       |
|----------------------------------------------------------------------------------------------------|------------------|-----------------------|---------------------------------------|
|                                                                                                    |                  |                       |                                       |
|                                                                                                    | Waste #4         | Waste #5<br>Petroleum | Waste #6                              |
| Waste Description                                                                                  | Municipal        | Contaminated          | Returned or                           |
|                                                                                                    | Solid Waste      | Soils                 | Excess Samples                        |
| Total Suspended & Dissolved Solids (TSS) and Total<br>Dissolved Solids (TDS) (EPA 160.1 and 160.2) |                  |                       |                                       |
| Chemical Oxygen Demand (COD) (EPA 410.4)                                                           |                  | _                     |                                       |
| pH (EPA 904c)                                                                                      |                  |                       |                                       |
| Microtox or Biological Oxygen Demand (BOD) <sup>3</sup>                                            |                  |                       | · · · · · · · · · · · · · · · · · · · |

### Characterization Table (Cont'd)

<sup>1</sup>in addition to other analytes needed to characterize the waste (e.g., VOC, SVOC, total metals), analyze for TSS, TDS, Oil and Grease, gross alpha, gross beta, tritium, and pH for liquids destined for the LANL sanitary waste water system (SWWS). For wastes destined for the RLWTF additional constituents include TTO,TSS, COD, pH, total nitrates/nitrites, and gross alpha, gross beta (not including tritium), and gross gamma or the sum of individual alpha-, beta-, and gamma-emitting nuclides.

<sup>2</sup>TTO is the total of volatile organic and semi-volatile organic compound contaminants. Request methods EPA 8260-B (VOCs) and EPA 8270-C (SVOCs).

<sup>3</sup> If Microtox analysis is not available, request BOD.

<sup>4</sup> If required by a receiving facility's acceptance criteria or if required due to discovered contamination (e.g., TPH and PCBs)

<sup>5</sup> If required for investigation samples by the Phase II IWP

<sup>6</sup> TCLP metals must be analyzed for drill cuttings if total metals divided by 20 exceed toxicity characteristic limits.

| Signatures                                                  | Date     |
|-------------------------------------------------------------|----------|
| Project Manager (Stephani Fuller)                           |          |
| Biller                                                      | 10-15-10 |
| Preparer (John Branch)                                      | 10-18-10 |
| Waste Management Coordinator (Ron DeSotel)                  |          |
| RIEDO                                                       | 10-15-10 |
| ENV-RCRA Representative (Jocelyn Buckley)                   |          |
| Jacoba 13 Jundlen                                           | 10-14-10 |
| Waste Acceptance Representative (Jose Orlega)               |          |
| fin A A                                                     | 10/14/0  |
| Waste Certification Program Representative (Michelle Coriz) |          |
| Michulli & Com                                              | 10/18/10 |

1

#### **GREEN IS CLEAN MATERIAL DISPOSAL REQUEST FORM**

| To: SWO GIC Operation for Pre-Approval FAX 665-8347 () Approved For Shipment to TA-54 Area G (665-4356): Date Approved SWO Approver Initials |                |              |             |                    |                                          |                     |                |          |           |         |               |             |         |                   |
|----------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------|-------------|--------------------|------------------------------------------|---------------------|----------------|----------|-----------|---------|---------------|-------------|---------|-------------------|
| SWO GIC R                                                                                                                                    |                |              | evlewer Nam | le:                | an a |                     | Z#             |          |           | Aut     | norized GIC   | C Generato  | r ()    | Yes ()No          |
| Acceptable Knowledge Materials: (X) For SWO verification and potential release Waste Generator Return:                                       |                |              |             |                    |                                          |                     |                |          |           |         |               |             |         |                   |
| () For Database Entry Only (Direct released by generator without shipment to SWO) Name: Stephanie Fuller FAX #: 665-4747                     |                |              |             |                    |                                          |                     |                |          |           |         |               |             |         |                   |
| WMC Z#                                                                                                                                       | WMC Name (PRIN | T)           | WMC Tel.    | ¥                  | WMC Ma                                   |                     | ubmitted       | RCA      |           |         |               | assified Ma |         | Pure Beta Emitter |
| 212070                                                                                                                                       | Ron De Sotel   |              | 665-5505    |                    | M                                        | 381 02/17/2         | 2011           | ()β/     | γ ()α     | 🚫 Bo    | th ()         | Yes (X)     | NO      | () Yes (X) No     |
| Generator                                                                                                                                    | (X) Routine    | () Surface   | Compactab   | le                 |                                          | erator Will Deliver |                |          |           | Was     | te Verificati | on Location | 1       |                   |
| Group                                                                                                                                        | () Non-routine | (X) Volume   | (X) Yes     |                    | Ø≰ SW                                    | O to Pick Up Load   | at (Specify)   | <u> </u> |           | (X)     | ΓΑ-54-2 (α,   | β,γ) ()     | TA-48   | (β,γ)             |
| PMF5-00                                                                                                                                      |                |              | ( ) No      |                    | TA                                       | Bldg-Rm             | <u>o (mu</u> a | -()      |           | ()(     | Other (Speci  | fy)         |         | ·                 |
|                                                                                                                                              | Generated At   | Charge C     |             | Vol.               | Wt.                                      |                     |                | Dispos   | ition (Pe | ercent) | Date          | Veri-       |         |                   |
| GIC ID #                                                                                                                                     | (TA-Bldg-Rm)   | (Cost Cntr   |             | (Ft <sup>3</sup> ) | (Lbs)                                    | Material Des        | cription       | Solid    | Re-       | LLW     | Processed     |             |         | Comments          |
|                                                                                                                                              |                | Acct/Worl    |             |                    |                                          |                     |                |          | cycle     |         |               | Init.       |         |                   |
| 7032110                                                                                                                                      | 50             | 61000A/MR2A/ | 051B/2S00   | 2                  | 7                                        | Contact W           |                |          |           |         | L             |             | ļ       |                   |
| 7032112                                                                                                                                      | 50             |              |             | 2                  | 4.5                                      | Contact W           |                |          |           |         |               |             | Į       | <u></u>           |
| 7032113                                                                                                                                      | 50             |              |             | 2                  | 6.5                                      | Contact W           |                |          |           |         |               |             | <b></b> |                   |
| 7032115                                                                                                                                      | 50             | "            |             | 2                  | 7                                        | Contact W           |                |          |           |         |               |             |         |                   |
| 7032117                                                                                                                                      | 50             | "            |             | 1                  | 5.5                                      | Contact W           |                |          |           |         |               |             |         |                   |
| 7032111                                                                                                                                      | 50             |              |             | 2                  | 7.5                                      | Contact W           | aste           |          |           |         |               |             |         |                   |
| 7032114                                                                                                                                      | 50             | sc           |             | 1                  | 10.5                                     | Contact W           | aste           |          |           |         |               |             |         |                   |
| 7031995                                                                                                                                      | 50             |              |             | 2                  | 10.5                                     | Contact W           | aste           |          |           |         |               |             |         |                   |
| 7031998                                                                                                                                      | 50             | ••           |             | 2                  | 11                                       | Contact W           | aste           |          |           |         |               |             |         |                   |
| 7031989                                                                                                                                      | 50             | "            |             | 1                  | 7.5                                      | Contact W           | aste           |          |           |         |               |             |         |                   |
| 7031992                                                                                                                                      | 50             | "            |             | 2                  | 11                                       | Contact W           | aste           |          |           |         |               |             |         |                   |
| 7032001                                                                                                                                      | 50             | "            |             | 2                  | 13                                       | Contact W           | aste           |          |           |         |               |             |         |                   |
| 7032109                                                                                                                                      | 50             | "            |             | 2                  | 7                                        | Contact W           | aste           |          |           |         |               |             |         |                   |
| 7631990                                                                                                                                      | 50             | ()           |             | $\mathcal{R}$      | 9                                        | Contact             | waste.         |          |           |         |               |             |         |                   |
| 7031991                                                                                                                                      | 50             | 11           |             | 2                  | 9:3                                      | Contact             |                |          |           |         |               |             |         |                   |
|                                                                                                                                              |                |              |             |                    |                                          |                     |                |          |           |         |               |             |         |                   |
|                                                                                                                                              |                |              |             |                    |                                          |                     |                |          |           |         |               |             |         |                   |
|                                                                                                                                              |                |              |             |                    |                                          |                     |                |          |           |         |               |             |         |                   |
|                                                                                                                                              |                |              |             |                    |                                          |                     |                |          |           |         |               |             |         |                   |

NOTE: This shipment is exempt from DOT requirements. The activity level is less than 2 nanocuries per gram, and does not meet the DOT definition of a radioactive material.

\* Waste Generator Certification: Based on my process knowledge of the waste and/or chemical/physical/radiological analysis, the waste is expected to be free of radioactive contamination, and I certify that the information on this form is correct. I understand that this information may be made available to regulatory agencies and that there are significant penalties for submitting false information, including the possibility of fines and imprisonment for knowing violations.

Date:

Date:

Waste Generator Signature (Required):

Date: 2

Waste Management Coordinator: Lhave reviewed this form, and to the best of my knowledge, the information is complete and accurate. •• 2-17-11 2

WMC Signature (Required): **GIC Verifier Name** (Required):

\*Although there is no charge for Green is Clean waste, the complete generator "Charge Code" is required; it is the participant identifier in the database

FMU64-F224, R.1 (5/01) IN PLAN-WASTEMGT-002

Page 1 of 2 Printed on: 2/17/2011 y

| Ť   | Sial | 5  | 810 |
|-----|------|----|-----|
| -11 | 101  | 43 | 862 |

50-613185

Water Quality and RCRA Group Los Alamos National Laboratory

## ENV-RCRA-QP-011.2 Attachment 2, Page 1 of 1

## **Request for Land Application of Drill Cuttings Form**

| ENV-RCRA must approve any deviation(s) from this request prior to lan                                                                                                                                                                                                                                                                                       | d application.                      | and the second |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Estimated Quantity: <u>48.43</u> (cubic feet or tons)<br>Composition (e.g., 98% tuff and 2% quick gel, etc.): <u>100.70.501</u><br>Proposed Method of Land Application (describe): <u>Drull Qualfings Will be land (</u><br><u>within the project feet print (Swmu 50-009)</u> to <u>previously</u><br><u>areas and Coulered with a druper of read base</u> | OMU 50-1<br>Topliscl<br>Clisturbect | 009)                                                                                                             |
| Note: An EX-ID Permit is required prior to land application. $101 - 0849 - 50$                                                                                                                                                                                                                                                                              |                                     |                                                                                                                  |
| <b>Decision Tree—Decision Point Evaluation</b>                                                                                                                                                                                                                                                                                                              |                                     |                                                                                                                  |
| The following questions require yes or no answers.                                                                                                                                                                                                                                                                                                          | Yes                                 | No                                                                                                               |
| 1. D1: Is existing characterization data consistent with WCSF? Attach a summary table of results, validated raw data, etc.                                                                                                                                                                                                                                  |                                     |                                                                                                                  |
| <b>2.</b> D2: Do drill cuttings contain RCRA Hazardous Waste or Hazard constituents above RCRA limits? If yes:                                                                                                                                                                                                                                              |                                     |                                                                                                                  |
| Has a Due Diligence been conducted for this waste? Attach a copy of the due diligence documentation.                                                                                                                                                                                                                                                        |                                     |                                                                                                                  |
| Has a No Longer Contained In been approved for this waste? Attach a copy of the No Longer                                                                                                                                                                                                                                                                   |                                     |                                                                                                                  |
| Contained In approval.                                                                                                                                                                                                                                                                                                                                      |                                     |                                                                                                                  |
| <b>3.</b> D6: Do drill cuttings meet the 5 criteria in D6, Attachment 1?                                                                                                                                                                                                                                                                                    |                                     |                                                                                                                  |
| 4. Do drill cuttings meeting the criteria in the Radiological Decision Tree, Attachment 3?                                                                                                                                                                                                                                                                  |                                     |                                                                                                                  |
| Generator or Project Leader Certification: I certify that the drill cuttings described in this reque         application per the Decision Tree and that the drill cuttings will be land applied as described.         Show Fuller         Name (Print)         Signature                                                                                    | est meet the crite                  | 11 PP4                                                                                                           |
| ENV-RCRA Review (below):                                                                                                                                                                                                                                                                                                                                    | , <u>1</u> 5 <u></u>                |                                                                                                                  |
| Does request provide all the required information, and do the drill cuttings meet all the criteria for Yes No Note deficiency in the space provided:                                                                                                                                                                                                        | or land applicati                   | on?                                                                                                              |
| ENV-RCRA Reviewer Name (Print) <u>Socelyn 1. Buble</u> Signature <u>Stable</u>                                                                                                                                                                                                                                                                              | <u>Sulle</u> Pate_                  | -25-11                                                                                                           |

Package Expiration Date: 2-11-11

10#1014 3862 Bin 5810

> Water Quality and RCRA Group Los Alamos National Laboratory

ENV-RCRA-QP-011.2 Attachment 4, Page 1 of 1

## Post Land Application Field Certification Sheet

| Date(s) of land application: Projection                         | ct: MDA C. Phase                  |
|-----------------------------------------------------------------|-----------------------------------|
|                                                                 | Aphint TA: 50 (SUMUSO-009)        |
| EX-ID Number: $100 \times -0849$ EX-ID                          | Expiration Date: $\frac{1}{29}$   |
| Please explain any deviations from original application (Attach | ament 2) in the space provided:   |
|                                                                 |                                   |
|                                                                 |                                   |
| Note: ENV-RCRA must approve any deviations from Attachm         | nent 2 prior to land application. |

Generator or Project Leader Certification (below):

I certify that

- land application complied with the requirements of this procedure (ENV-RCRA-SOP-011.1),
- no free liquids were applied during land application,
- an inspection was conducted to ensure the requirements in Attachment 2 of this procedure was met, and
- the land application of drill cuttings complied with the excavation permit.

phani Fuller

POYCE MGY.

Date

| PRS Number: 50-0        | 09 (Borehole 50-613185) |    |
|-------------------------|-------------------------|----|
| Source of contaminants: | Yes                     | No |
| F-listed                |                         | Х  |
| U- or P-listed          |                         | Х  |
| K-listed                |                         | Х  |
| PRS                     | Description             |    |

SWMU 50-009 consists of decommissioned MDA C, established to replace MDA B at TA-21 as a disposal area (landfill) for LANL derived waste. MDA C operated from May 1948 to April 1974. The northern boundary of MDA C is approximately 50 feet south of the planned south wall of the new RLWTF. Wastes disposed at MDA C included liquids, solids, and gases generated from a broad range of nuclear energy research and development activities conducted at LANL, including uncontaminated classified materials, metals, hazardous materials, and radionuclides. Historical reports indicate that it was common practice for chemicals to be burned in the chemical disposal pit at MDA C. At MDA C, 7 pits and 108 shafts were excavated into the overlying soil and tuff.

RFI activities were conducted at MDA C from 1993 to 1996. Surface soil sampling was conducted during the summer of 1993. A subsurface investigation was performed during portions of 1994, 1995, and 1996. Conclusions regarding the nature and extent of contamination at MDA C based on the results of preliminary site characterization activities are as follows:

-Elevated concentrations of americium-241 and isotopic plutonium in surface soils in the northeast area of MDA C are likely related to releases from MDA C before the placement of crushed tuff on the surface of the site in 1984. The extent of current surface radionuclide contamination has not been defined.

-Concentrations of specific metals (including barium, copper, and lead) and radionuclides (strontium-90 and americium-241) in tuff beneath Pit 6 indicate that contamination has migrated from pit 6 into underlying rock. The extent of subsurface contamination has not been defined.

-Tritium and volatile organic compounds (VOC) contamination (primarily trichloroethylene [TCE], tetrachloroethene [PCE], and 1,1,1-trichloroethane [TCA]) exist in subsurface pore gas; however, the vertical and horizontal extent of this contamination has not been defined.

|            | Documents Reviewed                                                                 |           |  |  |  |  |  |  |  |  |
|------------|------------------------------------------------------------------------------------|-----------|--|--|--|--|--|--|--|--|
| Date       | Title                                                                              | ER Id No. |  |  |  |  |  |  |  |  |
| 4/1/2010   | Investigation Report for Upper Mortandad Canyon<br>Aggregate Area, Rev. 1          | 109180    |  |  |  |  |  |  |  |  |
| 4/1/2010   | Phase III Investigation Work Plan for MDA C, SWMU 50-<br>009, at TA-50, Rev. 1     | 109260    |  |  |  |  |  |  |  |  |
| 2/1/2010   | Phase III Investigation Work Plan for MDA C, SWMU 50-<br>009, TA-50                | 108594    |  |  |  |  |  |  |  |  |
| 10/1/2009  | Phase II Investigation report for MDA C, SWMU 50-009, at TA-50, Rev. 1             | 107389    |  |  |  |  |  |  |  |  |
| 5/1/2009   | Phase II Investigation Report for MDA C, SWMU 50-009, at TA-50                     | 106047    |  |  |  |  |  |  |  |  |
| 11/30/2007 | Investigation Work Plan and HIR for Upper Mortandad<br>Canyon Aggregate Area [IWP] | 098954    |  |  |  |  |  |  |  |  |
| 11/30/2007 | Investigation Work Plan and HIR for Upper Mortandad<br>Canyon Aggregate Area [HIR] | 098955    |  |  |  |  |  |  |  |  |

-Surface flux of VOCs and near-surface tritium soil-gas concentrations indicate localized areas where releases to the atmosphere are occurring.

| Phase II Investigation Work Plan for MDA C, Rev. 1                           | 100143                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Investigation Report for MDA C, SWMU 50-009                                  | 094688                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Investigation Work Plan for MDA C, SWMU 50-009 at TA-<br>50, Rev. 2          | 091493                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 1/1/2003 Investigation Work Plan for MDA C, SWMU 50-009 at TA-<br>50, Rev. 1 |                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Investigation Work Plan for MDA-C, SWMU 50-009 at TA-<br>50                  | 087392                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| RFI Work Plan for Operable Unit 1147                                         | 007672                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| SWMU Report, Volume 1 of IV (TA-00 through TA-09)                            | 007513                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| PRS Database                                                                 | NA                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|                                                                              | Investigation Report for MDA C, SWMU 50-009<br>Investigation Work Plan for MDA C, SWMU 50-009 at TA-<br>50, Rev. 2<br>Investigation Work Plan for MDA C, SWMU 50-009 at TA-<br>50, Rev. 1<br>Investigation Work Plan for MDA-C, SWMU 50-009 at TA-<br>50<br>RFI Work Plan for Operable Unit 1147<br>SWMU Report, Volume 1 of IV (TA-00 through TA-09) |  |  |  |  |

#### Summary of Listed Status

U-listed constituents were detected in soil samples; however, there was no documented evidence of a spill, release, or discharge of unused/unspent commercial chemical products in the vicinity of the SWMU. K-listed constituents were also detected in the soil samples from 50-009, BH 50-613182; however most K-listed sources are industrial in nature and not typical of Laboratory operations. The Laboratory generates only small amounts of K-listed wastes, primarily spent carbon from high explosives processing that is disposed off-site. The documented amounts of K-listed wastes generated are not sufficient to have impacted investigation/remediation activities. Therefore, the IDW is not K-listed. In addition, Arsenic (F032, F034, F035), Chromium (F032, F034, F035, F037, and F038), Lead (F035, F037, and F038), and Nickel (F006) were also detected in the soil samples from 50-009 site investigation activities. There is no documented evidence that the following processes (F-listed sources) occurred in the vicinity of the SWMU: Wood preserving processes (F032, F034, and F035), Petroleum refinery operations (F037 and F038) and Electroplating operations (F006). See Attachment 1 for the complete list of potentially listed constituents detected in the soil sample.

Based on analytical data and documentation, there is no conclusive evidence of a listed source impacting SWMU 50-009, MDA-C. Therefore, the IDW may be managed as non-hazardous waste.

DD Completed January 25, 2011

## Attachment 1.

| Analyte  | Concentration | Potential F-Codes    | Potential K-Codes    |
|----------|---------------|----------------------|----------------------|
| Antimony | 0.71          |                      | K161, K021, K177     |
|          |               |                      | K031,K060,K161,K171, |
|          |               |                      | K172,K176,K084,K101, |
| Arsenic  | 0.304         | F032,F034,F035,      | K102,                |
|          |               | F032,F034,F035,F037, | K090                 |
| Chromium | 4.42          | F038,                |                      |
|          |               |                      | K002, K003, K005,    |
|          |               |                      | K048, K049, K051,    |
|          |               |                      | K062, K064, K086,    |
|          |               |                      | K100, K176, K046,    |
| Lead     | 11.1          | F035,F037,F038,      | K052, K061, K069     |
| Nickel   | 2.18          | F006                 |                      |

page 3 of 5

Sampling event ID

3233

## SAL and background companison I file: ev3233.2085.awd, 1, 13, 2011(1).xlsm

evaluation date: 1/13/2011

SWMU ev 3233.2085 Stockpile Number ev 3233.2085

|                   |            |          | unit of |          | Indust- | Constr. | Recrea- |                | Canyon |              |              | Qbt 1g, |
|-------------------|------------|----------|---------|----------|---------|---------|---------|----------------|--------|--------------|--------------|---------|
|                   | CAS/       | concen-  | measur  | Residen- | rial    | Worker  | tional  |                | Sedi-  | QBT2,        | QBt          | Qct,    |
| Analyte           | Symbol     | tration  | е       | tial SAL | SAL     | SAL     | SAL     | Soil           | ment   | 3,4          | 1v           | Qbo     |
| Bismuth-214       | Bi-214     | 2.26     | pCi/g   |          |         |         | $\sim$  | pass           | pass   | FAIL         | pass         | pass    |
| Lead-212          | Pb-212     | 2.97     | pCi/g   | /        | /       |         |         | FAIL           | FAIL   | FAIL         | pass         | pass    |
| Lead-214          | Pb-214     | 2.7      | pCi/g   | /        |         |         | /       | FAIL           | FAIL   | FAIL         | pass         | pass    |
| Potassium-40      | K-40       | 36.2     | pCi/g   | /        | /       |         | /       | pass           | pass   | FAIL         | FAIL         | pass    |
| Radium 226/228    | calc.      |          | pCi/g   | /        | /       |         | /       |                | /      |              | $\backslash$ |         |
| Radium-226        | Ra-226     |          | pCi/g   | /        |         | pass    | pass    | pass           |        | FAIL         | pass         | pass    |
| Radium-228        | Ra-228     |          | pCi/g   | /        |         | pass    | pass    | FAIL           | FAIL   | FAIL         | pass         | pass    |
| Thallium-208      | TI-208     | 0.841    | pCi/g   | /        | /       | /       | /       |                | pass   | pass         | pass         | pass    |
| Thorium-234       | Th-234     |          | pCi/g   | /        |         |         | /       | FAIL           | FAIL   | FAIL         | pass         | pass    |
| Tritium           | H-3        | 0.02429  |         | pass     | pass    | pass    | pass    | pass           | pass   | pass         | pass         | pass    |
| Uranium-234       | U-234      | 2.09     | pCi/g   | pass     | pass    | pass    | pass    | pass           | pass   | FAIL         | pass         | pass    |
| Uranium-235/236   | U-235/236  | 0.104    |         | pass     | pass    | pass    | pass    | /              | /      |              | $\searrow$   |         |
| Uranium-238       | U-238      |          | pCi/g   | pass     | pass    | pass    | pass    | pass           | pass   | FAIL         | pass         | pass    |
| Americium-241     | Am-241     | 0.00287  | pCi/g   | /        | /       |         | /       | /              |        |              | $\sum$       |         |
| Cerium-139        | Ce-139     | -0.0103  |         | /        | /       |         | /       |                | /      |              | $\square$    |         |
| Cesium-137        | Cs-137     | 0.0025   |         | /        | /       | /       | /       | /              | /      |              | $\sum$       | /       |
| Cobalt-60         | Co-60      | -0.00614 |         | /        | /       |         | /       | /              | /      |              | $\sum$       |         |
| Europium-152      | Eu-152     | 0.0187   | pCi/g   | /        | /       |         | /       | /              | /      | /            | $\sum$       |         |
| Lanthanum-140     | La-140     | -0.0338  |         | /        | /       |         | /       | /              | /      |              | $\searrow$   | /       |
| Mercury-203       | Hg-203     | 0.0361   |         | /        | /       | /       |         |                | /      | /            |              |         |
| Plutonium-238     | Pu-238     | 0.00205  | pCi/g   |          |         | /       | /       | /              | /      |              | $\searrow$   | /       |
| Plutonium-239/240 | Pu-239/240 | -0.0041  |         | /        | /       |         |         | $\backslash$   | /      |              | $\searrow$   | /       |
| Radium-223        | Ra-223     | 0.265    |         |          |         |         |         | $\geq$         |        |              | $\geq$       |         |
| Ruthenium-106     | Ru-106     | -0.0577  |         |          |         |         |         | $\geq$         |        |              | $\geq$       |         |
| Sodium-22         | Na-22      | -0.0238  |         |          |         |         |         |                |        | $\backslash$ | $\geq$       |         |
| Strontium-90      | Sr-90      | 0.139    |         | /        |         |         |         | $\geq$         |        |              | $\sum$       |         |
| Thorium-227       | Th-227     | -0.154   |         |          | $\geq$  |         | /       | $\geq$         |        |              |              |         |
| Thorium-231       | Th-231     | 0.265    |         |          | $\geq$  |         | $\sim$  | $\geq$         |        | $\geq$       | $\geq$       |         |
| Tin-113           | Sn-113     | 0.00048  |         |          | $\geq$  |         |         | $\geq$         | $\geq$ | $\geq$       | $\geq$       |         |
| Uranium-235       | U-235      | 0.258    |         | /        | $\geq$  |         |         | $\geq$         | /      |              | $\geq$       |         |
| Yttrium-88        | Y-88       | 0.00142  | pCi/g   | /        |         |         | /       | $\overline{)}$ | /      |              | $\sim$       |         |

 $Ra^{228}$  2.91-2.33 = 0.58 45 (attachment 6) OK to land apply

#### Sampling event ID 3233

## **Detected Chemicals Form**

Stockpile Number ev 3233.2085

SWMU ev 3233.2085

# page 3 of 5 associated Excel file: ev3233.2085.awd.1.13.2011(1).xism

evaluation date: 1/13/2011

| Analyte   | CAS/<br>Symbol | concen-<br>tration | measure | Non-<br>wastewater<br>LDR | Hazardous<br>Soil LDR | Potential Haz F-codes     | Potential Haz K-codes                                                               | Potential Haz U-codes                  | Potential Haz<br>P-codes | comments |
|-----------|----------------|--------------------|---------|---------------------------|-----------------------|---------------------------|-------------------------------------------------------------------------------------|----------------------------------------|--------------------------|----------|
| Aluminum  | Al             | 1050               | mg/kg   |                           |                       |                           |                                                                                     |                                        |                          |          |
| Arsenic   | As             |                    | mg/kg   | pass                      | pass                  | F032,F034,F035,           | K031,K060,K161,K171,K172,K176,K<br>084,K101,K102,                                   |                                        |                          |          |
| Barium    | Ва             | 11.1               | mg/kg   | pass                      | pass                  |                           |                                                                                     |                                        |                          |          |
| Beryllium | Be             | 0.633              | mg/kg   | pass                      | pass                  |                           |                                                                                     |                                        |                          |          |
| Calcium   | Ca             | 474                | mg/kg   |                           |                       |                           |                                                                                     |                                        |                          |          |
| Chromium  | Сг             | 2.07               | mg/kg   | pass                      | pass                  | F032,F034,F035,F037,F038, | K090,                                                                               | ······                                 |                          |          |
| Cobalt    | Co             |                    | mg/kg   |                           |                       |                           |                                                                                     |                                        |                          |          |
| Copper    | Cu             | 2.48               | mg/kg   |                           |                       |                           |                                                                                     |                                        |                          |          |
| Iron      | Fe             | 5350               | mg/kg   |                           |                       |                           |                                                                                     |                                        |                          |          |
| Lead      | Pb             |                    | mg/kg   | pass                      | pass                  | F035,F037,F038,           | K002,K003,K005,K048,K049,K051,K<br>062,K064,K086,K100,K176,K046,K0<br>52,K061,K069, |                                        |                          |          |
| Magnesium | Mg             | 179                | mg/kg   | 1                         |                       |                           |                                                                                     | ······································ |                          |          |
| Manganese | Mn             | 212                | mg/kg   |                           | ]                     |                           | ]                                                                                   |                                        |                          |          |
| Nickel    | Ni             | 1.13               | mg/kg   | pass                      | pass                  | F006,                     |                                                                                     |                                        |                          |          |
| Potassium | к              |                    | mg/kg   |                           |                       |                           |                                                                                     |                                        |                          |          |
| Sodium    | Na             |                    | mg/kg   |                           |                       |                           |                                                                                     |                                        |                          |          |
| Uranium   | U              | 0.833              | mg/kg   |                           |                       |                           |                                                                                     |                                        |                          |          |
| Vanadium  | V              |                    | mg/kg   | pass                      | pass                  |                           |                                                                                     |                                        |                          |          |
| Zinc      | Zn             | 39.3               | mg/kg   | pass                      | pass                  |                           |                                                                                     |                                        |                          |          |

Sampling event ID 3233

## Solid Waste Evaluation

page 1 of 5

SWMU ev 3233.2085 Stockpile Number ev 3233.2085 Summary iated Excel file: ev3233.2085.awd.1.13.2011(1).xlsm evaluation date: 1/13/2011

| RCRA                                           |                                        |
|------------------------------------------------|----------------------------------------|
| 33 analytes pass                               |                                        |
| between these <u>31</u> analytes pass as unc   | letected                               |
| 10 analytes fail                               |                                        |
| Dataata                                        |                                        |
| Detects                                        |                                        |
| Total PCB (pr                                  | pm) Not analy                          |
| 4 analytes with potential F-code               | e Non-wastewater LDR: 8 pass 0 FAIL    |
| 3 analytes with potential K-code               |                                        |
| 0 analytes with potential U-cod                |                                        |
| 0 analytes with potential P-code               | e                                      |
|                                                |                                        |
| Residential Soil (mg/kg                        | ):14 pass 0 FAIL                       |
| Industrial/ Occupational Soil (mg/kg           |                                        |
| Construction Worker Soil (mg/kg                |                                        |
| Recreational Soil (mg/kg                       |                                        |
| soil backgrou                                  |                                        |
| Canyon Sediment backgrou<br>Qbt 2.3.4 backgrou |                                        |
| Qbt 2,3,4 backgrou<br>Qbt 1v backgrou          | ······································ |
| Qbt 1g, Qct,Qbo backgrou                       |                                        |
|                                                |                                        |
| RAD total do                                   | se: 0.8917 mRem/year                   |
| ?                                              | · · ·                                  |
| analysed for H-3                               |                                        |
| analysed for Pu-239                            |                                        |
| 31 isotopes,                                   | 12 were detected                       |
|                                                | 18 undetected                          |
| Residen-tial SAL: 4 pass                       | 0 FAIL                                 |
| Indust-rial SAL: 4 pass                        | 0 FAIL                                 |
| Constr. Worker SAL: 6 pass                     | 0 FAIL                                 |
| Recrea-tional SAL: 6 pass                      | <u>0 FAIL</u>                          |
| Soil: 7 pass                                   | 4 FAIL                                 |
| Canyon Sedi-ment: 7 pass                       | 4 FAIL                                 |
| QBT2,3,4: 2 pass                               | 9 FAIL                                 |
| QBt 1v: 10 pass<br>Qbt 1g, Qct, Qbo: 11 pass   | 1 FAIL<br>0 FAIL                       |
| ability, add, abb. 11 pass                     |                                        |
|                                                |                                        |

Remark: The Evaluator may overwrite any result of automatic evaluation, but a short written explanation must be added

| orted da | ev3233.1.13.2011.txt |  |  |
|----------|----------------------|--|--|
|----------|----------------------|--|--|

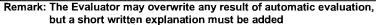
| associated duplicate |               |
|----------------------|---------------|
| associated blanks    |               |
| Sample ID            | WST50-11-2085 |

# Detected Chemicals: SSL and Background check

| Analyte   | CAS/<br>Symbol | concen-<br>tration | unit of<br>measure | Residential<br>Soil (mg/kg) | Industrial/<br>Occupational<br>Soil (mg/kg) | Construction<br>Worker Soil<br>(mg/kg) | Recreational<br>Soil (mg/kg) | soil<br>background | Canyon<br>Sediment<br>background | Qbt 2,3,4<br>background                 | Qbt 1v<br>background                    | Qbt 1g,<br>Qct,Qbo<br>background |
|-----------|----------------|--------------------|--------------------|-----------------------------|---------------------------------------------|----------------------------------------|------------------------------|--------------------|----------------------------------|-----------------------------------------|-----------------------------------------|----------------------------------|
| Aluminum  | AI             | 1050               | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                                    | pass                                    | pass                             |
| Arsenic   | As             |                    | <u> </u>           | · · · ·                     |                                             |                                        | pass                         | 1                  | pass                             | • • • • • • • • • • • • • • • • • • • • | 1                                       | pass                             |
| Barium    | Ba             |                    | <u> </u>           | •                           | pass                                        | pass                                   | pass                         |                    | pass                             |                                         |                                         | pass                             |
| Beryllium | Be<br>Ca       |                    |                    | 1                           | pass<br>NA                                  | pass<br>NA                             | pass<br>NA                   |                    | pass                             |                                         | • • • • • • • • • • • • • • • • • • • • | pass                             |
| Calcium   |                |                    |                    |                             |                                             |                                        |                              |                    | pass                             |                                         |                                         | pass                             |
| Chromium  | Cr             |                    |                    | 1                           | pass                                        | NA                                     | pass                         | 1                  | pass                             | r                                       | • • • • • • • • • • • • • • • • • • • • | pass                             |
| Cobalt    | Co             |                    | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | •                  | pass                             | 1                                       | 1                                       | pass                             |
| Copper    | Cu             |                    | <u> </u>           | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                                    | pass                                    | pass                             |
| Iron      | Fe             | 5350               | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                                    | pass                                    | FAIL                             |
| Lead      | Pb             |                    |                    | pass                        | pass                                        | pass                                   | pass                         |                    | pass                             | • • • • • • • • • • • • • • • • • • • • | pass                                    | pass                             |
| Magnesium | Mg             |                    |                    | NA                          | NA                                          | NA                                     | NA                           |                    | pass                             |                                         | pass                                    | pass                             |
| Manganese | Mn             |                    | mg/kg              | pass                        | pass                                        | FAIL                                   | pass                         | 1 · · · ·          | pass                             |                                         | pass                                    | FAIL                             |
| Nickel    | Ni             |                    | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                                    | pass                                    | pass                             |
| Potassium | К              |                    | mg/kg              | NA                          | NA                                          | NA                                     | NA                           | pass               | pass                             | pass                                    | pass                                    | pass                             |
| Sodium    | Na             | 200                | mg/kg              | NA                          | NA                                          | NA                                     | NA                           | pass               | pass                             | pass                                    | pass                                    | pass                             |
| Uranium   | U              | 0.833              | mg/kg              | pass                        | pass                                        | NA                                     | pass                         | pass               | pass                             | pass                                    | pass                                    | FAIL                             |
| Vanadium  | V              | 1.33               | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                                    | pass                                    | pass                             |
| Zinc      | Zn             | 39.3               | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                                    | pass                                    | pass                             |

Bate 1/02 50-613185

Sampling event ID 3233


SWMU ev 3233.2085.2084.2094 Stockpile Number ev 3233.2085.2084.2094

## Solid Waste Evaluation

page 1 of 5

Summarycel file: ev3233 2085 2084 2094 awd 1 20 2011.xlsm evaluation date: 1/20/2011

RCRA 33 analytes pass 31 analytes pass as undetected between these 10 analytes fail Detects Total PCB (ppm) Not analy 4 analytes with potential F-code Non-wastewater LDR: 9 pass 0 FAIL 4 analytes with potential K-code Hazardous soil LDR: 9 pass 0 FAIL 0 analytes with potential U-code 0 analytes with potential P-code Residential Soil (mg/kg) : 15 pass 0 FAIL Industrial/ Occupational Soil (mg/kg) : 15 pass 0 FAIL Construction Worker Soil (mg/kg) : 12 pass 1 FAIL Recreational Soil (mg/kg) : 15 pass 0 FAIL soil background: 19 pass 0 FAIL Canyon Sediment background: 19 pass 0 FAIL Qbt 2,3,4 background: 18 pass 1 FAIL Qbt 1v background: 14 pass 5 FAIL Qbt 1g, Qct, Qbo background: 12 pass 7 FAIL RAD total dose: 0.9427 mRem/year analysed for H-3 analysed for Pu-239 32 isotopes, 12 were detected 19 undetected Residen-tial SAL: 4 pass 0 FAIL Indust-rial SAL: 4 pass 0 FAIL Constr. Worker SAL: 6 pass 0 FAIL Recrea-tional SAL: 6 pass 0 FAIL Soil: 5 pass 6 FAIL Canyon Sedi-ment: 5 pass 6 FAIL QBT2,3,4: 2 pass 9 FAIL QBt 1v: 8 pass 3 FAIL Qbt 1g, Qct, Qbo: 11 pass 0 FAIL



| Sample ID     | associated blanks | associated duplicate |  |  |
|---------------|-------------------|----------------------|--|--|
| WST50-11-2084 | WST50-11-2094     |                      |  |  |
| WST50-11-2085 | WST50-11-2094     |                      |  |  |

Imported data files ev3233.1.20.2011.txt

3233

page 3 of 5 associated Excel file: ev3233 2085 2084 2094 awd 1 20 2011.xlsm

evaluation date: 1/20/2011

SWMU ev 3233.2085.2084.2094 RCRA Characteristics Form

Stockpile Number ev 3233.2085.2084.2094

Potential Reg. concenunit of Pass/ Haz Code limit tration measure Qualifier Analyte CAS/ Symbol Fail comments Arsenic 5000 50 ug/L As U pass 216 ug/L Barium Ba D005 100000 pass J Cadmium Cd 1000 10 ug/L U pass 21.5 ug/L 5000 Chromium Cr U pass D008 5000 18.7 ug/L Pb \_ead .1 pass 200 2 ug/L U Mercury Hg pass 1000 50 ug/L U Selenium Se pass Ag Silver 5000 10 ug/L U pass Endrin 72-20-8 D012 20 ug/L FAIL BHC[gamma-] 58-89-9 D013 400 FAIL ug/L D014 10000 Methoxychlor[4,4'-] 72-43-5 ug/L FAIL Toxaphene (Technical Grade) D015 500 8001-35-2 FAIL ug/L D016 10000 FAIL D[2,4-] 94-75-7 ug/L TP[2,4,5-] D017 1000 FAIL 93-72-1 ug/L Benzene 71-43-2 500 0.053 ug/L pass 0.053 ug/L Carbon Tetrachloride 56-23-5 500 11 pass Chlordane(alpha/gamma) 57-74-9 D020 30 FAIL ug/L D020 FAIL Chlordane[gamma-] 5103-74-2 ug/L 5103-71-9 D020 FAIL Chlordane[alpha-] ug/L 108-90-7 100000 0.053 ug/L Chlorobenzene U pass 6000 0.053 ug/L U Chloroform 67-66-3 pass Methylphenol[2-] 95-48-7 200000 17.6 ug/L U pass Methylphenol[3-] 200000 108-39-4 17.6 ug/L U pass Methylphenol[4-] 106-44-5 200000 17.6 ug/L U pass Methylphenol[3-,4-] 65794-96-9 200000 17.6 ug/L U pass 8027-16-5 200000 Methylphenol(total) 35.2 ug/L UU pass 7500 17.6 ug/L Dichlorobenzene[1,4-] 106-46-7 U pass Dichloroethane[1,2-] 107-06-2 500 0.053 ug/L U pass Dichloroethene[1,1-] 75-35-4 700 0.053 ug/L U pass 121-14-2 130 17.6 ug/L Dinitrotoluene[2,4-] U nass Heptachlor 76-44-8 D031 FAIL 8 ug/L Hexachlorobenzene 118-74-1 130 17.6 ug/L U pass 500 Hexachlorobutadiene 87-68-3 17.6 ug/L U pass 67-72-1 3000 17.6 ug/L Hexachloroethane П pass 200000 0.264 ug/L ŪJ Butanone[2-] 78-93-3 pass 17.6 ug/L Nitrobenzene 98-95-3 2000 U pass 100000 Pentachlorophenol 87-86-5 17.6 ug/L U pass 5000 Pyridine 110-86-1 17.6 ug/L U pass 0.053 ug/L Tetrachloroethene 127-18-4 700 U pass Trichloroethene 79-01-6 500 0.053 ug/L U pass Trichlorophenol[2,4,5-] 400000 17.6 ug/L 95-95-4 U pass 88-06-2 Trichlorophenol[2,4,6-] 2000 17.6 ug/L U pass 0.053 ug/L Vinyl Chloride 75-01-4 200 U pass

NOTE 1: If multiple results exist for given analyte, first, the highest detected result is chosen. If there are no detected results, the lowest undetected result is chosen.

NOTE 2: Often chlordane is analyzed as alpha and gamma isomers. If no total chlordane result exist, total concentration will be calculated from individual isomer results.

NOTE 3: Most frequently 2-Methylphenol is analyzed separately and 3- and 4-methylphenols are reported together.

Often, raw data contain only two results - for 2- methylphenol and 4-methylphenol. In such case 4-methyl is in fact a result

for two isomers together: 3-methyl + 4-methylphenol. The macro evaluates present data and calculates concentrations for 3-, 4-, and total.

methylphenols. Results reported separatedly for 3- and 4- methylphenols with calc. remark are, in fact, partial total, 3- + 4-methylphenol together.

NOTE 4: Undetected results pass automatically, without comparing to standard. Detected results pass only if reported concentration is lower than legal standard.

NOTE 5: CAS number is highlighted in pink if there is a large discrepancy between sample and duplicate.

Sampling event ID

# Detected Chemicals: SSL and Background check

| Analyte              | CAS/ Symbol | concen-<br>tration | unit of<br>measure | Residential<br>Soil (mg/kg) | Industrial/<br>Occupational<br>Soil (mg/kg) | Construction<br>Worker Soil<br>(mg/kg) | Recreational<br>Soil (mg/kg) | soil<br>background                    | Canyon<br>Sediment<br>background | Qbt 2,3,4<br>background | Qbt 1v<br>background | Qbt 1g,<br>Qct,Qbo<br>background |
|----------------------|-------------|--------------------|--------------------|-----------------------------|---------------------------------------------|----------------------------------------|------------------------------|---------------------------------------|----------------------------------|-------------------------|----------------------|----------------------------------|
| Aluminum             | Al          | 1650               | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass                                  | pass                             | pass                    | pass                 | pass                             |
| Antimony             | Sb          | 0.71               | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass                                  | pass                             | FAIL                    | FAIL                 | FAIL                             |
| Arsenic              | As<br>Ba    |                    | mg/kg              | pass                        | pass                                        | pass                                   | pass                         |                                       | pass                             |                         | pass                 | pass                             |
| Barium               | Ве          |                    | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | · · · · · · · · · · · · · · · · · · · | pass                             |                         | pass                 | pass                             |
| Beryllium<br>Calcium | Са          |                    | mg/kg<br>mg/kg     | pass<br>NA                  | pass<br>NA                                  |                                        | pass<br>NA                   | pass<br>pass                          | pass<br>pass                     |                         | pass<br>pass         | pass<br>pass                     |
| Chromium             | Cr          |                    | mg/kg              | pass                        |                                             |                                        | pass                         | pass                                  | pass                             |                         | FAIL                 | FAIL                             |
|                      |             |                    |                    | P                           |                                             |                                        | pass                         |                                       |                                  |                         | pass                 |                                  |
| Cobalt               | Cu          |                    | <u> </u>           | pass                        |                                             |                                        | P                            | <u> </u>                              | pass                             | 11                      | FAIL                 | pass<br>pass                     |
| Copper               | Fe          |                    |                    | pass<br>pass                |                                             |                                        | pass<br>pass                 |                                       | pass<br>pass                     |                         | pass                 | FAIL                             |
| Lead                 | Рb          |                    |                    |                             |                                             |                                        | pass                         |                                       | pass                             |                         |                      | pass                             |
| Magnesium            | Mg          |                    |                    | NA                          | NA                                          | NA                                     | NA                           | pass                                  | pass                             | pass                    | FAIL                 | FAIL                             |
| Manganese            | Mn          |                    | mg/kg              | pass                        | pass                                        | FAIL                                   | pass                         | pass                                  | pass                             | pass                    | pass                 | FAIL                             |
| Nickel               | Ni          |                    | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass                                  | pass                             | pass                    | FAIL                 | FAIL                             |
| Potassium            | K           | 419                | mg/kg              | NA                          | NA                                          | NA                                     | NA                           | pass                                  | pass                             | pass                    | pass                 | pass                             |
| Sodium               | Na          |                    | mg/kg              | NA                          | NA                                          | NA                                     | NA                           |                                       | pass                             | 1                       | pass                 | pass                             |
| Uranium              | U           |                    | mg/kg              | pass                        | pass                                        | NA                                     | pass                         | pass                                  | pass                             | pass                    | pass                 | FAIL                             |
| Vanadium             | V           |                    | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass                                  | pass                             | pass                    | pass                 | pass                             |
| Zinc                 | Zn          |                    | X                  | pass                        | pass                                        | pass                                   | pass                         | pass                                  | pass                             | pass                    | pass                 | pass                             |

Sampling event ID

## **Detected Chemicals Form**

\*

3233

page 3 of 5 associated Excel file: ev3233 2085 2084 2094 awd 1 20 2011.xism

evaluation date: 1/20/2011

| Analyte   | CAS/ Symbol | concen-<br>tration | unit of<br>measure | Non-<br>wastewater<br>LDR | Hazardous<br>Soil LDR | Potential Haz F-codes     | Potential Haz K-codes                                                               | Potential Haz U-codes | Potential Haz<br>P-codes | comments |
|-----------|-------------|--------------------|--------------------|---------------------------|-----------------------|---------------------------|-------------------------------------------------------------------------------------|-----------------------|--------------------------|----------|
| Aluminum  | Al          |                    | mg/kg              |                           |                       |                           |                                                                                     |                       |                          |          |
| Antimony  | Sb          | 0.71               | 1mg/kg             | pass                      | pass                  |                           | K161,K021,K177,                                                                     |                       |                          |          |
| Arsenic   | As          |                    | mg/kg              | pass                      |                       | F032,F034,F035,           | K031,K060,K161,K171,K172,K176,K<br>084,K101,K102,                                   |                       |                          |          |
| Barium    | Ba          |                    |                    | pass                      | pass                  |                           |                                                                                     |                       |                          |          |
| Beryllium | Be          |                    |                    | pass                      | pass                  |                           |                                                                                     |                       |                          |          |
| Calcium   | Ca          |                    | mg/kg              |                           |                       |                           |                                                                                     |                       |                          |          |
| Chromium  | Cr          |                    | mg/kg              | pass                      | pass                  | F032,F034,F035,F037,F038, | K090,                                                                               |                       |                          |          |
| Cobalt    | Co          |                    | mg/kg              |                           |                       |                           |                                                                                     |                       |                          |          |
| Copper    | Cu          | 3.6                | mg/kg              |                           |                       |                           |                                                                                     |                       |                          |          |
| Iron      | Fe          | 5350               | mg/kg              |                           |                       |                           |                                                                                     |                       |                          |          |
| Lead      | Рb          | 11.1               | mg/kg              | pass                      | pass                  | F035,F037,F038,           | K002,K003,K005,K048,K049,K051,K<br>062,K064,K086,K100,K176,K046,K0<br>52,K061,K069, |                       |                          |          |
| Magnesium | Mg          | 829                | mg/kg              |                           |                       |                           |                                                                                     |                       |                          |          |
| Manganese | Mn          | 212                | mg/kg              |                           |                       |                           |                                                                                     |                       |                          |          |
| Nickel    | Ni          | 2.18               |                    | pass                      | pass                  | F006.                     |                                                                                     |                       |                          |          |
| Potassium | К           |                    | mg/kg              | [                         |                       |                           |                                                                                     |                       |                          |          |
| Sodium    | Na          |                    | mg/kg              |                           |                       |                           |                                                                                     |                       |                          |          |
| Uranium   | U           |                    | mg/kg              |                           |                       | 1                         |                                                                                     |                       |                          |          |
| Vanadium  | V           |                    |                    | pass                      | pass                  | İ                         |                                                                                     |                       |                          |          |
| Zinc      | Zn          |                    |                    | pass                      | pass                  |                           |                                                                                     |                       |                          |          |

SWMU ev 3233.2085.2084.2094

Stockpile Number ev 3233.2085.2084.2094

#### Sampling event ID

3233

#### page 3 of 5

## SWMU ev 3233.2085.2084.2094 SAL and backgrounds comparison 233 2085 2084 2094 awd 1 20 2011.xism Stockpile Number ev 3233.2085.2084.2094

evaluation date: 1/20/2011

Qbt 1g, unit of Indust-Constr. Recrea-Canyon Worker CAS/ measur Residenrial Sedi-QBT2, QBt Qct, concentional Symbol tration tial SAL SAL SAL SAL Soil 3,4 Qbo Analyte е ment 1v Bismuth-214 Bi-214 2.55 pCi/g FAIL pass pass pass pass 2.97 pCi/g Pb-212 FAIL Lead-212 FAIL FAIL pass pass FAIL FAIL pass Lead-214 Pb-214 3.31 pCi/g FAIL FAIL pass pass Potassium-40 K-40 36.2 pCi/g FAIL FAIL pass Radium 226/228 5.46 pCi/g calc. Ra-226 Radium-226 FAIL 2.55 pCi/g pass pass pass pass pass pass Radium-228 Ra-228 2.91 pCi/g FAIL FAIL FAIL pass pass pass pass Thallium-208 TI-208 0.868 pCi/g pass pass pass pass pass FAIL pass FAIL FAIL FAIL Thorium-234 Th-234 3.13 pCi/g 0.02429 pCi/g Tritium pass pass pass pass pass H-3 pass pass pass pass Uranium-234 U-234 2.78 pCi/g FAIL FAIL FAIL pass pass pass pass pass pass 0.287 pCi/g Uranium-235/236 U-235/236 lpass pass pass pass FAIL FAIL Uranium-238 FAIL U-238 2.9 pCi/g pass pass pass pass pass pass Americium-241 Am-241 -0.00101 pCi/g Cerium-139 Ce-139 -0.0144 pCi/g -0.00727 pCi/g Cesium-137 Cs-137 Cobalt-60 -0.00614 pCi/g Co-60 -0.073 pCi/g Europium-152 Eu-152 -0.0338 pCi/g La-140 Lanthanum-140 0.0361 pCi/g Mercury-203 Hg-203 0 pCi/g Plutonium-238 Pu-238 Plutonium-239/240 Pu-239/240 -0.0041 pCi/g Radium-223 0.121 pCi/g Ra-223 -0.0901 pCi/g Ruthenium-106 Ru-106 Sodium-22 Na-22 -0.0238 pCi/g Strontium-85 Sr-85 0.0156 pCi/g Strontium-90 Sr-90 -0.0542 pCi/g Thorium-227 Th-227 -0.154 pCi/g Thorium-231 Th-231 0.121 pCi/g Tin-113 Sn-113 -0.00049 pCi/g Uranium-235 U-235 0.129 pCi/g Yttrium-88 Y-88 0.00142 pCi/g

page 3 of 5

Sampling event ID

3233

SWMU ev 3233.2085.2084.209 **Radioisotopes**d **E@lfme**v3233 2085 2084 2094 awd 1 20 2011.xlsm Stockpile Number ev 3233.2085.2084.2094 evaluation date: 1/20/2011

| Analyte           | CAS/ Symbol | concen-<br>tration | unit of<br>measure | Qualifier | comments |
|-------------------|-------------|--------------------|--------------------|-----------|----------|
| Bismuth-214       | Bi-214      | 2.55               | pCi/g              | NQ        |          |
| Lead-212          | Pb-212      | 2.97               | pCi/g              | NQ        |          |
| Lead-214          | Pb-214      | 3.31               | pCi/g              | NQ        |          |
| Potassium-40      | K-40        | 36.2               | pCi/g              | NQ        |          |
| Radium 226/228    | calc.       | 5.46               | pCi/g              |           |          |
| Radium-226        | Ra-226      | 2.55               | pCi/g              | NQ        |          |
| Radium-228        | Ra-228      | 2.91               | pCi/g              | NQ        |          |
| Thallium-208      | TI-208      | 0.868              | pCi/g              | NQ        |          |
| Thorium-234       | Th-234      | 3.13               | pCi/g              | NQ        |          |
| Tritium           | H-3         | 0.0242893          | pCi/g              | NQ        |          |
| Uranium-234       | U-234       | 2.78               | pCi/g              | NQ        |          |
| Uranium-235/236   | U-235/236   | 0.287              | pCi/g              | NQ        |          |
| Uranium-238       | U-238       | 2.9                | pCi/g              | NQ        |          |
| Americium-241     | Am-241      | -0.00101           | pCi/g              | U         |          |
| Cerium-139        | Ce-139      | -0.0144            | pCi/g              | U         |          |
| Cesium-137        | Cs-137      | -0.00727           | pCi/g              | U         |          |
| Cobalt-60         | Co-60       | -0.00614           | pCi/g              | U         |          |
| Europium-152      | Eu-152      | -0.073             | pCi/g              | U         |          |
| Lanthanum-140     | La-140      | -0.0338            | pCi/g              | U         |          |
| Mercury-203       | Hg-203      | 0.0361             | pCi/g              | U         |          |
| Plutonium-238     | Pu-238      | 0                  | pCi/g              | U         |          |
| Plutonium-239/240 | Pu-239/240  | -0.0041            | pCi/g              | U         |          |
| Radium-223        | Ra-223      | 0.121              | pCi/g              | U         |          |
| Ruthenium-106     | Ru-106      | -0.0901            | pCi/g              | U         |          |
| Sodium-22         | Na-22       | -0.0238            | pCi/g              | U         |          |
| Strontium-85      | Sr-85       | 0.0156             | pCi/g              | U         |          |
| Strontium-90      | Sr-90       | -0.0542            | pCi/g              | U         |          |
| Thorium-227       | Th-227      | -0.154             | pCi/g              | U         | 2.<br>2. |
| Thorium-231       | Th-231      | 0.121              | pCi/g              | U         |          |
| Tin-113           | Sn-113      | -0.000488          | pCi/g              | U         |          |
| Uranium-235       | U-235       | 0.129              |                    | U         |          |
| Yttrium-88        | Y-88        | 0.00142            | pCi/g              | U         |          |

## **Additional Constituents - Chemicals**

Sampling event ID 3233 SWMU ev 3233.2085.2084.2094 Stockpile Number ev 3233.2085.2084.2094

associated Excel file: ev3233 2085 2084 2094 awd 1 20 2011.xlsm evaluation date: 1/20/2011

|                 |                                                                                                                      | concentr |       | Results  |           |           |         |         |          |
|-----------------|----------------------------------------------------------------------------------------------------------------------|----------|-------|----------|-----------|-----------|---------|---------|----------|
| Analyte         | CAS/ Symbol                                                                                                          | ation    | Unit  | (ppm)    | MIN (ppm) | MAX (ppm) | MIN. %  | MAX. %  | comments |
| Aluminum        | Al                                                                                                                   | 1650000  | ug/kg | 1650.000 | 1050.000  | 1650.000  | 0.105   | 0.165   |          |
| Antimony        | Sb                                                                                                                   | 710      | ug/kg | 0.710    | 0         | 0.710     | 0       | 7.1E-05 |          |
| Beryllium       | Ве                                                                                                                   | 633      | ug/kg | 0.633    | 0.210     | 0.633     | 2.1E-05 | 6.3E-05 |          |
| Calcium         | Ca                                                                                                                   | 1130000  | ug/kg | 1130.000 | 474.000   | 1130.000  | 0.047   | 0.113   |          |
| Cobalt          | Co                                                                                                                   | 883      | ug/kg | 0.883    | 0.299     | 0.883     | 3.0E-05 | 8.8E-05 |          |
| Copper          | Cu                                                                                                                   |          | ug/kg | 3.600    | 2.480     | 3.600     | 2.5E-04 | 3.6E-04 |          |
| Iron            | Fe                                                                                                                   | 5350000  | ug/kg | 5350.000 | 4120.000  | 5350.000  | 0.412   | 0.535   |          |
| Magnesium       | Mg                                                                                                                   | 829000   | ug/kg | 829.000  | 179.000   | 829.000   | 0.018   | 0.083   |          |
| Manganese       | Mn                                                                                                                   | 212000   | ug/kg | 212.000  | 123.000   | 212.000   | 0.012   | 0.021   |          |
| Nickel          | Ni                                                                                                                   | 2180     | ug/kg | 2.180    | 1.130     | 2.180     | 1.1E-04 | 2.2E-04 |          |
| Potassium       | К                                                                                                                    | 419000   | ug/kg | 419.000  | 282.000   | 419.000   | 0.028   | 0.042   |          |
| Sodium          | Na                                                                                                                   | 390000   | ug/kg | 390.000  | 200.000   | 390.000   | 0.020   | 0.039   |          |
| Uranium         | U                                                                                                                    | 833      | ug/kg | 0.833    | 0.150     | 0.833     | 1.5E-05 | 8.3E-05 |          |
| Vanadium        | V                                                                                                                    |          | ug/kg |          | 1.330     | 4.160     | 1.3E-04 | 4.2E-04 |          |
| Zinc            | Zn                                                                                                                   | 39300    | ug/kg | 39.300   | 12.300    | 39.300    | 1.2E-03 | 3.9E-03 |          |
| NOTE 1: This ta | IOTE 1: This table contains all detected, non D-coded analytes TOTAL 0.645 1.003 % (all analytes from all pages were |          |       |          |           |           |         |         |          |

NOTE 2: Highlighted analytes are potentially F-coded

0.645

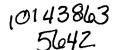
1.003 % (all analytes from all pages were added for this total

## **Additional Constituents - RAD**

Sampling event ID 3233 SWMU ev 3233.2085.2084.2094

Stockpile Number ev 3233.2085.2084.2094

associated Excel file: ev3233 2085 2084 2094 awd 1 20 2011.xlsm evaluation date: 1/20/2011


% of total | % of total rad from rad from Max Total Min Total Max Min Max Min Ci from Ci from CAS/ Symbol Result Result Unit values values isotope isotope comments Analyte 2.260 pCi/g 4.22 4.24 5.1E-07 4.5E-07 Bismuth-214 Bi-214 2.550 5.9E-07 5.8E-07 2.900 pCi/g Lead-212 Pb-212 2.970 4.91 5.44 Lead-214 Pb-214 3.310 2.700lpCi/a 5.47 5.07 6.6E-07 5.4E-07 36.200 32.900 pCi/g 59.86 7.2E-06 6.6E-06 Potassium-40 K-40 61.72 Radium-226 Ra-226 2.550 2.260 pCi/a 4.22 4.24 5.1E-07 4.5E-07 2.520 pCi/g 5.0E-07 4.73 5.8E-07 Radium-228 Ra-228 2.910 4.81 TI-208 0.841 pCi/g 1.44 1.58 1.7E-07 1.7E-07 Thallium-208 0.868 6.3E-07 Thorium-234 Th-234 2.710 pCi/g 5.18 5.08 5.4E-07 3.130 H-3 0.023 0 pCi/q 0.04 0 4.6E-09 Tritium 0 5.6E-07 Uranium-234 U-234 2.780 2.090 pCi/g 4.60 3.92 4.2E-07 Uranium-235/236 U-235/236 0.287 0.104 pCi/a 0.47 0.20 5.7E-08 2.1E-08 2.020 pCi/g Uranium-238 2.900 4.80 3.79 5.8E-07 4.0E-07 U-238 TOTAL 1.2E-05 1.1E-05 all detected isotopes from all 60.48 53.31 100.0 100.0

volume of waste: 200 kg

NOTE 1: This table contains all detected radioisotopes

pages were added for this total

NOTE 2: If only one detected result exist, 0 is listed as minimum, if more than one detect exist, lowest detect is listed as minimum.



Water Quality and RCRA Group Los Alamos National Laboratory

## **Request for Land Application of Drill Cuttings Form**

| <b>Decision Tree—Decision Point Evaluation</b>                                                                                |     |    |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------|-----|----|--|--|--|--|--|
| The following questions require yes or no answers.                                                                            | Yes | No |  |  |  |  |  |
| 1. D1: Is existing characterization data consistent with WCSF? Attach<br>a summary table of results, validated raw data, etc. | ⊻   |    |  |  |  |  |  |
| 2. D2: Do drill cuttings contain RCRA Hazardous Waste or Hazard constituents above RCRA limits? If yes:                       | Ē   |    |  |  |  |  |  |
| Has a Due Diligence been conducted for this waste? Attach a copy of the due diligence documentation.                          |     | Ľ  |  |  |  |  |  |
| Has a No Longer Contained In been approved for this waste? Attach a copy of the No Longer                                     |     |    |  |  |  |  |  |
| Contained In approval.                                                                                                        |     |    |  |  |  |  |  |
| 3. D6: Do drill cuttings meet the 5 criteria in D6, Attachment 1?                                                             |     |    |  |  |  |  |  |
| 4. Do drill cuttings meeting the criteria in the Radiological Decision Tree, Attachment 3?                                    |     |    |  |  |  |  |  |

Generator or Project Leader Certification: I certify that the drill cuttings described in this request meet the criteria for land application per the Decision Tree and that the drill cuttings will be land applied as described.

| Stephani Fuller | FRIULL    | Project Mar | 2/24/11 |
|-----------------|-----------|-------------|---------|
| Name (Print)    | Signature | Title       | Date    |

#### **ENV-RCRA Review (below):**

Does request provide all the required information, and do the drill cuttings meet all the criteria for land application? Yes\_\_\_\_\_ No\_\_\_\_\_ Note deficiency in the space provided:

are brekgen als allow EN FER (MIGTIN Signature ENV-RCRA Reviewer Name (Print) Package Expiration Date: 5/28/11

10143863

5642

Water Quality and RCRA Group Los Alamos National Laboratory ENV-RCRA-QP-011.2 Attachment 4, Page 1 of 1

## Post Land Application Field Certification Sheet

| Date(s) of land application: 3/2/1/ Project: MDAC Phase I                                                                                      |         |
|------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Location of land application: $WHun Phyloth Location Date: TA: 50 (SWMU)$<br>EX-ID Number: $UX - 0815 - 50$ EX-ID Expiration Date: $4/12/2011$ | -50-009 |
| Please explain any deviations from original application (Attachment 2) in the space provided:                                                  |         |
|                                                                                                                                                |         |
|                                                                                                                                                |         |

Note: ENV-RCRA must approve any deviations from Attachment 2 prior to land application.

Generator or Project Leader Certification (below):

I certify that

- land application complied with the requirements of this procedure (ENV-RCRA-SOP-011.1),
- no free liquids were applied during land application,
- an inspection was conducted to ensure the requirements in Attachment 2 of this procedure was met, and
- the land application of drill cuttings complied with the excavation permit.

"Sh

3/3/11

Name (Print)

Signature

Title

Date

Sampling event ID 3233

## **Solid Waste Evaluation**

page 1 of 5

SWMU ev3233.2088.2096 Stockpile Number ev3233.2088.2096 SummaryExcel file: ev3233.2088.2096.awd.2.24.2011(1).xlsm evaluation date: 2/24/2011

| RCRA          |            |                           |               |           |                     |        |        |
|---------------|------------|---------------------------|---------------|-----------|---------------------|--------|--------|
|               | 33         | analytes pas              | ss            |           |                     |        |        |
| between these | 32         | analytes pas              | ss as undete  | cted      |                     |        |        |
|               | 10         | analytes fai              | 1             |           |                     |        |        |
| Detects       |            |                           |               |           |                     | · · ·  |        |
|               |            | Total                     | PCB (ppm)     | Not analy | ł                   |        |        |
|               |            | s with potenti            | al F-code     |           | on-wastewater LDR:  | 8 pass | 0 FAIL |
|               |            | s with potenti            |               | ŀ         | lazardous soil LDR: | 8 pass | 0 FAIL |
|               |            | s with potenti            |               |           |                     |        |        |
| 0             | analyte    | s with potenti            | al P-code     |           |                     |        |        |
|               | R          | esidential So             | oil (ma/ka) : | 15 pass   | 0 FAIL              |        |        |
| Indus         |            | cupational So             |               |           | 0 FAIL              |        |        |
| Co            | onstructio | on Worker Sc              | oil (mg/kg) : | 12 pass   | 1 FAIL              |        |        |
|               | Re         | creational Sc             | oil (mg/kg) : | 15 pass   | 0 FAIL              |        |        |
|               |            |                           | ackground:    |           | 0 FAIL              |        |        |
|               | Canyo      | n Sediment b              | •             | •         | 0 FAIL              |        |        |
|               |            |                           | ackground:    |           |                     |        |        |
|               | 0          |                           | ackground:    |           | 0 FAIL              |        |        |
|               | QDT        | g, Qct,Qbo b              | ackground:    | 17 pass   | 1 FAIL              |        |        |
| RAD           |            |                           | total dose:   | 0.8375    | mRem/year           |        |        |
|               |            |                           |               |           |                     |        |        |
|               |            | d for H-3                 |               |           |                     |        |        |
|               | -          | d for Pu-239<br>isotopes, |               | 10        | were detected       |        |        |
|               | 50         | isotopes,                 |               |           | undetected          |        |        |
|               |            |                           |               | 13        | undetected          |        |        |
| Residen-ti    | al SAL:    | 3 pass                    |               | 0 FAIL    |                     |        |        |
|               | al SAL:    | •                         |               | 0 FAIL    |                     |        |        |
| Constr. Worke | er SAL:    | 5 pass                    |               | 0 FAIL    |                     |        |        |
| Recrea-tion   |            | •                         |               | 0 FAIL    | _                   |        |        |
|               |            | 6 pass                    |               | 3 FAIL    |                     |        |        |
| Canyon Sed    |            | •                         |               | 3 FAIL    |                     |        |        |
|               | T2,3,4:    |                           |               | 7 FAIL    |                     |        |        |
|               | QBt 1v:    |                           |               | 0 FAIL    |                     |        |        |
| Qbt 1g, Qo    | л, QDO:    | 9 pass                    |               | 0 FAIL    |                     |        |        |
|               |            |                           |               |           |                     |        |        |
|               |            |                           |               |           |                     |        |        |

Remark: The Evaluator may overwrite any result of automatic evaluation, but a short written explanation must be added

|--|

| Sample ID     | associated blanks           | associated duplicate |
|---------------|-----------------------------|----------------------|
| WST50-11-2088 | WST50-11-2088 WST50-11-2096 |                      |
|               |                             |                      |

SWMU ev3233.2088.2096 Stockpile Number ev3233.2088.2096

### **Detected Chemicals Form**

essociated Excel file: ev3233.2088.2096.awd.2.24.2011(1).xlsm

evaluation date: 2/24/2011

Nonconcenunit of wastewater Hazardous Potential Haz CAS/ Symbol Soil LDR Analyte tration measure LDR Potential Haz F-codes Potential Haz K-codes Potential Haz U-codes P-codes comments Aluminum AI 1710 mg/kg K031,K060,K161,K171,K172,K176,K 0.269 mg/kg 084,K101,K102, Arsenic As pass pass Barium Ba 13 mg/kg pass pass 13 mg/kg 0.523 mg/kg 679 mg/kg 2.13 mg/kg 0.663 mg/kg 1.89 mg/kg 4440 mg/kg Beryllium Be pass pass Calcium Са K090, Chromium Cr pass pass Cobalt Co Copper Cu Fe Iron K002,K003,K005,K048,K049,K051,K 062,K064,K086,K100,K176,K046,K0 52.K061.K069. 5.55 mg/kg Lead РЬ pass Dass 384 mg/kg 153 mg/kg Magnesium Manganese Mg Mn 1.37 mg/kg Nickel Ni pass Dass 1.2 mg/kg 1.2 mg/kg 415 mg/kg 374 mg/kg 0.426 mg/kg Nitrate NO3 Potassium κ Sodium Na Uranium U Vanadium ĪV 2.97 mg/kg pass pass 29.3 mg/kg Zn pass pass Zinc

page 3 of 5

# Detected Chemicals: SSL and Background check

-

.

| Analyte   | CAS/ Symbol | concen-<br>tration | unit of<br>measure | Residential<br>Soil (mg/kg) | Industrial/<br>Occupational<br>Soil (mg/kg) | Construction<br>Worker Soil<br>(mg/kg) | Recreational<br>Soil (mg/kg) | soil<br>background | Canyon<br>Sediment<br>background | Qbt 2,3,4<br>background | Qbt 1v<br>background | Qbt 1g,<br>Qct,Qbo<br>background |
|-----------|-------------|--------------------|--------------------|-----------------------------|---------------------------------------------|----------------------------------------|------------------------------|--------------------|----------------------------------|-------------------------|----------------------|----------------------------------|
| Aluminum  | Al          | 1710               | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | pass                 | pass                             |
|           | As          | 0.269              | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | pass                 | pass                             |
| Barium    | Ba          |                    | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | pass                 | pass                             |
|           | Be          | 0.523              | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | pass                 | pass                             |
| -         | Ca          |                    | mg/kg              | NA                          |                                             |                                        | NA                           | pass               | pass                             | pass                    | pass                 | pass                             |
|           | Cr          | 2.13               | mg/kg              | pass                        | pass                                        | NA                                     | pass                         | pass               | pass                             | pass                    | pass                 | pass                             |
| Cobalt    | Co          | 0.663              | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | pass                 | pass                             |
| Copper    | Cu          | 1.89               | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | pass                 | pass                             |
| Iron      | Fe          | 4440               | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | pass                 | FAIL                             |
| Lead      | Pb          | 5.55               | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | pass                 | pass                             |
| Magnesium | Mg          | 384                | mg/kg              | NA                          | NA                                          | NA                                     | NA                           | pass               | pass                             | pass                    | pass                 | pass                             |
|           | Mn          | 153                | mg/kg              | pass                        | pass                                        | FAIL                                   | pass                         | pass               | pass                             | pass                    | pass                 | pass                             |
| Nickel    | Ni          | 1.37               | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | pass                 | pass                             |
| Nitrate   | NO3         | 1.2                | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | NA                 | NA                               | NA                      | NA                   | NA                               |
| Potassium | К           | 415                | mg/kg              | NA                          | NA                                          | NA                                     | NA                           | pass               | pass                             | pass                    | pass                 | pass                             |
| Sodium    | Na          |                    | mg/kg              | NA                          | NA                                          | NA                                     | NA                           | pass               | pass                             | pass                    | pass                 | pass                             |
| Uranium   | U           | 0.426              | mg/kg              | pass                        | pass                                        | NA                                     | pass                         | pass               | pass                             | pass                    | pass                 | pass                             |
| Vanadium  | V           | 2.97               |                    | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | pass                 | pass                             |
| Zinc      | Zn          | 29.3               | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | pass                 | pass                             |

page 3 of 5

Sampling event ID 3233

### SWMU ev3233.2088.2096 Stockpile Number ev3233.2088.2096

### SAL and background comparis on ev3233.2088.2096.awd.2.24.2011(1).xlsm

evaluation date: 2/24/2011

unit of Indust-Constr. Recrea-Canyon Obt 1g, CAS/ concenmeasur Residenrial Worker QBT2. tional Sedi-QBt Qct. Analyte Symbol tration tial SAL SAL SAL SAL Soil ment 3.4 1v Qbo A Bismuth-214 Bi-214 2.1 pCi/g FAIL pass pass pass pass Lead-212 Pb-212 2.82 pCi/g FAIL FAIL FAIL pass pass tead-214 Pb-214 2.62 pCi/g FAIL FAIL FAIL pass pass Potassium-40 K-40 33.8 pCi/g pass pass pass pass pass Radium 226/228 calc. 4.83 pCi/a Radium-226 Ra-226 2.1 pCi/g FAIL pass pass pass pass pass pass 2.73 pCi/a Radium-228 Ra-228 FAIL FAIL FAIL pass pass pass pass Thallium-208 TI-208 0.792 pCi/g pass pass pass pass pass Uranium-234 Ū-234 2.24 pCi/g pass pass pass pass pass pass FAIL pass pass 0.1 pÇi/g Uranium-235/236 U-235/236 pass pass pass pass Uranium-238 U-238 2.19 6Ci/g pass pass FAIL pass pass pass pass pass pass Americium-241 Am-241 -0.00615 pCi/g Cerium-139 Ce-139 -0.00444 pCi/g -0.0328 pCi/g Cesium-137 Cs-137 Co-60 Cobalt-60 0.0127 pCi/g Europium-152 Eu-152 -0.0441 pCi/g Lanthanum-140 La-140 -0.271 pCi/g Plutonium-238 Pu-238 0.00129 pCi/a Plutonium-239/240 Pu-239/240 0.00129 pCi/g Radium-223 Ra-223 -0.368 pCi/q Ruthenium-106 Ru-106 0.188 pCi/g Sodium-22 Na-22 0.00605 pCi/g Strontium-90 Sr-90 0.0728 pCi/g Thorium-227 Th-227 -0.17 pCi/g Thorium-231 Th-231 -0.368 pCi/g Thorium-234 Th-234 1.94 pCi/g Tin-113 Sn-113 0.0198 pCi/g Tritium H-3 0.00865 pCi/g Uranium-235 U-235 0.115 pCi/g RAO 2-287 Yttrium-88 Y-88 -0.00054 pCi/g 5 Ra ZZO 2.73-0.4 for land app.  $Ra^{228}$  2.73-2.33 = 0.4

0% for land app

BIN 5765 # 10143864

Water Quality and RCRA Group Los Alamos National Laboratory

4

### ENV-RCRA-QP-011.2 Attachment 2, Page 1 of 1

50-613185

### **Request for Land Application of Drill Cuttings Form**

| ENV-RCRA must approve any deviation(s) from this request prior to lan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | d application                          | •                      | _   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------|-----|
| Date: $12010$ Project: $100$ Project: $100$ Phase $11$<br>Location of Land Application: $100$ Phase $11$ TA: $50$ (SW)<br>Estimated Quantity: $48$ ft $3$ (cubic feet or tons)<br>Composition (e.g., 98% tuff and 2% quick gel, etc.): $10090$ Soil<br>Proposed Method of Land Application (describe): $10090$ Soil<br>Proposed Method of Land Application (describe): $10090$ Soil<br>10090 Soil<br>Note: An EX-ID Permit is required prior to land application. $100$ - $0849$ - $50$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mu 50<br><u>appluo</u> l<br>isiljaista | -009)<br><u>v</u> be0[ |     |
| Decision Tree—Decision Point Evaluation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |                        | -   |
| <ul><li>The following questions require yes or no answers.</li><li>1. D1: Is existing characterization data consistent with WCSF? Attach a summary table of results, validated raw data, etc.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Yes                                    | No                     |     |
| <b>2.</b> D2: Do drill cuttings contain RCRA Hazardous Waste or Hazard constituents above RCRA limits? If yes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        | V<br>V                 |     |
| <ul><li>Has a Due Diligence been conducted for this waste? Attach a copy of the due diligence documentation.</li><li>Has a <i>No Longer Contained In</i> been approved for this waste? Attach a copy of the <i>No Longer</i></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\checkmark$                           |                        |     |
| Contained In approval.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                        |     |
| 3. D6: Do drill cuttings meet the 5 criteria in D6, Attachment 1?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |                        |     |
| 4. Do drill cuttings meeting the criteria in the Radiological Decision Tree, Attachment 3?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ľ                                      |                        |     |
| Generator or Project Leader Certification: I certify that the drill cuttings described in this request application per the Decision Tree and that the drill cuttings will be land applied as described.         Application per the Decision Tree and that the drill cuttings will be land applied as described.         Application per the Decision Tree and that the drill cuttings will be land applied as described.         Application per the Decision Tree and that the drill cuttings will be land applied as described.         Application per the Decision Tree and that the drill cuttings will be land applied as described.         Application per the Decision Tree and that the drill cuttings will be land applied as described.         Application per the Decision Tree and that the drill cuttings will be land applied as described.         Application per the Decision Tree and that the drill cuttings will be land applied as described.         Application per the Decision Tree and that the drill cuttings will be land applied as described.         Application per the Decision Tree and that the drill cuttings will be land applied as described.         Application per the Decision Tree and that the drill cuttings will be land applied as described.         Application per the Decision Tree and that the drill cuttings will be land applied as described.         Application per the Decision per the Decision per the drill cuttings.         Application per the Decision per the Decision per the Decision per the Decision per the drill cuttings.         Application per the Decision p | ipi                                    | iteria for land        | RRD |
| ENV-RCRA Review (below): Does request provide all the required information, and do the drill cuttings meet all the criteria for Yes No Note deficiency in the space provided:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | or land applica                        | ition?                 | -   |
| ENV-RCRA Reviewer Name (Print) <u>Signature</u> Signature <u>Souly</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2m Qu Dat                              | e 1-25-11              |     |

10 # 10143864 Bin 5765

Water Quality and RCRA Group Los Alamos National Laboratory

ENV-RCRA-QP-011.2 Attachment 4, Page 1 of 1

**Post Land Application Field Certification Sheet** 

| Date(s) of land application: F                                            | Project: MDAC Phase. III               |                   |
|---------------------------------------------------------------------------|----------------------------------------|-------------------|
| Date(s) of land application: H<br>Location of land application: Project F | Ecotphint TA: 50 (SWI                  | <u>MU</u> 50-009) |
| EX-ID Number: $10 \times -0849 - 50$ EX                                   | X-ID Expiration Date: <u>4/29/11</u>   |                   |
| Please explain any deviations from original application (A                | Attachment 2) in the space provided:   |                   |
|                                                                           |                                        |                   |
|                                                                           |                                        | _                 |
| Note: ENV-RCRA must approve any deviations from Att                       | ttachment 2 prior to land application. |                   |

Generator or Project Leader Certification (below):

I certify that

- land application complied with the requirements of this procedure (ENV-RCRA-SOP-011.1),
- no free liquids were applied during land application,
- an inspection was conducted to ensure the requirements in Attachment 2 of this procedure was met, and
- the land application of drill cuttings complied with the excavation permit.

ani Fuller

Project Mgr. 1/28/11 Date

| PRS Number: 50-0        | 09 (Borehole 50-613185) |    |
|-------------------------|-------------------------|----|
| Source of contaminants: | Yes                     | No |
| F-listed                |                         | X  |
| U- or P-listed          |                         | X  |
| K-listed                |                         | X  |
| PRS                     | Description             |    |

SWMU 50-009 consists of decommissioned MDA C, established to replace MDA B at TA-21 as a disposal area (landfill) for LANL derived waste. MDA C operated from May 1948 to April 1974. The northern boundary of MDA C is approximately 50 feet south of the planned south wall of the new RLWTF. Wastes disposed at MDA C included liquids, solids, and gases generated from a broad range of nuclear energy research and development activities conducted at LANL, including uncontaminated classified materials, metals, hazardous materials, and radionuclides. Historical reports indicate that it was common practice for chemicals to be burned in the chemical disposal pit at MDA C. At MDA C, 7 pits and 108 shafts were excavated into the overlying soil and tuff.

RFI activities were conducted at MDA C from 1993 to 1996. Surface soil sampling was conducted during the summer of 1993. A subsurface investigation was performed during portions of 1994, 1995, and 1996. Conclusions regarding the nature and extent of contamination at MDA C based on the results of preliminary site characterization activities are as follows:

-Elevated concentrations of americium-241 and isotopic plutonium in surface soils in the northeast area of MDA C are likely related to releases from MDA C before the placement of crushed tuff on the surface of the site in 1984. The extent of current surface radionuclide contamination has not been defined.

-Concentrations of specific metals (including barium, copper, and lead) and radionuclides (strontium-90 and americium-241) in tuff beneath Pit 6 indicate that contamination has migrated from pit 6 into underlying rock. The extent of subsurface contamination has not been defined.

-Tritium and volatile organic compounds (VOC) contamination (primarily trichloroethylene [TCE], tetrachloroethene [PCE], and 1,1,1-trichloroethane [TCA]) exist in subsurface pore gas; however, the vertical and horizontal extent of this contamination has not been defined.

|            | Documents Reviewed                                                                 |           |
|------------|------------------------------------------------------------------------------------|-----------|
| Date       | Title                                                                              | ER ld No. |
| 4/1/2010   | Investigation Report for Upper Mortandad Canyon<br>Aggregate Area, Rev. 1          | 109180    |
| 4/1/2010   | Phase III Investigation Work Plan for MDA C, SWMU 50-<br>009, at TA-50, Rev. 1     | 109260    |
| 2/1/2010   | Phase III Investigation Work Plan for MDA C, SWMU 50-<br>009, TA-50                | 108594    |
| 10/1/2009  | Phase II Investigation report for MDA C, SWMU 50-009, at TA-50, Rev. 1             | 107389    |
| 5/1/2009   | Phase II Investigation Report for MDA C, SWMU 50-009, at TA-50                     | 106047    |
| 11/30/2007 | Investigation Work Plan and HIR for Upper Mortandad<br>Canyon Aggregate Area [IWP] | 098954    |
| 11/30/2007 | Investigation Work Plan and HIR for Upper Mortandad<br>Canyon Aggregate Area [HIR] | 098955    |

-Surface flux of VOCs and near-surface tritium soil-gas concentrations indicate localized areas where releases to the atmosphere are occurring.

|                                        | 094688<br>091493                      |
|----------------------------------------|---------------------------------------|
| ork Plan for MDA C, SWMU 50-009 at TA- | )91493                                |
|                                        |                                       |
| ork Plan for MDA C, SWMU 50-009 at TA- | )87152                                |
| ork Plan for MDA-C, SWMU 50-009 at TA- | )87392                                |
| for Operable Unit 1147                 | 007672                                |
|                                        | 007513                                |
| Volume 1 of IV (TA-00 through TA-09)   | NA                                    |
|                                        | , , , , , , , , , , , , , , , , , , , |

### Summary of Listed Status

U-listed constituents were detected in soil samples; however, there was no documented evidence of a spill, release, or discharge of unused/unspent commercial chemical products in the vicinity of the SWMU. K-listed constituents were also detected in the soil samples from 50-009, BH 50-613182; however most K-listed sources are industrial in nature and not typical of Laboratory operations. The Laboratory generates only small amounts of K-listed wastes, primarily spent carbon from high explosives processing that is disposed off-site. The documented amounts of K-listed wastes generated are not sufficient to have impacted investigation/remediation activities. Therefore, the IDW is not K-listed. In addition, Arsenic (F032, F034, F035), Chromium (F032, F034, F035, F037, and F038), Lead (F035, F037, and F038), and Nickel (F006) were also detected in the soil samples from 50-009 site investigation activities. There is no documented evidence that the following processes (F-listed sources) occurred in the vicinity of the SWMU: Wood preserving processes (F032, F034, and F035), Petroleum refinery operations (F037 and F038) and Electroplating operations (F006). See Attachment 1 for the complete list of potentially listed constituents detected in the soil sample.

Based on analytical data and documentation, there is no conclusive evidence of a listed source impacting SWMU 50-009, MDA-C. Therefore, the IDW may be managed as non-hazardous waste.

DD Completed January 25, 2011

| Attachment 1. |               |                      |                      |
|---------------|---------------|----------------------|----------------------|
| Analyte       | Concentration | Potential F-Codes    | Potential K-Codes    |
| Antimony      | 0.71          |                      | K161, K021, K177     |
|               |               |                      | K031,K060,K161,K171, |
|               |               |                      | K172,K176,K084,K101, |
| Arsenic       | 0.304         | F032,F034,F035,      | K102,                |
|               |               | F032,F034,F035,F037, | K090                 |
| Chromium      | 4.42          | F038,                |                      |
|               |               |                      | K002, K003, K005,    |
|               |               |                      | K048, K049, K051,    |
|               |               |                      | K062, K064, K086,    |
|               |               |                      | K100, K176, K046,    |
| Lead          | 11.1          | F035,F037,F038,      | K052, K061, K069     |
| Nickel        | 2.18          | F006                 |                      |

¢

page 3 of 5

Sampling event ID

3233

### SAL and background comparison file: ev3233.2084.awd.1.13.2011(1).xlsm

SWMU ev 3233.2084 Stockpile Number ev 3233.2084

AL and Dackground Compaties EXE! file: ev3233.2084.awd.1.13.2011(1).xlsm evaluation date: 1/13/2011

|                   |            |          | unit of |          | Indust-      | Constr. | Recrea-      |                | Canyon       |              |                  | Qbt 1g,      |
|-------------------|------------|----------|---------|----------|--------------|---------|--------------|----------------|--------------|--------------|------------------|--------------|
|                   | CAS/       | concen-  | measur  | Residen- | rial         | Worker  | tional       |                | Sedi-        | QBT2,        | QBt              | Qct,         |
| Analyte           | Symbol     | tration  | е       | tial SAL | SAL          | SAL     | SAL          | Soil           | ment         | 3,4          | 1v               | Qbo          |
| Bismuth-214       | Bi-214     | 2.55     | pCi/g   | $\sim$   |              | $\sim$  | $\sim$       | pass           | pass         | FAIL         | pass             | pass         |
| Lead-212          | Pb-212     | 2.9      | pCi/g   | /        |              |         | /            | FAIL           | FAIL         | FAIL         | pass             | pass         |
| Lead-214          | Pb-214     | 3.31     | pCi/g   |          | /            |         | /            | FAIL           | FAIL         | FAIL         | FAIL             | pass         |
| Potassium-40      | K-40       |          | pCi/g   | /        |              |         |              | pass           | pass         | pass         | pass             | pass         |
| Radium 226/228    | calc.      | 5.07     | pCi/g   | /        | /            |         |              |                | /            | $\backslash$ | $\sum$           |              |
| Radium-226        | Ra-226     |          | pCi/g   | /        |              | pass    | pass         | pass           | pass         | FAIL         | pass             | pass         |
| Radium-228        | Ra-228     | 2.52     | pCi/g   | /        | /            | pass    | pass         | FAIL           | FAIL         | FAIL         | pass             | pass         |
| Thallium-208      | TI-208     | 0.868    | pCi/g   | /        |              |         |              | pass           | pass         | pass         |                  | pass         |
| Thorium-234       | Th-234     | 3.13     | pCi/g   |          | /            |         | /            | FAIL           | FAIL         | FAIL         | FAIL             | pass         |
| Uranium-234       | U-234      | 2.78     | pCi/g   | pass     | pass         | pass    | pass         | FAIL           | FAIL         | FAIL         | pass             | pass         |
| Uranium-235/236   | U-235/236  | 0.287    | pCi/g   | pass     | pass         | pass    | pass         | /              |              | /            | $\langle$        | /            |
| Uranium-238       | U-238      |          | pCi/g   | pass     | pass         | pass    | pass         | FAIL           | FAIL         | FAIL         | pass             | pass         |
| Americium-241     | Am-241     | -0.00101 | pCi/g   | /        | /            | /       | /            | /              | /            | /            | /                | /            |
| Cerium-139        | Ce-139     | -0.0144  | pCi/g   |          | $\backslash$ | /       | /            | $\backslash$   |              | $\langle$    | $\leq$           |              |
| Cesium-137        | Cs-137     | -0.00727 |         |          |              | /       |              |                | /            | /            | $\backslash$     | /            |
| Cobalt-60         | Co-60      | 0.0208   |         | /        | /            | /       | /            | $\overline{)}$ | /            | $\backslash$ | /                | /            |
| Europium-152      | Eu-152     | -0.073   | pCi/g   | /        | /            |         |              | $\langle$      | /            | $\backslash$ | $\langle$        | /            |
| Lanthanum-140     | La-140     | -0.0263  | pCi/g   | /        | /            | /       | /            | /              | /            | $\backslash$ | $\backslash$     |              |
| Plutonium-238     | Pu-238     | 0        | pCi/g   |          | /            | /       | /            |                | /            | $\backslash$ |                  | /            |
| Plutonium-239/240 | Pu-239/240 | -0.00141 | pCi/g   | /        | /            | /       | /            | /              |              | /            | $\langle$        | /            |
| Radium-223        | Ra-223     | 0.121    |         | /        | /            | /       | /            |                | /            |              | $\geq$           | /            |
| Ruthenium-106     | Ru-106     | -0.0901  |         |          |              | /       | /            | /              | /            | /            | /                | /            |
| Sodium-22         | Na-22      | 0.0278   |         | /        |              | /       | /            |                | /            |              | $\backslash$     | /            |
| Strontium-85      | Sr-85      | 0.0156   |         | /        | /            | /       | /            | /              |              | /            | /                | /            |
| Strontium-90      | Sr-90      | -0.0542  | pCi/g   | /        | /            |         | /            |                | /            | /            | $\smallsetminus$ | /            |
| Thorium-227       | Th-227     | -0.141   | pCi/g   | /        |              |         |              | /              | /            | /            | /                | /            |
| Thorium-231       | Th-231     | 0.121    | pCi/g   |          | $\sim$       | $\sim$  | /            |                | /            |              | $\geq$           | $\backslash$ |
| Tin-113           | Sn-113     | -0.00049 |         | /        | $\sim$       | $\sim$  | /            | $\geq$         | /            |              | $\geq$           | $\backslash$ |
| Tritium           | H-3        | -0.01401 |         |          | $\sim$       | $\sim$  | //           | $\langle$      | $\backslash$ | $\backslash$ | $\leq$           | $\sim$       |
| Uranium-235       | U-235      | 0.129    | pCi/g   |          |              | $\sim$  | //           | $\overline{)}$ |              | $\backslash$ | $\sim$           | $\backslash$ |
| Yttrium-88        | Y-88       | 0.01     | pCi/g   | /        | $\backslash$ | $\sim$  | $\backslash$ | $\backslash$   | /            | $\backslash$ | $\sim$           | $\sim$       |

 $R_{0}^{228} = 2.57 - 2.33 = 0.19 / 5 = 0.038$   $u^{234} = 2.78 - 2.59 = 0.19 / 213 = 0.000892$   $u^{238} 2.90 - 2.29 = 0.61 / 140 = 0.00436$  0.0432 - 1 0.0432 - 10.0432 - 1

SWMU ev 3233.2084

### **Detected Chemicals Form**

Stockpile Number ev 3233.2084

F

page 3 of 5 associated Excel file; ev3233.2084.awd.1.13.2011(1).xlsm

evaluation date: 1/13/2011

| Analyte   | CAS/<br>Symbol | concen-<br>tration | unit of<br>measure | Non-<br>wastewater<br>LDR | Hazardous<br>Soil LDR | Potential Haz F-codes     | Potential Haz K-codes                                                               | Potential Haz U-codes                  | Potential Haz<br>P-codes | comments                                      |
|-----------|----------------|--------------------|--------------------|---------------------------|-----------------------|---------------------------|-------------------------------------------------------------------------------------|----------------------------------------|--------------------------|-----------------------------------------------|
| Aluminum  | AI             | 1650               | mg/kg              |                           |                       |                           |                                                                                     |                                        |                          |                                               |
| Antimony  | Sb             | 0.71               | mg/kg              | pass                      | pass                  |                           | K161,K021,K177,                                                                     |                                        |                          |                                               |
| Barium    | Ba             | 15.3               | mg/kg              | pass                      | pass                  |                           |                                                                                     |                                        |                          |                                               |
| Beryllium | Be             | 0.21               | mg/kg              | pass                      | pass                  |                           |                                                                                     |                                        |                          |                                               |
| Calcium   | Са             | 1130               | mg/kg              |                           |                       |                           |                                                                                     |                                        |                          |                                               |
| Chromium  | Cr             | 4.42               | mg/kg              | pass                      | pass                  | F032,F034,F035,F037,F038, | K090,                                                                               |                                        |                          |                                               |
| Cobalt    | Co             | 0.883              | mg/kg              |                           |                       |                           |                                                                                     |                                        |                          |                                               |
| Copper    | Cu             | 3.6                | mg/kg              |                           |                       |                           |                                                                                     |                                        |                          |                                               |
| Iron      | Fe             | 4120               | mg/kg              |                           |                       |                           |                                                                                     | ······                                 |                          |                                               |
| Lead      | Pb             | 5.36               | mg/kg              | pass                      | pass                  |                           | K002,K003,K005,K048,K049,K051,K<br>062,K064,K086,K100,K176,K046,K0<br>52,K061,K069, |                                        |                          |                                               |
| Magnesium | Mg             | 829                | mg/kg              |                           | ·P                    |                           |                                                                                     |                                        |                          |                                               |
| Manganese | Mn             | 123                | mg/kg              |                           |                       |                           |                                                                                     | ······································ |                          |                                               |
| Nickel    | Ni             | 2.18               | mg/kg              | pass                      | pass                  | F006,                     |                                                                                     |                                        |                          | 전 이상 사람은 것 같은 것 |
| Potassium | K              | 419                | mg/kg              |                           |                       |                           |                                                                                     |                                        |                          |                                               |
| Sodium    | Na             | 390                | mg/kg              |                           |                       |                           |                                                                                     |                                        |                          |                                               |
| Uranium   | U              | 0.15               | mg/kg              |                           |                       |                           |                                                                                     | · · · · · · · · · · · · · · · · · · ·  |                          |                                               |
| Vanadium  | V              | 4.16               | mg/kg              | pass                      | pass                  | -                         |                                                                                     |                                        |                          |                                               |
| Zinc      | Zn             | 12.3               | mg/kg              | pass                      | pass                  |                           |                                                                                     | · · · · · · · · · · · · · · · · · · ·  |                          |                                               |

### Solid Waste Evaluation

page 1 of 5

SWMU ev 3233.2084 Stockpile Number ev 3233.2084 Summary iated Excel file: ev3233.2084.awd.1.13.2011(1).xlsm evaluation date: 1/13/2011

| RCRA                                                                 |                                                                                                                |
|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| 33 analytes pass                                                     |                                                                                                                |
| between these <u>32</u> analytes pass as undete                      | cted                                                                                                           |
| 10 analytes fail                                                     |                                                                                                                |
| Detects                                                              |                                                                                                                |
| Delecis                                                              |                                                                                                                |
| Total PCB (ppm)                                                      | Non-contract of the second |
| 3 analytes with potential F-code                                     | Non-wastewater LDR: 8 pass 0 FAIL                                                                              |
| 3 analytes with potential K-code                                     | Hazardous soil LDR: 8 pass 0 FAIL                                                                              |
| 0 analytes with potential U-code<br>0 analytes with potential P-code |                                                                                                                |
| o analytes with potential 1-code                                     |                                                                                                                |
| Residential Soil (mg/kg):                                            | 14 pass 0 FAIL                                                                                                 |
| Industrial/ Occupational Soil (mg/kg) :                              |                                                                                                                |
| Construction Worker Soil (mg/kg) :                                   |                                                                                                                |
| Recreational Soil (mg/kg) :                                          | 14 pass 0 FAIL                                                                                                 |
| soil background:                                                     |                                                                                                                |
| Canyon Sediment background:                                          | •                                                                                                              |
| Qbt 2,3,4 background:<br>Qbt 1v background:                          |                                                                                                                |
| Qbt 1g, Qct,Qbo background:                                          |                                                                                                                |
|                                                                      |                                                                                                                |
| RAD total dose:                                                      | 0.8647 mRem/year                                                                                               |
| analysed for H-3                                                     |                                                                                                                |
| analysed for Pu-239                                                  |                                                                                                                |
| 31 isotopes,                                                         | 11 were detected                                                                                               |
|                                                                      | 19 undetected                                                                                                  |
| Residen-tial SAL: 3 pass                                             | 0 FAIL                                                                                                         |
| Indust-rial SAL: 3 pass                                              | 0 FAIL                                                                                                         |
| Constr. Worker SAL: 5 pass                                           | 0 FAIL                                                                                                         |
| Recrea-tional SAL: 5 pass<br>Soil: 4 pass                            | 0 FAIL<br>6 FAIL                                                                                               |
| Canyon Sedi-ment: 4 pass                                             | 6 FAIL                                                                                                         |
| QBT2,3,4: 2 pass                                                     | 8 FAIL                                                                                                         |
| QBt 1v: 8 pass                                                       | 2 FAIL                                                                                                         |
| Qbt 1g, Qct, Qbo: 10 pass                                            | 0 FAIL                                                                                                         |

Remark: The Evaluator may overwrite any result of automatic evaluation, but a short written explanation must be added

| Sample ID     | associated blanks | associated duplicate |
|---------------|-------------------|----------------------|
| WST50-11-2084 |                   |                      |

| Imported data files  |
|----------------------|
| ev3233.1.13.2011.txt |

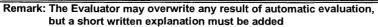
# Detected Chemicals: SSL and Background check

| Analyte   | CAS/<br>Symbol | concen-<br>tration | unit of<br>measure | Residential<br>Soil (mg/kg) | Industrial/<br>Occupational<br>Soil (mg/kg) | Construction<br>Worker Soil<br>(mg/kg) | Recreational<br>Soil (mg/kg) | soil<br>background | Canyon<br>Sediment<br>background | Qbt 2,3,4<br>background | Qbt 1v<br>background | Qbt 1g,<br>Qct,Qbo<br>background |
|-----------|----------------|--------------------|--------------------|-----------------------------|---------------------------------------------|----------------------------------------|------------------------------|--------------------|----------------------------------|-------------------------|----------------------|----------------------------------|
|           | Al             | 1650               | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | pass                 | pass                             |
|           | Sb             |                    |                    | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | FAIL                    | FAIL                 | FAIL                             |
|           | Ba             |                    |                    | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | pass                 | pass                             |
|           | Be             | 0.21               | mg/kg              |                             | pass                                        |                                        |                              | pass               | pass                             | pass                    | pass                 | pass                             |
|           | Са             | 1130               | mg/kg              | NA                          | NA                                          |                                        | NA                           | pass               | pass                             | pass                    | pass                 | pass                             |
| Chromium  | Cr             | 4.42               | mg/kg              | pass                        | pass                                        | NA                                     | pass                         | pass               | pass                             | pass                    | FAIL                 | FAIL                             |
| Cobalt    | Co             | 0.883              | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | pass                 | pass                             |
| Copper    | Cu             |                    | <u> </u>           | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | FAIL                 | pass                             |
| Iron      | Fe             | 4120               | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | pass                 | FAIL                             |
| Lead      | Pb             |                    |                    |                             | pass                                        |                                        |                              | pass               | pass                             | pass                    | pass                 | pass                             |
| Magnesium | Mg             | 829                |                    | NA                          | NA                                          | NA                                     | NA                           | pass               | pass                             | pass                    | FAIL                 | FAIL                             |
| Manganese | Mn             | 123                | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | pass                 | pass                             |
| Nickel    | Ni             |                    | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | FAIL                 | FAIL                             |
| Potassium | К              |                    |                    | NA                          | NA                                          |                                        | NA                           | pass               | pass                             | pass                    | pass                 | pass                             |
| Sodium    | Na             |                    |                    | NA                          | NA                                          |                                        | NA                           | pass               | pass                             | pass                    | pass                 | pass                             |
| Uranium   | U              |                    | mg/kg              | pass                        | pass                                        | NA                                     | pass                         | pass               | pass                             | pass                    | pass                 | pass                             |
| Vanadium  | V              | 4.16               | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | pass                 | pass                             |
| Zinc      | Zn             | 12.3               | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | pass                 | pass                             |



.

.


Sampling event ID 3233

### Solid Waste Evaluation

page 1 of 5

SWMU ev 3233.2085.2084.2094 Stockpile Number ev 3233.2085.2084.2094 Summary cel file: ev3233 2085 2084 2094 awd 1 20 2011.xlsm evaluation date: 1/20/2011

| DCDA                                                                                           |                                                                                                                |
|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| RCRA                                                                                           |                                                                                                                |
| 33 analytes pass<br>between these 31 analytes pass as undeted                                  | ted                                                                                                            |
| 10 analytes fail                                                                               |                                                                                                                |
|                                                                                                |                                                                                                                |
| Detects                                                                                        |                                                                                                                |
| · · · · · · · · · · · · · · · · · · ·                                                          |                                                                                                                |
| Total PCB (ppm)                                                                                |                                                                                                                |
| <ul> <li>4 analytes with potential F-code</li> <li>4 analytes with potential K-code</li> </ul> | Non-wastewater LDR: 9 pass 0 FAIL<br>Hazardous soil LDR: 9 pass 0 FAIL                                         |
| 0 analytes with potential U-code                                                               | Hazardous soil LDR: 9 pass 0 FAIL                                                                              |
| 0 analytes with potential P-code                                                               |                                                                                                                |
|                                                                                                |                                                                                                                |
|                                                                                                |                                                                                                                |
| Residential Soil (mg/kg) :                                                                     |                                                                                                                |
| Industrial/ Occupational Soil (mg/kg):<br>Construction Worker Soil (mg/kg):                    |                                                                                                                |
| Recreational Soil (mg/kg) :                                                                    |                                                                                                                |
| soil background:                                                                               |                                                                                                                |
| Canyon Sediment background:                                                                    |                                                                                                                |
| Qbt 2,3,4 background:                                                                          | the second s |
| Qbt 1v background:                                                                             |                                                                                                                |
| Qbt 1g, Qct,Qbo background:                                                                    | 12 pass 7 FAIL                                                                                                 |
| RAD total dose:                                                                                | 0.9427 mRem/year                                                                                               |
| ?                                                                                              |                                                                                                                |
| analysed for H-3                                                                               |                                                                                                                |
| analysed for Pu-239                                                                            |                                                                                                                |
| 32 isotopes,                                                                                   | 12 were detected                                                                                               |
|                                                                                                | 19 undetected                                                                                                  |
| Residen-tial SAL: 4 pass                                                                       | 0 FAIL                                                                                                         |
| •                                                                                              | 0 FAIL                                                                                                         |
|                                                                                                | 0 FAIL                                                                                                         |
| · · · · · · · · · · · · · · · · · · ·                                                          | 0 FAIL                                                                                                         |
|                                                                                                | 6 FAIL                                                                                                         |
|                                                                                                | 6 FAIL<br>9 FAIL                                                                                               |
|                                                                                                | 9 FAIL<br>3 FAIL                                                                                               |
|                                                                                                | 0 FAIL                                                                                                         |
|                                                                                                |                                                                                                                |
|                                                                                                |                                                                                                                |



| Sample ID     | associated blanks | associated duplicate |
|---------------|-------------------|----------------------|
| WST50-11-2084 | WST50-11-2094     |                      |
| WST50-11-2085 | WST50-11-2094     |                      |

Imported data files ev3233.1.20.2011.txt

page 3 of 5 associated Excel file: ev3233 2085 2084 2094 awd 1 20 2011.xlsm

evaluation date: 1/20/2011

SWMU ev 3233.2085.2084.2094 RCRA Characteristics Form

Stockpile Number ev 3233.2085.2084.2094

|                             | I           | Potential | Reg.   | concen-    | unit of |           | Pass/ |          |
|-----------------------------|-------------|-----------|--------|------------|---------|-----------|-------|----------|
| Analyte                     | CAS/ Symbol | Haz Code  | limit  | tration    | measure | Qualifier | Fail  | comments |
| Arsenic                     | As          |           | 5000   | 50         | ug/L    | lυ        | pass  |          |
| Barium                      | Ba          | D005      | 100000 |            | ug/L    | J         | pass  |          |
| Cadmium                     | Cd          |           | 1000   |            | ug/L    | U         | pass  |          |
| Chromium                    | Cr          |           | 5000   | 21.5       | ug/L    | U         | pass  |          |
| Lead                        | Pb          | D008      | 5000   | 18.7       | ug/Ľ    | J         | pass  | 3        |
| Mercury                     | Hg          |           | 200    |            | ug/L    | U         | pass  |          |
| Selenium                    | Se          |           | 1000   | 50         | ug/L    | U         | pass  |          |
| Silver                      | Ag          |           | 5000   | 10         | ug/L    | U         | pass  |          |
| Endrin                      | 72-20-8     | D012      | 20     |            | ug/L    |           | FAIL  |          |
| BHC[gamma-]                 | 58-89-9     | D013      | 400    |            | ug/L    |           | FAIL  |          |
| Methoxychlor[4,4'-]         | 72-43-5     | D014      | 10000  |            | ug/L    |           | FAIL  |          |
| Toxaphene (Technical Grade) | 8001-35-2   | D015      | 500    |            | ug/L    |           | FAIL  |          |
| D[2,4-]                     | 94-75-7     | D016      | 10000  |            | ug/L    | 1         | FAIL  |          |
| TP[2,4,5-]                  | 93-72-1     | D017      | 1000   |            | ug/L    |           | FAIL  |          |
| Benzene                     | 71-43-2     |           | 500    | 0.053      |         | U         | pass  |          |
| Carbon Tetrachloride        | 56-23-5     |           | 500    | 0,053      |         | U         | pass  |          |
| Chlordane(alpha/gamma)      | 57-74-9     | D020      | 30     | en en      | ug/L    |           | FAIL  |          |
| Chlordane[gamma-]           | 5103-74-2   | D020      | $\sim$ |            | ug/L    | 1         | FAIL  |          |
| Chlordane[alpha-]           | 5103-71-9   | D020      | $\sim$ |            | ug/L    |           | FAIL  | , // - ( |
| Chlorobenzene               | 108-90-7    |           | 100000 | 0.053      | ug/L    | U         | pass  |          |
| Chloroform                  | 67-66-3     |           | 6000   | 0.053      |         | Ū         | pass  |          |
| Methylphenol[2-]            | 95-48-7     |           | 200000 |            | ug/L    | U         | pass  |          |
| Methylphenol[3-]            | 108-39-4    |           | 200000 |            | ug/L    | U         | pass  |          |
| Methylphenol[4-]            | 106-44-5    |           | 200000 |            | ug/L    | Ū         | pass  |          |
| Methylphenol[3-,4-]         | 65794-96-9  |           | 200000 | 17.6       |         | Ū         | pass  |          |
| Methylphenol(total)         | 8027-16-5   |           | 200000 | 35.2       | ug/L    | UU        | pass  |          |
| Dichlorobenzene[1,4-]       | 106-46-7    |           | 7500   |            | ug/L    | U         | pass  |          |
| Dichloroethane[1,2-]        | 107-06-2    |           | 500    | 0.053      |         | U         | pass  |          |
| Dichloroethene[1,1-]        | 75-35-4     |           | 700    | 0.053      | ug/L    | U         | pass  |          |
| Dinitrotoluene[2,4-]        | 121-14-2    |           | 130    | 17.6       |         | U         | pass  |          |
| Heptachlor                  | 76-44-8     | D031      | 8      | Énera 1996 | ug/L    |           | FAIL  |          |
| Hexachlorobenzene           | 118-74-1    |           | 130    | 17.6       |         | U         | pass  |          |
| Hexachlorobutadiene         | 87-68-3     |           | 500    | 17.6       | ug/L    | U         | pass  |          |
| Hexachloroethane            | 67-72-1     |           | 3000   |            | ug/L    | υ         | pass  |          |
| Butanone[2-]                | 78-93-3     |           | 200000 | 0.264      | ug/L    | UJ        | pass  |          |
| Nitrobenzene                | 98-95-3     |           | 2000   | 17.6       | ug/L    | U         | pass  |          |
| Pentachlorophenol           | 87-86-5     |           | 100000 |            | ug/L    | U         | pass  |          |
| Pyridine                    | 110-86-1    |           | 5000   | 17.6       |         | U         | pass  |          |
| Tetrachloroethene           | 127-18-4    |           | 700    | 0.053      | ug/L    | U         | pass  |          |
| Trichloroethene             | 79-01-6     |           | 500    | 0.053      |         | U         | pass  |          |
| Trichlorophenol[2,4,5-]     | 95-95-4     |           | 400000 | 17.6       |         | U         | pass  |          |
| Trichlorophenol[2,4,6-]     | 88-06-2     |           | 2000   | 17.6       |         | Ū         | pass  |          |
| Vinyl Chloride              | 75-01-4     |           | 200    | 0.053      | ua/L    | lū        | pass  |          |

NOTE 1: If multiple results exist for given analyte, first, the highest detected result is chosen. If there are no detected results, the lowest undetected result is chosen.

NOTE 2: Often chlordane is analyzed as alpha and gamma isomers. If no total chlordane result exist, total concentration will be calculated from individual isomer results.

NOTE 3: Most frequently 2-Methylphenol is analyzed separately and 3- and 4-methylphenols are reported together.

Often, raw data contain only two results - for 2- methylphenol and 4-methylphenol. In such case 4-methyl is in fact a result

for two isomers together: 3-methyl + 4-methylphenol. The macro evaluates present data and calculates concentrations for 3-, 4-, and total.

methylphenols. Results reported separatedly for 3- and 4- methylphenols with calc. remark are, in fact, partial total, 3- + 4-methylphenol together.

NOTE 4: Undetected results pass automatically, without comparing to standard. Detected results pass only if reported concentration is lower than legal standard.

NOTE 5: CAS number is highlighted in pink if there is a large discrepancy between sample and duplicate.

# Detected Chemicals: SSL and Background check

| Analyte   | CAS/ Symbol | concen-<br>tration | unit of<br>measure | Residential<br>Soil (mg/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Industrial/<br>Occupational<br>Soil (mg/kg) | Construction<br>Worker Soil<br>(mg/kg) | Recreational<br>Soil (mg/kg) | soil<br>background | Canyon<br>Sediment<br>background | Qbt 2,3,4<br>background               | Qbt 1v<br>background | Qbt 1g,<br>Qct,Qbo<br>background |
|-----------|-------------|--------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------|------------------------------|--------------------|----------------------------------|---------------------------------------|----------------------|----------------------------------|
| Aluminum  | Al          | 1650               | mg/kg              | pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | pass                                        | pass                                   | pass                         | pass               | pass                             |                                       | pass                 | pass                             |
| Antimony  | Sb          | 0.71               | mg/kg              | pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | pass                                        | pass                                   | pass                         | pass               | pass                             | FAIL                                  | FAIL                 | FAIL                             |
|           | As          |                    | mg/kg              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | pass                                        | pass                                   | pass                         |                    | pass                             |                                       |                      | pass                             |
|           | Ba          |                    | mg/kg              | pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | pass                                        | pass                                   | pass                         | pass               | pass                             |                                       | pass                 | pass                             |
| Beryllium | Be          |                    | <u> </u>           | pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                             |                                        | pass                         | pass               | pass                             |                                       |                      | pass                             |
| Calcium   | Ca          |                    | ¥¥                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             | NA                                     | NA                           | pass               | pass                             |                                       |                      | pass                             |
| Chromium  | Cr          |                    |                    | pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                           |                                        | pass                         | pass               | pass                             | · · · · · · · · · · · · · · · · · · · | FAIL                 | FAIL                             |
| Cobalt    | Со          |                    | <u> </u>           | pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | pass                                        | 1                                      | pass                         | pass               | pass                             |                                       | pass                 | pass                             |
| Copper    | Cu          | 3.6                | mg/kg              | pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                                  | FAIL                 | pass                             |
| Iron      | Fe          | 5350               | mg/kg              | pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                                  | pass                 | FAIL                             |
| Lead      | Pb          |                    | mg/kg              | and the second s |                                             | pass                                   | 11                           | pass               | pass                             |                                       | pass                 | pass                             |
| Magnesium | Mg          | 829                | mg/kg              | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA                                          | NA                                     | NA                           | pass               | pass                             | pass                                  | FAIL                 | FAIL                             |
| Manganese | Mn          | 212                | mg/kg              | pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | pass                                        | FAIL                                   | pass                         | pass               | pass                             | pass                                  | pass                 | FAIL                             |
| Nickel    | Ni          | 2.18               | mg/kg              | pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                                  | FAIL                 | FAIL                             |
| Potassium | K           | 419                | mg/kg              | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA                                          | NA                                     | NA                           | pass               | pass                             | pass                                  | pass                 | pass                             |
| Sodium    | Na          |                    |                    | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA                                          | NA                                     | NA                           | pass               | pass                             | pass                                  | pass                 | pass                             |
| Uranium   | U           | 0.833              | mg/kg              | pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | pass                                        | NA                                     | pass                         | pass               | pass                             | pass                                  | pass                 | FAIL                             |
| Vanadium  | V           |                    | mg/kg              | pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                                  | pass                 | pass                             |
| Zinc      | Zn          | 39.3               | mg/kg              | pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                                  | pass                 | pass                             |

**Detected Chemicals Form** 

SWMU ev 3233,2085.2084.2094 Stockpile Number ev 3233.2085.2084.2094

3233

# page 3 of 5 associated Excel hie: ev3233 2085 2084 2094 awd 1 20 2011,xism

evaluation date: 1/20/2011

| Analyte   | CAS/ Symbol |             | No<br>nit of wastev<br>asure LD | vater Hazardous | Potential Haz F-codes | Potential Haz K-codes                                                                             | Potential Haz U-codes                 | Potential Haz<br>P-codes | comments                                |
|-----------|-------------|-------------|---------------------------------|-----------------|-----------------------|---------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------|-----------------------------------------|
| Aluminum  | Al          | 1650 mg/kg  |                                 |                 |                       |                                                                                                   |                                       |                          | 在10月1日日日日日日 (11月1日日日日))<br>(11月1日日日日日日) |
| Antimony  | Sb          | 0.71 mg/kg  | g pass                          | pass            |                       | K161,K021.K177,                                                                                   |                                       |                          |                                         |
| Arsenic   | As          | 0.304 mg/kg |                                 | pass            |                       | K031,K060,K161,K171,K172,K176,K<br>084,K101, <u>K102,</u>                                         |                                       |                          |                                         |
| Barium    | Ва          | 15.3 mg/kg  |                                 | pass            |                       |                                                                                                   |                                       |                          |                                         |
| Beryllium | Be          | 0.633 mg/kg |                                 | pass            |                       |                                                                                                   |                                       |                          |                                         |
| Calcium   | Ca          | 1130 mg/kg  |                                 |                 |                       |                                                                                                   |                                       |                          |                                         |
| Chromium  | Cr          | 4.42 mg/kg  |                                 | pass ·          | F022F12EE005F627F22E  | K090,                                                                                             |                                       |                          |                                         |
| Cobalt    | Со          | 0.883 mg/kg |                                 |                 |                       |                                                                                                   |                                       |                          |                                         |
| Copper    | Cu          | 3.6 mg/kg   |                                 |                 |                       |                                                                                                   |                                       |                          |                                         |
| Iron      | Fe          | 5350 mg/kg  | g l                             |                 |                       |                                                                                                   |                                       |                          |                                         |
| Lead      | Pb          | 11.1 mg/kg  | q pass                          | pass            | TO SEE STORE          | K002, K003, K005, K048, K049, K051, K<br>062, K064, K086, K100, K176, K046, K0<br>52, K061, K069, |                                       |                          |                                         |
| Magnesium | Mg          | 829 mg/k    |                                 |                 |                       |                                                                                                   |                                       |                          |                                         |
| Manganese | Mn          | 212 mg/k    |                                 |                 |                       |                                                                                                   | · · · · · · · · · · · · · · · · · · · |                          |                                         |
| Nickel    | Ni          | 2.18 mg/k   | g pass                          | pass            | FOOC                  |                                                                                                   |                                       |                          |                                         |
| Potassium | К           | 419 mg/k    | g                               |                 |                       |                                                                                                   |                                       | ÷                        |                                         |
| Sodium    | Na          | 390 mg/k    |                                 |                 |                       |                                                                                                   |                                       |                          |                                         |
| Uranium   | U           | 0.833 mg/k  |                                 |                 |                       |                                                                                                   |                                       |                          |                                         |
| Vanadium  | V           | 4.16 mg/k   |                                 | pass            |                       |                                                                                                   |                                       |                          |                                         |
| Zinc      | Zn          | 39.3 mg/k   | g pass                          | pass            |                       |                                                                                                   |                                       |                          |                                         |

.

#### page 3 of 5

#### Sampling event ID

#### SWMU ev 3233.2085.2084,2094 SAL and backgrounds comparison 3233 2085 2084 2094 awd 1 20 2011.xlsm Stockpile Number ev 3233.2085.2084.2094 evaluation date: 1/20/2011

unit of Qbt 1g, Indust-Constr. Recrea-Canyon Worker CAS/ measur Residenrial Sedi-QBT2, concentional QBt Qct, Analyte Symbol tial SAL tration e SAL SAL SAL Soil ment 3,4 1v Qbo Bismuth-214 Bi-214 2.55 pCi/g FAIL pass pass pass pass Lead-212 2.97 pCi/g Pb-212 FAIL FAIL FAIL pass pass Lead-214 Pb-214 3.31 pCi/g FAIL FAIL FAIL pass FAIL Potassium-40 K-40 36.2 pCi/g FAIL pass pass pass FAIL 5.46 pCi/g Radium 226/228 calc. Radium-226 FAIL 2.55 pCi/g Ra-226 pass pass pass pass pass pass Radium-228 Ra-228 2.91 pCi/g pass FAIL FAIL FAIL pass pass pass Thallium-208 TI-208 0.868 pCi/g pass pass pass pass pass Thorium-234 Th-234 3.13 pCi/g FAIL FAIL FAIL FAIL pass Tritium 0.02429 pCi/g H-3 pass pass pass pass pass pass pass pass pass Uranium-234 U-234 2.78 pCi/g FAIL FAIL FAIL pass pass pass pass pass pass 0.287 pCi/g Uranium-235/236 U-235/236 pass pass pass pass Uranium-238 U-238 2.9 pCi/g FAIL FAIL FAIL pass pass pass pass pass pass Am-241 -0.00101 pCi/g Americium-241 -0.0144 pCi/g Cerium-139 Ce-139 Cesium-137 Cs-137 -0.00727 pCi/g -0.00614 pCi/g Cobalt-60 Co-60 Europium-152 -0.073 pCi/g Eu-152 -0.0338 pCi/g Lanthanum-140 La-140 Mercury-203 Hg-203 0.0361 pCi/g Plutonium-238 Pu-238 0 pCi/g -0.0041 pCi/g Plutonium-239/240 Pu-239/240 Radium-223 Ra-223 0.121 pCi/g Ruthenium-106 Ru-106 -0.0901 pCi/g Sodium-22 Na-22 -0.0238 pCi/g Strontium-85 Sr-85 0.0156 pCi/g Strontium-90 Sr-90 -0.0542 pCi/g Thorium-227 Th-227 -0.154 pCi/g Thorium-231 Th-231 0.121 pCi/g -0.00049 pCi/g Tin-113 Sn-113 Uranium-235 U-235 0.129 pCi/g Yttrium-88 0.00142 pCi/g Y-88

page 3 of 5

SWMU ev 3233.2085.2084.209 **Radioisotopes**d **E@lfime**v3233 2085 2084 2094 awd 1 20 2011.xlsm Stockpile Number ev 3233.2085.2084.2094 evaluation date: 1/20/2011

| Analyte           | CAS/ Symbol | concen-<br>tration | unit of<br>measure | Qualifier | comments |
|-------------------|-------------|--------------------|--------------------|-----------|----------|
| Bismuth-214       | Bi-214      | 2.55               | pCi/g              | NQ        |          |
| Lead-212          | Pb-212      | 2.97               | pCi/g              | NQ        |          |
| Lead-214          | Pb-214      | 3.31               | pCi/g              | NQ        | •        |
| Potassium-40      | K-40        | 36.2               | pCi/g              | NQ        |          |
| Radium 226/228    | calc.       | 5.46               | pCi/g              |           |          |
| Radium-226        | Ra-226      | 2.55               | pCi/g              | NQ        |          |
| Radium-228        | Ra-228      | 2.91               | pCi/g              | NQ        |          |
| Thallium-208      | TI-208      | 0.868              | pCi/g              | NQ        |          |
| Thorium-234       | Th-234      | 3.13               | pCi/g              | NQ        |          |
| Tritium           | H-3         | 0.0242893          | pCi/g              | NQ        |          |
| Uranium-234       | U-234       | 2.78               | pCi/g              | NQ        |          |
| Uranium-235/236   | U-235/236   | 0.287              | pCi/g              | NQ        |          |
| Uranium-238       | U-238       | 2.9                | pCi/g              | NQ        |          |
| Americium-241     | Am-241      | -0.00101           | pCi/g              | U         |          |
| Cerium-139        | Ce-139      | -0.0144            | pCi/g              | U         |          |
| Cesium-137        | Cs-137      | -0.00727           | pCi/g              | U         |          |
| Cobalt-60         | Co-60       | -0.00614           | pCi/g              | U         |          |
| Europium-152      | Eu-152      | -0.073             | pCi/g              | U         |          |
| Lanthanum-140     | La-140      | -0.0338            | pCi/g              | U         |          |
| Mercury-203       | Hg-203      | 0.0361             | pCi/g              | U         |          |
| Plutonium-238     | Pu-238      | 0                  | pCi/g              | U         |          |
| Plutonium-239/240 | Pu-239/240  | -0.0041            | pCi/g              | U         |          |
| Radium-223        | Ra-223      | 0.121              | pCi/g              | U         |          |
| Ruthenium-106     | Ru-106      | -0.0901            | pCi/g              | U         |          |
| Sodium-22         | Na-22       | -0.0238            | pCi/g              | U         |          |
| Strontium-85      | Sr-85       | 0.0156             | pCi/g              | U         |          |
| Strontium-90      | Sr-90       | -0.0542            |                    | U         |          |
| Thorium-227       | Th-227      | -0.154             | pCi/g              | U         |          |
| Thorium-231       | Th-231      | 0.121              | pCi/g              | U         |          |
| Tin-113           | Sn-113      | -0.000488          | pCi/g              | U         |          |
| Uranium-235       | U-235       | 0.129              |                    | U         |          |
| Yttrium-88        | Y-88        | 0.00142            |                    | U         |          |

### **Additional Constituents - Chemicals**

Sampling event ID 3233 SWMU ev 3233.2085.2084.2094 associated Excel file: ev3233 2085 2084 2094 awd 1 20 2011.xlsm evaluation date: 1/20/2011

Stockpile Number ev 3233.2085.2084.2094

|                |                                                                | concentr |       | Results  |           |           |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------|----------------------------------------------------------------|----------|-------|----------|-----------|-----------|---------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Analyte        | CAS/ Symbol                                                    | ation    | Unit  | (ppm)    | MIN (ppm) | MAX (ppm) | MIN. %  | MAX. %  | comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Aluminum       | Al                                                             | 1650000  | ug/kg | 1650.000 | 1050.000  | 1650.000  | 0.105   | 0.165   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Antimony       | Sb                                                             | 710      | ug/kg | 0.710    | 0         | 0.710     | 0       | 7.1E-05 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Beryllium      | Be                                                             | 633      | ug/kg | 0.633    | 0.210     | 0.633     | 2.1E-05 | 6.3E-05 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Calcium        | Са                                                             | 1130000  | ug/kg | 1130.000 | 474.000   | 1130.000  | 0.047   | 0.113   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Cobalt         | Со                                                             | 883      | ug/kg | 0.883    | 0.299     | 0.883     | 3.0E-05 | 8.8E-05 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Copper         | Cu                                                             | 3600     | ug/kg | 3.600    | 2.480     | 3.600     | 2.5E-04 | 3.6E-04 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Iron           | Fe                                                             | 5350000  | ug/kg | 5350.000 | 4120.000  | 5350.000  | 0.412   | 0.535   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Magnesium      | Mg                                                             | 829000   | ug/kg | 829.000  | 179.000   | 829.000   | 0.018   | 0.083   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Manganese      | Mn                                                             | 212000   | ug/kg | 212.000  | 123.000   | 212.000   | 0.012   | 0.021   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Nickel         | Ni                                                             | 2180     | ug/kg | 2.180    | 1.130     | 2.180     | 1.1E-04 | 2.2E-04 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Potassium      | К                                                              | 419000   | ug/kg | 419.000  | 282.000   | 419.000   | 0.028   | 0.042   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sodium         | Na                                                             | 390000   |       | 390.000  | 200.000   | 390.000   | 0.020   | 0.039   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Uranium        | U                                                              |          | ug/kg | 0.833    | 0.150     | 0.833     | 1.5E-05 | 8.3E-05 | a a construction of the co |
| Vanadium       | V                                                              |          | ug/kg | 4.160    | 1.330     | 4.160     | 1.3E-04 | 4.2E-04 | nan tanaharan tara tara dara dara dara dara dara dara                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Zinc           | Zn                                                             | 39300    |       | 39.300   | 12.300    | 39.300    | 1.2E-03 | 3.9E-03 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NOTE 1: This t | IOTE 1: This table contains all detected, non D-coded analytes |          |       |          |           |           |         | 1.003   | % (all analytes from all pages were                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

NOTE 1: This table contains all detected, non D-coded analytes NOTE 2: Highlighted analytes are potentially F-coded **1.003** % (all analytes from all pages were added for this total

### Additional Constituents - RAD

volume of waste: 200 kg

associated Excel file: ev3233 2085 2084 2094 awd 1 20 2011.xlsm evaluation date: 1/20/2011

Sampling event ID 3233 SWMU ev 3233.2085.2084.2094 Stockpile Number ev 3233.2085.2084.2094

|                 |             | Maria         |               |       | % of total<br>rad from | % of total<br>rad from<br>Min | Max Total<br>Ci from | Min Total<br>Ci from |                                |
|-----------------|-------------|---------------|---------------|-------|------------------------|-------------------------------|----------------------|----------------------|--------------------------------|
| Analyte         | CAS/ Symbol | Max<br>Result | Min<br>Result | Unit  | Max<br>values          | values                        | isotope              | isotope              | comments                       |
| Bismuth-214     | Bi-214      | 2.550         | 2.260         | pCi/g | 4.22                   | 4.24                          | 5.1E-07              | 4.5E-07              |                                |
| Lead-212        | Pb-212      | 2.970         | 2.900         | pCi/g | 4.91                   | 5.44                          | 5.9E-07              | 5.8E-07              |                                |
| Lead-214        | Pb-214      | 3.310         | 2.700         | pCi/g | 5.47                   | 5.07                          | 6.6E-07              | 5.4E-07              |                                |
| Potassium-40    | K-40        | 36.200        | 32.900        | pCi/g | 59.86                  | 61.72                         | 7.2E-06              | 6.6E-06              |                                |
| Radium-226      | Ra-226      | 2.550         | 2.260         | pCi/g | 4.22                   | 4.24                          | 5.1E-07              | 4.5E-07              |                                |
| Radium-228      | Ra-228      | 2.910         | 2.520         | pCi/g | 4.81                   | 4.73                          | 5.8E-07              | 5.0E-07              |                                |
| Thallium-208    | TI-208      | 0.868         | 0.841         | pCi/g | 1.44                   | 1.58                          | 1.7E-07              | 1.7E-07              |                                |
| Thorium-234     | Th-234      | 3.130         | 2.710         | pCi/g | 5.18                   | 5.08                          | 6.3E-07              | 5.4E-07              |                                |
| Tritium         | H-3         | 0.023         | 0             | pCi/g | 0.04                   | 0                             | 4.6E-09              | 0                    |                                |
| Uranium-234     | U-234       | 2.780         | 2.090         | pCi/g | 4.60                   | 3.92                          | 5.6E-07              | 4.2E-07              |                                |
| Uranium-235/236 | U-235/236   | 0.287         | 0.104         | pCi/g | 0.47                   | 0.20                          | 5.7E-08              | 2.1E-08              |                                |
| Uranium-238     | U-238       | 2.900         | 2.020         | pCi/g | 4.80                   | 3.79                          | 5.8E-07              | 4.0E-07              |                                |
|                 | TOTAL       | 60.48         | 53.31         |       | 100.0                  | 100.0                         | 1.2E-05              | 1.1E-05              | all detected isotopes from all |

NOTE 1: This table contains all detected radioisotopes

pages were added for this total

NOTE 2: If only one detected result exist, 0 is listed as minimum, if more than one detect exist, lowest detect is listed as minimum.

| BIN | 5659 |
|-----|------|
|-----|------|

# 10143865

Water Quality and RCRA Group Los Alamos National Laboratory

AB1

### ENV-RCRA-QP-011.2 Attachment 2, Page 1 of 1

50-613182

**Request for Land Application of Drill Cuttings Form** 

| ENV-RCRA must approve any deviation(s) from this request prior to                                                                                                                                                                                                                                                                                                                                                                                                                                                      | and application        | •                            | _    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------|------|
| Date: 12011 Project: MDA C Phase III<br>Location of Land Application: 10thin project footprint TA: 50 (<br>Estimated Quantity: 571 ft <sup>3</sup> (cubic feet or tons)<br>Composition (e.g., 98% tuff and 2% quick gel, etc.): 100% Soil<br>Proposed Method of Land Application (describe): Drill Cuttings (Will be land<br>Within - Me, project feetprint (Swmu 50-609) to proviously<br>Andas and Covered with a layer of road base<br>Note: An EX-ID Permit is required prior to land application. 10X - 0815 - 57 | applied<br>Clisturbe ( | -009)<br><u>+</u>            |      |
| Decision Tree—Decision Point Evaluation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                              |      |
| The following questions require yes or no answers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Yes                    | No                           |      |
| 1. D1: Is existing characterization data consistent with WCSF? Attach a summary table of results, validated raw data, etc.                                                                                                                                                                                                                                                                                                                                                                                             | Ĺ                      |                              |      |
| 2. D2: Do drill cuttings contain RCRA Hazardous Waste or Hazard constituents above RCRA limits? If yes:                                                                                                                                                                                                                                                                                                                                                                                                                |                        | ď                            |      |
| Has a Due Diligence been conducted for this waste? Attach a copy of the due diligence documentation.                                                                                                                                                                                                                                                                                                                                                                                                                   | Ţ/                     |                              |      |
| Has a No Longer Contained In been approved for this waste? Attach a copy of the No Longer                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |                              |      |
| Contained In approval.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                              |      |
| <b>3.</b> D6: Do drill cuttings meet the 5 criteria in D6, Attachment 1?                                                                                                                                                                                                                                                                                                                                                                                                                                               | B                      |                              |      |
| 4. Do drill cuttings meeting the criteria in the Radiological Decision Tree, Attachment 3?                                                                                                                                                                                                                                                                                                                                                                                                                             |                        | l and                        |      |
| Generator or Project Leader Certification: I certify that the drill cuttings described in this re<br>application per the Decision Tree and that the drill cuttings will be land applied as described.<br>SHEPHAN FULL PART HALL<br>Name (Print) Signature Fitle                                                                                                                                                                                                                                                        | quest meet the cri     | teria for land<br>시॥<br>ate  | ppi) |
| ENV-RCRA Review (below): Does request provide all the required information, and do the drill cuttings meet all the criteri Yes No Note deficiency in the space provided:                                                                                                                                                                                                                                                                                                                                               | a for land applica     | ition?                       |      |
| ENV-RCRA Reviewer Name (Print) <u>Sole has Sukley</u> Signature <u>Signature</u>                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lin Day Dat            | 1-25-11 °<br>e <u>211-11</u> | R    |

10 # 10143865 Bin 5659

> Water Quality and RCRA Group Los Alamos National Laboratory

ENV-RCRA-QP-011.2 Attachment 4, Page 1 of 1

Post Land Application Field Certification Sheet

| Date(s) of land application:                            | Project:   | MDA C                                  | Phases Ill    | <u> </u>             |
|---------------------------------------------------------|------------|----------------------------------------|---------------|----------------------|
| Location of land application:                           |            |                                        | TA: <u>50</u> | <u>(Smmu</u> 50-004) |
| EX-ID Number:() \ -0.815 - 50                           | EX-ID Exp  | iration Date:                          |               |                      |
| Please explain any deviations from original application | (Attachmen | t 2) in the space                      | provided:     |                      |
|                                                         |            | ······································ |               |                      |
| Note: ENV-RCRA must approve any deviations from         | Attachment | 2 prior to land ap                     | oplication.   |                      |

Generator or Project Leader Certification (below):

I certify that

- land application complied with the requirements of this procedure (ENV-RCRA-SOP-011.1),
- no free liquids were applied during land application,
- an inspection was conducted to ensure the requirements in Attachment 2 of this procedure was met, and
- the land application of drill cuttings complied with the excavation permit.

vani Fuller

Project Mgr. 1/8/11

Date

Name (Print)

Signature

| PRS Number: 50-0        | 09 (Borehole 50-613182) |    |
|-------------------------|-------------------------|----|
| Source of contaminants: | Yes                     | No |
| F-listed                |                         | X  |
| U- or P-listed          | ·                       | X  |
| K-listed                |                         | X  |
| PRS                     | Description             |    |

SWMU 50-009 consists of decommissioned MDA C, established to replace MDA B at TA-21 as a disposal area (landfill) for LANL derived waste. MDA C operated from May 1948 to April 1974. The northern boundary of MDA C is approximately 50 feet south of the planned south wall of the new RLWTF. Wastes disposed at MDA C included liquids, solids, and gases generated from a broad range of nuclear energy research and development activities conducted at LANL, including uncontaminated classified materials, metals, hazardous materials, and radionuclides. Historical reports indicate that it was common practice for chemicals to be burned in the chemical disposal pit at MDA C. At MDA C, 7 pits and 108 shafts were excavated into the overlying soil and tuff.

RFI activities were conducted at MDA C from 1993 to 1996. Surface soil sampling was conducted during the summer of 1993. A subsurface investigation was performed during portions of 1994, 1995, and 1996. Conclusions regarding the nature and extent of contamination at MDA C based on the results of preliminary site characterization activities are as follows:

-Elevated concentrations of americium-241 and isotopic plutonium in surface soils in the northeast area of MDA C are likely related to releases from MDA C before the placement of crushed tuff on the surface of the site in 1984. The extent of current surface radionuclide contamination has not been defined.

-Concentrations of specific metals (including barium, copper, and lead) and radionuclides (strontium-90 and americium-241) in tuff beneath Pit 6 indicate that contamination has migrated from pit 6 into underlying rock. The extent of subsurface contamination has not been defined.

-Tritium and volatile organic compounds (VOC) contamination (primarily trichloroethylene [TCE], tetrachloroethene [PCE], and 1,1,1-trichloroethane [TCA]) exist in subsurface pore gas; however, the vertical and horizontal extent of this contamination has not been defined.

|            | Documents Reviewed                                                              |           |  |  |  |  |  |
|------------|---------------------------------------------------------------------------------|-----------|--|--|--|--|--|
| Date       | Title                                                                           | ER ld No. |  |  |  |  |  |
| 4/1/2010   | Investigation Report for Upper Mortandad Canyon<br>Aggregate Area, Rev. 1       | 109180    |  |  |  |  |  |
| 4/1/2010   | Phase III Investigation Work Plan for MDA C, SWMU 50-<br>009, at TA-50, Rev. 1  | 109260    |  |  |  |  |  |
| 2/1/2010   | Phase III Investigation Work Plan for MDA C, SWMU 50-<br>009, TA-50             | 108594    |  |  |  |  |  |
| 10/1/2009  | Phase II Investigation report for MDA C, SWMU 50-009, at TA-50, Rev. 1          | 107389    |  |  |  |  |  |
| 5/1/2009   | Phase II Investigation Report for MDA C, SWMU 50-009, at TA-50                  | 106047    |  |  |  |  |  |
| 11/30/2007 | Investigation Work Plan and HIR for Upper Mortandad Canyon Aggregate Area [IWP] | 098954    |  |  |  |  |  |
| 11/30/2007 | Investigation Work Plan and HIR for Upper Mortandad Canyon Aggregate Area [HIR] | 098955    |  |  |  |  |  |

-Surface flux of VOCs and near-surface tritium soil-gas concentrations indicate localized areas where releases to the atmosphere are occurring.

| Phase II Investigation Work Plan for MDA C, Rev. 1                  | 100143                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Investigation Report for MDA C, SWMU 50-009                         | 094688                                                                                                                                                                                                                                                                                                                                                |
| Investigation Work Plan for MDA C, SWMU 50-009 at TA-<br>50, Rev. 2 | 091493                                                                                                                                                                                                                                                                                                                                                |
| Investigation Work Plan for MDA C, SWMU 50-009 at TA-<br>50, Rev. 1 | 087152                                                                                                                                                                                                                                                                                                                                                |
| Investigation Work Plan for MDA-C, SWMU 50-009 at TA-<br>50         | 087392                                                                                                                                                                                                                                                                                                                                                |
| RFI Work Plan for Operable Unit 1147                                | 007672                                                                                                                                                                                                                                                                                                                                                |
| SWMU Report, Volume 1 of IV (TA-00 through TA-09)                   | 007513                                                                                                                                                                                                                                                                                                                                                |
| PRS Database                                                        | NA                                                                                                                                                                                                                                                                                                                                                    |
|                                                                     | Investigation Report for MDA C, SWMU 50-009<br>Investigation Work Plan for MDA C, SWMU 50-009 at TA-<br>50, Rev. 2<br>Investigation Work Plan for MDA C, SWMU 50-009 at TA-<br>50, Rev. 1<br>Investigation Work Plan for MDA-C, SWMU 50-009 at TA-<br>50<br>RFI Work Plan for Operable Unit 1147<br>SWMU Report, Volume 1 of IV (TA-00 through TA-09) |

#### Summary of Listed Status

U-listed constituents were detected in soil samples; however, there was no documented evidence of a spill, release, or discharge of unused/unspent commercial chemical products in the vicinity of the SWMU. K-listed constituents were also detected in the soil samples from 50-009, BH 50-613182; however most K-listed sources are industrial in nature and not typical of Laboratory operations. The Laboratory generates only small amounts of K-listed wastes, primarily spent carbon from high explosives processing that is disposed off-site. The documented amounts of K-listed wastes generated are not sufficient to have impacted investigation/remediation activities. Therefore, the IDW is not K-listed. In addition, Arsenic (F032, F034, F035), Benzo(a)pyrene (F032, F034, F037, and F038), Chromium (F032, F034, F035, F037, and F038), Chrysene (F037 and F038), Lead (F035, F037, and F038), and Nickel (F006) were also detected in the soil samples from 50-009 site investigation activities. There is no documented evidence that the following processes (F-listed sources) occurred in the vicinity of the SWMU: Wood preserving processes (F032, F034, and F035), Petroleum refinery operations (F037 and F038) and Electroplating operations (F006). See Attachment 1 for the complete list of potentially listed constituents detected in the soil sample.

Based on analytical data and documentation, there is no conclusive evidence of a listed source impacting SWMU 50-009, MDA-C. Therefore, the IDW may be managed as non-hazardous waste.

DD Completed January 18, 2011

| Attachment 1.        |               |                      | · · · · · · · · · · · · · · · · · · ·  |                       |
|----------------------|---------------|----------------------|----------------------------------------|-----------------------|
| Analyte              | Concentration | Potential<br>U-Codes | Potential F-Codes                      | Potential K-<br>Codes |
| Antimony             | 0.91          |                      |                                        | K161, K021, K177      |
|                      |               |                      |                                        | K031,K060,K161,       |
|                      |               |                      |                                        | K171,K172,K176,       |
| Arsenic              | 0.34          |                      | F032,F034,F035,                        | K084,K101,K102,       |
|                      |               | U022                 |                                        | K001, K035, K141,     |
|                      |               |                      |                                        | K142, K144, K145,     |
| Benzo(a)pyrene       | 0.0144        |                      | F032,F034,F037,F038                    | K147, K148, K170      |
|                      |               |                      |                                        | K001,K035,K141,       |
|                      |               |                      |                                        | K142,K143,K144,       |
| Benzo(b)fluoranthene | 0.0214        |                      |                                        | K147,K148,K170,       |
| Bis(2-               |               | U028                 |                                        |                       |
| ethylhexyl)phthalate | 0.0797        |                      |                                        |                       |
| Chromium             | 4.96          |                      | F032,F034,F035,F037                    | K090                  |
| Chrysene             | 0.019         | U050                 | F037, F038                             | K001, K035            |
|                      |               |                      | ······································ | K002, K003, K005,     |
|                      |               |                      |                                        | K048, K049, K051,     |
|                      |               |                      |                                        | K062, K064, K086,     |
|                      |               |                      |                                        | K100, K176, K046,     |
| Lead                 | 4.73          |                      | F035,F037,F038,                        | K052, K061, K069      |
| Nickel               | 5.68          |                      | F006                                   |                       |
| Thallium             | 0.0753        |                      |                                        | K178                  |

### Attachment 1.

page 3 of 5

3233

#### SWMU ev 3233.2083.2093 Stockpile Number ev 3233.2083.2093

Sampling event ID

SAL and background comparison ev3233.2083.2093.awd.1.13.2011(1).xlsm evaluation date: 1/13/2011

Qbt 1g, unit of Indust-Constr. Recrea-Canyon CAS/ measur Residen-Worker concenrial tional Sedi-QBT2. QBt Qct, Analyte Symbol tration tial SAL SAL SAL SAL Soil 3,4 Qbo e ment 1v Bismuth-214 Bi-214 2.46 pCi/g FAIL pass pass pass pass Lead-212 Pb-212 2.36 pCi/g FAIL FAIL pass pass pass Lead-214 Pb-214 2.39 pCi/g FAIL pass pass pass pass K-40 Potassium-40 28 pCi/g pass pass pass pass pass Radium 226/228 calc. 4.88 pCi/g Radium-226 Ra-226 2.46 pCi/g FAIL pass pass pass pass pass pass Radium-228 FAIL FAIL Ra-228 2.42 pCi/g pass pass pass pass pass Thallium-208 TI-208 0.658 pCi/g pass pass pass pass pass Tritium 0.04751 pCi/g H-3 pass pass pass pass pass pass pass pass pass Uranium-234 U-234 2.21 pCi/g pass pass pass pass pass pass FAIL pass pass Uranium-235/236 U-235/236 0.0838 pCi/g pass pass pass pass 2.17 pCi/g Uranium-238 pass FAIL U-238 pass pass pass pass pass pass pass Americium-241 -0.0009 pCi/g Am-241 Cerium-139 Ce-139 -0.0224 pCi/g Cesium-137 Cs-137 -0.0121 pCi/g Cobalt-60 0.0137 pCi/g Co-60 Europium-152 Eu-152 -0.1 pCi/g Lanthanum-140 La-140 0.0355 pCi/g Mercury-203 Hg-203 0.0457 pCi/g Plutonium-238 Pu-238 0.00118 pCi/g Plutonium-239/240 Pu-239/240 0.00118 pCi/g Radium-223 Ra-223 0.596 pCi/g Ruthenium-106 Ru-106 0.0615 pCi/g Sodium-22 Na-22 -0.00394 pCi/g Strontium-85 Sr-85 0.0614 pCi/g Strontium-90 Sr-90 -0.0775 pCi/g Thorium-227 0.13 pCi/g Th-227 Thorium-231 Th-231 0.596 pCi/g Thorium-234 Th-234 1.81 pCi/g Tin-113 Sn-113 -0.0249 pCi/g Uranium-235 0.0509 pCi/g U-235 Yttrium-88 Y-88 0.00172 pCi/g

 $Ra^{228}$  2.46 - 2.33 = 0.13 25 (attachment 6) OK to land apply

#### SWMU ev 3233.2083.2093 Stockpile Number ev 3233.2083.2093

### **Detected Chemicals Form**

associated Excel file: ev3233.2083.2093.awd.1.13.2011(1).xlsm evaluation date: 1/13/2011

| Analyte                | CAS/ Symbol | concen-<br>tration | unit of<br>measure | Non-<br>wastewater<br>LDR | Hazardous<br>Soil LDR | Potential Haz F-codes     | Potential Haz K-codes                                                               | Potential Haz U-codes | Potential Haz<br>P-codes | comments                                 |
|------------------------|-------------|--------------------|--------------------|---------------------------|-----------------------|---------------------------|-------------------------------------------------------------------------------------|-----------------------|--------------------------|------------------------------------------|
| Aluminum               | Al          | 4030               | mg/kg              |                           |                       |                           |                                                                                     |                       |                          |                                          |
| Arsenic                | As          |                    | mg/kg              | pass                      | pass                  |                           | K031,K060,K161,K171,K172,K176,K<br>084,K101,K102,                                   |                       |                          |                                          |
| Barium                 | Ва          | 70.5               | mg/kg              | pass                      | pass                  |                           |                                                                                     |                       |                          |                                          |
| Beryllium              | Be          | 0.346              | mg/kg              | pass                      | pass                  |                           |                                                                                     |                       |                          | an a |
| Chromium               | Cr          |                    | mg/kg              | pass                      | pass                  | F032,F034,F035,F037,F038, | K090,                                                                               |                       |                          |                                          |
| Cobalt                 | Co          |                    | mg/kg              |                           |                       |                           |                                                                                     |                       |                          |                                          |
| Copper                 | Cu          |                    | mg/kg              |                           |                       |                           |                                                                                     |                       |                          |                                          |
| Iron                   | Fe          | 7150               | mg/kg              |                           |                       |                           |                                                                                     |                       |                          |                                          |
| Lead                   | Pb          | 46                 | mg/kg              | pass                      | pass                  |                           | K002,K003,K005,K048,K049,K051,K<br>062,K064,K086,K100,K176,K046,K0<br>52,K061,K069, |                       |                          |                                          |
| Manganese              | Mn          |                    | mg/kg              |                           | 1                     |                           |                                                                                     |                       |                          |                                          |
| Methyl-2-pentanone[4-] |             | 0.00382            |                    | pass                      | pass                  |                           |                                                                                     |                       |                          | F003,U161 codes not applicable           |
| Nickel                 | Ni          | 5.68               | mg/kg              | pass                      | pass                  | F006,                     |                                                                                     |                       |                          |                                          |
| Nitrate                | NO3         | 0.934              | mg/kg              |                           |                       |                           |                                                                                     |                       |                          |                                          |
| Potassium              | К           | 819                | mg/kg              |                           |                       |                           |                                                                                     |                       |                          |                                          |
| Sodium                 | Na          | 540                | mg/kg              |                           |                       |                           |                                                                                     |                       |                          |                                          |
| Uranium                | U           | 0.282              | mg/kg              |                           |                       | 1                         |                                                                                     |                       |                          |                                          |
| Vanadium               | V           | 11.2               | mg/kg              | pass                      | pass                  |                           |                                                                                     |                       |                          |                                          |
| Zinc                   | Zn          | 18.3               | mg/kg              | pass                      | pass                  |                           |                                                                                     |                       |                          |                                          |

#### page 3 of 5

### **Solid Waste Evaluation**

page 1 of 5

SWMU ev 3233.2083.2093 Stockpile Number ev 3233.2083.2093 SummaryExcel file: ev3233.2083.2093.awd.1.13.2011(1).xlsm evaluation date: 1/13/2011

|                                                                                                                                                                                                                                |                                                                                         |                                                                              |                                                                              | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------|------------------|
| RCRA<br>33 analytes pass<br>between these<br>31 analytes pass<br>10 analytes fail                                                                                                                                              | as undeted                                                                              | cted                                                                         |                                                                              |                                         |                  |
| Detects                                                                                                                                                                                                                        |                                                                                         |                                                                              |                                                                              |                                         | <u></u>          |
| Total P                                                                                                                                                                                                                        | CP (nnm)                                                                                | Notanaly                                                                     | 1                                                                            |                                         |                  |
| 4 analytes with potential<br>3 analytes with potential<br>0 analytes with potential<br>0 analytes with potential                                                                                                               | F-code<br>K-code<br>U-code                                                              |                                                                              | n-wastewater LDR:<br>lazardous soil LDR:                                     |                                         | 0 FAIL<br>0 FAIL |
| Canyon Sediment bac<br>Qbt 2,3,4 bac                                                                                                                                                                                           | (mg/kg) :<br>(mg/kg) :<br>(mg/kg) :<br>ckground:<br>ckground:<br>ckground:<br>ckground: | 16 pass<br>14 pass<br>16 pass<br>16 pass<br>16 pass<br>14 pass<br>10 pass    | 0 FAIL<br>0 FAIL<br>0 FAIL<br>0 FAIL<br>0 FAIL<br>0 FAIL<br>2 FAIL<br>7 FAIL |                                         |                  |
| RAD ti                                                                                                                                                                                                                         | otal dose:                                                                              | 0.8198                                                                       | mRem/year                                                                    |                                         | <u> </u>         |
| ?<br>analysed for H-3<br>analysed for Pu-239<br>32 isotopes,                                                                                                                                                                   |                                                                                         |                                                                              | were detected<br>undetected                                                  |                                         |                  |
| Residen-tial SAL: 4 pass<br>Indust-rial SAL: 4 pass<br>Constr. Worker SAL: 6 pass<br>Recrea-tional SAL: 6 pass<br>Soil: 8 pass<br>Canyon Sedi-ment: 8 pass<br>QBT2,3,4: 5 pass<br>QBT 1v: 10 pass<br>Qbt 1g, Qct, Qbo: 10 pass |                                                                                         | 0 FAIL<br>0 FAIL<br>0 FAIL<br>2 FAIL<br>2 FAIL<br>5 FAIL<br>0 FAIL<br>0 FAIL |                                                                              |                                         |                  |
|                                                                                                                                                                                                                                |                                                                                         |                                                                              |                                                                              |                                         |                  |

Remark: The Evaluator may overwrite any result of automatic evaluation, but a short written explanation must be added

| Sample ID     | associated blanks | associated duplicate |
|---------------|-------------------|----------------------|
| WST50-11-2083 | WST50-11-2093     |                      |

| Imported data files  |
|----------------------|
| ev3233.1.13.2011.txt |

# Detected Chemicals: SSL and Background check

| Analyte                | CAS/ Symbol | concen-<br>tration | unit of<br>measure | Residential<br>Soil (mg/kg) | Industrial/<br>Occupational<br>Soil (mg/kg) | Construction<br>Worker Soil<br>(mg/kg) | Recreational<br>Soil (mg/kg) | soil<br>background | Canyon<br>Sediment<br>background | Qbt 2,3,4<br>background | Qbt 1v<br>background                                                                                           | Qbt 1g,<br>Qct,Qbo<br>background |
|------------------------|-------------|--------------------|--------------------|-----------------------------|---------------------------------------------|----------------------------------------|------------------------------|--------------------|----------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------|
| Aluminum               | AI          | 4030               | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | pass                                                                                                           | FAIL                             |
|                        | As          |                    | <u> </u>           | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             |                         |                                                                                                                | pass                             |
| Barium                 | Ва          |                    | <b>V V</b>         | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | FAIL                    | FAIL                                                                                                           | FAIL                             |
| Beryllium              | Be          |                    |                    | pass                        | pass                                        |                                        | pass                         | pass               | pass                             |                         | pass                                                                                                           | pass                             |
| Chromium               | Cr          |                    |                    | pass                        | pass                                        | NA                                     | pass                         | pass               | pass                             | pass                    | FAIL                                                                                                           | FAIL                             |
| Cobalt                 | Со          |                    | ¥ ¥                | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | FAIL                                                                                                           | pass                             |
| Copper                 | Cu          |                    | <u> </u>           | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | FAIL                    | FAIL                                                                                                           | FAIL                             |
| Iron                   | Fe          | 7150               | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | pass                                                                                                           | FAIL                             |
| Lead                   | Pb          |                    |                    | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             |                         | pass                                                                                                           | pass                             |
| Manganese              | Mn          | 137                | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | pass                                                                                                           | pass                             |
| Methyl-2-pentanone[4-] | 108-10-1    | 0.00382            | <b>v v</b>         | pass                        | pass                                        | pass                                   | pass                         |                    |                                  |                         | the second s | NA                               |
| Nickel                 | Ni          |                    | mg/kg              | pass                        | pass                                        | pass                                   | pass                         |                    | pass                             | pass                    | FAIL                                                                                                           | FAIL                             |
| Nitrate                | NO3         |                    | mg/kg              | pass                        | pass                                        | pass                                   | pass                         |                    |                                  | NA                      | NA                                                                                                             | NA                               |
| Potassium              | к           |                    | mg/kg              | NA                          | NA                                          |                                        | NA                           | pass               | pass                             | pass                    | pass                                                                                                           | pass                             |
| Sodium                 | Na          |                    | mg/kg              | NA                          | NA                                          |                                        | NA                           | pass               | pass                             | pass                    | pass                                                                                                           | pass                             |
| Uranium                | U           |                    | mg/kg              | pass                        | pass                                        | NA                                     | pass                         | pass               | pass                             | pass                    | pass                                                                                                           | pass                             |
| Vanadium               | V           |                    | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | FAIL                                                                                                           | FAIL                             |
| Zinc                   | Zn          | 18.3               | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | pass                                                                                                           | pass                             |

BOREHOUE 50-613182

Sampling event ID 3233 SWMU ev 3233

### Solid Waste Evaluation

page 1 of 5

Summaryed Excel file: AWD 3233 110118 ws\_050empty.xlsm evaluation date: 1/18/2011

Stockpile Number ev 3233

| <ul> <li>8 analytes with potential K-code</li> <li>3 analytes with potential U-code</li> <li>0 analytes with potential P-code</li> <li>Residential Soil (mg/kg) : 23 pass</li> <li>Industrial/ Occupational Soil (mg/kg) : 23 pass</li> <li>Construction Worker Soil (mg/kg) : 20 pass</li> <li>Recreational Soil (mg/kg) : 23 pass</li> <li>Construction Worker Soil (mg/kg) : 20 pass</li> <li>Recreational Soil (mg/kg) : 23 pass</li> <li>Canyon Sediment background: 18 pass</li> <li>Qbt 2,3,4 background: 17 pass</li> <li>Qbt 1v background: 13 pass</li> <li>Qbt 1g, Qct,Qbo background: 9 pass</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | between these 31 analytes pass as undetected<br>10 analytes fail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| 6 analytes with potential F-code       Non-wastewater LDR: 15 pass       0 FAI         8 analytes with potential U-code       0 analytes with potential P-code       0 FAIL         9 analytes with potential Soil (mg/kg) : 23 pass       0 FAIL       0 FAIL         1ndustrial/Occupational Soil (mg/kg) : 23 pass       0 FAIL       0 FAIL         Construction Worker Soil (mg/kg) : 23 pass       0 FAIL       0 FAIL         Construction Worker Soil (mg/kg) : 23 pass       0 FAIL       0 FAIL         Construction Worker Soil (mg/kg) : 23 pass       0 FAIL       0 FAIL         Construction Worker Soil (mg/kg) : 23 pass       0 FAIL       0 FAIL         Construction Worker Soil (mg/kg) : 23 pass       0 FAIL       0 FAIL         Soil background: 18 pass       0 FAIL       0 FAIL         Qbt 1g, Qct,Qbo background: 19 pass       0 FAIL       0 FAIL         Qbt 1g, Qct,Qbo background: 9 pass       0 FAIL       0 FAIL         analysed for H-3       0 Analysed for Pu-239       12 were detected         32 isotopes,       12 were detected       19 undetected         Residen-tial SAL: 4 pass       0 FAIL       0 FAIL         Constr. Worker SAL: 6 pass       0 FAIL       0 FAIL         Soil: 8 pass       0 FAIL       0 FAIL         Soil: 8 pass       0 FAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Detects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   |
| 6 analytes with potential F-code       Non-wastewater LDR: 15 pass       0 FAI         8 analytes with potential U-code       0 analytes with potential U-code       0 FAIL         0 analytes with potential P-code       0 FAIL       0 FAIL         Residential Soil (mg/kg) : 23 pass       0 FAIL         Construction Worker Soil (mg/kg) : 20 pass       0 FAIL         Construction Worker Soil (mg/kg) : 23 pass       0 FAIL         Construction Worker Soil (mg/kg) : 23 pass       0 FAIL         Construction Worker Soil (mg/kg) : 23 pass       0 FAIL         Construction Worker Soil (mg/kg) : 23 pass       0 FAIL         Construction Worker Soil (mg/kg) : 23 pass       0 FAIL         Qubt 2,3,4 background: 18 pass       0 FAIL         Qbt 1g, Qct,Qbo background: 19 pass       0 FAIL         Qbt 1g, Qct,Qbo background: 9 pass       0 FAIL         Analysed for H-3       0 FAIL         analysed for H-3       0 FAIL         analysed for H-3       0 FAIL         analysed for Pu-239       12 were detected         32 isotopes,       12 were detected         19 undetected       19 undetected         Recreational SAL: 4 pass       0 FAIL         Constr. Worker SAL: 6 pass       0 FAIL         Soii: 8 pass       0 FAIL <t< th=""><th>Total PCB (ppm) No</th><th>tanaly</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Total PCB (ppm) No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tanaly                            |
| 3 analytes with potential U-code<br>0 analytes with potential P-code<br>Residential Soil (mg/kg) : 23 pass<br>Industrial/Occupational Soil (mg/kg) : 23 pass<br>Construction Worker Soil (mg/kg) : 23 pass<br>Recreational Soil (mg/kg) : 23 pass<br>Soil background: 18 pass<br>Canyon Sediment background: 19 pass<br>Qbt 2,3,4 background: 17 pass<br>Qbt 1, Qct,Qbo background: 9 pass<br>Qbt 1g, Qct,Qbo background: 9 pass<br>Abt 1g, Qct,Qbo background: 9 pass<br>analysed for H-3<br>analysed for H-3<br>analysed for H-3<br>analysed for Pu-239<br>32 isotopes,<br>Recrea-tional SAL: 4 pass<br>Constr. Worker SAL: 6 pass<br>Canyon Sedi-ment: 8 pass<br>Canyon Sedi-ment: 8 pass<br>QBT 1, 3,4: 5 pass<br>QBT 1, 3,4: 5 pass<br>QBT 1, 10 pass<br>Canyon Sedi-ment: 8 pass<br>Canyon Sedi-ment                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6 analytes with potential F-code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Non-wastewater LDR: 15 pass 0 FAI |
| 0 analytes with potential P-code<br>Residential Soil (mg/kg) : 23 pass<br>Industrial/Occupational Soil (mg/kg) : 23 pass<br>Construction Worker Soil (mg/kg) : 20 pass<br>Recreational Soil (mg/kg) : 20 pass<br>Soil background: 18 pass<br>Canyon Sediment background: 19 pass<br>Qbt 2,3,4 background: 17 pass<br>Qbt 1v, background: 13 pass<br>Qbt 1g, Qct,Qbo background: 9 pass<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>TFAIL<br>T                                                                                           | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Hazardous soil LDR: 15 pass 0 FAI |
| Residential Soil (mg/kg) : 23 pass       0 FAIL         Industrial/Occupational Soil (mg/kg) : 23 pass       0 FAIL         Construction Worker Soil (mg/kg) : 23 pass       0 FAIL         Recreational Soil (mg/kg) : 23 pass       0 FAIL         Soil background: 18 pass       0 FAIL         Soil background: 18 pass       0 FAIL         Qbt 2,3,4 background: 19 pass       0 FAIL         Qbt 1, background: 17 pass       0 FAIL         Qbt 1g, Qct,Qbo background: 9 pass       0 FAIL         TFAL       1 FAIL         TFAL       1 FAIL         TFAL       1 FAIL         Pass       0 FAIL         Qbt 1g, Qct,Qbo background: 9 pass       1 FAIL         TFAL       1 fFAIL         TFAIL       1 fFAIL         Industrial SAL: 4 pass       0 FAIL         Constr. Worker SAL: 6 pass       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |
| Industrial/ Occupational Soil (mg/kg) : 23 pass<br>Construction Worker Soil (mg/kg) : 20 pass<br>Recreational Soil (mg/kg) : 23 pass<br>Soil background: 18 pass<br>Canyon Sediment background: 19 pass<br>Qbt 2, 3,4 background: 17 pass<br>Qbt 1v background: 13 pass<br>Qbt 1g, Qct,Qbo background: 9 pass<br>Abt 1g, Qct,Qbo background: 9 pass<br>analysed for H-3<br>analysed for H-3<br>analysed for Pu-239<br>32 isotopes,<br>Recrea-tional SAL: 4 pass<br>Constr. Worker SAL: 6 pass<br>Constr. Worker SAL: 6 pass<br>Constr. Worker SAL: 6 pass<br>Canyon Sedi-ment: 8 pass<br>Canyon Sedi-ment: 8 pass<br>QBT 1v; 10 pass<br>Network 1 fall<br>Canyon Sedi-ment: 8 pass<br>QBT 1v; 10 pass<br>Network 1 fall<br>Canyon Sedi-ment: 8 pass<br>QBT 1v; 10 pass<br>Network 1 fall<br>Network                                                                                                                                                                                                                                                                                                                                                                                      | 0 analytes with potential P-code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   |
| Industrial/ Occupational Soil (mg/kg) : 23 pass<br>Construction Worker Soil (mg/kg) : 20 pass<br>Recreational Soil (mg/kg) : 23 pass<br>Soil background: 18 pass<br>Canyon Sediment background: 19 pass<br>Qbt 2, 3,4 background: 17 pass<br>Qbt 1, background: 13 pass<br>Qbt 1, Qct,Qbo background: 9 pass<br>Abt 1, Qct,Qbo background: 9 pass<br>TAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>F | in the state of t |                                   |
| Industrial/ Occupational Soil (mg/kg) : 23 pass<br>Construction Worker Soil (mg/kg) : 20 pass<br>Recreational Soil (mg/kg) : 23 pass<br>Soil background: 18 pass<br>Canyon Sediment background: 19 pass<br>Qbt 2, 3,4 background: 17 pass<br>Qbt 1, background: 13 pass<br>Qbt 1, Qct,Qbo background: 9 pass<br>Abt 1, Qct,Qbo background: 9 pass<br>TAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>FAIL<br>F | Posidential Soil (ma/ka) + 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   |
| Construction Worker Soil (mg/kg) : 20 pass<br>Recreational Soil (mg/kg) : 23 pass<br>soil background: 18 pass<br>Canyon Sediment background: 19 pass<br>Qbt 2,3,4 background: 17 pass<br>Qbt 1y, Qct,Qbo background: 13 pass<br>Qbt 1g, Qct,Qbo background: 9 pass<br>RAD<br>total dose: 0.8205 mRem/year<br>analysed for H-3<br>analysed for Pu-239<br>32 isotopes, 12 were detected<br>19 undetected<br>Residen-tial SAL: 4 pass 0 FAIL<br>Indust-rial SAL: 4 pass 0 FAIL<br>Constr. Worker SAL: 6 pass 0 FAIL<br>Recrea-tional SAL: 6 pass 0 FAIL<br>Soil: 8 pass 0 FAIL<br>Soil: 8 pass 0 FAIL<br>Canyon Sedi-ment: 8 pass 0 FAIL<br>QBT2,3,4: 5 pass 0 FAIL<br>QBT12,3,4: 5 pass 0 FAIL<br>QBT2,3,4: 5 pass 0 FAIL<br>Constr. Worker SAL: 0 PASS 0 FAIL<br>CANON Sedi-ment: 8 pase 0 FAIL<br>CANON Sedi-ment: 8 pase 0 FAIL<br>CA                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                 |
| Recreational Soil (mg/kg) : 23 pass<br>soil background: 18 pass<br>Qbt 2,3,4 background: 19 pass<br>Qbt 1, Qct,Qbo background: 17 pass<br>Qbt 1g, Qct,Qbo background: 9 pass<br>total dose: 0.8205 mRem/year<br>analysed for H-3<br>analysed for Pu-239<br>32 isotopes, 12 were detected<br>19 undetected<br>Residen-tial SAL: 4 pass<br>Constr. Worker SAL: 6 pass<br>Recrea-tional SAL: 6 pass<br>Soil: 8 pass<br>Soil: 8 pass<br>Canyon Sedi-ment: 8 pass<br>QBT2,3,4: 5 pass<br>QBT1, 3,4: 5 pass<br>QBT1, 3,4: 5 pass<br>QBT1, 3,4: 5 pass<br>QBT2, 3,4: 5 pass<br>QBT1, 10 pass<br>DEALL<br>Canyon Sedi-ment: 8 pass<br>QBT2, 3,4: 5 pass                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |
| soil background: 18 pass<br>Canyon Sediment background: 19 pass<br>Qbt 2,3,4 background: 17 pass<br>Qbt 1v background: 13 pass<br>Qbt 1g, Qct,Qbo background: 9 pass<br>Qbt 1g, Qct,Qbo background: 9 pass<br>TFALL<br>RAD<br>total dose: 0.8205 mRem/year<br>analysed for H-3<br>analysed for Pu-239<br>32 isotopes, 12 were detected<br>19 undetected<br>Residen-tial SAL: 4 pass 0 FAIL<br>Indust-rial SAL: 4 pass 0 FAIL<br>Constr. Worker SAL: 6 pass 0 FAIL<br>Recrea-tional SAL: 6 pass 0 FAIL<br>Soil: 8 pass 3 FAIL<br>Soil: 8 pass 3 FAIL<br>QBT2,3,4: 5 pass 6 FAIL<br>QBT2,3,4: 5 pass 6 FAIL<br>QBT2,3,4: 5 pass 6 FAIL<br>QBT 1v: 10 pass 1 FAIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |
| Canyon Sediment background: 19 pass<br>Qbt 2,3,4 background: 17 pass<br>Qbt 1v background: 13 pass<br>Qbt 1g, Qct,Qbo background: 9 pass<br>TALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FALL<br>FAL<br>FA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |
| Qbt 2,3,4 background:       17 pass<br>Qbt 1v background:       13 pass<br>Qbt 1g, Qct,Qbo background:       9 pass         RAD       total dose:       0.8205 mRem/year         analysed for H-3<br>analysed for Pu-239<br>32 isotopes,       12 were detected         Residen-tial SAL:       4 pass       0 FAIL         Indust-rial SAL:       4 pass       0 FAIL         Constr. Worker SAL:       6 pass       0 FAIL         Soil:       8 pass       3 FAIL         Canyon Sedi-ment:       8 pass       3 FAIL         QBT2,3,4:       5 pass       6 FAIL         QBT 2,3,4:       5 pass       6 FAIL         QBT 1v:       10 pass       1 FAIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |
| Qbt 1v background: 13 pass<br>Qbt 1g, Qct,Qbo background: 9 pass       TAL         RAD       total dose:       0.8205 mRem/year         analysed for H-3<br>analysed for Pu-239<br>32 isotopes,       12 were detected<br>19 undetected         Residen-tial SAL: 4 pass       0 FAIL         Indust-rial SAL: 4 pass       0 FAIL         Constr. Worker SAL: 6 pass       0 FAIL         Soil: 8 pass       3 FAIL         Canyon Sedi-ment: 8 pass       3 FAIL         QBT2,3,4: 5 pass       6 FAIL         QBT 1v: 10 pass       1 FAIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |
| RAD       total dose:       0.8205 mRem/year         ?       analysed for H-3<br>analysed for Pu-239<br>32 isotopes,       12 were detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |
| ?       analysed for H-3<br>analysed for Pu-239<br>32 isotopes,       12 were detected         32 isotopes,       12 were detected         19 undetected         Residen-tial SAL: 4 pass       0 FAIL         Indust-rial SAL: 4 pass       0 FAIL         Constr. Worker SAL: 6 pass       0 FAIL         Recrea-tional SAL: 6 pass       0 FAIL         Soil: 8 pass       3 FAIL         Canyon Sedi-ment: 8 pass       3 FAIL         QBT2,3,4: 5 pass       6 FAIL         QBt 1v: 10 pass       1 FAIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Qbt 1g, Qct,Qbo background: 9 p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ass 11 FAIL                       |
| ?       analysed for H-3<br>analysed for Pu-239<br>32 isotopes,       12 were detected         32 isotopes,       12 were detected         19 undetected         Residen-tial SAL: 4 pass       0 FAIL         Indust-rial SAL: 4 pass       0 FAIL         Constr. Worker SAL: 6 pass       0 FAIL         Recrea-tional SAL: 6 pass       0 FAIL         Soil: 8 pass       3 FAIL         QBT2,3,4: 5 pass       6 FAIL         QBT 1v: 10 pass       1 FAIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |
| analysed for Pu-239       32 isotopes,       12 were detected         32 isotopes,       19 undetected         Residen-tial SAL: 4 pass       0 FAIL         Indust-rial SAL: 4 pass       0 FAIL         Constr. Worker SAL: 6 pass       0 FAIL         Recrea-tional SAL: 6 pass       0 FAIL         Soil: 8 pass       3 FAIL         Canyon Sedi-ment: 8 pass       3 FAIL         QBT2,3,4: 5 pass       6 FAIL         QBt 1v: 10 pass       1 FAIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RAD total dose:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.8205 mRem/year                  |
| analysed for Pu-239       32 isotopes,       12 were detected         32 isotopes,       19 undetected         Residen-tial SAL: 4 pass       0 FAIL         Indust-rial SAL: 4 pass       0 FAIL         Constr. Worker SAL: 6 pass       0 FAIL         Recrea-tional SAL: 6 pass       0 FAIL         Soil: 8 pass       3 FAIL         Canyon Sedi-ment: 8 pass       3 FAIL         QBT2,3,4: 5 pass       6 FAIL         QBt 1v: 10 pass       1 FAIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |
| 32 isotopes,       12 were detected         Residen-tial SAL: 4 pass       0 FAIL         Indust-rial SAL: 4 pass       0 FAIL         Constr. Worker SAL: 6 pass       0 FAIL         Recrea-tional SAL: 6 pass       0 FAIL         Soil: 8 pass       3 FAIL         QBT2,3,4: 5 pass       6 FAIL         QBT 1v: 10 pass       1 FAIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |
| Residen-tial SAL: 4 pass       0 FAIL         Indust-rial SAL: 4 pass       0 FAIL         Constr. Worker SAL: 6 pass       0 FAIL         Recrea-tional SAL: 6 pass       0 FAIL         Soil: 8 pass       3 FAIL         Canyon Sedi-ment: 8 pass       3 FAIL         QBT2,3,4: 5 pass       6 FAIL         QBt 1v: 10 pass       1 FAIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |
| Residen-tial SAL: 4 pass0 FAILIndust-rial SAL: 4 pass0 FAILConstr. Worker SAL: 6 pass0 FAILRecrea-tional SAL: 6 pass0 FAILSoil: 8 pass3 FAILCanyon Sedi-ment: 8 pass3 FAILQBT2,3,4: 5 pass6 FAILQBt 1v: 10 pass1 FAIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 32 isotopes,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   |
| Indust-rial SAL: 4 pass0 FAILConstr. Worker SAL: 6 pass0 FAILRecrea-tional SAL: 6 pass0 FAILSoil: 8 pass3 FAILCanyon Sedi-ment: 8 pass3 FAILQBT2,3,4: 5 pass6 FAILQBt 1v: 10 pass1 FAIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19 undetected                     |
| Indust-rial SAL: 4 pass0 FAILConstr. Worker SAL: 6 pass0 FAILRecrea-tional SAL: 6 pass0 FAILSoil: 8 pass3 FAILCanyon Sedi-ment: 8 pass3 FAILQBT2,3,4: 5 pass6 FAILQBt 1v: 10 pass1 FAIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Peciden-tial SAL 4 page 0 F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Δ11                               |
| Constr. Worker SAL:       6 pass       0 FAIL         Recrea-tional SAL:       6 pass       0 FAIL         Soil:       8 pass       3 FAIL         Canyon Sedi-ment:       8 pass       3 FAIL         QBT2,3,4:       5 pass       6 FAIL         QBt 1v:       10 pass       1 FAIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |
| Recrea-tional SAL:6 pass0 FAILSoil:8 pass3 FAILCanyon Sedi-ment:8 pass3 FAILQBT2,3,4:5 pass6 FAILQBt 1v:10 pass1 FAIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |
| Soil:8 pass3 FAILCanyon Sedi-ment:8 pass3 FAILQBT2,3,4:5 pass6 FAILQBt 1v:10 pass1 FAIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |
| Canyon Sedi-ment: 8 pass 3 FAIL<br>QBT2,3,4: 5 pass 6 FAIL<br>QBt 1v: 10 pass 1 FAIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |
| QBT2,3,4:         5 pass         6 FAIL           QBt 1v:         10 pass         1 FAIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AIL                               |
| Qbt 1g, Qct, Qbo: 11 pass 0 FAIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Qbt 1g, Qct, Qbo: 11 pass 0 F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AIL                               |

but a short written explanation must be added

| Sample ID     | associated blanks | associated duplicate |
|---------------|-------------------|----------------------|
| WST50-11-2081 | WST50-11-2091     |                      |
| WST50-11-2082 | WST50-11-2092     |                      |
| WST50-11-2083 | WST50-11-2093     |                      |

.



,

SWMU ev 3233 Stockpile Number ev 3233 3233

### **RCRA** Characteristics Form

page 3 of 5 associated Excel file: AWD 3233 110118 ws\_050empty.xlsm

evaluation date: 1/18/2011

concen Potential Reg. unit of Pass/ Haz Code Qualifier limit tration Analyte CAS/ Symbol measure Fail comments Arsenic 5000 50 ug/L U pass As D005 100000 853 ug/L NQ Barium Ba pass 1000 10 ug/L Cadmium Cd U pass 5000 22.2 ug/L Chromium Cr U pass D008 25.2 ug/L Lead Pb 5000 NQ pass Mercury 200 U Hg 2 ug/L pass 50 ug/L Selenium Se 1000 U pass 5000 10 ug/L Silver Ag U pass Endrin 72-20-8 D012 20 FAIL ug/L 400 BHC[gamma-] 58-89-9 D013 FAIL ug/L D014 10000 FAIL Methoxychlor[4,4'-72-43-5 ug/L Toxaphene (Technical Grade) 8001-35-2 D015 500 ug/L FAIL D[2,4-] 94-75-7 D016 10000 FAIL ug/L TP[2,4,5-] 93-72-1 D017 1000 FAIL ug/L 71-43-2 0.0505 ug/L Ű 500 Benzene pass Carbon Tetrachloride 56-23**-**5 0.0505 ug/L U 500 pass Chlordane(alpha/gamma) 57-74-9 D020 30 FAIL ug/L 5103-74-2 Chlordane[gamma-] D020 FAIL ug/L Chlordane[alpha-] 5103-71-9 D020 ug/L FAIL 100000 Chlorobenzene 108-90-7 0.0505 ug/L 11 pass Chloroform 67-66-3 6000 0.0505 ug/L U pass 200000 16.75 ug/L Methylphenol[2-] 95-48-7 UJ pass 16.75 ug/L Methylphenol[3-] 108-39-4 200000 UJ pass Methylphenol[4-] 106-44-5 200000 16.75 ug/L UJ pass 65794-96-9 200000 16.75 ug/L Methylphenol[3-,4-] UĴ pass 33.5 ug/L Methylphenol(total) 8027-16-5 200000 UJU pass Dichlorobenzene[1,4-] 106-46-7 7500 16.75 ug/L UJ pass Dichloroethane[1,2-] 107-06-2 500 0.0505 ug/L U pass 0.0505 ug/L 700 U Dichloroethene[1,1-] 75-35-4 pass Dinitrotoluene[2,4-] 121-14-2 130 16.75 ug/L UJ pass 76-44-8 D031 Heptachlor 8 FAIL ug/L 16.75 ug/L UJ Hexachlorobenzene 118-74-1 130 pass 16.75 ug/L Hexachlorobutadiene 87-68-3 500 UJ pass Hexachloroethane 67-72-1 3000 16.75 ug/L UJ pass 200000 Butanone[2-] 78-93-3 0.2525 ug/L UJ pass Nitrobenzene 98-95-3 2000 16.75 ug/L UJ pass 100000 Pentachlorophenol 87-86-5 16.75 ug/L UJ pass 5000 16.75 ug/L UJ Pyridine 110-86-1 pass Tetrachloroethene 0.0505 ug/L 127-18-4 700 U pass 0.0505 ug/L Trichloroethene 79-01-6 500 υ pass 16.75 ug/L Trichlorophenol[2,4,5-] 95-95-4 400000 UJ pass Trichlorophenol[2,4,6-] 88-06-2 2000 16.75 ug/L UJ pass 0.0505 ug/L 75-01-4 200 Vinyl Chloride 11 pass

NOTE 1: If multiple results exist for given analyte, first, the highest detected result is chosen. If there are no detected results, the lowest undetected result is chosen.

NOTE 2: Often chlordane is analyzed as alpha and gamma isomers. If no total chlordane result exist, total concentration will be calculated from individual isomer results.

NOTE 3: Most frequently 2-Methylphenol is analyzed separately and 3- and 4-methylphenols are reported together.

Often, raw data contain only two results - for 2- methylphenol and 4-methylphenol. In such case 4-methyl is in fact a result

for two isomers together: 3-methyl + 4-methylphenol. The macro evaluates present data and calculates concentrations for 3-, 4-, and total.

methylphenols. Results reported separatedly for 3- and 4- methylphenols with calc. remark are, in fact, partial total, 3- + 4-methylphenol together.

NOTE 4: Undetected results pass automatically, without comparing to standard. Detected results pass only if reported concentration is lower than legal standard.

NOTE 5: CAS number is highlighted in pink if there is a large discrepancy between sample and duplicate.

# Detected Chemicals: SSL and Background check

.

| Analyte                    | CAS/<br>Symbol | concen-<br>tration | unit of<br>measure | Residential<br>Soil (mg/kg) | Industrial/<br>Occupational<br>Soil (mg/kg) | Construction<br>Worker Soil<br>(mg/kg) | Recreational<br>Soil (mg/kg) | soil<br>background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Canyon<br>Sediment<br>background | Qbt 2,3,4<br>background | Qbt 1v<br>background | Qbt 1g,<br>Qct,Qbo<br>background |
|----------------------------|----------------|--------------------|--------------------|-----------------------------|---------------------------------------------|----------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------|----------------------|----------------------------------|
| Aluminum                   | Al             | 4030               | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | pass                             | pass                    | pass                 | FAIL                             |
| Antimony                   | Sb             | 0.91               | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | FAIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FAIL                             | FAIL                    | FAIL                 | FAIL                             |
|                            |                |                    |                    |                             |                                             |                                        |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  |                         |                      |                                  |
|                            | As             |                    | mg/kg              | pass                        |                                             | pass                                   | pass                         | pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | pass                             | pass                    | pass                 | pass                             |
| Barium                     | Ba             | 70.5               | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | pass                             | FAIL                    | FAIL                 | FAIL                             |
| Benzo(a)pyrene             | 50-32-8        | 0.0144             | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NA                               | NA                      | NA                   | NA                               |
| Benzo(b)fluoranthene       | 205-99-2       | . 0.0214           | ma/ka              | pass                        | pass                                        | pass                                   | pass                         | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NA                               | NA                      | NA                   | NA                               |
|                            | Be             |                    | mg/kg              | pass                        |                                             | pass                                   | pass                         | pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | pass                             | pass                    | pass                 | pass                             |
| Bis(2-ethylhexyl)phthalate | 117-81-7       | 0.0797             | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NA                               | NA                      | NA                   | NA                               |
| Calcium                    | Ca             |                    | mg/kg              | NA                          | NA                                          | NA                                     | NA                           | pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | pass                             | pass                    | pass                 | pass                             |
| Chromium                   | Cr             |                    | mg/kg              | pass                        | pass                                        | NA                                     | pass                         | pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | pass                             | pass                    | FAIL                 | FAIL                             |
| Chrysene                   | 218-01-9       | 0.019              | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NA                               | NA                      | NA                   | NA                               |
| Cobalt                     | Co             | 2.28               | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | pass                             | pass                    | FAIL                 | pass                             |
| Copper                     | Cu             | 6.2                | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | pass                             | FAIL                    | FAIL                 | FAIL                             |
| Iron                       | Fe             | 7150               | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | pass                             | pass                    | pass                 | FAIL                             |
| Lead                       | Pb             | 4 73               | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | pass                             | pass                    | pass                 | pass                             |
|                            | Mg             |                    | mg/kg              | NA                          |                                             | NA                                     | NA                           | pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | pass                             | pass                    | pass                 | pass                             |
|                            | Mn             |                    | mg/kg              | pass                        | pass                                        | FAIL                                   | pass                         | pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | pass                             | pass                    | pass                 | FAIL                             |
| Methyl-2-pentanone[4-]     | 108-10-1       | 0.0142             | mg/kg              | pass                        |                                             | pass                                   | pass                         | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  | NA                      |                      | NA                               |
|                            | Ni             |                    | mg/kg              | pass                        |                                             | pass                                   | pass                         | pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | pass                             | pass                    | FAIL                 | FAIL                             |
|                            | NO3            |                    | mg/kg              | pass                        | pass                                        |                                        | pass                         | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NA                               | NA                      |                      | NA                               |
|                            | K              |                    | mg/kg              | NA                          |                                             |                                        | NA                           | pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | pass<br>NA                       | pass                    | pass                 | pass                             |
| Pyrene                     | 129-00-0<br>Na | 0.0425             | mg/kg<br>mg/kg     | pass <sup>*</sup>           |                                             |                                        | pass<br>NA                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  | NA                      | NA                   | NA                               |
| Sodium<br>Thallium         | Na<br>TI       | 0.0753             |                    | pass                        |                                             |                                        |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | pass<br>pass                     | pass                    | pass                 | pass                             |
| Uranium                    | 11             |                    | mg/kg              | pass                        |                                             |                                        | pass<br>pass                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | F                                | pass<br>pass            | pass                 | pass<br>FAIL                     |
|                            | V              |                    | mg/kg              | pass                        | ·····                                       |                                        | pass                         | and the second | 1 · · · ·                        | pass                    | pass<br>FAIL         | FAIL                             |
|                            | v<br>Zn        |                    | mg/kg              | pass                        | pass                                        |                                        | pass                         | FAIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | pass                             |                         |                      | FAIL                             |
|                            | ZII            | <u> </u>           | ling/kg            | lhass                       | Ipass                                       | [µaəə                                  | lhass                        | TAIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lhass                            | pass                    | pass                 | ГАIL                             |

Stockpile Number ev 3233

SWMU ev 3233

#### **Detected Chemicals Form**

page 3 of 5 associated Excel file: AWD 3233 110118 ws\_050empty.xism

evaluation date: 1/18/2011

|                            |          |         |                | Non-       |           |                           |                                                                    |                       |               |                     |
|----------------------------|----------|---------|----------------|------------|-----------|---------------------------|--------------------------------------------------------------------|-----------------------|---------------|---------------------|
|                            | CAS/     | concen- | unit of        | wastewater | Hazardous |                           |                                                                    |                       | Potential Haz |                     |
| Analyte                    | Symbol   | tration | measure        | LDR        | Soil LDR  | Potential Haz F-codes     | Potential Haz K-codes                                              | Potential Haz U-codes | P-codes       | comments            |
|                            | Al       |         | mg/kg          | ~          |           |                           |                                                                    |                       |               |                     |
| Antimony                   | Sb       | 0.91    | mg/kg          | pass       | pass      |                           | K161,K021,K177,                                                    |                       |               |                     |
| Arsenic                    | As       | 0.34    | mg/kg          | pass       | pass      | F032.F034.F035.           | K031,K060,K161,K171,K172,K176,K<br>084,K101,K102,                  |                       |               |                     |
|                            | Ва       |         | mg/kg          | pass       | pass      |                           |                                                                    |                       |               |                     |
|                            | 50-32-8  | 0.0144  |                | pass       | •         | F032.F034.F037.F038.      | K001,K035,K141,K142,K144,K145,K<br>147,K148,K170,                  | U022,                 |               |                     |
| Benzo(b)fluoranthene       | 205-99-2 | 0.0214  | mg/kg          | pass       | pass      |                           | K001,K035,K141,K142,K143,K144,K<br>147,K148,K170,                  |                       |               |                     |
| Beryllium                  | Ве       |         | mg/kg          |            | pass      |                           |                                                                    | · · · · ·             | 1             |                     |
| Bis(2-ethylhexyl)phthalate | 117-81-7 | 0.0797  | mg/kg          | pass       | pass      |                           |                                                                    | U028,                 |               |                     |
| Calcium                    | Ca       | 791     | mg/kg          | ľ          |           |                           |                                                                    |                       |               |                     |
| Chromium                   | Cr       | 4.96    | mg/kg          | pass       | pass      | F032,F034,F035,F037,F038, | K090,                                                              |                       |               |                     |
| Chrysene                   | 218-01-9 | 0.019   | mg/kg          | pass       | pass      | F037,F038,                | K001,K035,                                                         | U050,                 | 1 mar         |                     |
| Cobalt                     | Co       |         | mg/kg          |            |           |                           |                                                                    |                       |               |                     |
| Copper                     | Cu       |         | mg/kg          |            |           |                           |                                                                    |                       |               |                     |
| Iron                       | Fe       | 7150    | mg/kg          |            |           |                           |                                                                    |                       |               |                     |
| 1                          |          | 4 70    |                |            |           |                           | K002,K003,K005,K048,K049,K051,K<br>062,K064,K086,K100,K176,K046,K0 |                       |               |                     |
| Lead                       | Pb<br>Ma |         | mg/kg          | pass       | pass      | F035,F037,F038.           | 52,K061,K069,                                                      |                       |               |                     |
| Magnesium                  | Mn       |         | mg/kg<br>mg/kg |            |           |                           |                                                                    |                       |               |                     |
| Manganese                  | IVIII    | 317     | ппд/кд         |            |           |                           |                                                                    |                       |               | F003,U161 codes not |
| Methyl-2-pentanone[4-]     | 108-10-1 | 0.0142  | mg/kg          | pass       | pass      |                           |                                                                    |                       |               | applicable          |
|                            | Ni       |         | mg/kg          | pass       | pass      | F006,                     |                                                                    |                       |               |                     |
|                            | NO3      |         | mg/kg          |            |           |                           |                                                                    |                       |               |                     |
| Potassium                  | К        |         | mg/kg          |            |           |                           |                                                                    |                       |               |                     |
| Pyrene                     | 129-00-0 | 0.0425  |                | pass       | pass      |                           |                                                                    |                       |               |                     |
|                            | Na       |         | mg/kg          |            |           |                           |                                                                    |                       |               |                     |
|                            | TI       | 0.0753  |                |            |           |                           | K178,                                                              |                       |               |                     |
|                            | U        |         | mg/kg          |            | •         |                           | · · ·                                                              |                       |               |                     |
|                            | V        |         | mg/kg          |            | pass      |                           |                                                                    |                       |               |                     |
| Zinc                       | Zn       | 51.7    | mg/kg          | pass       | pass      |                           |                                                                    |                       |               |                     |

### **Additional Constituents - Chemicals**

Sampling event ID 3233 SWMU ev 3233 Stockpile Number ev 3233 associated Excel file: AWD 3233 110118 ws\_050empty.xlsm evaluation date: 1/18/2011

|                            | PI          | concentr |       | Results  |           |           |         |         |                  |
|----------------------------|-------------|----------|-------|----------|-----------|-----------|---------|---------|------------------|
| Analyte                    | CAS/ Symbol | ation    | Unit  | (ppm)    | MIN (ppm) | MAX (ppm) | MIN. %  | MAX. %  | comments         |
| Aluminum                   | Al          | 4030000  | ug/kg | 4030.000 | 1080.000  | 4030.000  | 0.108   | 0.403   |                  |
| Antimony                   | Sb          | 910      | ug/kg | 0.910    | 0         | 0.910     | 0       | 9.1E-05 |                  |
| Benzo(a)pyrene             | 50-32-8     | 14.4     | ug/kg | 0.014    | 0         | 0.014     | 0       | 1.4E-06 |                  |
| Benzo(b)fluoranthene       | 205-99-2    | 21.4     | ug/kg | 0.021    | 0         | 0.021     | 0       | 2.1E-06 |                  |
| Beryllium                  | Ве          | 524      | ug/kg | 0.524    | 0.346     |           | 3.5E-05 | 5.2E-05 |                  |
| Bis(2-ethylhexyl)phthalate | 117-81-7    | 79.7     | ug/kg | 0.080    |           | 0.080     | 0       | 8.0E-06 |                  |
| Calcium                    | Ca          | 791000   | ug/kg | 791.000  | 359.000   | 791.000   | 0.036   | 0.079   |                  |
| Chrysene                   | 218-01-9    | 19       | ug/kg | 0.019    | 0         | 0.019     | 0       | 1.9E-06 |                  |
| Cobalt                     | Co          |          | ug/kg | 2.280    | 0.845     | 2.280     | 8.5E-05 | 2.3E-04 |                  |
| Copper                     | Cu          |          | ug/kg | 6.200    | 3.730     | 6.200     | 3.7E-04 | 6.2E-04 |                  |
| Iron                       | Fe          | 7150000  |       | 7150.000 | 5000.000  | 7150.000  | 0.500   | 0.715   |                  |
| Magnesium                  | Mg          | 555000   | ug/kg | 555.000  | 174.000   | 555.000   | 0.017   | 0.056   |                  |
| Manganese                  | Mn          | 317000   |       | 317.000  | 137.000   | 317.000   | 0.014   | 0.032   |                  |
| Methyl-2-pentanone[4-]     | 108-10-1    | 14.2     | ug/kg | 0.014    | 3.8E-03   | 0.014     | 3.8E-07 | 1.4E-06 |                  |
| Nickel                     | Ni          | 5680     | ug/kg | 5.680    | 2.980     | 5.680     | 3.0E-04 | 5.7E-04 |                  |
| Nitrate                    | NO3         | 0.967    | mg/kg | 0.967    | 0.934     | 0.967     | 9.3E-05 | 9.7E-05 |                  |
| Potassium                  | К           | 819000   | ug/kg | 819.000  | 332.000   | 819.000   | 0.033   | 0.082   |                  |
| Pyrene                     | 129-00-0    | 42.5     | ug/kg | 0.043    | 0         | 0.043     | 0       | 4.3E-06 |                  |
| Sodium                     | Na          | 540000   | ug/kg | 540.000  | 270.000   | 540.000   | 0.027   | 0.054   |                  |
| Thallium                   | TI          | 75.3     | ug/kg | 0.075    | 0.069     | 0.075     | 6.9E-06 | 7.5E-06 |                  |
| Uranium                    | U           | 829      | ug/kg | 0.829    | 0.180     | 0.829     | 1.8E-05 | 8.3E-05 |                  |
| Vanadium                   | V           | 11200    |       | 11.200   | 3.480     | 11.200    | 3.5E-04 | 1.1E-03 |                  |
| Zinc                       | Zn          | 51700    | ug/kg | 51.700   | 14.600    | 51.700    | 1.5E-03 | 5.2E-03 |                  |
|                            |             |          |       |          |           | TOTAL     | 0 720   |         | 0/ / IL I / C IL |

NOTE 1: This table contains all detected, non D-coded analytes NOTE 2: Highlighted analytes are potentially F-coded TOTAL 0.738

**1.428** % (all analytes from all pages were added for this total

page 3 of 5

Sampling event ID

#### 3233

SWMU ev 3233 Stockpile Number ev 3233 SAL and background companies AWD 3233 110118 ws\_050empty.xism evaluation date: 1/18/2011

|                   |            |          | unit of |          | Indust-   | Constr. | Recrea-   |              | Canyon    |           |              | Qbt 1g, |
|-------------------|------------|----------|---------|----------|-----------|---------|-----------|--------------|-----------|-----------|--------------|---------|
|                   | CAS/       | concen-  | measur  | Residen- | rial      | Worker  | tional    |              | Sedi-     | QBT2,     |              | Qct,    |
| Analyte           | Symbol     | tration  | е       | tial SAL | SAL       | SAL     | SAL       | Soil         | ment      | 3,4       | 1v           | Qbo     |
| Bismuth-214       | Bi-214     |          | pCi/g   |          | $\square$ | /       | $\square$ |              | pass      | FAIL      | pass         | pass    |
| Lead-212          | Pb-212     | 2.46     | pCi/g   | /        | /         |         |           | FAIL         | FAIL      | pass      | pass         | pass    |
| Lead-214          | Pb-214     |          | pCi/g   |          |           |         |           | pass         | pass      |           | pass         |         |
| Potassium-40      | K-40       | 34.7     | pCi/g   | /        | /         |         |           | pass         | pass      | pass      | FAIL         | pass    |
| Radium 226/228    | calc.      | 4.88     | pCi/g   | /        |           |         |           | /            | /         | /         | $\sum$       | /       |
| Radium-226        | Ra-226     |          | pCi/g   |          | /         | pass    | pass      | pass         |           | FAIL      | pass         | pass    |
| Radium-228        | Ra-228     | 2.42     | pCi/g   |          |           | pass    | pass      | FAIL         |           | pass      | pass         | pass    |
| Thallium-208      | TI-208     | 0.664    | pCi/g   |          |           |         | /         | pass         | pass      | pass      | pass         | pass    |
| Thorium-234       | Th-234     | 2.51     | pCi/g   | /        | /         |         | /         | FAIL         | FAIL      | FAIL      | pass         | pass    |
| Tritium           | H-3        | 0.0565   | pCi/g   | pass     | pass      | pass    | pass      | pass         | pass      | pass      | pass         | pass    |
| Uranium-234       | U-234      |          |         | pass     | pass      | pass    | pass      | pass         | pass      | FAIL      | pass         | pass    |
| Uranium-235/236   | U-235/236  | 0.109    | pCi/g   | pass     | pass      | pass    | pass      | /            | /         | /         | $\geq$       | /       |
| Uranium-238       | U-238      | 2.17     | pCi/g   | pass     | pass      | pass    | pass      | pass         | pass      | FAIL      | pass         | pass    |
| Americium-241     | Am-241     | -0.00522 | pCi/g   |          | /         |         | $\square$ | $\langle$    | /         | /         | /            | /       |
| Cerium-139        | Ce-139     | -0.0224  |         | /        | /         | /       |           | $\backslash$ | /         | $\geq$    | /            | /       |
| Cesium-137        | Cs-137     | -0.061   | pCi/g   | /        |           |         |           | $\langle$    | /         | $\sum$    |              |         |
| Cobalt-60         | Co-60      | -0.0162  | pCi/g   | /        | /         | /       |           | $\backslash$ | /         | $\geq$    | $\backslash$ | /       |
| Europium-152      | Eu-152     |          | pCi/g   |          |           |         |           | $\backslash$ | /         |           |              | /       |
| Lanthanum-140     | La-140     | -0.093   | pCi/g   |          |           |         |           |              | /         | $\sim$    | $\sum$       |         |
| Mercury-203       | Hg-203     | 0.00024  | pCi/g   |          |           |         |           | $\geq$       |           |           | $\sum$       |         |
| Plutonium-238     | Pu-238     | -0.0024  |         |          |           |         |           |              | /         | $\square$ | $\square$    | /       |
| Plutonium-239/240 | Pu-239/240 | -0.00101 | pCi/g   |          |           |         |           | $\geq$       |           | $\square$ | $\searrow$   |         |
| Radium-223        | Ra-223     | -0.502   |         |          |           |         |           |              |           | $\sum$    | $\geq$       |         |
| Ruthenium-106     | Ru-106     | -0.369   |         |          |           |         |           | $\geq$       | $\square$ | $\square$ | $\geq$       |         |
| Sodium-22         | Na-22      | -0.0724  |         |          |           |         |           | $\geq$       |           |           | $\geq$       |         |
| Strontium-85      | Sr-85      | 0.00652  |         | /        |           |         |           | $\backslash$ | /         | $\sum$    | $\searrow$   |         |
| Strontium-90      | Sr-90      | -0.0775  |         |          | /         |         |           | $\geq$       | /         |           | $\geq$       | /       |
| Thorium-227       | Th-227     | -0.0104  |         | /        | $\geq$    |         |           | $\geq$       | /         | $\leq$    | $\geq$       | /       |
| Thorium-231       | Th-231     | -0.502   |         | /        | /         |         |           | $\geq$       | /         | $\sim$    | /            | /       |
| Tin-113           | Sn-113     | -0.0249  | pCi/g   | /        |           |         |           |              | /         | $\sim$    | $\geq$       | /       |
| Uranium-235       | U-235      | 0.0509   | pCi/g   | /        | $\sim$    |         | $\sim$    | $\geq$       | $\sim$    | $\sim$    | $\geq$       | //      |
| Yttrium-88        | Y-88       | -0.0202  | pCi/g   | /        | /         | $\leq$  |           | $\geq$       | /         | $\sim$    | $\geq$       | /       |

3233

page 3 of 5

SWMU ev 3233 Stockpile Number ev 3233 Radioisotopesodatament file: AWD 3233 110118 ws\_050empty.xlsm evaluation date: 1/18/2011

| Analyte           | CAS/ Symbol | concen-<br>tration | unit of<br>measure | Qualifier | comments |
|-------------------|-------------|--------------------|--------------------|-----------|----------|
| Bismuth-214       | Bi-214      | 2.46               | pCi/g              | NQ        |          |
| Lead-212          | Pb-212      | 2.46               | pCi/g              | NQ        |          |
| Lead-214          | Pb-214      | 2.39               | pCi/g              | NQ        |          |
| Potassium-40      | K-40        | 34.7               | pCi/g              | NQ        |          |
| Radium 226/228    | calc.       | 4.88               | pCi/g              |           |          |
| Radium-226        | Ra-226      | 2.46               | pCi/g              | NQ        |          |
| Radium-228        | Ra-228      | 2.42               | pCi/g              | NQ        |          |
| Thallium-208      | TI-208      | 0.664              | pCi/g              | NQ        |          |
| Thorium-234       | Th-234      |                    | pCi/g              | NQ        |          |
| Tritium           | H-3         | 0.0564979          | pCi/g              | NQ        |          |
| Uranium-234       | U-234       | 2.21               | pCi/g              | NQ        |          |
| Uranium-235/236   | U-235/236   | 0.109              | pCi/g              | NQ        |          |
| Uranium-238       | U-238       | 2.17               | pCi/g              | NQ        |          |
| Americium-241     | Am-241      | -0.00522           | pCi/g              | U         |          |
| Cerium-139        | Ce-139      | -0.0224            | pCi/g              | U         |          |
| Cesium-137        | Cs-137      | -0.061             | pCi/g              | U         |          |
| Cobalt-60         | Co-60       | -0.0162            | pCi/g              | U         |          |
| Europium-152      | Eu-152      | -0.1               | pCi/g              | U         |          |
| Lanthanum-140     | La-140      | -0.093             | pCi/g              | U         |          |
| Mercury-203       | Hg-203      | 0.000237           |                    | U         |          |
| Plutonium-238     | Pu-238      | -0.0024            |                    | U         |          |
| Plutonium-239/240 | Pu-239/240  | -0.00101           | pCi/g              | U         |          |
| Radium-223        | Ra-223      | -0.502             | pCi/g              | U         |          |
| Ruthenium-106     | Ru-106      | -0.369             | pCi/g              | U         |          |
| Sodium-22         | Na-22       | -0.0724            | pCi/g              | U         |          |
| Strontium-85      | Sr-85       | 0.00652            | pCi/g              | U         |          |
| Strontium-90      | Sr-90       | -0.0775            | pCi/g              | U         |          |
| Thorium-227       | Th-227      | -0.0104            |                    | U         |          |
| Thorium-231       | Th-231      | -0.502             |                    | U         |          |
| Tin-113           | Sn-113      | -0.0249            |                    | U         |          |
| Uranium-235       | U-235       | 0.0509             |                    | U         |          |
| Yttrium-88        | Y-88        | -0.0202            | pCi/g              | U         |          |

Bin 5758 10# 1014 3860

Water Quality and RCRA Group Los Alamos National Laboratory

BH 50-603470 <u>50-613183</u>

ENV-RCRA-QP-011.2 Attachment 2, Page 1 of 1

### **Request for Land Application of Drill Cuttings Form**

| ENV-RCRA must approve any deviation(s) from this request prior to land                                                                                                                                                                                                      | d application                  | ۹                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------------|
| Date: 2/4/11 Project: MDA C Phate T<br>Location of Land Application: Within Project Footprint TA: 50 (S<br>Estimated Quantity:                                                                                                                                              | WMU S<br>lied with<br>d Covene | 50-009)<br>hin<br>21               |
| Decision Tree—Decision Point Evaluation                                                                                                                                                                                                                                     | <u></u>                        |                                    |
| The following questions require yes or no answers.                                                                                                                                                                                                                          | Yes                            | No                                 |
| <b>1.</b> D1: Is existing characterization data consistent with WCSF? Attach a summary table of results, validated raw data, etc.                                                                                                                                           | iv liv                         |                                    |
| 2. D2: Do drill cuttings contain RCRA Hazardous Waste or Hazard constituents above RCRA limits? If yes:                                                                                                                                                                     | đ                              | $\checkmark$                       |
| Has a Due Diligence been conducted for this waste? Attach a copy of the due diligence documentation.                                                                                                                                                                        |                                | . Versen                           |
| Has a No Longer Contained In been approved for this waste? Attach a copy of the No Longer                                                                                                                                                                                   |                                | . //                               |
| Contained In approval.                                                                                                                                                                                                                                                      | 2/                             | V                                  |
| <b>3.</b> D6: Do drill cuttings meet the 5 criteria in D6, Attachment 1?                                                                                                                                                                                                    | × /                            |                                    |
| 4. Do drill cuttings meeting the criteria in the Radiological Decision Tree, Attachment 3?                                                                                                                                                                                  |                                |                                    |
| Generator or Project Leader Certification: I certify that the drill cuttings described in this reque<br>application per the Decision Tree and that the drill cuttings will be land applied as described.Hphuhi FulkyHullHopethype<br>Project May.Name (Print)SignatureFitle | Э                              | iteria for land<br>9      <br>vate |
| ENV-RCRA Review (below):<br>Does request provide all the required information, and do the drill cuttings meet all the criteria for Yes No Note deficiency in the space provided:                                                                                            | or land applica                | ation?                             |
| ENV-RCRA Reviewer Name (Print) Jowel, N. Buckley Signature July St<br>Package Expiration Date: 3-11-11                                                                                                                                                                      | Des Dat                        | e <sup>2-9</sup> -11               |

Bin 5758 10# 1044 3860

Water Quality and RCRA Group Los Alamos National Laboratory ENV-RCRA-QP-011.2 Attachment 4, Page 1 of 1

#### Post Land Application Field Certification Sheet

| Date(s) of land application: <u>2411</u> Project: <u>MDAC Phase</u>                           | · · · · · · · · · · · · · · · · · · · |
|-----------------------------------------------------------------------------------------------|---------------------------------------|
| Location of land application: Within project doot print TA: 50 (SW)                           | <u>mu</u> 50-009                      |
| EX-ID Number: $(0) - 0915 - 50$ EX-ID Expiration Date: $4/12/11$                              |                                       |
| Please explain any deviations from original application (Attachment 2) in the space provided: | -                                     |
|                                                                                               |                                       |
|                                                                                               |                                       |
| Note: ENV-RCRA must approve any deviations from Attachment 2 prior to land application.       |                                       |

#### Generator or Project Leader Certification (below):

I certify that

- land application complied with the requirements of this procedure (ENV-RCRA-SOP-011.1),
- no free liquids were applied during land application,
- an inspection was conducted to ensure the requirements in Attachment 2 of this procedure was met, and
- the land application of drill cuttings complied with the excavation permit.

Shani Fuller

BRIDEL

Project Manager 2-16-11 Title Date

Name (Print

Signature

Ben 5758 10# 1014 3866

#### **Solid Waste Evaluation**

page 1 of 5

SWMU ev 3233.2086.2100 Stockpile Number ev 3233.2086.2100 Summary: Excel file: ev3233.2086.2100.awd.2.2.2011(1).xlsm evaluation date: 2/2/2011

| RCRA                                                                                                                                                                                                                                                                        |                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| 33 analytes pass         between these       33 analytes pass as undeted         10 analytes fail                                                                                                                                                                           | cted                                                                                                     |
| Detects                                                                                                                                                                                                                                                                     | ,                                                                                                        |
| <b>Total PCB (ppm)</b><br>3 analytes with potential F-code<br>3 analytes with potential K-code<br>0 analytes with potential U-code<br>0 analytes with potential P-code                                                                                                      | Not analy<br>Non-wastewater LDR: 8 pass 0 FAIL<br>Hazardous soil LDR: 8 pass 0 FAIL                      |
| Residential Soil (mg/kg) :<br>Industrial/ Occupational Soil (mg/kg) :<br>Construction Worker Soil (mg/kg) :<br>Recreational Soil (mg/kg) :<br>soil background:<br>Canyon Sediment background:<br>Qbt 2,3,4 background:<br>Qbt 1v background:<br>Qbt 1g, Qct,Qbo background: | 15 pass0 FAIL13 pass0 FAIL15 pass0 FAIL15 pass0 FAIL18 pass0 FAIL18 pass0 FAIL17 pass1 FAIL15 pass3 FAIL |
| RAD total dose:                                                                                                                                                                                                                                                             | 0.7108 mRem/year                                                                                         |
| analysed for H-3<br>analysed for Pu-239<br>31 isotopes,                                                                                                                                                                                                                     | <ul><li>11 were detected</li><li>19 undetected</li></ul>                                                 |
| Indust-rial SAL: 4 pass<br>Constr. Worker SAL: 6 pass<br>Recrea-tional SAL: 6 pass<br>Soil: 10 pass<br>Canyon Sedi-ment: 10 pass<br>QBT2,3,4: 7 pass<br>QBt 1v: 10 pass                                                                                                     | 0 FAIL<br>0 FAIL<br>0 FAIL<br>0 FAIL<br>0 FAIL<br>0 FAIL<br><b>3 FAIL</b><br>0 FAIL<br>0 FAIL            |

Remark: The Evaluator may overwrite any result of automatic evaluation, but a short written explanation must be added

| Sample ID     | associated blanks | associated duplicate |
|---------------|-------------------|----------------------|
| WST50-11-2086 | WST50-11-2100     |                      |

| Imported data files |  |
|---------------------|--|
| ev3233.2.2.2011.txt |  |

SWMU ev 3233.2086.2100 Stockpile Number ev 3233.2086.2100

#### **Detected Chemicals Form**

page 3 of 5 associated Excel file: ev3233.2086.2100.awd.2.2.2011(1).xlsm evaluation date: 2/2/2011

| Analyte   | CAS/ Symbol | concen-<br>tration | unit of<br>measure | Non-<br>wastewater<br>LDR | Hazardous<br>Soil LDR | Potential Haz F-codes     | Potential Haz K-codes                                                               | Potential Haz U-codes | Potential Haz<br>P-codes | comments                         |
|-----------|-------------|--------------------|--------------------|---------------------------|-----------------------|---------------------------|-------------------------------------------------------------------------------------|-----------------------|--------------------------|----------------------------------|
| Aluminum  | Al          | 1750               | mg/kg              |                           |                       |                           |                                                                                     |                       |                          |                                  |
| Antimony  | Sb          | 0.507              | mg/kg              | pass                      | pass                  |                           | K161,K021,K177,                                                                     |                       |                          | hi dharacha an Albara an Albara. |
| Barium    | Ва          | 18.4               | mg/kg              | pass                      | pass                  |                           |                                                                                     |                       |                          |                                  |
| Beryllium | Be          | 0.333              | mg/kg              | pass                      | pass                  |                           |                                                                                     |                       |                          |                                  |
| Calcium   | Са          | 934                | mg/kg              |                           |                       |                           |                                                                                     |                       |                          |                                  |
| Chromium  | Cr          | 4.75               | mg/kg              | pass                      | pass                  | F032,F034,F035,F037,F038, | K090,                                                                               |                       |                          |                                  |
| Cobalt    | Co          | 0.845              | mg/kg              |                           |                       |                           |                                                                                     |                       |                          |                                  |
| Copper    | Cu          |                    | mg/kg              |                           |                       |                           |                                                                                     |                       |                          |                                  |
| Iron      | Fe          | 4700               | mg/kg              |                           |                       |                           |                                                                                     |                       |                          |                                  |
| Lead      | РЬ          | 6.34               | mg/kg              | pass                      | pass                  | F035,F037,F038,           | K002,K003,K005,K048,K049,K051,K<br>062,K064,K086,K100,K176,K046,K0<br>52,K061,K069, |                       |                          |                                  |
| Magnesium | Mg          |                    | mg/kg              |                           | 1                     |                           |                                                                                     |                       |                          |                                  |
| Manganese | Mn          |                    | mg/kg              |                           |                       |                           |                                                                                     |                       |                          |                                  |
| Nickel    | Ni          |                    | mg/kg              | pass                      | pass                  | F006,                     |                                                                                     |                       |                          |                                  |
| Nitrate   | NO3         | 1.06               | mg/kg              |                           |                       |                           |                                                                                     |                       |                          |                                  |
| Potassium | К           | 489                | mg/kg              |                           |                       | -                         |                                                                                     |                       |                          |                                  |
| Sodium    | Na          |                    | mg/kg              |                           |                       |                           |                                                                                     |                       |                          |                                  |
| Uranium   | U           | 0.115              | mg/kg              |                           |                       |                           |                                                                                     |                       |                          |                                  |
| Vanadium  | V           | 7.38               | mg/kg              | pass                      | pass                  |                           |                                                                                     |                       |                          |                                  |
| Zinc      | Zn          | 9.57               | mg/kg              | pass                      | pass                  |                           |                                                                                     |                       |                          |                                  |

# Detected Chemicals: SSL and Background check

| Analyte   | CAS/ Symbol | concen-<br>tration | unit of<br>measure | Residential<br>Soil (mg/kg) | Industrial/<br>Occupational<br>Soil (mg/kg) | Construction<br>Worker Soil<br>(mg/kg) | Recreational<br>Soil (mg/kg) | soil<br>background | Canyon<br>Sediment<br>background | Qbt 2,3,4<br>background | Qbt 1v<br>background | Qbt 1g,<br>Qct,Qbo<br>background |
|-----------|-------------|--------------------|--------------------|-----------------------------|---------------------------------------------|----------------------------------------|------------------------------|--------------------|----------------------------------|-------------------------|----------------------|----------------------------------|
| Aluminum  | AI          | 1750               | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | pass                 | pass                             |
| Antimony  | Sb          | 0.507              | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | FAIL                    | FAIL                 | FAIL                             |
| Barium    | Ва          |                    | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | pass                 | pass                             |
| Beryllium | Ве          | 0.333              | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | pass                 | pass                             |
| Calcium   | Са          | 934                | mg/kg              | NA                          | NA                                          | NA                                     | NA                           | pass               | pass                             | pass                    | pass                 | pass                             |
| Chromium  | Cr          | 4.75               | mg/kg              | pass                        | pass                                        | NA                                     | pass                         | pass               | pass                             | pass                    | FAIL                 | FAIL                             |
| Cobalt    | Co          | 0.845              | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | pass                 | pass                             |
| Copper    | Cu          |                    | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | pass                 | pass                             |
| Iron      | Fe          | 4700               | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | pass                 | FAIL                             |
| Lead      | Pb          | 6.34               | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | pass                 | pass                             |
| Magnesium | Mg          | 587                | mg/kg              | NA                          | NA                                          | NA                                     | NA                           | pass               | pass                             | pass                    | pass                 | pass                             |
| Manganese | Mn          | 112                | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | pass                 | pass                             |
| Nickel    | Ni          | 1.95               | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | pass                 | pass                             |
| Nitrate   | NO3         | 1.06               | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | NA                 | NA                               | NA                      | NA                   | NA                               |
| Potassium | K           |                    | mg/kg              | NA                          | NA                                          | NA                                     | NA                           | pass               | pass                             | pass                    | pass                 | pass                             |
| Sodium    | Na          | 316                | mg/kg              | NA                          |                                             | NA                                     | NA                           | pass               | pass                             | pass                    | pass                 | pass                             |
| Uranium   | U           |                    | mg/kg              | pass                        | pass                                        | NA                                     | pass                         | pass               | pass                             | pass                    | pass                 | pass                             |
| Vanadium  | V           | 7.38               | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | FAIL                 | FAIL                             |
| Zinc      | Zn          | 9.57               | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | pass                 | pass                             |

page 3 of 5

Sampling event ID 3233

#### SAL and background comparison: ev3233.2086.2100.awd.2.2.2011(1).xlsm evaluation date: 2/2/2011

SWMU ev 3233.2086.2100 Stockpile Number ev 3233.2086.2100

|                   | l          | ľ        | unit of |              | Indust-      | Constr. | Recrea- | [              | Canyon       |              | 1                | Qbt 1g.   |
|-------------------|------------|----------|---------|--------------|--------------|---------|---------|----------------|--------------|--------------|------------------|-----------|
|                   | CAS/       | concen-  | ]       | Residen-     | rial         | Worker  | tional  |                | Sedi-        | QBT2.        | QBt              | Qct,      |
| Analyte           | Symbol     | tration  | e       | tial SAL     | SAL          | SAL     | SAL     | Soil           | ment         | 3,4          | 1v               | Qbo       |
| Bismuth-214       | Bi-214     | 2.03     | pCi/g   |              |              |         |         | pass           | pass         | FAIL         | pass             | pass      |
| Lead-212          | Pb-212     |          | pCi/g   | $\vee$       | $\vee$       |         |         | -              | pass         | pass         |                  | pass      |
| Lead-214          | Pb-214     |          | pCi/g   | $\square$    | $\sim$       |         | $\sim$  | -              |              | FAIL         | pass             |           |
| Potassium-40      | K-40       |          | pCi/g   |              | $\vee$       | 1       | $\sim$  |                | pass         | pass         | pass             | pass      |
| Radium 226/228    | calc.      |          | pCi/g   | $\backslash$ | $\vee$       | $\sim$  | $\sim$  |                | $\backslash$ |              | $\sim$           |           |
| Radium-226        | Ra-226     |          | pCi/g   | $\backslash$ | $\backslash$ | pass    | pass    | pass           | pass         | FAIL         | pass             | pass      |
| Radium-228        | Ra-228     |          | pCi/g   | $\square$    | $\backslash$ | pass    | pass    | pass           | pass         | pass         | pass             | pass      |
| Thallium-208      | TI-208     | 0.738    |         | $\backslash$ | $\sim$       |         | $\sim$  | pass           | pass         | pass         | pass             | pass      |
| Tritium           | H-3        | 0.03409  |         | pass         | pass         | pass    | pass    | pass           | pass         | pass         | pass             | pass      |
| Uranium-234       | U-234      | 1.94     | pCi/g   | pass         | pass         | pass    | pass    | pass           | pass         | pass         | pass             | pass      |
| Uranium-235/236   | U-235/236  | 0.123    |         | pass         | pass         | pass    | pass    | $\vee$         | $\sim$       |              | $\sim$           |           |
| Uranium-238       | U-238      |          | pCi/g   | pass         | pass         | pass    | pass    | pass           | pass         | pass         | pass             | pass      |
| Americium-241     | Am-241     | -0.00091 | pCi/g   |              | $\vee$       | $\sim$  | $\sim$  |                | /            |              | $\sim$           | /         |
| Cerium-139        | Ce-139     | -0.00907 | pCi/g   |              | $\sim$       | /       |         |                | /            | $\sim$       | $\smallsetminus$ |           |
| Cesium-137        | Cs-137     | 0.0143   | pCi/g   |              | /            | /       |         | $\backslash$   | /            | $\backslash$ | $\geq$           | /         |
| Cobalt-60         | Co-60      | 0.0247   | pCi/g   |              | /            |         | /       | /              | /            |              | $\overline{)}$   | /         |
| Europium-152      | Eu-152     | 0.00197  | pCi/g   | /            | /            |         | /       | $\backslash$   | /            |              | $\backslash$     | /         |
| Lanthanum-140     | La-140     | -0.0344  | pCi/g   |              | /            |         |         | /              | /            | /            | $\langle$        | /         |
| Mercury-203       | Hg-203     | 0.0389   | pCi/g   |              | $\backslash$ | /       |         | $\geq$         | /            |              | $\geq$           | /         |
| Plutonium-238     | Pu-238     | 0        | pCi/g   | /            | /            | /       |         | /              | /            |              | $\geq$           | /         |
| Plutonium-239/240 | Pu-239/240 | 0.00676  |         | /            |              | /       |         |                | /            |              | $\geq$           |           |
| Radium-223        | Ra-223     | -0.179   |         | /            | /            | /       |         |                | /            | $\backslash$ | $\square$        | /         |
| Ruthenium-106     | Ru-106     | -0.172   |         | /            |              |         |         | $\geq$         |              |              | $\geq$           | $\square$ |
| Sodium-22         | Na-22      | -0.0162  |         |              |              |         |         | $\geq$         | $\square$    |              | $\square$        |           |
| Strontium-90      | Sr-90      |          | pCi/g   | /            | /            |         |         |                | /            |              | $\square$        | $\sim$    |
| Thorium-227       | Th-227     | -0.218   | pCi/g   | /            |              | /       |         | $\backslash$   | /            |              | $\sum$           | $\square$ |
| Thorium-231       | Th-231     | -0.179   |         |              | $\backslash$ |         |         | $\geq$         | /            | $\geq$       | $\geq$           |           |
| Thorium-234       | Th-234     |          | pCi/g   |              | $\geq$       |         |         | $\geq$         | /            |              | $\geq$           |           |
| Tin-113           | Sn-113     | -0.00032 |         | /            | /            |         |         | $\geq$         | /            | $\geq$       | $\geq$           |           |
| Uranium-235       | U-235      | 0.193    |         | /            | $\backslash$ |         | $\sim$  | $\geq$         |              | $\backslash$ | $\geq$           |           |
| Yttrium-88        | Y-88       | -0.00336 | pCi/g   | $\backslash$ | $\sim$       |         | $\sim$  | $\overline{)}$ | /            | $\backslash$ | $\sim$           | /         |

No comparisons or calculations regulaid. Of for land application

Bin 5708 1D10143867

B+ #-50-603470 50-613183

Water Quality and RCRA Group Los Alamos National Laboratory

### ENV-RCRA-OP-011.2 Attachment 2, Page 1 of 1

#### **Request for Land Application of Drill Cuttings Form**

| ENV-RCRA must approve any deviation(s) from this request prior to land application. |
|-------------------------------------------------------------------------------------|
| Date: 2/7/11 Project: MDAC Phase III                                                |
| Location of Land Application: Within Project Actphint TA: 50 (SWMU 50-009)          |
| Estimated Quantity: $36ft^3$ (cubic feet or tons)                                   |
| Composition (e.g., 98% tuff and 2% quick gel, etc.):                                |
| Proposed Method of Land Application (describe): Within Project featphint - Drill    |
| Cuttings will be land applied to previously disturbed                               |
| avilas DE Covered with a charge of road base.                                       |
| Note: An EX-ID Permit is required prior to land application.                        |

#### **Decision Tree—Decision Point Evaluation** The following questions require yes or no answers. Yes No 1. D1: Is existing characterization data consistent with WCSF? Attach a summary table of results, validated raw data, etc. $\Box$ 2. D2: Do drill cuttings contain RCRA Hazardous Waste or Hazard constituents above RCRA limits? If yes: Has a Due Diligence been conducted for this waste? Attach a copy of the due diligence documentation. Has a No Longer Contained In been approved for this waste? Attach a copy of the No Longer Contained In approval. 3. D6: Do drill cuttings meet the 5 criteria in D6, Attachment 1? 4. Do drill cuttings meeting the criteria in the Radiological Decision Tree, Attachment 3?

Generator or Project Leader Certification: I certify that the drill cuttings described in this request meet the criteria for land application per the Decision Tree and that the drill cuttings will be land applied as described.

| Sephani Fuller            | Queller   | POKH Mar. | 219/11 |
|---------------------------|-----------|-----------|--------|
| Name <sup>1</sup> (Print) | Signature | Title     | Date   |

#### **ENV-RCRA Review (below):**

Does request provide all the required information, and do the drill cuttings meet all the criteria for land application? Yes 🗙 Note deficiency in the space provided: No\_\_\_\_\_

| ENV-RCRA Reviewer Name (Print) Jorly Mey Signature Jely Jorden Date 2 - 9 - 11 |
|--------------------------------------------------------------------------------|
| Package Expiration Date: 3/11/11                                               |

#### **Post Land Application Field Certification Sheet**

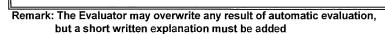
| Date(s) of land application:  | Project: MDAC                                         | Phase III            |
|-------------------------------|-------------------------------------------------------|----------------------|
| Location of land application: | Utthin project dootprint                              | TA: 50 (SWMU 50-009) |
| EX-ID Number:/OX              | - 0815-50 EX-ID Expiration Date: _                    | 4/12/2011            |
| Please explain any deviations | from original application (Attachment 2) in the space | ce provided:         |
|                               |                                                       |                      |
|                               |                                                       |                      |
| Note: ENV-RCRA must appr      | rove any deviations from Attachment 2 prior to land   | application.         |

Generator or Project Leader Certification (below):

I certify that

- land application complied with the requirements of this procedure (ENV-RCRA-SOP-011.1),
- no free liquids were applied during land application,
- an inspection was conducted to ensure the requirements in Attachment 2 of this procedure was met, and
- the land application of drill cuttings complied with the excavation permit.

Stephani Fuller Buller Project Manager 2-16-11 Date


Name (Print

### Solid Waste Evaluation

page 1 of 5

SWMU ev 3233 Stockpile Number ev 3233 SummaryExcel file: AWD ev3233 s2087 ws\_054empty(1).xlsm evaluation date: 2/7/2011

| and a second and a second s |                                   |
|-----------------------------------------------------------------------------------------------------------------|-----------------------------------|
| RCRA                                                                                                            |                                   |
| 33 analytes pass<br>between these 32 analytes pass as undete                                                    | orted                             |
| 10 analytes fail                                                                                                |                                   |
|                                                                                                                 |                                   |
| Detects                                                                                                         |                                   |
| Total PCB (ppm)                                                                                                 | Not analyz                        |
| 3 analytes with potential F-code                                                                                | Non-wastewater LDR: 9 pass 0 FAIL |
| 2 analytes with potential K-code                                                                                | Hazardous soil LDR: 9 pass 0 FAIL |
| 1 analytes with potential U-code                                                                                |                                   |
| 0 analytes with potential P-code                                                                                |                                   |
| Residential Soil (mg/kg):                                                                                       | 15 pass 0 FAIL                    |
| Industrial/ Occupational Soil (mg/kg) :                                                                         |                                   |
| Construction Worker Soil (mg/kg) :                                                                              |                                   |
| Recreational Soil (mg/kg) :                                                                                     |                                   |
| soil background:                                                                                                | •                                 |
| Canyon Sediment background:<br>Qbt 2,3,4 background:                                                            |                                   |
| Qbt 2,3,4 background:<br>Qbt 1v background:                                                                     |                                   |
| Qbt 1g, Qct, Qbo background:                                                                                    |                                   |
| RAD total dose:                                                                                                 | 1.2691 mRem/yea                   |
| ?                                                                                                               |                                   |
| analysed for H-3                                                                                                |                                   |
| analysed for Pu-239                                                                                             |                                   |
| 30 isotopes,                                                                                                    | 11 were detected                  |
|                                                                                                                 | 18 undetected                     |
| Residen-tial SAL: 3 pass                                                                                        | 0 FAIL                            |
| Indust-rial SAL: 3 pass                                                                                         | 0 FAIL                            |
| Constr. Worker SAL: 5 pass                                                                                      | 0 FAIL                            |
| Recrea-tional SAL: 5 pass<br>Soil: 2 pass                                                                       |                                   |
| Canyon Sedi-ment: 2 pass                                                                                        |                                   |
| QBT2,3,4: 2 pass                                                                                                | 8 FAIL                            |
| QBt 1v: 3 pass                                                                                                  | 7 FAIL                            |
| Qbt 1g, Qct, Qbo: 7 pass                                                                                        |                                   |
|                                                                                                                 |                                   |
|                                                                                                                 |                                   |



| Sample ID     | associated blanks | associated duplicate |
|---------------|-------------------|----------------------|
| WST50-11-2087 | WST50-11-2095     |                      |

Imported data files ev3233 110207.txt

SWMU ev 3233

#### **Detected Chemicals Form**

Stockpile Number ev 3233

page 3 of 5 associated Excel file: AWD ev3233 s2087 ws\_054empty(1).xlsm

evaluation date: 2/7/2011

| Analyte                    | CAS/<br>Symbol | concen-<br>tration | unit of<br>measure | Non-<br>wastewater<br>LDR | Hazardous<br>Soil LDR | Potential Haz F-codes     | Potential Haz K-codes                                                               | Potential Haz U-codes | Potential Haz<br>P-codes | comments                          |
|----------------------------|----------------|--------------------|--------------------|---------------------------|-----------------------|---------------------------|-------------------------------------------------------------------------------------|-----------------------|--------------------------|-----------------------------------|
| Acetone                    | 67-64-1        | 0.00335            |                    | pass                      | pass                  |                           |                                                                                     |                       |                          | F003,U002 codes not<br>applicable |
| Aluminum                   | Al             |                    | mg/kg              |                           |                       |                           |                                                                                     |                       |                          |                                   |
| Barium                     | Ва             |                    | mg/kg              | pass                      | pass                  |                           |                                                                                     |                       |                          |                                   |
| Beryllium                  | Ве             |                    | mg/kg              | pass                      | pass                  |                           |                                                                                     |                       |                          |                                   |
| Bis(2-ethylhexyl)phthalate | 117-81-7       | 0.0874             |                    | pass                      | pass                  |                           |                                                                                     | U028,                 |                          |                                   |
| Calcium                    | Ca             |                    | mg/kg              |                           |                       |                           |                                                                                     |                       |                          |                                   |
| Chromium                   | Cr             |                    | mg/kg              | pass                      | pass                  | F032,F034,F035,F037,F038, | K090,                                                                               |                       |                          |                                   |
| Cobalt                     | Co             | 1.26               | mg/kg              |                           |                       |                           |                                                                                     |                       |                          |                                   |
| Copper                     | Cu             | 3.81               | mg/kg              |                           |                       |                           |                                                                                     |                       |                          |                                   |
| Iron                       | Fe             | 4150               | mg/kg              |                           |                       |                           |                                                                                     |                       |                          |                                   |
| Lead                       | Pb             | 5.2                | mg/kg              | pass                      | pass                  | F035,F037,F038,           | K002,K003,K005,K048,K049,K051,K<br>062,K064,K086,K100,K176,K046,K0<br>52,K061,K069, |                       |                          |                                   |
| Magnesium                  | Mg             | 778                | mg/kg              |                           |                       |                           |                                                                                     |                       |                          |                                   |
| Manganese                  | Mn             | 97.8               | mg/kg              |                           |                       |                           |                                                                                     |                       |                          |                                   |
| Nickel                     | Ni             | 1.55               | mg/kg              | pass                      | pass                  | F006,                     |                                                                                     |                       |                          |                                   |
| Potassium                  | K              | 378                | mg/kg              |                           |                       |                           |                                                                                     |                       |                          |                                   |
| Sodium                     | Na             | 383                | mg/kg              |                           |                       |                           |                                                                                     |                       |                          |                                   |
| Uranium                    | U              |                    | mg/kg              |                           |                       |                           |                                                                                     |                       |                          |                                   |
| Vanadium                   | V              | 4.58               | mg/kg              | pass                      | pass                  |                           |                                                                                     |                       |                          |                                   |
| Zinc                       | Zn             | 12                 | mg/kg              | pass                      | pass                  |                           |                                                                                     |                       |                          |                                   |

# Detected Chemicals: SSL and Background check

| Analyte                                   | CAS/<br>Symbol | concen-<br>tration | unit of<br>measure                     | Residential<br>Soil (mg/kg) | Industrial/<br>Occupational<br>Soil (mg/kg) | Construction<br>Worker Soil<br>(mg/kg) | Recreational<br>Soil (mg/kg) | soil<br>background | Canyon<br>Sediment<br>background | Qbt 2,3,4<br>background | Qbt 1v<br>background | Qbt 1g,<br>Qct,Qbo<br>background |
|-------------------------------------------|----------------|--------------------|----------------------------------------|-----------------------------|---------------------------------------------|----------------------------------------|------------------------------|--------------------|----------------------------------|-------------------------|----------------------|----------------------------------|
| Acetone                                   | 67-64-1        | 0.00335            | malka                                  | pass                        | pass                                        | pass                                   | pass                         | NA                 | NA                               | NA                      | NA                   | NA                               |
| Aluminum                                  | AI             |                    | mg/kg                                  | •                           | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | pass                 | pass                             |
| Barium                                    | Ba             |                    |                                        |                             | pass                                        | pass                                   | pass                         | pass               | pass                             |                         | pass                 | pass                             |
|                                           | Ве             |                    | mg/kg                                  |                             |                                             | P · · ·                                |                              | 1                  |                                  | pass                    | 1 · · · ·            | 1                                |
| Beryllium<br>Big (2. athuthaug) abthalata | ре<br>117-81-7 |                    | mg/kg                                  |                             | pass                                        | pass                                   | pass                         | pass<br>NA         | pass<br>NA                       | pass<br>NA              | pass<br>NA           | pass<br>NA                       |
| Bis(2-ethylhexyl)phthalate                |                | 0.0874             | ······································ |                             | pass                                        | pass                                   | pass                         |                    |                                  |                         |                      |                                  |
| Calcium                                   | Ca             |                    | mg/kg                                  |                             |                                             | NA                                     | NA                           | pass               | pass                             | pass                    | pass                 | pass                             |
| Chromium                                  | Cr             |                    | mg/kg                                  |                             |                                             | NA                                     | pass                         | pass               | pass                             | pass                    | FAIL                 | FAIL                             |
| Cobalt                                    | Co             |                    | mg/kg                                  | •                           | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | pass                 | pass                             |
| Copper                                    | Cu             |                    | mg/kg                                  |                             | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | FAIL                 | pass                             |
| Iron                                      | Fe             | 4150               | mg/kg                                  | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | pass                 | FAIL                             |
| Lead                                      | Pb             |                    |                                        |                             |                                             | pass                                   | pass                         | pass               | pass                             | pass                    |                      | pass                             |
| Magnesium                                 | Mg             |                    |                                        | NA                          | NA                                          | NA                                     | NA                           | pass               | pass                             | pass                    | pass                 | FAIL                             |
| <b>1</b>                                  | Mn             | 97.8               | mg/kg                                  | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | pass                 | pass                             |
| Nickel                                    | Ni             | 1.55               | mg/kg                                  | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | pass                 | pass                             |
| Potassium                                 | К              | 378                | mg/kg                                  | NA                          | NA                                          | NA                                     | NA                           | pass               | pass                             | pass                    | pass                 | pass                             |
| Sodium                                    | Na             | 383                | mg/kg                                  | NA                          | NA                                          | NA                                     | NA                           | pass               | pass                             | pass                    | pass                 | pass                             |
| Uranium                                   | U              | 0.191              | mg/kg                                  | pass                        | pass                                        | NA                                     | pass                         | pass               | pass                             | pass                    | pass                 | pass                             |
| Vanadium                                  | V              | 4.58               | mg/kg                                  | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | FAIL                 | pass                             |
| Zinc                                      | Zn             | 12                 | mg/kg                                  | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | pass                 | pass                             |

page 3 of 5

3233

### SAL and background comparison AWD ev3233 s2087 ws\_054empty(1).xlsm

evaluation date: 2/7/2011

SWMU ev 3233 Stockpile Number ev 3233

| i   | ······································ |            |          | unit of |          | Indust-  | Constr. | Recrea-   |           | Canyon |           |              | Qbt 1g, |
|-----|----------------------------------------|------------|----------|---------|----------|----------|---------|-----------|-----------|--------|-----------|--------------|---------|
|     |                                        | CAS/       | concen-  | measur  | Residen- | rial     | Worker  | tional    |           | Sedi-  | QBT2,     | QBt          | Qct,    |
|     | Analyte                                | Symbol     | tration  | е       | tial SAL | SAL      | SAL     | SAL       | Soil      | ment   | 3,4       | 1v           | Qbo     |
| N/A | Bismuth-214                            | Bi-214     | 3.66     | pCi/g   | $\sim$   | $\sim$   | $\sim$  |           | FAIL      | FAIL   | FAIL      | FAIL         | pass    |
| NA  | Lead-212                               | Pb-212     | 3.73     | pCi/g   | /        |          | $\sim$  | /         | FAIL      | FAIL   | FAIL      | pass         | pass    |
| NA  | Lead-214                               | Pb-214     | 4.2      | pCi/g   |          | /        | /       | /         | FAIL      | FAIL   | FAIL      | FAIL         | FAIL    |
| w   | Potassium-40                           | K-40       |          | pCi/g   | /        | $\sim$   | $\sim$  | /         | pass      | pass   | pass      | pass         | pass    |
|     | Radium 226/228                         | calc.      | 7,43     | pCi/g   | /        | /        | /       | /         | $\langle$ | /      | /         | $\langle$    | /       |
|     | Radium-226                             | Ra-226     | 3.66     | pCi/g   |          | /        | pass    | pass      | FAIL      | FAIL   | FAIL      | FAIL         | pass    |
|     | Radium-228                             | Ra-228     |          | pCi/g   | /        |          | pass    | pass      | FAIL      | FAIL   | FAIL      | FAIL         | pass    |
|     | Thallium-208                           | TI-208     | 1.11     | pCi/g   | /        | /        | /       | /         | pass      | pass   | pass      | pass         | pass    |
| N/A | Thorium-234                            | Th-234     |          | pCi/g   | /        |          | /       | /         |           | FAIL   | FAIL      |              | FAIL    |
|     | Uranium-234                            | U-234      | 3.89     | pCi/g   | pass     | pass     | pass    | pass      | FAIL      | FAIL   | FAIL      | FAIL         | pass    |
|     | Uranium-235/236                        | U-235/236  | 0.325    |         | pass     | pass     | pass    | pass      |           |        | /         | $\geq$       | /       |
|     | Uranium-238                            | U-238      |          | pCi/g   | pass     | pass     | pass    | pass      | FAIL      | FAIL   | FAIL      | FAIL         | FAIL    |
|     | Americium-241                          | Am-241     | -0.00187 |         | /        |          | /       |           | $\geq$    | /      | /         | $\geq$       | /       |
|     | Cerium-139                             | Ce-139     | -0.00062 |         |          |          |         | /         |           | /      | /         | $\geq$       |         |
|     | Cesium-137                             | Cs-137     | -0.0779  |         |          |          |         |           | $\geq$    |        | /         | $\backslash$ |         |
|     | Cobalt-60                              | Co-60      | -0.0349  |         |          |          |         |           | $\geq$    |        | $\geq$    | $\geq$       | $\geq$  |
|     | Europium-152                           | Eu-152     | 0.0982   |         |          |          |         |           | $\geq$    |        |           | $\geq$       |         |
|     | Lanthanum-140                          | La-140     | 0.139    |         |          |          |         |           | $\sum$    |        | $\leq$    | $\geq$       |         |
|     | Plutonium-238                          | Pu-238     | 0.00218  |         |          |          |         |           | $\sum$    |        | $\square$ | $\geq$       |         |
|     | Plutonium-239/240                      | Pu-239/240 | -0.00764 |         |          |          |         |           | $\geq$    |        |           | $\geq$       |         |
|     | Radium-223                             | Ra-223     | 0.361    |         |          |          |         |           | $\geq$    |        |           | $\geq$       |         |
|     | Ruthenium-106                          | Ru-106     | -0.287   |         |          |          |         |           | $\geq$    |        |           | $\geq$       |         |
|     | Sodium-22                              | Na-22      | 0.0209   |         |          |          |         |           | $\geq$    |        |           | $\geq$       |         |
|     | Strontium-90                           | Sr-90      | 0.0583   |         |          |          |         |           | $\geq$    |        | $\geq$    | $\geq$       |         |
|     | Thorium-227                            | Th-227     | 0.0266   |         |          |          |         |           | $\geq$    |        |           | $\geq$       |         |
|     | Thorium-231                            | Th-231     | 0.361    |         |          | $\geq$   |         |           | $\geq$    | $\geq$ | $\geq$    | $\geq$       | $\geq$  |
| ļ   | Tin-113                                | Sn-113     | -0.0273  |         |          | $\geq$   |         |           | $\geq$    |        |           | $\geq$       |         |
|     | Tritium                                | H-3        | 0.02437  |         |          | $ \geq $ |         | $\square$ | $\geq$    |        | $\geq$    | $\geq$       | $\geq$  |
|     | Uranium-235                            | U-235      | 0.182    |         |          |          |         |           | $\geq$    |        | $\geq$    | $\geq$       |         |
|     | Yttrium-88                             | Y-88       | -0.011   | pCi/g   |          |          |         |           |           |        |           | $\sim$       |         |

Ra<sup>224</sup> 3.66 - 2.59 = 1.07/4 = 0.268 Ra<sup>228</sup> 3.77 - 2.33 = 1.44/5 = 0.288 U<sup>234</sup> 3.89 - 2.59 = 1.30/213 = 0.006 U<sup>238</sup> 4.21 - 2.29 = 1.92/140 = 0.014 0.576 2 1 OK -10 Land apply

BOREHOLE B |

BIN 5732 10143868

Water Quality and RCRA Group Los Alamos National Laboratory

### 50-6/3182 ENV-RCRA-QP-011.2 Attachment 2, Page 1 of 1

### **Request for Land Application of Drill Cuttings Form**

| ENV-RCRA mus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t approve any deviation(s) f                                    | rom this request prior                                                                        | to land applic:                                                                    | ation.                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Date:P<br>Location of Land Application: (1)<br>Estimated Quantity:2COff_3<br>Composition (e.g., 98% tuff and 2% of<br>Proposed Method of Land Applicatio<br>AC<br>UMA<br>UMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (cubic feet or tons)<br>quick gel, etc.):(CO 10                 | hase TT<br>ss Rais TA: <u>50</u> (<br>Dall Cutlings -<br>e Janol applied 1<br>af access roads | Swmu 50<br>Soul<br>Whin pa                                                         | 0-009)                                                                                                          |
| Note: An EX-ID Permit is required p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rior to land application.                                       | - 0815 - 50                                                                                   | $\supset$                                                                          |                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Decision Tree—Decisio                                           | on Point Evaluation                                                                           |                                                                                    |                                                                                                                 |
| The following questions require yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | or no answers.                                                  |                                                                                               | Yes                                                                                | No                                                                                                              |
| 1. D1: Is existing characterization da a summary table of results, validated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 | h                                                                                             |                                                                                    |                                                                                                                 |
| 2. D2: Do drill cuttings contain RCR limits? If yes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A Hazardous Waste or Hazard co                                  | onstituents above RCRA                                                                        |                                                                                    |                                                                                                                 |
| Has a Due Diligence been condu documentation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ·                                                               |                                                                                               | V                                                                                  | ,<br>F                                                                                                          |
| Has a No Longer Contained In b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | een approved for this waste? Att                                | ach a copy of the <i>No Long</i>                                                              | zer.                                                                               |                                                                                                                 |
| Contained In approval.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                 |                                                                                               | . /                                                                                | M                                                                                                               |
| 3. D6: Do drill cuttings meet the 5 cr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                 | raa Attachment 22                                                                             |                                                                                    | 1                                                                                                               |
| 4. Do drill cuttings meeting the criter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | a in the Radiological Decision 1                                | ree, Attachment 5?                                                                            | $\checkmark$                                                                       | .1                                                                                                              |
| Generator or Project Leader Certit<br>application per the Decision Tree a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                 |                                                                                               |                                                                                    | he criteria for land                                                                                            |
| Stephani Filler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Zalle                                                           | Providence                                                                                    | VIOOV                                                                              | 1/24/1                                                                                                          |
| Name (Print)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Signature                                                       | Title                                                                                         | ugi                                                                                | Date                                                                                                            |
| n <mark>a presidente de la constanta /mark> | ENV-RCRA Re                                                     | view (below):                                                                                 | ور میں ایک ایک اور اور ایک اور ایک ایک اور ایک | ang dan pilakan kanang sama di minang pantan sa mang kanang di sa pilakan sa mang kanang kanang kanang kanang k |
| Does request provide all the requir<br>Yes No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ed information, and do the dril<br>Note deficiency in the space |                                                                                               | iteria for land aj                                                                 | pplication?                                                                                                     |
| ENV-RCRA Reviewer Name (P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                 | Mgignature Jerby                                                                              | J. S. Dey                                                                          | Date 1-25-11                                                                                                    |
| Package Expiration Date: 2-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>-1</u>                                                       |                                                                                               |                                                                                    |                                                                                                                 |

#### **Post Land Application Field Certification Sheet**

| Date(s) of land application:                            | Project: MDA C             | Phase III     |
|---------------------------------------------------------|----------------------------|---------------|
| Location of land application: Within project            | Ecceptint                  | TA: <u>50</u> |
| EX-ID Number:                                           |                            |               |
| Please explain any deviations from original application | (Attachment 2) in the spac | e provided:   |
|                                                         |                            |               |
|                                                         |                            |               |
| Note: ENV-RCRA must approve any deviations from         | Attachment 2 prior to land | application.  |

Generator or Project Leader Certification (below):

I certify that

- land application complied with the requirements of this procedure (ENV-RCRA-SOP-011.1),
- no free liquids were applied during land application,
- an inspection was conducted to ensure the requirements in Attachment 2 of this procedure was met, and
- the land application of drill cuttings complied with the excavation permit.

nani Fuller

Proyect Manager 1/28/11 Title Date

Signature

| PRS Number: 50-0        | 09 (Borehole 50-613182) |    |
|-------------------------|-------------------------|----|
| Source of contaminants: | Yes                     | No |
| F-listed                |                         | Х  |
| U- or P-listed          |                         | Х  |
| K-listed                |                         | X  |
| PRS                     | Description             |    |

SWMU 50-009 consists of decommissioned MDA C, established to replace MDA B at TA-21 as a disposal area (landfill) for LANL derived waste. MDA C operated from May 1948 to April 1974. The northern boundary of MDA C is approximately 50 feet south of the planned south wall of the new RLWTF. Wastes disposed at MDA C included liquids, solids, and gases generated from a broad range of nuclear energy research and development activities conducted at LANL, including uncontaminated classified materials, metals, hazardous materials, and radionuclides. Historical reports indicate that it was common practice for chemicals to be burned in the chemical disposal pit at MDA C. At MDA C, 7 pits and 108 shafts were excavated into the overlying soil and tuff.

RFI activities were conducted at MDA C from 1993 to 1996. Surface soil sampling was conducted during the summer of 1993. A subsurface investigation was performed during portions of 1994, 1995, and 1996. Conclusions regarding the nature and extent of contamination at MDA C based on the results of preliminary site characterization activities are as follows:

-Elevated concentrations of americium-241 and isotopic plutonium in surface soils in the northeast area of MDA C are likely related to releases from MDA C before the placement of crushed tuff on the surface of the site in 1984. The extent of current surface radionuclide contamination has not been defined.

-Concentrations of specific metals (including barium, copper, and lead) and radionuclides (strontium-90 and americium-241) in tuff beneath Pit 6 indicate that contamination has migrated from pit 6 into underlying rock. The extent of subsurface contamination has not been defined.

-Tritium and volatile organic compounds (VOC) contamination (primarily trichloroethylene [TCE], tetrachloroethene [PCE], and 1,1,1-trichloroethane [TCA]) exist in subsurface pore gas; however, the vertical and horizontal extent of this contamination has not been defined.

| Documents Reviewed |                                                                                    |           |  |  |  |  |  |  |
|--------------------|------------------------------------------------------------------------------------|-----------|--|--|--|--|--|--|
| Date               | Title                                                                              | ER ld No. |  |  |  |  |  |  |
| 4/1/2010           | Investigation Report for Upper Mortandad Canyon<br>Aggregate Area, Rev. 1          | 109180    |  |  |  |  |  |  |
| 4/1/2010           | Phase III Investigation Work Plan for MDA C, SWMU 50-<br>009, at TA-50, Rev. 1     | 109260    |  |  |  |  |  |  |
| 2/1/2010           | Phase III Investigation Work Plan for MDA C, SWMU 50-<br>009, TA-50                | 108594    |  |  |  |  |  |  |
| 10/1/2009          | Phase II Investigation report for MDA C, SWMU 50-009, at TA-50, Rev. 1             | 107389    |  |  |  |  |  |  |
| 5/1/2009           | Phase II Investigation Report for MDA C, SWMU 50-009, at TA-50                     | 106047    |  |  |  |  |  |  |
| 11/30/2007         | Investigation Work Plan and HIR for Upper Mortandad<br>Canyon Aggregate Area [IWP] | 098954    |  |  |  |  |  |  |
| 11/30/2007         | Investigation Work Plan and HIR for Upper Mortandad<br>Canyon Aggregate Area [HIR] | 098955    |  |  |  |  |  |  |

-Surface flux of VOCs and near-surface tritium soil-gas concentrations indicate localized areas where releases to the atmosphere are occurring.

| 4/23/2007 | Phase II Investigation Work Plan for MDA C, Rev. 1                  | 100143   |
|-----------|---------------------------------------------------------------------|----------|
| 12/6/2006 | Investigation Report for MDA C, SWMU 50-009                         | 094688   |
| 10/1/2005 | Investigation Work Plan for MDA C, SWMU 50-009 at TA-<br>50, Rev. 2 | 091493   |
| 11/1/2003 | Investigation Work Plan for MDA C, SWMU 50-009 at TA-<br>50, Rev. 1 | 087152   |
| 7/31/2003 | Investigation Work Plan for MDA-C, SWMU 50-009 at TA-<br>50         | 087392   |
| 5/20/1992 | RFI Work Plan for Operable Unit 1147                                | 007672   |
| 11/30/90  | SWMU Report, Volume 1 of IV (TA-00 through TA-09)                   | 007513   |
| July 2010 | PRS Database                                                        | NA       |
|           | Summary of Listed Status                                            | <u>1</u> |

U-listed constituents were detected in soil samples; however, there was no documented evidence of a spill, release, or discharge of unused/unspent commercial chemical products in the vicinity of the SWMU. K-listed constituents were also detected in the soil samples from 50-009, BH 50-613182; however most K-listed sources are industrial in nature and not typical of Laboratory operations. The Laboratory generates only small amounts of K-listed wastes, primarily spent carbon from high explosives processing that is disposed off-site. The documented amounts of K-listed wastes generated are not sufficient to have impacted investigation/remediation activities. Therefore, the IDW is not K-listed. In addition, Arsenic (F032, F034, F035), Benzo(a)pyrene (F032, F034, F037, and F038), Chromium (F032, F034, F035, F037, and F038), Chrysene (F037 and F038), Lead (F035, F037, and F038), and Nickel (F006) were also detected in the soil samples from 50-009 site investigation activities. There is no documented evidence that the following processes (F-listed sources) occurred in the vicinity of the SWMU: Wood preserving processes (F032, F034, and F035), Petroleum refinery operations (F037 and F038) and Electroplating operations (F006). See Attachment 1 for the complete list of potentially listed constituents detected in the soil sample.

Based on analytical data and documentation, there is no conclusive evidence of a listed source impacting SWMU 50-009, MDA-C. Therefore, the IDW may be managed as non-hazardous waste.

DD Completed January 18, 2011

### Attachment 1.

| Analyte              | Concentration | Potential<br>U-Codes | Potential F-Codes   | Potential K-<br>Codes |
|----------------------|---------------|----------------------|---------------------|-----------------------|
| Antimony             | 0.91          | 0-00063              |                     | K161, K021, K177      |
|                      |               |                      |                     | K031,K060,K161,       |
|                      |               |                      |                     | K171,K172,K176,       |
| Arsenic              | 0.34          |                      | F032,F034,F035,     | K084,K101,K102,       |
|                      |               | U022                 |                     | K001, K035, K141,     |
|                      |               |                      |                     | K142, K144, K145,     |
| Benzo(a)pyrene       | 0.0144        |                      | F032,F034,F037,F038 | K147, K148, K170      |
|                      |               |                      |                     | K001,K035,K141,       |
|                      |               |                      |                     | K142,K143,K144,       |
| Benzo(b)fluoranthene | 0.0214        |                      |                     | K147,K148,K170,       |
| Bis(2-               |               | U028                 |                     |                       |
| ethylhexyl)phthalate | 0.0797        |                      |                     |                       |
| Chromium             | 4.96          |                      | F032,F034,F035,F037 | K090                  |
| Chrysene             | 0.019         | U050                 | F037, F038          | K001, K035            |
|                      |               |                      |                     | K002, K003, K005,     |
|                      |               |                      |                     | K048, K049, K051,     |
|                      |               |                      |                     | K062, K064, K086,     |
|                      |               | 1                    |                     | K100, K176, K046,     |
| Lead                 | 4.73          |                      | F035,F037,F038,     | K052, K061, K069      |
| Nickel               | 5.68          |                      | F006                |                       |
| Thallium             | 0.0753        |                      |                     | K178                  |

page 3 of 5

3233

#### SAL and background comparison AWD 3233 110103 ws\_049empty(1).xism

evaluation date: 1/3/2011

SWMU ev 3233 Stockpile Number ev 3233

Qbt 1g, unit of Indust-Constr. Recrea-Canyon Daughter CAS/ concenmeasur Residen-QBT2. QBt rial Worker tional Sedi-Qct. Analyte Symbol tration е tial SAL SAL SAL SAL Soil ment 3.4 1v Qbo Bismuth-214 Bi-214 1.65 pCi/g pass pass pass pass pass Lead-212 Pb-212 2.46 pCi/g FAIL FAIL pass pass pass Lead-214 Pb-214 2.01 pCi/g FAIL pass pass pass pass 32.5 pCi/g Potassium-40 K-40 pass pass pass pass pass Radium 226/228 calc. 3.94 pCi/g K Daur that Radium-226 Ra-226 1.65 pCi/g pass pass pass pass pass pass pass Radium-228 Ra-228 2.29 pCi/g pass pass pass pass pass pass pass Thallium-208 TI-208 0.664 pCi/g pass pass pass pass pass Thorium-234 2.51 pCi/g Th-234 FAIL FAIL FAIL pass pass Uranium-234 U-234 1.06 pCi/g pass pass pass pass pass pass pass pass pass Uranium-235/236 U-235/236 0.0556 pCi/g pass pass pass pass Uranium-238 U-238 1.14 pCi/g pass pass pass pass pass pass pass pass pass -0.00522 pCi/g Americium-241 Am-241 Cerium-139 Ce-139 0.0239 pCi/g Cesium-137 Cs-137 0.0149 pCi/g 0.0215 pCi/g Cobalt-60 Co-60 Europium-152 Eu-152 0.0485 pCi/g Lanthanum-140 La-140 -0.0408 pCi/g Hg-203 Mercury-203 0.00024 pCi/g Plutonium-238 Pu-238 -0.0024 pCi/g Plutonium-239/240 Pu-239/240 0.0012 pCi/g Radium-223 Ra-223 -0.502 pCi/g Ruthenium-106 0.0122 pCi/g Ru-106 Sodium-22 Na-22 -0.0724 pCi/g Strontium-85 Sr-85 0.00652 pCi/q Strontium-90 Sr-90 -0.00646 pCi/g Thorium-227 Th-227 -0.0104 pCi/g Thorium-231 Th-231 -0.502 pCi/g Tin-113 Sn-113 -0.0218 pCi/g Tritium H-3 -1.27 pCi/g Uranium-235 U-235 0.0622 pCi/g Yttrium-88 Y-88 -0.0202 pCi/g

Calculation not requered

Sampling event ID

SWMU ev 3233

#### **Detected Chemicals Form**

Stockpile Number ev 3233

page 3 of 5 associated Excel file: AWD 3233 110103 ws\_049empty(1).xlsm

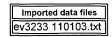
evaluation date: 1/3/2011

| Analyte                | CAS/<br>Symbol | concen-<br>tration | unit of<br>measure | Non-<br>wastewater<br>LDR | Hazardous<br>Soil LDR | Potential Haz F-codes     | Potential Haz K-codes                                                               | Potential Haz U-codes | Potential Haz<br>P-codes | comments                                                                                                        |
|------------------------|----------------|--------------------|--------------------|---------------------------|-----------------------|---------------------------|-------------------------------------------------------------------------------------|-----------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------|
|                        | Al             |                    | mg/kg              |                           |                       |                           |                                                                                     |                       |                          |                                                                                                                 |
| Antimony               | Sb             | 0.91               | mg/kg              | pass                      | pass                  |                           | K161,K021,K177,                                                                     |                       |                          |                                                                                                                 |
|                        | As             |                    | mg/kg              | pass                      | pass                  | F032,F034,F035,           | K031,K060,K161,K171,K172,K176,K<br>084,K101,K102,                                   |                       |                          |                                                                                                                 |
| Barium                 | Ba             | 13.8               | mg/kg              | pass                      | pass                  |                           |                                                                                     |                       |                          |                                                                                                                 |
| Beryllium              | Be             | 0.524              | mg/kg              | pass                      | pass                  |                           |                                                                                     |                       |                          |                                                                                                                 |
| Calcium                | Ca             | 359                | mg/kg              |                           |                       |                           |                                                                                     |                       |                          | en de la la la la constancia de la la la la la constancia de la la la la constancia de la constancia de la cons |
| Chromium               | Cr             | 4.09               | mg/kg              | pass                      | pass                  | F032,F034,F035,F037,F038, | K090,                                                                               |                       |                          |                                                                                                                 |
| Cobalt                 | Co             | 1.67               | mg/kg              |                           |                       |                           |                                                                                     |                       |                          |                                                                                                                 |
| Copper                 | Cu             | 5.54               | mg/kg              |                           |                       |                           |                                                                                     |                       |                          |                                                                                                                 |
|                        | Fe             | 6370               | mg/kg              |                           |                       |                           |                                                                                     |                       |                          |                                                                                                                 |
| Lead                   | Pb             |                    | mg/kg              | pass                      | pass                  | F035.F037.F038,           | K002,K003,K005,K048,K049,K051,K<br>062,K064,K086,K100,K176,K046,K0<br>52,K061,K069, |                       |                          |                                                                                                                 |
|                        | Mg             | 174                | mg/kg              | ľ                         | 1                     |                           |                                                                                     |                       | 1                        |                                                                                                                 |
|                        | Mn             | 317                | mg/kg              |                           |                       |                           |                                                                                     |                       |                          |                                                                                                                 |
| Methyl-2-pentanone[4-] | 108-10-1       | 0.0142             |                    | pass                      | pass                  |                           |                                                                                     |                       |                          | F003,U161 codes not<br>applicable                                                                               |
| Nickel                 | Ni             | 3.38               | mg/kg              | pass                      | pass                  | F006,                     |                                                                                     |                       |                          |                                                                                                                 |
| Nitrate                | NO3            | 0.967              | mg/kg              |                           |                       |                           |                                                                                     |                       |                          |                                                                                                                 |
| Potassium              | К              |                    | mg/kg              |                           |                       |                           | ·                                                                                   |                       |                          |                                                                                                                 |
|                        | Na             | 270                | mg/kg              |                           |                       |                           |                                                                                     |                       |                          |                                                                                                                 |
| Thallium               | TI             | 0.0686             | mg/kg              |                           |                       |                           | K178,                                                                               |                       |                          |                                                                                                                 |
| Uranium                | U              |                    | mg/kg              |                           |                       |                           |                                                                                     |                       |                          |                                                                                                                 |
| Vanadium               | V              | 7.76               | mg/kg              | pass                      | pass                  |                           |                                                                                     |                       |                          |                                                                                                                 |
| Zinc                   | Zn             | 51.7               | mg/kg              | pass                      | pass                  |                           |                                                                                     |                       |                          | te esta de la constante de la c |

# Detected Chemicals: SSL and Background check

| Analyte                | CAS/<br>Symbol | concen-<br>tration | unit of<br>measure | Residential<br>Soil (mg/kg) | Industrial/<br>Occupational<br>Soil (mg/kg) | Construction<br>Worker Soil<br>(mg/kg) | Recreational<br>Soil (mg/kg) | soil<br>background | Canyon<br>Sediment<br>background | Qbt 2,3,4<br>background | Qbt 1v<br>background | Qbt 1g,<br>Qct,Qbo<br>background |
|------------------------|----------------|--------------------|--------------------|-----------------------------|---------------------------------------------|----------------------------------------|------------------------------|--------------------|----------------------------------|-------------------------|----------------------|----------------------------------|
| Aluminum               | AI             | 1080               | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | pass                 | pass                             |
| Antimony               | Sb             | 0.91               | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | FAIL               | FAIL                             | FAIL                    | FAIL                 | FAIL                             |
| Arsenic                | As             |                    | mg/kg              | pass                        | pass                                        |                                        | pass                         | pass               |                                  | P                       | pass                 | pass                             |
| Barium                 | Ba             |                    | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | pass                 | pass                             |
| Beryllium              | Ве             |                    | mg/kg              | pass                        | 11                                          |                                        | pass                         | pass               | pass                             |                         | pass                 | pass                             |
| Calcium                | Ca             |                    | mg/kg              | NA                          |                                             |                                        | NA                           | pass               | pass                             |                         | pass                 | pass                             |
| Chromium               | Cr             |                    | mg/kg              | pass                        | pass                                        | NA                                     | pass                         | pass               | pass                             |                         | FAIL                 | FAIL                             |
| Cobalt                 | Co             |                    | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               |                                  |                         | pass                 | pass                             |
| Copper                 | Cu             |                    | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | FAIL                    | FAIL                 | FAIL                             |
| Iron                   | Fe             | 6370               | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | pass                 | FAIL                             |
| Lead                   | Pb             |                    | mg/kg              | pass                        |                                             |                                        | pass<br>NA                   |                    |                                  | J                       | pass                 | pass                             |
| Magnesium              | Mg             |                    | mg/kg              |                             |                                             |                                        |                              |                    | pass                             |                         | pass                 | pass                             |
| Manganese              | Mn             | 317                | mg/kg              | pass                        | pass                                        | FAIL                                   | pass                         | pass               | pass                             | pass                    | pass                 | FAIL                             |
| Methyl-2-pentanone[4-] | 108-10-1       | 0.0142             | ~ ~                | pass                        | pass                                        | pass                                   | pass                         | NA                 | NA                               |                         |                      | NA                               |
| Nickel                 | Ni             |                    | mg/kg              | pass                        | pass                                        | pass                                   | pass                         |                    | pass                             |                         | FAIL                 | FAIL                             |
| Nitrate                | NO3            |                    | mg/kg              | pass                        |                                             | pass                                   | pass                         | NA                 | NA                               | NA                      | NA                   | NA                               |
| Potassium              | К              |                    | mg/kg              | NA                          |                                             | NA                                     | NA                           | pass               | pass                             | pass                    | pass                 | pass                             |
| Sodium                 | Na             | 270                | mg/kg              | NA                          | NA                                          | NA                                     | NA                           | pass               | pass                             | pass                    | pass                 | pass                             |
| Thallium               | TI             | 0.0686             | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | pass                 | pass                             |
| Uranium                | U              | 0.829              | mg/kg              | pass                        | pass                                        | NA                                     | pass                         | pass               | pass                             | pass                    | pass                 | FAIL                             |
| Vanadium               | V              | 7.76               | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | FAIL                 | FAIL                             |
| Zinc                   | Zn             | 51.7               | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | FAIL               | pass                             | pass                    | pass                 | FAIL                             |

### Solid Waste Evaluation


page 1 of 5

SWMU ev 3233 Stockpile Number ev 3233 Summary Excel file: AWD 3233 110103 ws\_049empty(1).xlsm evaluation date: 1/3/2011

| RCRA                                          | analytes pass                               |                  |                     |         |        |
|-----------------------------------------------|---------------------------------------------|------------------|---------------------|---------|--------|
|                                               | analytes pass<br>analytes pass as unde      | tected           |                     |         |        |
|                                               | analytes fail                               | lecied           |                     |         |        |
|                                               |                                             |                  |                     |         |        |
| Detects                                       |                                             |                  |                     |         |        |
|                                               | Total PCB (ppn                              | n) Not analy     |                     |         |        |
|                                               | with potential F-code                       |                  | on-wastewater LDR:  |         | 0 FAIL |
|                                               | with potential K-code                       | ł                | Hazardous soil LDR: | 10 pass | 0 FAIL |
|                                               | with potential U-code with potential P-code |                  |                     |         |        |
| 0 analytes                                    | with potential 1 -code                      |                  |                     |         |        |
| Re                                            | sidential Soil (mg/kg)                      | : 18 pass        | 0 FAIL              |         |        |
|                                               | upational Soil (mg/kg)                      | •                | 0 FAIL              |         |        |
| Construction                                  | Worker Soil (mg/kg)                         | : 15 pass        | 1 FAIL              |         |        |
| Rec                                           | reational Soil (mg/kg)                      |                  | 0 FAIL              |         |        |
| Conver                                        | soil background                             | •                |                     |         |        |
| Canyon                                        | Sediment background<br>Qbt 2.3.4 background |                  |                     |         |        |
|                                               | Qbt 1v background                           |                  | S FAIL              |         |        |
| Qbt 1g                                        | g, Qct,Qbo background                       | l: 11 pass       | 9 FAIL              |         |        |
| RAD                                           | total dose                                  | e: 0.6790        | ) mRem/year         |         |        |
| 2                                             |                                             |                  | , <b>,</b>          |         |        |
| analysed                                      |                                             |                  |                     |         |        |
| -                                             | for Pu-239                                  |                  |                     |         |        |
| 32                                            | isotopes,                                   |                  | were detected       |         |        |
|                                               |                                             | 20               | undelected          |         |        |
| Residen-tial SAL: 3                           |                                             | 0 FAIL           |                     |         |        |
| Indust-rial SAL: 3                            |                                             | 0 FAIL           |                     |         |        |
| Constr. Worker SAL: 5<br>Recrea-tional SAL: 5 |                                             | 0 FAIL<br>0 FAIL |                     |         |        |
| Soil: 8                                       | •                                           | 2 FAIL           |                     |         |        |
| Canyon Sedi-ment: 8                           |                                             | 2 FAIL           |                     |         |        |
| QBT2,3,4: 8                                   | B pass                                      | 2 FAIL           |                     |         |        |
| QBt 1v: 1                                     |                                             | 0 FAIL<br>0 FAIL |                     |         |        |
| Qbt 1g, Qct, Qbo: 1                           |                                             |                  |                     |         |        |

Remark: The Evaluator may overwrite any result of automatic evaluation, but a short written explanation must be added

| Sample ID     | associated blanks | associated duplicate |
|---------------|-------------------|----------------------|
| WST50-11-2081 | WST50-11-2091     |                      |



3233

SWMU ev 3233 Stockpile Number ev 3233

## **RCRA Characteristics Form**

page 3 of 5 associated Excel file: AWD 3233 110103 ws\_049empty(1).xlsm

evaluation date: 1/3/2011

| an an tha <u>an an a</u> | and a second | Potential | Reg.   | concen- | unit of |           | Pass/ |          |
|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------|--------|---------|---------|-----------|-------|----------|
| Analyte                                                   | CAS/ Symbol                                                                                                    | Haz Code  | limit  | tration | measure | Qualifier | Fail  | comments |
| Arsenic                                                   | As                                                                                                             |           | 5000   | 50      | ug/L    | U         | pass  |          |
| Barium                                                    | Ва                                                                                                             | D005      | 100000 |         | ug/L    | J         | pass  |          |
| Cadmium                                                   | Cd                                                                                                             |           | 1000   |         | ug/L    | U         | pass  |          |
| Chromium                                                  | Cr                                                                                                             |           | 5000   |         | ug/L    | U         | pass  |          |
| Lead                                                      | Pb                                                                                                             |           | 5000   | 20      | ug/L    | U         | pass  |          |
| Mercury                                                   | Ha                                                                                                             |           | 200    |         | ug/L    | U         | pass  |          |
| Selenium                                                  | Se                                                                                                             |           | 1000   | 50      | ug/L    | U         | pass  |          |
| Silver                                                    | Ag                                                                                                             |           | 5000   |         | ug/L    | U         | pass  |          |
| Endrin                                                    | 72-20-8                                                                                                        | D012      | 20     |         | ug/L    | <u> </u>  | FAIL  |          |
| BHC[gamma-]                                               | 58-89-9                                                                                                        | D013      | 400    |         | ug/L    |           | FAIL  |          |
| Methoxychlor[4,4'-]                                       | 72-43-5                                                                                                        | D014      | 10000  |         | ug/L    |           | FAIL  |          |
| Toxaphene (Technical Grade)                               | 8001-35-2                                                                                                      | D015      | 500    |         | ug/L    |           | FAIL  |          |
| D[2,4-]                                                   | 94-75-7                                                                                                        | D016      | 10000  |         | ug/L    |           | FAIL  |          |
| TP[2,4,5-]                                                | 93-72-1                                                                                                        | D017      | 1000   |         | ug/L    |           | FAIL  |          |
| Benzene                                                   | 71-43-2                                                                                                        |           | 500    | 0.0505  |         | U         | pass  |          |
| Carbon Tetrachloride                                      | 56-23-5                                                                                                        |           | 500    | 0.0505  |         | Ū         | pass  |          |
| Chlordane(alpha/gamma)                                    | 57-74-9                                                                                                        | D020      | 30     |         | ug/L    |           | FAIL  |          |
| Chlordane[gamma-]                                         | 5103-74-2                                                                                                      | D020      |        | No.     | ug/L    |           | FAIL  |          |
| Chlordane[alpha-]                                         | 5103-71-9                                                                                                      | D020      |        |         | ug/L    |           | FAIL  |          |
| Chlorobenzene                                             | 108-90-7                                                                                                       |           | 100000 | 0.0505  |         | U         | pass  |          |
| Chloroform                                                | 67-66-3                                                                                                        |           | 6000   | 0.0505  |         | Ŭ         | pass  |          |
| Methylphenol[2-]                                          | 95-48-7                                                                                                        |           | 200000 | 16.75   |         | UJ        | pass  |          |
| Methylphenol[3-]                                          | 108-39-4                                                                                                       |           | 200000 | 16.75   |         | UJ        | pass  |          |
| Methylphenol[4-]                                          | 106-44-5                                                                                                       |           | 200000 | 16.75   |         | UJ        | pass  |          |
| Methylphenol[3-,4-]                                       | 65794-96-9                                                                                                     |           | 200000 | 16.75   |         | UJ        | pass  |          |
| Methylphenol(total)                                       | 8027-16-5                                                                                                      |           | 200000 | 33.5    |         | UJU       | pass  |          |
| Dichlorobenzene[1,4-]                                     | 106-46-7                                                                                                       |           | 7500   | 16.75   |         | UJ        | pass  |          |
| Dichloroethane[1,2-]                                      | 107-06-2                                                                                                       |           | 500    | 0.0505  |         | lu        | pass  |          |
| Dichloroethene[1,1-]                                      | 75-35-4                                                                                                        |           | 700    | 0.0505  |         | U         | pass  |          |
| Dinitrotoluene[2,4-]                                      | 121-14-2                                                                                                       |           | 130    | 16.75   |         | UJ        | pass  |          |
| Heptachlor                                                | 76-44-8                                                                                                        | D031      | 8      |         | ug/L    |           | FAIL  |          |
| Hexachlorobenzene                                         | 118-74-1                                                                                                       |           | 130    | 16.75   |         | UJ        | pass  |          |
| Hexachlorobutadiene                                       | 87-68-3                                                                                                        |           | 500    | 16.75   |         | UJ        | pass  |          |
| Hexachloroethane                                          | 67-72-1                                                                                                        |           | 3000   | 16.75   |         | UJ        | pass  |          |
| Butanone[2-]                                              | 78-93-3                                                                                                        |           | 200000 | 0.2525  |         | UJ        | pass  |          |
| Nitrobenzene                                              | 98-95-3                                                                                                        |           | 2000   | 16.75   |         | UJ        | pass  |          |
| Pentachlorophenol                                         | 87-86-5                                                                                                        |           | 100000 | 16.75   |         | UJ        | pass  |          |
| Pyridine                                                  | 110-86-1                                                                                                       |           | 5000   | 16.75   |         | UJ        | pass  |          |
| Tetrachloroethene                                         | 127-18-4                                                                                                       |           | 700    | 0.0505  |         | U         | pass  |          |
| Trichloroethene                                           | 79-01-6                                                                                                        |           | 500    | 0.0505  |         | U         | pass  |          |
| Trichlorophenol[2,4,5-]                                   | 95-95-4                                                                                                        |           | 400000 | 16.75   |         | lũj —     | pass  |          |
| Trichlorophenol[2,4,6-]                                   | 88-06-2                                                                                                        |           | 2000   | 16.75   |         | 100       | pass  |          |
| Vinyl Chloride                                            | 75-01-4                                                                                                        |           | 200    | 0.0505  |         | 100       | pass  |          |

NOTE 1: If multiple results exist for given analyte, first, the highest detected result is chosen. If there are no detected results, the lowest undetected result is chosen.

NOTE 2: Often chlordane is analyzed as alpha and gamma isomers. If no total chlordane result exist, total concentration will be calculated from individual isomer results.

NOTE 3: Most frequently 2-Methylphenol is analyzed separately and 3- and 4-methylphenols are reported together.

Often, raw data contain only two results - for 2- methylphenol and 4-methylphenol. In such case 4-methyl is in fact a result

for two isomers together: 3-methyl + 4-methylphenol. The macro evaluates present data and calculates concentrations for 3-, 4-, and total.

methylphenols. Results reported separatedly for 3- and 4- methylphenols with calc. remark are, in fact, partial total, 3- + 4-methylphenol together.

NOTE 4: Undetected results pass automatically, without comparing to standard. Detected results pass only if reported concentration is lower than legal standard.

NOTE 5: CAS number is highlighted in pink if there is a large discrepancy between sample and duplicate.

3233

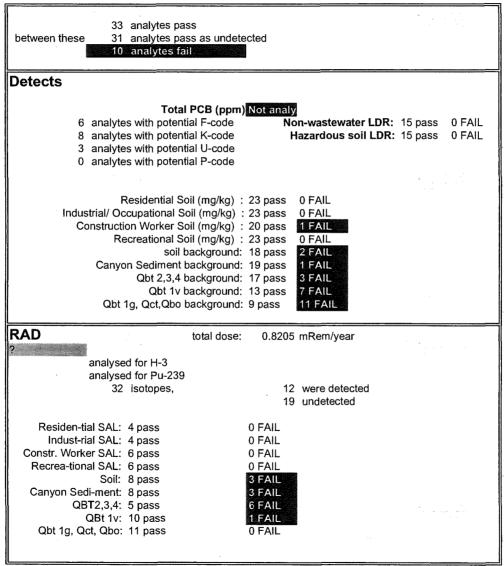
page 3 of 5

SWMU ev 3233 Stockpile Number ev 3233 Radioisotopesate example: AWD 3233 110103 ws\_049empty(1).xlsm evaluation date: 1/3/2011

| Analyte           | CAS/ Symbol | concen-<br>tration | unit of<br>measure | Qualifier | comments |
|-------------------|-------------|--------------------|--------------------|-----------|----------|
| Bismuth-214       | Bi-214      | 1.65               | pCi/g              | NQ        |          |
| Lead-212          | Pb-212      | 2.46               | pCi/g              | NQ        |          |
| Lead-214          | Pb-214      | 2.01               | pCi/g              | NQ        |          |
| Potassium-40      | K-40        | 32.5               | pCi/g              | NQ        |          |
| Radium 226/228    | calc.       | 3.94               | pCi/g              |           |          |
| Radium-226        | Ra-226      | 1.65               | pCi/g              | NQ        |          |
| Radium-228        | Ra-228      | 2.29               | pCi/g              | NQ        |          |
| Thallium-208      | TI-208      | 0.664              | pCi/g              | NQ        |          |
| Thorium-234       | Th-234      |                    | pCi/g              | NQ        |          |
| Uranium-234       | U-234       | 1.06               | pCi/g              | NQ        |          |
| Uranium-235/236   | U-235/236   | 0.0556             | pCi/g              | NQ        |          |
| Uranium-238       | U-238       | 1.14               | pCi/g              | NQ        |          |
| Americium-241     | Am-241      | -0.00522           | pCi/g              | U         |          |
| Cerium-139        | Ce-139      | 0.0239             | pCi/g              | U         |          |
| Cesium-137        | Cs-137      | 0.0149             | pCi/g              | U         |          |
| Cobalt-60         | Co-60       | 0.0215             | pCi/g              | U         |          |
| Europium-152      | Eu-152      | 0.0485             | pCi/g              | U         |          |
| Lanthanum-140     | La-140      | -0.0408            |                    | U         |          |
| Mercury-203       | Hg-203      | 0.000237           | pCi/g              | U         |          |
| Plutonium-238     | Pu-238      | -0.0024            | pCi/g              | U         |          |
| Plutonium-239/240 | Pu-239/240  | 0.0012             | pCi/g              | U         |          |
| Radium-223        | Ra-223      | -0.502             | pCi/g              | U         |          |
| Ruthenium-106     | Ru-106      | 0.0122             | pCi/g              | U         |          |
| Sodium-22         | Na-22       | -0.0724            | pCi/g              | U         |          |
| Strontium-85      | Sr-85       | 0.00652            | pCi/g              | U         |          |
| Strontium-90      | Sr-90       | -0.00646           |                    | U         |          |
| Thorium-227       | Th-227      | -0.0104            | pCi/g              | U         |          |
| Thorium-231       | Th-231      | -0.502             |                    | U         |          |
| Tin-113           | Sn-113      | -0.0218            | pCi/g              | U         |          |
| Tritium           | H-3         | -1.27              | pCi/g              | U         |          |
| Uranium-235       | U-235       | 0.0622             | pCi/g              | U         |          |
| Yttrium-88        | Y-88        | -0.0202            | pCi/g              | U         |          |

3925-401E 50-613182

Stockpile Number ev 3233


3233

SWMU ev 3233

### Solid Waste Evaluation

page 1 of 5

Summaryed Excel file: AWD 3233 110118 ws\_050empty.xism evaluation date: 1/18/2011



Remark: The Evaluator may overwrite any result of automatic evaluation. but a short written explanation must be added

| associated duplicate | associated blanks | Sample ID     |  |
|----------------------|-------------------|---------------|--|
|                      | WST50-11-2091     | WST50-11-2081 |  |
|                      | WST50-11-2092     | WST50-11-2082 |  |
|                      | WST50-11-2093     | WST50-11-2083 |  |

Imported data files ev3233 110118.txt

evaluation date: 1/18/2011

#### SWMU ev 3233 Stockpile Number ev 3233

# **RCRA Characteristics Form**

|                             |             |                       |               |                    |                    | 1         |               |                                        |
|-----------------------------|-------------|-----------------------|---------------|--------------------|--------------------|-----------|---------------|----------------------------------------|
| Analyte                     | CAS/ Symbol | Potential<br>Haz Code | Reg.<br>limit | concen-<br>tration | unit of<br>measure | Qualifier | Pass/<br>Fail | comments                               |
| Arsenic                     | As          |                       | 5000          |                    | ug/L               | U         | pass          |                                        |
| Barium                      | Ва          | D005                  | 100000        |                    | ug/L               | NQ        | pass          |                                        |
| Cadmium                     | Cd          | <b>2000</b>           | 1000          |                    | ug/L               |           | pass          |                                        |
| Chromium                    | Cr          |                       | 5000          |                    | ug/L               | lu        | pass          |                                        |
| Lead                        | Pb          | D008                  | 5000          |                    | ug/L               | NQ        | pass          | •                                      |
| Mercury                     | Hg          |                       | 200           |                    | ug/L               | lu lu     | pass          |                                        |
| Selenium                    | Se          |                       | 1000          |                    | ug/L               | Ū         | pass          |                                        |
| Silver                      | Ag          |                       | 5000          |                    | ug/L               | Ū         | pass          |                                        |
| Endrin                      | 72-20-8     | D012                  | 20            |                    | ug/L               |           | FAIL          |                                        |
| BHC[gamma-]                 | 58-89-9     | D013                  | 400           |                    | ug/L               |           | FAIL          |                                        |
| Methoxychlor[4,4'-]         | 72-43-5     | D014                  | 10000         | en stre            | ug/L               |           | FAIL          |                                        |
| Toxaphene (Technical Grade) | 8001-35-2   | D015                  | 500           |                    | ug/L               |           | FAIL          |                                        |
| D[2,4-]                     | 94-75-7     | D016                  | 10000         |                    | ug/L               |           | FAIL          |                                        |
| TP[2,4,5-]                  | 93-72-1     | D017                  | 1000          |                    | ug/L               |           | FAIL          | ······································ |
| Benzene                     | 71-43-2     |                       | 500           | 0.0505             | ug/L               | U         | pass          |                                        |
| Carbon Tetrachloride        | 56-23-5     |                       | 500           | 0.0505             | ug/L               | U         | pass          |                                        |
| Chlordane(alpha/gamma)      | 57-74-9     | D020                  | 30            |                    | ug/L               |           | FAIL          |                                        |
| Chlordane[gamma-]           | 5103-74-2   | D020                  | $\sim$        |                    | ug/L               |           | FAIL          |                                        |
| Chlordane[alpha-]           | 5103-71-9   | D020                  |               |                    | ug/L               |           | FAIL          |                                        |
| Chlorobenzene               | 108-90-7    |                       | 100000        | 0.0505             | ug/L               | U         | pass          |                                        |
| Chloroform                  | 67-66-3     |                       | 6000          | 0.0505             | ug/L               | U         | pass          |                                        |
| Methylphenol[2-]            | 95-48-7     |                       | 200000        | 16.75              | ug/L               | UJ        | pass          |                                        |
| Methylphenol[3-]            | 108-39-4    |                       | 200000        | 16.75              | ug/L               | IJ        | pass          |                                        |
| Methylphenol[4-]            | 106-44-5    |                       | 200000        | 16.75              | ug/L               | U1        | pass          |                                        |
| Methylphenol[3-,4-]         | 65794-96-9  |                       | 200000        | 16.75              | ug/L               | UJ        | pass          |                                        |
| Methylphenol(total)         | 8027-16-5   |                       | 200000        | 33.5               | ug/L               | UJU .     | pass          |                                        |
| Dichlorobenzene[1,4-]       | 106-46-7    |                       | 7500          | 16,75              |                    | IJ        | pass          |                                        |
| Dichloroethane[1,2-]        | 107-06-2    |                       | 500           | 0.0505             |                    | U         | pass          |                                        |
| Dichloroethene[1,1-]        | 75-35-4     |                       | 700           | 0.0505             |                    | U         | pass          |                                        |
| Dinitrotoluene[2,4-]        | 121-14-2    |                       | 130           | 16.75              |                    | ΟJ        | pass          |                                        |
| Heptachlor                  | 76-44-8     | D031                  | 8             |                    | ug/L               |           | FAIL          |                                        |
| Hexachlorobenzene           | 118-74-1    |                       | 130           |                    |                    | UJ        | pass          |                                        |
| Hexachlorobutadiene         | 87-68-3     |                       | 500           | 16.75              | Y                  | UJ        | pass          |                                        |
| Hexachloroethane            | 67-72-1     |                       | 3000          | 16.75              |                    | UJ        | pass          |                                        |
| Butanone[2-]                | 78-93-3     |                       | 200000        | 0.2525             |                    | UJ        | pass          |                                        |
| Nitrobenzene                | 98-95-3     |                       | 2000          | 16.75              | ug/L               | UJ        | pass          |                                        |
| Pentachlorophenol           | 87-86-5     |                       | 100000        | 16.75              |                    | UJ        | pass          |                                        |
| Pyridine                    | 110-86-1    |                       | 5000          | 16.75              |                    | UJ        | pass          |                                        |
| Tetrachloroethene           | 127-18-4    |                       | 700           | 0.0505             |                    | U         | pass          |                                        |
| Trichloroethene             | 79-01-6     |                       | 500           | 0.0505             |                    | U         | pass          |                                        |
| Trichlorophenol[2,4,5-]     | 95-95-4     |                       | 400000        | 16.75              |                    | UJ        | pass          |                                        |
| Trichlorophenol[2,4,6-]     | 88-06-2     |                       | 2000          | 16.75              | ug/L               | ΠJ        | pass          |                                        |
| Vinyl Chloride              | 75-01-4     |                       | 200           | 0.0505             | ug/L               | U         | pass          |                                        |

NOTE 1: If multiple results exist for given analyte, first, the highest detected result is chosen. If there are no detected results, the lowest undetected result is chosen.

NOTE 2: Often chlordane is analyzed as alpha and gamma isomers. If no total chlordane result exist, total concentration will be calculated from individual isomer results.

NOTE 3: Most frequently 2-Methylphenol is analyzed separately and 3- and 4-methylphenols are reported together.

Often, raw data contain only two results - for 2- methylphenol and 4-methylphenol. In such case 4-methyl is in fact a result

for two isomers together: 3-methyl + 4-methylphenol. The macro evaluates present data and calculates concentrations for 3-, 4-, and total.

methylphenols. Results reported separatedly for 3- and 4- methylphenols with calc. remark are, in fact, partial total, 3- + 4-methylphenol together.

NOTE 4: Undetected results pass automatically, without comparing to standard. Detected results pass only if reported concentration is lower than legal standard.

NOTE 5: CAS number is highlighted in pink if there is a large discrepancy between sample and duplicate.

# Detected Chemicals: SSL and Background check

.

| Analyte                    | CAS/<br>Symbol | concen-<br>tration | unit of<br>measure | Residential<br>Soil (mg/kg) | Industrial/<br>Occupational<br>Soil (mg/kg) | Construction<br>Worker Soil<br>(mg/kg) | Recreational<br>Soil (mg/kg) | soil<br>background                    | Canyon<br>Sediment<br>background | Qbt 2,3,4<br>background | Qbt 1v<br>background | Qbt 1g,<br>Qct,Qbo<br>background |
|----------------------------|----------------|--------------------|--------------------|-----------------------------|---------------------------------------------|----------------------------------------|------------------------------|---------------------------------------|----------------------------------|-------------------------|----------------------|----------------------------------|
|                            | Al             |                    | mg/kg              |                             | pass                                        | L'                                     | pass                         |                                       | pass                             |                         |                      | FAIL                             |
| Antimony                   | Sb             | 0.91               | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | FAIL                                  | FAIL                             | FAIL                    | FAIL                 | FAIL                             |
| Aroonio                    | <b>A</b> -     | 0.24               | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass                                  | pass                             | pass                    | pass                 | pass                             |
|                            | As<br>Ba       |                    | mg/kg              |                             | pass                                        | pass                                   | pass                         | pass                                  |                                  | FAIL                    | FAIL                 | FAIL                             |
| Barium                     | Ба             | 70.5               | тід/ку             | pass                        | pass                                        | pass                                   | pass                         | pass                                  | pass                             |                         |                      |                                  |
| Benzo(a)pyrene             | 50-32-8        | 0.0144             | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | NA                                    | NA                               | NA                      | NA                   | NA                               |
| Benzo(b)fluoranthene       | 205-99-2       | 0.0214             | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | NA                                    | NA                               | NA                      | NA                   | NA                               |
| Beryllium                  | Be             | 0.524              | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass                                  | pass                             | pass                    | pass                 | pass                             |
| Bis(2-ethylhexyl)phthalate | 117-81-7       | 0.0797             | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | NA                                    | NA                               | NA                      | NA                   | NA                               |
| Calcium                    | Са             | 791                | mg/kg              | NA                          | NA                                          | NA                                     | NA                           | pass                                  | pass                             | pass                    | pass                 | pass                             |
| Chromium                   | Cr             | 4.96               | mg/kg              | pass                        | pass                                        | NA                                     | pass                         | pass                                  | pass                             | pass                    | FAIL                 | FAIL                             |
| Chrysene                   | 218-01-9       | 0.019              | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | NA                                    | NA                               | NA                      | NA                   | NA                               |
| Cobalt                     | Со             | 2.28               | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass                                  | pass                             | pass                    | FAIL                 | pass                             |
| Copper                     | Cu             | 6.2                | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass                                  | pass                             | FAIL                    | FAIL                 | FAIL                             |
| Iron                       | Fe             | 7150               | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass                                  | pass                             | pass                    | pass                 | FAIL                             |
| Lead                       | Pb             | 4.73               | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass                                  | pass                             | pass                    | pass                 | pass                             |
|                            | Mg             |                    | mg/kg              | NA                          |                                             |                                        | NA                           | pass                                  | pass                             | pass                    | pass                 | pass                             |
|                            | Mn             |                    | mg/kg              | pass                        | pass                                        | FAIL                                   | pass                         | · · · · · · · · · · · · · · · · · · · | pass                             | pass                    | pass                 | FAIL                             |
| Methyl-2-pentanone[4-]     | 108-10-1       | 0.0142             |                    | pass                        | pass                                        | pass                                   | pass                         |                                       |                                  |                         | NA                   | NA                               |
| Nickel                     | Ni             |                    | i mg/kg            | pass                        | pass                                        | pass                                   | pass                         | pass                                  | pass                             | pass                    | FAIL                 | FAIL                             |
|                            | NO3            |                    | mg/kg              | pass                        | pass                                        | pass                                   | pass                         |                                       | NA                               | NA                      | NA                   | NA                               |
| Potassium                  | к              |                    | mg/kg              | NA                          | NA                                          |                                        | NA                           | pass                                  | pass                             | pass                    | pass                 | pass                             |
| Pyrene                     | 129-00-0       | 0.0425             |                    | pass                        | pass                                        | pass                                   | pass                         | · · · ·                               | NA                               | NA                      | NA                   | NA                               |
|                            | Na             |                    | mg/kg              | NA                          | NA                                          |                                        | NA                           | pass                                  | pass                             | pass                    | pass                 | pass                             |
| Thallium                   | TI             | 0.0753             |                    | pass                        | pass                                        | pass                                   | pass                         |                                       | pass                             | pass                    | pass                 | pass                             |
| Uranium                    | U              |                    | mg/kg              | pass                        | pass                                        | NA                                     | pass                         | pass                                  | pass                             | pass                    | pass                 | FAIL                             |
| Vanadium                   | V              |                    | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass                                  | pass                             | pass                    | FAIL                 | FAIL                             |
| Zinc                       | Zn             | 51.7               | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | FAIL                                  | pass                             | pass                    | pass                 | FAIL                             |

SWMU ev 3233 Stockpile Number ev 3233

#### **Detected Chemicals Form**

page 3 of 5 associated Excel file: AWD 3233 110118 ws\_050empty.xlsm

evaluation date: 1/18/2011

Non-CAS/ wastewater Potential Haz concenunit of Hazardous Symbol tration LDR Soil LDR Potential Haz F-codes Potential Haz K-codes Potential Haz U-codes P-codes Analyte measure comments Aluminum AI 4030 mg/kg Antimony 0.91 mg/kg K161,K021,K177, Sb pass pass K031.K060.K161.K171.K172.K176.K 84.K101.K102, Arsenic 0.34 mg/kg As pass Dass Barium Ba 70.5 mg/kg pass pass K001, K035, K141, K142, K144, K145, K Benzo(a)pyrene 50-32-8 0.0144 mg/kg pass pass 147.K148.K170. U022, K001, K035, K141, K142, K143, K144, K 0.0214 mg/kg 147.K148.K170, Benzo(b)fluoranthene 205-99-2 pass pass Beryllium Be 0.524 mg/kg pass pass Bis(2-ethylhexyl)phthalate 117-81-7 0.0797 mg/kg U028, pass pass Calcium Ca 791 mg/kg Chromium Сг 4.96 mg/kg pass pass K090, Chrysene Cobalt 218-01-9 0.019 mg/kg U050, pass pass K001,K035. Co 2.28 mg/kg 6.2 mg/kg Cu Copper 7150 mg/kg Iron Fe K002,K003,K005,K048,K049,K051,K 062,K064,K086,K100,K176,K046,K0 Pb 4.73 mg/kg 52,K061,K069, Lead pass pass 555 mg/kg Magnesium Mg 317 mg/kg Manganese Mn F003,U161 codes not 108-10-1 Methyl-2-pentanone[4-] 0.0142 mg/kg pass pass applicable Nickel 5.68 mg/kg Ni pass pass Nitrate NO3 0.967 mg/kg Potassium K 819 mg/kg Pyrene 129-00-0 0.0425 mg/kg pass pass Sodium Na 540 mg/kg 0.0753 mg/kg Thallium TI K178. Uranium U 0.829 mg/kg Vanadium V 11.2 mg/kg pass pass Zinc Zn 51.7 mg/kg pass pass

# **Additional Constituents - Chemicals**

Sampling event ID SWMU ev 3233

Stockpile Number ev 3233

3233

associated Excel file: AWD 3233 110118 ws\_050empty.xlsm evaluation date: 1/18/2011

|                            |             | concentr |        | Results  |           | 1         |         |         |          |
|----------------------------|-------------|----------|--------|----------|-----------|-----------|---------|---------|----------|
| Analyte                    | CAS/ Symbol | ation    | Unit   | (ppm)    | MIN (ppm) | MAX (ppm) | MIN. %  | MAX. %  | comments |
| Aluminum                   | AI          | 4030000  | ug/kg  | 4030.000 | 1080.000  | 4030.000  | 0.108   | 0.403   |          |
| Antimony                   | Sb          |          | ug/kg  | 0.910    | 0         | 0.910     | 0       | 9.1E-05 |          |
| Benzo(a)pyrene             | 50-32-8     | 14.4     | ug/kg  | 0.014    | 0         | 0.014     | 0       | 1.4E-06 |          |
| Benzo(b)fluoranthene       | 205-99-2    | 21.4     | ug/kg  | 0.021    | 0         | 0.021     | 0       | 2.1E-06 |          |
| Beryllium                  | Be          | 524      | ug/kg  | 0.524    | 0.346     | 0.524     | 3.5E-05 | 5.2E-05 |          |
| Bis(2-ethylhexyl)phthalate | 117-81-7    | 79.7     | ug/kg_ | 0.080    | 0         | 0.080     | 0       | 8.0E-06 |          |
| Calcium                    | Ca          | 791000   | ug/kg  | 791.000  | 359.000   | 791.000   | 0.036   | 0.079   | м        |
| Chrysene                   | 218-01-9    |          | ug/kg  | 0.019    | 0         | 0.019     | 0       | 1.9E-06 |          |
| Cobalt                     | Co          | 2280     | ug/kg  | 2.280    | 0.845     | 2.280     | 8.5E-05 | 2.3E-04 |          |
| Copper                     | Cu          |          | ug/kg  | 6.200    | 3.730     | 6.200     | 3.7E-04 | 6.2E-04 |          |
| Iron                       | Fe          | 7150000  |        | 7150.000 | 5000.000  | 7150.000  | 0.500   | 0.715   |          |
| Magnesium                  | Mg          | 555000   | ug/kg  | 555.000  | 174.000   | 555.000   | 0.017   | 0.056   |          |
| Manganese                  | Mn          | 317000   |        | 317.000  | 137.000   | 317.000   | 0.014   | 0.032   |          |
| Methyl-2-pentanone[4-]     | 108-10-1    | 14.2     | ug/kg  | 0.014    | 3.8E-03   | 0.014     | 3.8E-07 | 1.4E-06 |          |
| Nickel                     | Ni          |          | ug/kg  | 5.680    | 2.980     | 5.680     | 3.0E-04 | 5.7E-04 |          |
| Nitrate                    | NO3         | 0.967    | mg/kg  | 0.967    | 0.934     | 0.967     | 9.3E-05 | 9.7E-05 |          |
| Potassium                  | K           | 819000   | ug/kg  | 819.000  | 332.000   | 819.000   | 0.033   | 0.082   |          |
| Pyrene                     | 129-00-0    | 42.5     | ug/kg  | 0.043    | 0         | 0.043     | 0       | 4.3E-06 | •        |
| Sodium                     | Na          | 540000   | ug/kg  | 540.000  | 270.000   | 540.000   | 0.027   | 0.054   |          |
| Thallium                   | TI          | 75.3     | ug/kg  | 0.075    | 0.069     | 0.075     | 6.9E-06 | 7.5E-06 |          |
| Uranium                    | U           |          | ug/kg  | 0.829    | 0.180     | 0.829     | 1.8E-05 | 8.3E-05 |          |
| Vanadium                   | V           | 11200    |        | 11.200   | 3.480     | 11.200    | 3.5E-04 | 1.1E-03 |          |
| Zinc                       | Zn          | 51700    |        | 51.700   | 14.600    | 51.700    | 1.5E-03 | 5.2E-03 |          |

NOTE 1: This table contains all detected, non D-coded analytes NOTE 2: Highlighted analytes are potentially F-coded

.

TOTAL 0.738 1.428 % (all analytes from all pages were added for this total

D 3233

SWMU ev 3233

Stockpile Number ev 3233

SAL and background companies on lie: AWD 3233 110118 ws\_050empty.xlsm evaluation date: 1/18/2011

unit of Indust-Constr. Recrea-Canvon Qbt 1g, CAS/ concenmeasur Residenrial Worker tional Sedi-QBT2. QBt Qct, Symbol tial SAL SAL SAL Soil Analyte tration е SAL ment 3.4 1v Qbo Bismuth-214 Bi-214 2.46 pCi/g FAIL pass pass pass pass Lead-212 Pb-212 2.46 pCi/g FAIL FAIL pass pass pass Pb-214 Lead-214 2.39 pCi/g pass pass FAIL passpass Potassium-40 K-40 34.7 pCi/g pass pass pass FAIL pass Radium 226/228 4.88 pCi/g calc. Radium-226 Ra-226 2.46 pCi/g FAIL pass pass pass pass pass pass Ra-228 Radium-228 2.42 pCi/g FAIL FAIL pass pass pass pass pass TI-208 Thallium-208 0.664 pCi/g pass pass pass pass pass EAIL FAIL Thorium-234 Th-234 2.51 pCi/g FAIL pass pass Tritium H-3 0.0565 pCi/g pass pass pass pass pass pass pass pass pass Uranium-234 U-234 2.21 pCi/g FAIL pass pass pass pass pass pass pass pass Uranium-235/236 U-235/236 0.109 pCi/g pass pass pass pass Uranium-238 U-238 2.17 pCi/g FAIL pass pass pass pass pass pass pass pass Americium-241 Am-241 -0.00522 pCi/g -0.0224 pCi/g Cerium-139 Ce-139 Cs-137 -0.061 pCi/g Cesium-137 Cobalt-60 Co-60 -0.0162 pCi/g Eu-152 -0.1 pCi/g Europium-152 Lanthanum-140 La-140 -0.093 pCi/g Hg-203 0.00024 pCi/g Mercury-203 Pu-238 -0.0024 pCi/g Plutonium-238 Plutonium-239/240 Pu-239/240 -0.00101 pCi/g Radium-223 Ra-223 -0.502 pCi/g Ruthenium-106 Ru-106 -0.369 pCi/g Sodium-22 Na-22 -0.0724 pCi/g Strontium-85 Sr-85 0.00652 pCi/g -0.0775 pCi/g Strontium-90 Sr-90 Thorium-227 Th-227 -0.0104 pCi/g Thorium-231 Th-231 -0.502 pCi/g Tin-113 Sn-113 -0.0249 pCi/g Uranium-235 U-235 0.0509 pCi/g Yttrium-88 Y-88 -0.0202 pCi/g

page 3 of 5

page 3 of 5

3233

# Radioisotopes and the file: AWD 3233 110118 ws\_050empty.xlsm

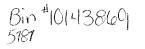
evaluation date: 1/18/2011

SWMU ev 3233 Stockpile Number ev 3233

| Analyte              | CAS/ Symbol      | concen-<br>tration | unit of<br>measure | Qualifier | comments |
|----------------------|------------------|--------------------|--------------------|-----------|----------|
|                      |                  |                    |                    | NQ        | comments |
| Bismuth-214          | Bi-214<br>Pb-212 |                    | pCi/g              | NQ<br>NQ  |          |
| Lead-212<br>Lead-214 | Pb-212<br>Pb-214 |                    | pCi/g              | NQ        |          |
| Potassium-40         | K-40             |                    | pCi/g              | NQ        |          |
|                      |                  |                    | pCi/g              | NQ        |          |
| Radium 226/228       | calc.            |                    | pCi/g              |           |          |
| Radium-226           | Ra-226           |                    | pCi/g              | NQ        |          |
| Radium-228           | Ra-228           |                    | pCi/g              | NQ        |          |
| Thallium-208         | TI-208           | 0.664              |                    | NQ        |          |
| Thorium-234          | Th-234           |                    | pCi/g              | NQ        |          |
| Tritium              | H-3              | 0.0564979          |                    | NQ        |          |
| Uranium-234          | U-234            |                    | pCi/g              | NQ        |          |
| Uranium-235/236      | U-235/236        | 0.109              |                    | NQ        |          |
| Uranium-238          | U-238            |                    | pCi/g              | NQ        |          |
| Americium-241        | Am-241           | -0.00522           | pCi/g              | U         |          |
| Cerium-139           | Ce-139           | -0.0224            | pCi/g              | U         |          |
| Cesium-137           | Cs-137           | -0.061             | pCi/g              | U         |          |
| Cobalt-60            | Co-60            | -0.0162            | pCi/g              | U         |          |
| Europium-152         | Eu-152           | -0.1               | pCi/g              | U         |          |
| Lanthanum-140        | La-140           | -0.093             | pCi/g              | U         |          |
| Mercury-203          | Hg-203           | 0.000237           | pCi/g              | U         |          |
| Plutonium-238        | Pu-238           | -0.0024            | pCi/g              | U         |          |
| Plutonium-239/240    | Pu-239/240       | -0.00101           | pCi/g              | U         |          |
| Radium-223           | Ra-223           | -0.502             | pCi/g              | U         |          |
| Ruthenium-106        | Ru-106           | -0.369             | pCi/g              | U         |          |
| Sodium-22            | Na-22            | -0.0724            | pCi/g              | U         |          |
| Strontium-85         | Sr-85            | 0.00652            | pCi/g              | U         |          |
| Strontium-90         | Sr-90            | -0.0775            |                    | U         |          |
| Thorium-227          | Th-227           | -0.0104            |                    | U         | 14 (A)   |
| Thorium-231          | Th-231           | -0.502             |                    | U         |          |
| Tin-113              | Sn-113           | -0.0249            | pCi/g              | U         |          |
| Uranium-235          | U-235            | 0.0509             |                    | U         |          |
| Yttrium-88           | Y-88             | -0.0202            | pCi/g              | U         |          |

BIN 5789 AI 10143869

50-613182


Water Quality and RCRA Group Los Alamos National Laboratory

\*351

# ENV-RCRA-QP-011.2 Attachment 2, Page 1 of 1

**Request for Land Application of Drill Cuttings Form** 

| ENV-RCRA must approve any deviation(s) from this request prior to land                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d application     | l.                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------|
| Date: <u>12011</u> Project: <u>MDAC Phase III</u><br>Location of Land Application: <u>1044hin project Cotprint</u> TA: <u>50</u> (SW<br>Estimated Quantity: <u>48.43</u> (cubic feet or tons)<br>Composition (e.g., 98% tuff and 2% quick gel, etc.): <u>100.96 Soil</u><br>Proposed Method of Land Application (describe): <u>Drill Cuttlings</u> (Will be land application<br>(Within the project tectprint TSWMU 50009) to previously<br>and covered with a layer of readbase<br>Note: An EX-ID Permit is required prior to land application. <u>100</u> - <u>6815</u> - <u>50</u> | A 1               | -009)<br>Zd                             |
| Decision Tree—Decision Point Evaluation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                         |
| The following questions require yes or no answers.<br>1. D1: Is existing characterization data consistent with WCSF? Attach<br>a summary table of results, validated raw data, etc.                                                                                                                                                                                                                                                                                                                                                                                                   | Yes               | No                                      |
| <ul> <li>2. D2: Do drill cuttings contain RCRA Hazardous Waste or Hazard constituents above RCRA limits? If yes:</li> <li>Has a Due Diligence been conducted for this waste? Attach a copy of the due diligence documentation.</li> <li>Has a No Longer Contained In been approved for this waste? Attach a copy of the No Longer</li> </ul>                                                                                                                                                                                                                                          |                   |                                         |
| <ul> <li><i>Contained In</i> approval.</li> <li>3. D6: Do drill cuttings meet the 5 criteria in D6, Attachment 1?</li> <li>4. Do drill cuttings meeting the criteria in the Radiological Decision Tree, Attachment 3?</li> </ul>                                                                                                                                                                                                                                                                                                                                                      |                   |                                         |
| Generator or Project Leader Certification: I certify that the drill cuttings described in this reque<br>application per the Decision Tree and that the drill cuttings will be land applied as described.SupportSupportName (Print)Signature                                                                                                                                                                                                                                                                                                                                           | st meet the cr    | iteria for land<br>4<br>4<br>11<br>Date |
| ENV-RCRA Review (below):         Does request provide all the required information, and do the drill cuttings meet all the criteria for Yes         Yes       No         No       Note deficiency in the space provided:                                                                                                                                                                                                                                                                                                                                                              | or land applic:   | ation?                                  |
| ENV-RCRA Reviewer Name (Print) <u>Sarly Y Subly</u> Signature <u>Saly</u><br>Package Expiration Date: <u>2-11-11</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u>x Qlez</u> Dat | te <u>1-15-/1</u>                       |



#### Water Quality and RCRA Group Los Alamos National Laboratory

#### Post Land Application Field Certification Sheet

| Date(s) of land application:                            | Project: MDA (             | Phase III.   |                   |
|---------------------------------------------------------|----------------------------|--------------|-------------------|
| Location of land application: Uthin. project            | fectprint                  |              | <u>NU</u> 50-009) |
| EX-ID Number: 101 - 0815-50                             |                            |              | _                 |
| Please explain any deviations from original application | (Attachment 2) in the spac | e provided:  |                   |
|                                                         |                            |              |                   |
|                                                         |                            |              |                   |
| Note: ENV-RCRA must approve any deviations from         | Attachment 2 prior to land | application. |                   |

Generator or Project Leader Certification (below):

I certify that

- land application complied with the requirements of this procedure (ENV-RCRA-SOP-011.1),
- no free liquids were applied during land application,
- an inspection was conducted to ensure the requirements in Attachment 2 of this procedure was met, and
- the land application of drill cuttings complied with the excavation permit.

Hephani Fuller

Name (Print)

Signature

| PRS Number: 50-009 (Borehole 50-613182) |     |    |  |  |  |
|-----------------------------------------|-----|----|--|--|--|
| Source of contaminants:                 | Yes | No |  |  |  |
| F-listed                                |     | X  |  |  |  |
| U- or P-listed                          |     | X  |  |  |  |
| K-listed                                |     | Х  |  |  |  |
| 5                                       |     |    |  |  |  |

#### PRS Description

SWMU 50-009 consists of decommissioned MDA C, established to replace MDA B at TA-21 as a disposal area (landfill) for LANL derived waste. MDA C operated from May 1948 to April 1974. The northern boundary of MDA C is approximately 50 feet south of the planned south wall of the new RLWTF. Wastes disposed at MDA C included liquids, solids, and gases generated from a broad range of nuclear energy research and development activities conducted at LANL, including uncontaminated classified materials, metals, hazardous materials, and radionuclides. Historical reports indicate that it was common practice for chemicals to be burned in the chemical disposal pit at MDA C. At MDA C, 7 pits and 108 shafts were excavated into the overlying soil and tuff.

RFI activities were conducted at MDA C from 1993 to 1996. Surface soil sampling was conducted during the summer of 1993. A subsurface investigation was performed during portions of 1994, 1995, and 1996. Conclusions regarding the nature and extent of contamination at MDA C based on the results of preliminary site characterization activities are as follows:

-Elevated concentrations of americium-241 and isotopic plutonium in surface soils in the northeast area of MDA C are likely related to releases from MDA C before the placement of crushed tuff on the surface of the site in 1984. The extent of current surface radionuclide contamination has not been defined.

-Concentrations of specific metals (including barium, copper, and lead) and radionuclides (strontium-90 and americium-241) in tuff beneath Pit 6 indicate that contamination has migrated from pit 6 into underlying rock. The extent of subsurface contamination has not been defined.

-Tritium and volatile organic compounds (VOC) contamination (primarily trichloroethylene [TCE], tetrachloroethene [PCE], and 1,1,1-trichloroethane [TCA]) exist in subsurface pore gas; however, the vertical and horizontal extent of this contamination has not been defined.

|            | Documents Reviewed                                                                 |           |  |  |  |  |  |  |
|------------|------------------------------------------------------------------------------------|-----------|--|--|--|--|--|--|
| Date       | Title                                                                              | ER Id No. |  |  |  |  |  |  |
| 4/1/2010   | Investigation Report for Upper Mortandad Canyon<br>Aggregate Area, Rev. 1          | 109180    |  |  |  |  |  |  |
| 4/1/2010   | Phase III Investigation Work Plan for MDA C, SWMU 50-<br>009, at TA-50, Rev. 1     | 109260    |  |  |  |  |  |  |
| 2/1/2010   | Phase III Investigation Work Plan for MDA C, SWMU 50-<br>009, TA-50                | 108594    |  |  |  |  |  |  |
| 10/1/2009  | Phase II Investigation report for MDA C, SWMU 50-009, at TA-50, Rev. 1             | 107389    |  |  |  |  |  |  |
| 5/1/2009   | Phase II Investigation Report for MDA C, SWMU 50-009, at TA-50                     | 106047    |  |  |  |  |  |  |
| 11/30/2007 | Investigation Work Plan and HIR for Upper Mortandad<br>Canyon Aggregate Area [IWP] | 098954    |  |  |  |  |  |  |
| 11/30/2007 | Investigation Work Plan and HIR for Upper Mortandad<br>Canyon Aggregate Area [HIR] | 098955    |  |  |  |  |  |  |

-Surface flux of VOCs and near-surface tritium soil-gas concentrations indicate localized areas where releases to the atmosphere are occurring.

| 4/23/2007 | Phase II Investigation Work Plan for MDA C, Rev. 1                  | 100143 |
|-----------|---------------------------------------------------------------------|--------|
| 12/6/2006 | Investigation Report for MDA C, SWMU 50-009                         | 094688 |
| 10/1/2005 | Investigation Work Plan for MDA C, SWMU 50-009 at TA-<br>50, Rev. 2 | 091493 |
| 11/1/2003 | Investigation Work Plan for MDA C, SWMU 50-009 at TA-<br>50, Rev. 1 | 087152 |
| 7/31/2003 | Investigation Work Plan for MDA-C, SWMU 50-009 at TA-<br>50         | 087392 |
| 5/20/1992 | RFI Work Plan for Operable Unit 1147                                | 007672 |
| 11/30/90  | SWMU Report, Volume 1 of IV (TA-00 through TA-09)                   | 007513 |
| July 2010 | PRS Database                                                        | NA     |
|           | Summary of Listed Status                                            | 1      |

U-listed constituents were detected in soil samples; however, there was no documented evidence of a spill, release, or discharge of unused/unspent commercial chemical products in the vicinity of the SWMU. K-listed constituents were also detected in the soil samples from 50-009, BH 50-613182; however most K-listed sources are industrial in nature and not typical of Laboratory operations. The Laboratory generates only small amounts of K-listed wastes, primarily spent carbon from high explosives processing that is disposed off-site. The documented amounts of K-listed wastes generated are not sufficient to have impacted investigation/remediation activities. Therefore, the IDW is not K-listed. In addition, Arsenic (F032, F034, F035), Benzo(a)pyrene (F032, F034, F037, and F038), Chromium (F032, F034, F035, F037, and F038), Chrysene (F037 and F038), Lead (F035, F037, and F038), and Nickel (F006) were also detected in the soil samples from 50-009 site investigation activities. There is no documented evidence that the following processes (F-listed sources) occurred in the vicinity of the SWMU: Wood preserving processes (F032, F034, and F035), Petroleum refinery operations (F037 and F038) and Electroplating operations (F006). See Attachment 1 for the complete list of potentially listed constituents detected in the soil sample.

Based on analytical data and documentation, there is no conclusive evidence of a listed source impacting SWMU 50-009, MDA-C. Therefore, the IDW may be managed as non-hazardous waste.

DD Completed January 18, 2011

| Attachment 1.        |               |                      |                     |                       |
|----------------------|---------------|----------------------|---------------------|-----------------------|
| Analyte              | Concentration | Potential<br>U-Codes | Potential F-Codes   | Potential K-<br>Codes |
| Antimony             | 0.91          |                      |                     | K161, K021, K177      |
|                      |               |                      |                     | K031,K060,K161,       |
|                      |               |                      |                     | K171,K172,K176,       |
| Arsenic              | 0.34          |                      | F032,F034,F035,     | K084,K101,K102,       |
|                      |               | U022                 |                     | K001, K035, K141,     |
|                      |               |                      |                     | K142, K144, K145,     |
| Benzo(a)pyrene       | 0.0144        |                      | F032,F034,F037,F038 | K147, K148, K170      |
|                      |               |                      |                     | K001,K035,K141,       |
|                      |               |                      |                     | K142,K143,K144,       |
| Benzo(b)fluoranthene | 0.0214        |                      |                     | K147,K148,K170,       |
| Bis(2-               |               | U028                 |                     |                       |
| ethylhexyl)phthalate | 0.0797        |                      |                     |                       |
| Chromium             | 4.96          |                      | F032,F034,F035,F037 | K090                  |
| Chrysene             | 0.019         | U050                 | F037, F038          | K001, K035            |
| Onlysene             | 0.010         |                      | 1001,1000           | K002, K003, K005,     |
|                      |               |                      |                     | K048, K049, K051,     |
|                      |               |                      |                     | K062, K064, K086,     |
|                      |               |                      |                     | K100, K176, K046,     |
| Lead                 | 4.73          |                      | F035,F037,F038,     | K052, K061, K069      |
| Nickel               | 5.68          |                      | F006                |                       |
| Thallium             | 0.0753        |                      |                     | K178                  |

#### Attachment 1.

page 3 of 5

Sampling event ID

# 3233

SWMU ev 3233.2082.2092 Stockpile Number ev 3233.2082.2092 SAL and background comparisonev3233.2082.2092.awd.1.13.2011(2).xlsm evaluation date: 1/13/2011

|                   | <u> </u>   |          | unit of |          | Indust-      | Constr.      | Recrea- | [                | Canyon       |              | [                | Qbt 1g,      |
|-------------------|------------|----------|---------|----------|--------------|--------------|---------|------------------|--------------|--------------|------------------|--------------|
|                   | CAS/       | concen-  | measur  | Residen- | rial         | Worker       | tional  |                  | Sedi-        | QBT2,        | QBt              | Qct,         |
| Analyte           | Symbol     | tration  | е       | tial SAL | SAL          | SAL          | SAL     | Soil             | ment         | 3,4          | 1v               | Qbo          |
| Bismuth-214       | Bi-214     | 1.9      | pCi/g   |          |              |              |         | pass             | pass         | pass         | pass             | pass         |
| Lead-212          | Pb-212     | 2.22     | pCi/g   |          |              | /            | /       | pass             | pass         | pass         | pass             | pass         |
| Lead-214          | Pb-214     | 2.21     | pCi/g   | /        | /            |              |         | pass             | pass         | FAIL         | pass             | pass         |
| Potassium-40      | K-40       | 34.7     | pCi/g   | /        | /            |              |         | pass             | pass         | pass         | FAIL             | pass         |
| Radium 226/228    | calc.      | 3.85     | pCi/g   | /        |              |              |         |                  | $\sim$       |              | $\backslash$     |              |
| Radium-226        | Ra-226     | 1.9      | pCi/g   |          | /            | pass         | pass    | pass             | pass         | pass         | pass             | pass         |
| Radium-228        | Ra-228     | 1.95     | pCi/g   | /        |              | pass         | pass    | pass             | pass         | pass         | pass             | pass         |
| Thallium-208      | TI-208     | 0.589    | pCi/g   | /        | /            |              | $\sim$  | pass             | pass         | pass         | pass             | pass         |
| Tritium           | H-3        | 0.0565   | pCi/g   | pass     | pass         | pass         | pass    | pass             | pass         | pass         | pass             | pass         |
| Uranium-234       | U-234      | 1.93     | pCi/g   | pass     | pass         | pass         | pass    | pass             | pass         | pass         | pass             | pass         |
| Uranium-235/236   | U-235/236  | 0.109    | pCi/g   | pass     | pass         | pass         | pass    |                  | $\sim$       | $\sim$       |                  |              |
| Uranium-238       | U-238      | 2.14     | pCi/g   | pass     | pass         | pass         | pass    | pass             | pass         | FAIL         | pass             | pass         |
| Americium-241     | Am-241     | -0.0021  | pCi/g   |          | $\backslash$ |              | $\sim$  |                  | $\backslash$ | $\backslash$ | $\smallsetminus$ | $\sim$       |
| Cerium-139        | Ce-139     | -0.0044  | pCi/g   | /        | /            |              |         | $\backslash$     | /            | $\backslash$ |                  |              |
| Cesium-137        | Cs-137     | -0.061   | pCi/g   | /        |              |              | /       |                  | /            | $\backslash$ |                  |              |
| Cobalt-60         | Co-60      | -0.0162  | pCi/g   | /        | $\backslash$ |              |         | $\backslash$     | $\sim$       | $\sim$       |                  | $\sim$       |
| Europium-152      | Eu-152     | -0.0335  | pCi/g   |          |              |              |         |                  | /            | $\backslash$ |                  | $\backslash$ |
| Lanthanum-140     | La-140     | -0.093   | pCi/g   |          |              |              |         |                  | /            | $\backslash$ |                  |              |
| Mercury-203       | Hg-203     | 0.0275   | pCi/g   |          | $\backslash$ |              | $\sim$  | $\vee$           | /            | $\backslash$ |                  | $\sim$       |
| Plutonium-238     | Pu-238     | -0.00101 | pCi/g   | /        |              |              |         | $\overline{)}$   | /            |              |                  |              |
| Plutonium-239/240 | Pu-239/240 | -0.00101 | pCi/g   |          | $\backslash$ |              | $\sim$  | $\backslash$     | $\backslash$ | $\backslash$ | $\smallsetminus$ |              |
| Radium-223        | Ra-223     | -0.177   | pCi/g   | /        |              |              | $\sim$  |                  | $\backslash$ | $\backslash$ |                  |              |
| Ruthenium-106     | Ru-106     | -0.369   | pCi/g   |          |              |              | $\sim$  | $\backslash$     | /            |              |                  |              |
| Sodium-22         | Na-22      | -0.0301  | pCi/g   |          |              |              | $\sim$  | $\backslash$     | /            | $\vee$       |                  |              |
| Strontium-85      | Sr-85      | 0.0193   | pCi/g   |          | $\backslash$ |              | $\sim$  | $\backslash$     | /            | $\backslash$ |                  | $\backslash$ |
| Strontium-90      | Sr-90      | 0.0878   | pCi/g   | /        | $\backslash$ | /            |         |                  | /            | $\backslash$ |                  |              |
| Thorium-227       | Th-227     | 0.148    | pCi/g   | /        |              |              |         |                  | /            | $\backslash$ |                  | $\backslash$ |
| Thorium-231       | Th-231     | -0.177   |         | //       | $\backslash$ | $\backslash$ | $\sim$  | $\smallsetminus$ | $\backslash$ | $\sim$       | $\smallsetminus$ | $\sim$       |
| Thorium-234       | Th-234     | 1.05     | pCi/g   | /        | $\backslash$ | $\sim$       | $\sim$  | $\smallsetminus$ | $\backslash$ | $\sim$       | $\smallsetminus$ | $\sim$       |
| Tin-113           | Sn-113     | 0.0164   | pCi/g   |          | $\sim$       |              |         | $\overline{}$    | $\sim$       |              |                  | $\sim$       |
| Uranium-235       | U-235      | 0.124    | pCi/g   |          | $\backslash$ | $\backslash$ |         |                  | $\sim$       | $\geq$       | $\backslash$     | $\sim$       |
| Yttrium-88        | Y-88       | 0.0152   | pCi/g   | /        | $\backslash$ |              | $\sim$  |                  | $\backslash$ | $\sim$       | $\backslash$     | $\sim$       |

No comparisons or sum of Aractions regulated OK for land application

Stockpile Number ev 3233.2082.2092

SWMU ev 3233.2082.2092

#### **Detected Chemicals Form**

associated Excel file: ev3233,2082.2092.awd.1.13.2011(2).xlsm evaluation date: 1/13/2011

| Analyte                    | CAS/ Symbol | concen-<br>tration | unit of<br>measure | Non-<br>wastewater<br>LDR | Hazardous<br>Soil LDR | Potential Haz F-codes | Potential Haz K-codes                                              | Potential Haz U-codes | Potential Haz<br>P-codes | comments                                           |
|----------------------------|-------------|--------------------|--------------------|---------------------------|-----------------------|-----------------------|--------------------------------------------------------------------|-----------------------|--------------------------|----------------------------------------------------|
| Alumínum                   | Al          | 1900               | mg/kg              |                           |                       |                       |                                                                    |                       |                          |                                                    |
| Barium                     | Ba          |                    | ma/ka              | Dass                      | pass                  |                       |                                                                    |                       |                          |                                                    |
| Benzo(a)pyrene             | 50-32-8     | 0.0144             | mg/kg              | pass                      | pass                  | F032,F034,F037,F038,  |                                                                    | U022,                 |                          |                                                    |
| Benzo(b)fluoranthene       | 205-99-2    | 0.0214             |                    | pass                      | pass                  |                       | K001,K035,K141,K142,K143,K144,K<br>147,K148,K170,                  |                       |                          |                                                    |
| Beryllium                  | Be          |                    | mg/kg              | pass                      | pass                  |                       |                                                                    |                       |                          |                                                    |
| Bis(2-ethylhexyl)phthalate | 117-81-7    | 0.0797             |                    | pass                      | pass                  |                       |                                                                    | U028,                 |                          | deservation de Caliere                             |
| Calcium                    | Ca          |                    | mg/kg              |                           |                       |                       |                                                                    |                       |                          |                                                    |
| Chromium                   | Cr          |                    | mg/kg              | pass                      | pass                  |                       | K090,                                                              |                       |                          | 승규님은 방법을 다 같이 있었는데?                                |
| Chrysene                   | 218-01-9    | 0.019              | mg/kg              | pass                      | pass                  | F037,F038,            | K001,K035,                                                         | U050,                 |                          |                                                    |
| Cobalt                     | Co          |                    | mg/kg              |                           |                       |                       |                                                                    |                       |                          |                                                    |
| Copper                     | Cu          |                    | mg/kg              |                           |                       |                       |                                                                    |                       |                          |                                                    |
| Iron                       | Fe          | 5000               | mg/kg              |                           |                       |                       | ·                                                                  |                       |                          |                                                    |
|                            |             |                    |                    |                           |                       |                       | K002,K003,K005,K048,K049,K051,K<br>062,K064,K086,K100,K176,K046,K0 |                       |                          |                                                    |
| Lead                       | Pb          |                    |                    | pass                      | pass                  | F035,F037,F038,       | 52,K061,K069,                                                      |                       | <u> </u>                 |                                                    |
| Magnesium                  | Mg          |                    | mg/kg              |                           |                       |                       |                                                                    |                       |                          |                                                    |
| Manganese                  | Mn          |                    | mg/kg              |                           |                       |                       |                                                                    |                       |                          |                                                    |
| Nickel                     | Ni          |                    | mg/kg              | pass                      | pass                  | F006,                 |                                                                    |                       | <u> </u>                 | <u> na se </u> |
| Potassium                  | К           |                    | mg/kg              |                           |                       |                       |                                                                    |                       |                          |                                                    |
| Pyrene                     | 129-00-0    |                    | mg/kg              | pass                      | pass                  |                       |                                                                    |                       |                          |                                                    |
| Sodium                     | Na          |                    | mg/kg              |                           |                       |                       |                                                                    |                       | <u> </u>                 |                                                    |
| Thallium                   | ΤΙ          | 0.0753             |                    |                           | L                     |                       | K178,                                                              |                       |                          |                                                    |
| Uranium                    | U           |                    | mg/kg              |                           |                       |                       |                                                                    |                       | <u> </u>                 |                                                    |
| Vanadium                   | V           |                    | mg/kg              | pass                      | pass                  |                       |                                                                    |                       |                          |                                                    |
| Zinc                       | Zn          | L 14.6             | mg/kg              | pass                      | pass                  |                       |                                                                    |                       |                          |                                                    |

#### page 3 of 5

#### **Solid Waste Evaluation**

page 1 of 5

SWMU ev 3233.2082.2092 Stockpile Number ev 3233.2082.2092 SummaryExcel file: ev3233.2082.2092.awd.1.13.2011(2).xlsm evaluation date: 1/13/2011

| RCRA                                                    |            |                    |                     |         |        |
|---------------------------------------------------------|------------|--------------------|---------------------|---------|--------|
| 33 analytes pass<br>between these 32 analytes pass      | as undete  | cted               |                     |         |        |
| 10 analytes fail                                        | as andere  |                    |                     |         |        |
|                                                         |            | -                  |                     |         |        |
| Detects                                                 |            |                    |                     |         |        |
| Total P                                                 | CB (ppm)   | Not analy          | Z                   |         |        |
| 5 analytes with potential                               |            |                    | on-wastewater LDR:  |         | 0 FAIL |
| 6 analytes with potential                               |            |                    | Hazardous soil LDR: | 12 pass | 0 FAIL |
| 3 analytes with potential                               |            |                    |                     |         |        |
| 0 analytes with potential                               | P-CODE     |                    |                     |         |        |
| Residential Soil                                        | (mg/kg) ;  | 19 pass            | 0 FAIL              |         |        |
| Industrial/ Occupational Soil                           |            | 19 pass            | 0 FAIL              |         |        |
| Construction Worker Soil                                |            |                    | 0 FAIL              |         |        |
| Recreational Soil                                       | ,          |                    | 0 FAIL              |         |        |
| soil bac<br>Canyon Sediment bac                         | kground:   | 18 pass<br>18 pass | 0 FAIL<br>0 FAIL    |         |        |
| Qbt 2,3,4 bac                                           |            |                    | 0 FAIL              |         |        |
| Qbt 1v bac                                              |            |                    | 3 FAIL              |         |        |
| Qbt 1g, Qct,Qbo bad                                     | ckground:  | 15 pass            | 3 FAIL              |         |        |
| RAD to                                                  | otal dose: | 0.6550             | ) mRem/year         |         |        |
| ?                                                       |            |                    |                     |         |        |
| analysed for H-3                                        |            |                    |                     |         |        |
| analysed for Pu-239<br>32 isotopes,                     |            | 11                 | were detected       |         |        |
| 52 isotopes,                                            |            |                    | ) undetected        |         |        |
|                                                         |            |                    |                     |         |        |
| Residen-tial SAL: 4 pass                                |            | 0 FAIL             |                     |         |        |
| Indust-rial SAL: 4 pass                                 |            | 0 FAIL             |                     |         |        |
| Constr. Worker SAL: 6 pass<br>Recrea-tional SAL: 6 pass |            | 0 FAIL<br>0 FAIL   |                     |         |        |
| Soil: 10 pass                                           |            | 0 FAIL             |                     |         |        |
| Canyon Sedi-ment: 10 pass                               |            | 0 FAIL             |                     |         |        |
| QBT2,3,4: 8 pass                                        |            | 2 FAIL             |                     |         |        |
| QBt 1v: 9 pass                                          |            | 1 FAIL             |                     |         |        |
| Qbt 1g, Qct, Qbo: 10 pass                               |            | 0 FAIL             |                     |         |        |
|                                                         |            |                    |                     |         |        |

Remark: The Evaluator may overwrite any result of automatic evaluation, but a short written explanation must be added

| Sample ID     | associated blanks | associated duplicate |
|---------------|-------------------|----------------------|
| WST50-11-2082 | WST50-11-2092     |                      |

|     | Imported data files |
|-----|---------------------|
| ev: | 3233.1.12.2011.txt  |

# Detected Chemicals: SSL and Background check

| Analyte                    | CAS/ Symbol | concen-<br>tration | unit of<br>measure | Residential<br>Soil (mg/kg) | Industrial/<br>Occupational<br>Soil (mg/kg) | Construction<br>Worker Soil<br>(mg/kg) | Recreational<br>Soil (mg/kg) | soil<br>background | Canyon<br>Sediment<br>background | Qbt 2,3,4<br>background | Qbt 1v<br>background | Qbt 1g,<br>Qct,Qbo<br>background |
|----------------------------|-------------|--------------------|--------------------|-----------------------------|---------------------------------------------|----------------------------------------|------------------------------|--------------------|----------------------------------|-------------------------|----------------------|----------------------------------|
| Aluminum                   | AI          | 1900               | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | pass                 | pass                             |
| Barium                     | Ва          | 20.9               | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | pass                 | pass                             |
| Benzo(a)pyrene             | 50-32-8     | 0.0144             | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | NA                 | NA                               | NA                      | NA                   | NA                               |
| Benzo(b)fluoranthene       | 205-99-2    | 0.0214             | ma/ka              | pass                        | pass                                        | pass                                   | pass                         | NA                 | NA                               | NA                      | NA                   | NA                               |
| Beryllium                  | Be          | 0.439              | mg/kg              | pass                        |                                             | pass                                   | pass                         |                    | pass                             | pass                    | pass                 | pass                             |
| Bis(2-ethylhexyl)phthalate | 117-81-7    | 0.0797             |                    | pass                        | pass                                        | pass                                   | pass                         | NA                 | NA                               | NA                      | NA                   | NA                               |
| Calcium                    | Са          | 791                | mg/kg              | NA                          | NA                                          | NA                                     | NA                           | pass               | pass                             | pass                    | pass                 | pass                             |
| Chromium                   | Cr          | 2.81               | mg/kg              | pass                        | pass                                        | NA                                     | pass                         | pass               | pass                             | pass                    | FAIL                 | FAIL                             |
| Chrysene                   | 218-01-9    | 0.019              | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | NA                 | NA                               | NA                      | NA                   | NA                               |
| Cobalt                     | Co          |                    | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | pass                 | pass                             |
| Copper                     | Cu          | 3.73               | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | FAIL                 | pass                             |
| Iron                       | Fe          | 5000               | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | pass                 | FAIL                             |
| Lead                       | РЬ          |                    | mg/kg              | pass                        |                                             |                                        | pass                         | pass               | pass                             | pass                    | pass                 | pass                             |
| Magnesium                  | Mg          | 555                | mg/kg              | NA                          | NA                                          | NA                                     | NA                           | pass               | pass                             | pass                    | pass                 | pass                             |
| Manganese                  | Mn          |                    | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | pass                 | pass                             |
| Nickel                     | Ni          |                    | mg/kg              | pass                        |                                             | pass                                   | pass                         | pass               | pass                             | pass                    | FAIL                 | FAIL                             |
| Potassium                  | К           |                    |                    | NA                          | NA                                          | NA                                     | NA                           |                    |                                  | pass                    | pass                 | pass                             |
| Pyrene                     | 129-00-0    | 0.0425             |                    | pass                        |                                             | pass                                   | pass                         | NA                 | NA                               | NA                      | NA                   | NA                               |
| Sodium                     | Na          |                    | mg/kg              | NA                          | NA                                          | NA                                     | NA                           | pass               | pass                             | pass                    | pass                 | pass                             |
| Thallium                   | TI          | 0.0753             |                    | pass                        |                                             | pass                                   | pass                         | pass               | pass                             | pass                    | pass                 | pass                             |
| Uranium                    | U           |                    | mg/kg              | pass                        | pass                                        | NA                                     | pass                         | pass               | pass                             | pass                    | pass                 | pass                             |
| Vanadium                   | V           |                    | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | pass                 | pass                             |
| Zinc                       | Zn          | 14.6               | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | pass                 | pass                             |

Balerlové 50-613182

Sampling event ID 3233 SWMU ev 3233 Stockpile Number ev 3233

#### Solid Waste Evaluation

page 1 of 5

Summary ed Excel file: AVVD 3233 110118 ws\_050empty.xlsm evaluation date: 1/18/2011

| 33 analytes pass                                    | -                                  |
|-----------------------------------------------------|------------------------------------|
| between these 31 analytes pass as undete            |                                    |
| Detects                                             |                                    |
| Total PCB (ppm)                                     | Not analy                          |
| 6 analytes with potential F-code                    | Non-wastewater LDR: 15 pass 0 FAIL |
| 8 analytes with potential K-code                    | Hazardous soil LDR: 15 pass 0 FAIL |
| 3 analytes with potential U-code                    |                                    |
| 0 analytes with potential P-code                    |                                    |
|                                                     |                                    |
| Residential Soil (mg/kg) :                          |                                    |
| Industrial/ Occupational Soil (mg/kg) :             |                                    |
| Construction Worker Soil (mg/kg) :                  |                                    |
| Recreational Soil (mg/kg) :<br>soil background:     |                                    |
| Canyon Sediment background:                         |                                    |
| Qbt 2,3,4 background:                               |                                    |
| Qbt 1v background:                                  | 13 pass 7 FAIL                     |
| Qbt 1g, Qct,Qbo background:                         | 9 pass 11 FAIL                     |
|                                                     |                                    |
| RAD total dose:                                     | 0.8205 mRem/year                   |
| analysed for H-3                                    |                                    |
| analysed for Pu-239                                 |                                    |
| 32 isotopes,                                        | 12 were detected                   |
|                                                     | 19 undetected                      |
| Bosidon tipl SALL 4 page                            |                                    |
| Residen-tial SAL: 4 pass<br>Indust-rial SAL: 4 pass | 0 FAIL<br>0 FAIL                   |
| Constr. Worker SAL: 6 pass                          | 0 FAIL                             |
|                                                     | 0 FAIL                             |
|                                                     | 3 FAIL                             |
| ·                                                   | 3 FAIL                             |
| QBT2,3,4: 5 pass                                    | 6 FAIL                             |
| QBt 1v: 10 pass<br>Qbt 1g, Qct, Qbo: 11 pass        | 1 FAIL<br>0 FAIL                   |
| abilig, Qui, Qbu. 11 pass                           |                                    |
|                                                     |                                    |

Remark: The Evaluator may overwrite any result of automatic evaluation, but a short written explanation must be added

| Sample ID     | associated blanks | associated duplicate |
|---------------|-------------------|----------------------|
| WST50-11-2081 | WST50-11-2091     |                      |
| WST50-11-2082 | WST50-11-2092     |                      |
| WST50-11-2083 | WST50-11-2093     |                      |

.

Imported data files ev3233 110118.txt

page 3 of 5 associated Excel file: AWD 3233 110118 ws\_050empty.xlsm

evaluation date: 1/18/2011

SWMU ev 3233 Stockpile Number ev 3233

# **RCRA Characteristics Form**

|                             |             | Potential | Reg.   | concen-                                                                                                                                       | unit of |            | Pass/ |          |
|-----------------------------|-------------|-----------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------|------------|-------|----------|
| Analyte                     | CAS/ Symbol | Haz Code  | limit  | tration                                                                                                                                       | measure | Qualifier  | Fail  | comments |
| Arsenic                     | As          |           | 5000   | 50                                                                                                                                            | ug/L    | U          | pass  |          |
| Barium                      | Ba          | D005      | 100000 | 853                                                                                                                                           | ug/L    | NQ         | pass  |          |
| Cadmium                     | Cd          |           | 1000   | 10                                                                                                                                            | ug/L    | U          | pass  |          |
| Chromium                    | Cr          |           | 5000   |                                                                                                                                               | ug/L    | U          | pass  |          |
| Lead                        | Pb          | D008      | 5000   | 25.2                                                                                                                                          | ug/L    | NQ         | pass  |          |
| Mercury                     | Hg          |           | 200    |                                                                                                                                               | ug/L    | U          | pass  |          |
| Selenium                    | Se          |           | 1000   |                                                                                                                                               | ug/L    | U          | pass  |          |
| Silver                      | Ag          |           | 5000   |                                                                                                                                               | ug/L    | U          | pass  |          |
| Endrin                      | 72-20-8     | D012      | 20     | $\sum_{\substack{i=1,\dots,n\\ i=1,\dots,n}} \frac{(M-i)_{i=1}}{(i-1)} \sum_{\substack{i=1,\dots,n\\ i=1,\dots,n}} \frac{(M-i)_{i=1}}{(i-1)}$ | ug/L    |            | FAIL  |          |
| BHC[gamma-]                 | 58-89-9     | D013      | 400    |                                                                                                                                               | ug/L    |            | FAIL  |          |
| Methoxychlor[4,4'-]         | 72-43-5     | D014      | 10000  |                                                                                                                                               | ug/L    |            | FAIL  |          |
| Toxaphene (Technical Grade) | 8001-35-2   | D015      | 500    |                                                                                                                                               | ug/L    | 1          | FAIL  |          |
| D[2,4-]                     | 94-75-7     | D016      | 10000  |                                                                                                                                               | ug/L    | 1          | FAIL  |          |
| TP[2,4,5-]                  | 93-72-1     | D017      | 1000   |                                                                                                                                               | ug/L    | 1          | FAIL  |          |
| Benzene                     | 71-43-2     |           | 500    | 0.0505                                                                                                                                        |         | U          | pass  |          |
| Carbon Tetrachloride        | 56-23-5     |           | 500    |                                                                                                                                               |         | U          | pass  |          |
| Chlordane(alpha/gamma)      | 57-74-9     | D020      | 30     | and the second of the second                              | ug/L    |            | FAIL  |          |
| Chlordane[gamma-]           | 5103-74-2   | D020      |        |                                                                                                                                               | ug/L    |            | FAIL  |          |
| Chlordane[alpha-]           | 5103-71-9   | D020      |        |                                                                                                                                               | ug/L    |            | FAIL  |          |
| Chlorobenzene               | 108-90-7    |           | 100000 | 0.0505                                                                                                                                        |         | U          | pass  |          |
| Chloroform                  | 67-66-3     |           | 6000   | 0.0505                                                                                                                                        |         | U          | pass  |          |
| Methylphenol[2-]            | 95-48-7     |           | 200000 |                                                                                                                                               |         | UJ         | pass  |          |
| Methylphenol[3-]            | 108-39-4    |           | 200000 |                                                                                                                                               |         | IJ         | pass  |          |
| Methylphenol[4-]            | 106-44-5    |           | 200000 |                                                                                                                                               |         | 0J         | pass  |          |
| Methylphenol[3-,4-]         | 65794-96-9  |           | 200000 | 16.75                                                                                                                                         |         | UJ         | pass  |          |
| Methylphenol(total)         | 8027-16-5   |           | 200000 | 33.5                                                                                                                                          |         | UJU        | pass  |          |
| Dichlorobenzene[1,4-]       | 106-46-7    |           | 7500   | 16.75                                                                                                                                         |         | UJ         | pass  |          |
| Dichloroethane[1,2-]        | 107-06-2    |           | 500    | 0.0505                                                                                                                                        |         | U          | pass  |          |
| Dichloroethene[1,1-]        | 75-35-4     |           | 700    | 0.0505                                                                                                                                        |         | U          | pass  |          |
| Dinitrotoluene[2,4-]        | 121-14-2    |           | 130    | 16.75                                                                                                                                         |         | UJ         | pass  |          |
| Heptachlor                  | 76-44-8     | D031      | 8      | 86 1953<br>1953                                                                                                                               | ug/L    |            | FAIL  |          |
| Hexachlorobenzene           | 118-74-1    |           | 130    | 16.75                                                                                                                                         |         | UJ         | pass  |          |
| Hexachlorobutadiene         | 87-68-3     |           | 500    | 16.75                                                                                                                                         |         | UJ         | pass  |          |
| Hexachloroethane            | 67-72-1     |           | 3000   | 16.75                                                                                                                                         |         | IJ         | pass  |          |
| Butanone[2-]                | 78-93-3     |           | 200000 | 0.2525                                                                                                                                        | ug/L    | ΠJ         | pass  |          |
| Nitrobenzene                | 98-95-3     |           | 2000   | 16.75                                                                                                                                         | ug/L    | ΠÌ         | pass  |          |
| Pentachlorophenol           | 87-86-5     |           | 100000 | 16.75                                                                                                                                         |         | UJ         | pass  |          |
| Pyridine                    | 110-86-1    |           | 5000   | 16.75                                                                                                                                         |         | UJ         | pass  |          |
| Tetrachloroethene           | 127-18-4    |           | 700    | 0.0505                                                                                                                                        |         | Ū          | pass  |          |
| Trichloroethene             | 79-01-6     |           | 500    | 0.0505                                                                                                                                        |         | Ū          | pass  |          |
| Trichlorophenol[2,4,5-]     | 95-95-4     |           | 400000 | 16.75                                                                                                                                         |         | ŪJ         | pass  |          |
| Trichlorophenol[2,4,6-]     | 88-06-2     |           | 2000   | 16.75                                                                                                                                         |         | UJ         | pass  |          |
| Vinyl Chloride              | 75-01-4     |           | 200    | 0.0505                                                                                                                                        |         | l <u>ŭ</u> | pass  |          |

NOTE 1: If multiple results exist for given analyte, first, the highest detected result is chosen. If there are no detected results, the lowest undetected result is chosen.

NOTE 2: Often chlordane is analyzed as alpha and gamma isomers. If no total chlordane result exist, total concentration will be calculated from individual isomer results.

NOTE 3: Most frequently 2-Methylphenol is analyzed separately and 3- and 4-methylphenols are reported together.

Often, raw data contain only two results - for 2- methylphenol and 4-methylphenol. In such case 4-methyl is in fact a result

for two isomers together: 3-methyl + 4-methylphenol. The macro evaluates present data and calculates concentrations for 3-, 4-, and total.

methylphenols. Results reported separatedly for 3- and 4- methylphenols with calc. remark are, in fact, partial total, 3- + 4-methylphenol together.

NOTE 4: Undetected results pass automatically, without comparing to standard. Detected results pass only if reported concentration is lower than legal standard.

NOTE 5: CAS number is highlighted in pink if there is a large discrepancy between sample and duplicate.

# Detected Chemicals: SSL and Background check

| Analyte                | CAS/<br>Symbol | concen-<br>tration | unit of<br>measure | Residential<br>Soil (mg/kg)                                                                                     | Industrial/<br>Occupational<br>Soil (mg/kg) | Construction<br>Worker Soil<br>(mg/kg) | Recreational<br>Soil (mg/kg) | soil<br>background | Canyon<br>Sediment<br>background      | Qbt 2,3,4<br>background | Qbt 1v<br>background | Qbt 1g,<br>Qct,Qbo<br>background |
|------------------------|----------------|--------------------|--------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------|------------------------------|--------------------|---------------------------------------|-------------------------|----------------------|----------------------------------|
| Aluminum               | Al             | 4030               | mg/kg              |                                                                                                                 | pass                                        | pass                                   | pass                         | pass               | pass                                  | pass                    | pass                 | FAIL                             |
| Antimony               | Sb             |                    | mg/kg              | pass                                                                                                            | pass                                        | pass                                   | pass                         | FAIL               | FAIL                                  | FAIL                    | FAIL                 | FAIL                             |
|                        |                | 0.01               |                    |                                                                                                                 |                                             | F                                      |                              |                    |                                       |                         |                      |                                  |
| Arsenic                | As             | 0.34               | mg/kg              | pass                                                                                                            | pass                                        | pass                                   | pass                         | pass               | pass                                  | pass                    | pass                 | pass                             |
|                        | Ba             |                    | mg/kg              |                                                                                                                 | pass                                        | pass                                   | pass                         | pass               | pass                                  | FAIL                    | FAIL                 | FAIL                             |
|                        |                |                    |                    |                                                                                                                 | F                                           |                                        |                              | <u></u>            | · · · · · · · · · · · · · · · · · · · |                         |                      |                                  |
| Benzo(a)pyrene         | 50-32-8        | 0.0144             | ma/ka              | pass                                                                                                            | pass                                        | pass                                   | pass                         | NA                 | NA                                    | NA                      | NA                   | NA                               |
|                        |                |                    |                    |                                                                                                                 |                                             |                                        |                              |                    |                                       |                         |                      |                                  |
| Benzo(b)fluoranthene   | 205-99-2       | 0.0214             | ma/ka              | pass                                                                                                            | pass                                        | pass                                   | pass                         | NA                 | NA                                    | NA                      | NA                   | NA                               |
|                        | Be             |                    | mg/kg              |                                                                                                                 | pass                                        |                                        | pass                         | pass               | pass                                  | pass                    | pass                 | Dass                             |
|                        | 117-81-7       | 0.0797             |                    | <u> </u>                                                                                                        |                                             |                                        | pass                         | NA                 | NA                                    | NA                      | NA                   | NA                               |
| Calcium                | Са             |                    | mg/kg              |                                                                                                                 |                                             |                                        | NA                           | pass               | pass                                  | pass                    | pass                 | pass                             |
|                        | Cr             |                    | mg/kg              | pass                                                                                                            |                                             |                                        | pass                         | pass               | pass                                  | pass                    | FAIL                 | FAIL                             |
| Chrysene               | 218-01-9       |                    | mg/kg              | pass                                                                                                            | pass                                        |                                        | pass                         | NA                 | NA                                    |                         | NA                   | NA                               |
| Cobalt                 | Co             |                    | mg/kg              | pass                                                                                                            | pass                                        |                                        | pass                         | pass               | pass                                  | pass                    | FAIL                 | pass                             |
|                        | Cu             |                    | mg/kg              | pass                                                                                                            | pass                                        | pass                                   | pass                         | pass               | pass                                  | FAIL                    | FAIL                 | FAIL                             |
| liron                  | Fe             |                    | mg/kg              | pass                                                                                                            | pass                                        | pass                                   | pass                         | pass               | pass                                  | pass                    | pass                 | FAIL                             |
| Lead                   | РЬ             |                    | mg/kg              | pass                                                                                                            | pass                                        | pass                                   | pass                         | pass               | pass                                  | pass                    | pass                 | pass                             |
| Magnesium              | Mg             |                    | mg/kg              | NA                                                                                                              | NA                                          | NA                                     | NA                           | pass               | pass                                  | pass                    | pass                 | pass                             |
| Manganese              | Mn             |                    | mg/kg              | pass                                                                                                            | pass                                        | FAIL                                   | pass                         | pass               | pass                                  | pass                    | pass                 | FAIL                             |
| Methyl-2-pentanone[4-] | 108-10-1       | 0.0142             | mg/kg              | pass                                                                                                            | + · · · · · · · · · · · · · · · · · · ·     | pass                                   | pass                         | NA                 | NA                                    |                         | NA                   | NA                               |
| Nickel                 | Ni             |                    | mg/kg              | pass                                                                                                            | pass                                        | pass                                   | pass                         | pass               | pass                                  | pass                    | FAIL                 | FAIL                             |
|                        | NO3            |                    | mg/kg              | pass                                                                                                            | pass                                        |                                        | pass                         | NA                 | NA                                    | NA                      | NA                   | NA                               |
| Potassium              | К              |                    | mg/kg              | NA                                                                                                              | NA                                          |                                        | NA                           | pass               | pass                                  | pass                    | pass                 | pass                             |
| Pyrene                 | 129-00-0       | 0.0425             |                    | pass                                                                                                            | pass                                        | pass                                   | pass                         | NA                 | NA                                    | NA                      | NA                   | NA                               |
| Sodium                 | Na             |                    | mg/kg              | the second se | NA                                          |                                        | NA                           | pass               | pass                                  | pass                    | pass                 | pass                             |
| Thallium               | TI             | 0.0753             |                    | pass                                                                                                            | pass                                        | pass                                   | pass                         | pass               | pass                                  | pass                    | pass                 | pass                             |
| Uranium                | U              |                    | mg/kg              | pass                                                                                                            | pass                                        | NA                                     | pass                         | pass               | pass                                  | pass                    | pass                 | FAIL                             |
| Vanadium               | V              |                    | mg/kg              | pass                                                                                                            | pass                                        | pass                                   | pass                         | pass               | pass                                  | pass                    | FAIL                 | FAIL                             |
| Zinc                   | Zn             | 51.7               | mg/kg              | pass                                                                                                            | pass                                        | pass                                   | pass                         | FAIL               | pass                                  | pass                    | pass                 | FAIL                             |

#### **Detected Chemicals Form**

page 3 of 5 associated Excel tile: AWD 3233 110118 ws\_050empty.xlsm

evaluation date: 1/18/2011

Non-Potential Haz CAS/ concenunit of wastewater Hazardous Soil LDR Potential Haz U-codes P-codes Symbol tration LDR Potential Haz F-codes Potential Haz K-codes comments Analyte measure Aluminum 4030 mg/kg AI Antimony Sb 0.91 mg/kg pass K161,K021,K177, pass K031, K060, K161, K171, K172, K176, K 0.34 mg/kg 084,K101,K102 Arsenic As Dass Dass Barium Ba 70.5 mg/kg pass pass K001, K035, K141, K142, K144, K145, K 50-32-8 147,K148,K170, U022, Benzo(a)pyrene 0.0144 mg/kg pass pass K001, K035, K141, K142, K143, K144, K 0.0214 mg/kg 147.K148.K170, Benzo(b)fluoranthene 205-99-2 pass pass 0.524 mg/kg Beryllium Be pass pass Bis(2-ethylhexyl)phthalate 117-81-7 0.0797 mg/kg U028, pass pass Calcium Ca 791 mg/kg Chromium Cr 4.96 mg/kg pass K090, pass Chrysene 218-01-9 0.019 mg/kg K001,K035. U050. pass pass 2.28 mg/kg Cobalt Co 6.2 mg/kg Cu Copper 7150 mg/kg Fe Iron K002,K003,K005,K048,K049,K051,K 062.K064,K086,K100,K176,K046,K0 4.73 mg/kg Lead Pb 52,K061,K069, pass pass 555 mg/kg 317 mg/kg Mg Magnesium Mn Manganese F003,U161 codes not Methyl-2-pentanone[4-] 108-10-1 0.0142 mg/kg applicable pass pass Nickel Ni 5.68 mg/kg pass pass Nitrate NO3 0.967 mg/kg Potassium 819 mg/kg K Pyrene Sodium 129-00-0 0.0425 mg/kg pass pass 540 mg/kg Na 0.0753 mg/kg Thallium TI K178. Uranium lυ 0.829 mg/kg Vanadium V 11.2 mg/kg pass pass Zinc Zn 51.7 mg/kg pass pass

SWMU ev 3233 Stockpile Number ev 3233

.

# **Additional Constituents - Chemicals**

Sampling event ID 3233 SWMU ev 3233 Stockpile Number ev 3233 associated Excel file: AWD 3233 110118 ws\_050empty.xlsm evaluation date: 1/18/2011

|             | concentr                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CAS/ Symbol | ation                                                                                                                                                                   | Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MIN (ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MAX (ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MIN. %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MAX. %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| AI          | 4030000                                                                                                                                                                 | ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4030.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1080.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4030.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Sb          | 910                                                                                                                                                                     | ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.910                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.910                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.1E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 50-32-8     | 14.4                                                                                                                                                                    | ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.4E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 205-99-2    | 21.4                                                                                                                                                                    | ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Be          | 524                                                                                                                                                                     | ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.5E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 117-81-7    |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.0E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Ca          | 791000                                                                                                                                                                  | ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 791.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 359.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 791.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.079                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 218-01-9    |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.9E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Co          | 2280                                                                                                                                                                    | ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.845                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.5E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.3E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Cu          |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.730                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.7E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.2E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Fe          |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7150.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5000.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7150.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.715                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Mg          |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 555.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 174.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 555.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Mn          | 317000                                                                                                                                                                  | ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 317.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 137.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 317.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 108-10-1    | 14.2                                                                                                                                                                    | ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.8E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.8E-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.4E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Ni          | 5680                                                                                                                                                                    | ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.0E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.7E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| NO3         | 0.967                                                                                                                                                                   | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.967                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.934                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.967                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.3E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.7E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| К           | 819000                                                                                                                                                                  | ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 819.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 332,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 819.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.082                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 129-00-0    | 42.5                                                                                                                                                                    | ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.3E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Na          | 540000                                                                                                                                                                  | ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 540.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 270.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 540.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| TI          |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.069                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.9E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.5E-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| U           |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.829                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.829                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.8E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.3E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| V           | 11200                                                                                                                                                                   | ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.5E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.1E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Zn          | 51700                                                                                                                                                                   | ug/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 51.700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14.600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 51.700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.5E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5 <u>.2E-03</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|             | AI<br>Sb<br>50-32-8<br>205-99-2<br>Be<br>117-81-7<br>Ca<br>218-01-9<br>Co<br>Cu<br>Cu<br>Fe<br>Mg<br>Mn<br>108-10-1<br>Ni<br>NO3<br>K<br>129-00-0<br>Na<br>TI<br>U<br>V | AI         4030000           Sb         910           50-32-8         14.4           205-99-2         21.4           Be         524           117-81-7         79.7           Ca         791000           218-01-9         19           Co         2280           Cu         6200           Fe         7150000           Mg         555000           Mn         317000           108-10-1         14.2           Ni         5680           NO3         0.967           K         819000           129-00-0         42.5           Na         540000           TI         75.3           U         829           V         11200 | AI       4030000       ug/kg         Sb       910       ug/kg         50-32-8       14.4       ug/kg         205-99-2       21.4       ug/kg         Be       524       ug/kg         117-81-7       79.7       ug/kg         Ca       791000       ug/kg         218-01-9       19       ug/kg         Co       2280       ug/kg         Co       2280       ug/kg         Ga       791000       ug/kg         Co       2280       ug/kg         Gu       6200       ug/kg         Mg       555000       ug/kg         Mg       555000       ug/kg         Ni       5680       ug/kg         Ni       5680       ug/kg         NO3       0.967       mg/kg         K       819000       ug/kg         Na       540000       ug/kg         TI       75.3       ug/kg         V       11200       ug/kg | Al         4030000         ug/kg         4030.000           Sb         910         ug/kg         0.910           50-32-8         14.4         ug/kg         0.014           205-99-2         21.4         ug/kg         0.021           Be         524         ug/kg         0.524           117-81-7         79.7         ug/kg         0.080           Ca         791000         ug/kg         791.000           218-01-9         19         ug/kg         0.019           Co         2280         ug/kg         6.200           Fe         7150000         ug/kg         7150.000           Mg         555000         ug/kg         317.000           108-10-1         14.2         ug/kg         0.014           Ni         5680         ug/kg         0.667           K         819000         ug/kg         5630           NO3         0.967         mg/kg         0.967           K         819000         ug/kg         540.000           129-00-0         42.5         ug/kg         0.043           Na         540000         ug/kg         0.075           U         829 <td< td=""><td>AI         4030000         ug/kg         4030.000         1080.000           Sb         910         ug/kg         0.910         0           50-32-8         14.4         ug/kg         0.014         0           205-99-2         21.4         ug/kg         0.021         0           Be         524         ug/kg         0.524         0.346           117-81-7         79.7         ug/kg         0.019         0           Ca         791000         ug/kg         791.000         359.000           218-01-9         19         ug/kg         0.019         0           Co         2280         ug/kg         6.200         3.730           Fe         7150000         ug/kg         7150.000         5000.000           Mg         555000         ug/kg         317.000         1074.000           Mn         317000         ug/kg         0.014         3.8E-03           Ni         5680         ug/kg         0.967         0.934           K         819000         ug/kg         0.043         0           129-00-0         42.5         ug/kg         0.043         0           Na         540000</td><td>AI         4030000         ug/kg         4030.000         1080.000         4030.000           Sb         910         ug/kg         0.910         0         0.910           50-32-8         14.4         ug/kg         0.014         0         0.014           205-99-2         21.4         ug/kg         0.524         0.346         0.524           117-81-7         79.7         ug/kg         0.080         0         0.080           Ca         791000         ug/kg         791.000         359.000         791.000           218-01-9         19         ug/kg         0.019         0         0.019           Co         2280         ug/kg         6.200         3.730         6.200           Cu         6200         ug/kg         7150.000         5000.000         7150.000           Mg         555000         ug/kg         317.000         137.000         317.000           Ma         317000         ug/kg         0.014         3.8E-03         0.014           Ni         5680         ug/kg         0.967         0.934         0.967           K         819000         ug/kg         0.043         0         0.043</td><td>AI         4030000         ug/kg         4030.000         1080.000         4030.000         0.108           Sb         910         ug/kg         0.910         0         0.910         0           50-32-8         14.4         ug/kg         0.014         0         0.014         0           205-99-2         21.4         ug/kg         0.524         0.346         0.524         3.5E-05           117-81-7         79.7         ug/kg         0.019         0         0.008         0           Ca         791000         ug/kg         791.000         359.000         791.000         0.036           218-01-9         19         ug/kg         0.019         0         0.019         0           Co         2280         ug/kg         2.280         0.845         2.280         8.5E-05           Cu         6200         ug/kg         6.200         3.730         6.200         3.7E-04           Fe         7150000         ug/kg         555.000         174.000         555.000         0.017           Mn         317000         ug/kg         317.000         317.000         0.014         3.8E-07           Ni         5680         ug/kg</td><td>Al         4030000         ug/kg         4030.000         1080.000         4030.000         0.108         0.403           Sb         910         ug/kg         0.910         0         0.910         0         9.10         0         9.1E-05           50-32-8         14.4         ug/kg         0.014         0         0.014         0         9.1E-05           50-32-8         14.4         ug/kg         0.021         0         0.014         0         1.4E-06           205-99-2         21.4         ug/kg         0.021         0         0.021         0         2.1E-06           Be         524         ug/kg         0.080         0         0.080         0         8.0E-05         5.2E-05           117-81-7         79.7         ug/kg         0.900         359.000         791.000         0.036         0.079           213-01-9         19         ug/kg         2.280         0.845         2.280         8.5E-05         2.3E-04           Cu         6200         ug/kg         6.200         3.730         6.200         3.7E-04         6.2E-04           Fe         7150.000         ug/kg         317.000         317.000         0.017         0.056&lt;</td></td<> | AI         4030000         ug/kg         4030.000         1080.000           Sb         910         ug/kg         0.910         0           50-32-8         14.4         ug/kg         0.014         0           205-99-2         21.4         ug/kg         0.021         0           Be         524         ug/kg         0.524         0.346           117-81-7         79.7         ug/kg         0.019         0           Ca         791000         ug/kg         791.000         359.000           218-01-9         19         ug/kg         0.019         0           Co         2280         ug/kg         6.200         3.730           Fe         7150000         ug/kg         7150.000         5000.000           Mg         555000         ug/kg         317.000         1074.000           Mn         317000         ug/kg         0.014         3.8E-03           Ni         5680         ug/kg         0.967         0.934           K         819000         ug/kg         0.043         0           129-00-0         42.5         ug/kg         0.043         0           Na         540000 | AI         4030000         ug/kg         4030.000         1080.000         4030.000           Sb         910         ug/kg         0.910         0         0.910           50-32-8         14.4         ug/kg         0.014         0         0.014           205-99-2         21.4         ug/kg         0.524         0.346         0.524           117-81-7         79.7         ug/kg         0.080         0         0.080           Ca         791000         ug/kg         791.000         359.000         791.000           218-01-9         19         ug/kg         0.019         0         0.019           Co         2280         ug/kg         6.200         3.730         6.200           Cu         6200         ug/kg         7150.000         5000.000         7150.000           Mg         555000         ug/kg         317.000         137.000         317.000           Ma         317000         ug/kg         0.014         3.8E-03         0.014           Ni         5680         ug/kg         0.967         0.934         0.967           K         819000         ug/kg         0.043         0         0.043 | AI         4030000         ug/kg         4030.000         1080.000         4030.000         0.108           Sb         910         ug/kg         0.910         0         0.910         0           50-32-8         14.4         ug/kg         0.014         0         0.014         0           205-99-2         21.4         ug/kg         0.524         0.346         0.524         3.5E-05           117-81-7         79.7         ug/kg         0.019         0         0.008         0           Ca         791000         ug/kg         791.000         359.000         791.000         0.036           218-01-9         19         ug/kg         0.019         0         0.019         0           Co         2280         ug/kg         2.280         0.845         2.280         8.5E-05           Cu         6200         ug/kg         6.200         3.730         6.200         3.7E-04           Fe         7150000         ug/kg         555.000         174.000         555.000         0.017           Mn         317000         ug/kg         317.000         317.000         0.014         3.8E-07           Ni         5680         ug/kg | Al         4030000         ug/kg         4030.000         1080.000         4030.000         0.108         0.403           Sb         910         ug/kg         0.910         0         0.910         0         9.10         0         9.1E-05           50-32-8         14.4         ug/kg         0.014         0         0.014         0         9.1E-05           50-32-8         14.4         ug/kg         0.021         0         0.014         0         1.4E-06           205-99-2         21.4         ug/kg         0.021         0         0.021         0         2.1E-06           Be         524         ug/kg         0.080         0         0.080         0         8.0E-05         5.2E-05           117-81-7         79.7         ug/kg         0.900         359.000         791.000         0.036         0.079           213-01-9         19         ug/kg         2.280         0.845         2.280         8.5E-05         2.3E-04           Cu         6200         ug/kg         6.200         3.730         6.200         3.7E-04         6.2E-04           Fe         7150.000         ug/kg         317.000         317.000         0.017         0.056< |

NOTE 1: This table contains all detected, non D-coded analytes NOTE 2: Highlighted analytes are potentially F-coded TOTAL 0.738

**1.428** % (all analytes from all pages were added for this total

page 3 of 5

Sampling event ID

#### 3233

SWMU ev 3233 Stockpile Number ev 3233

#### SAL and background companies onlie: AWD 3233 110118 ws\_050empty.xlsm evaluation date: 1/18/2011

unit of Indust-Constr. Recrea-Canyon Qbt 1g, measur Residen-OBT2, CAS/ rial Worker QBt concentional Sedi-Qct, tration tial SAL Symbol SAL SAL SAL Soil Analyte ment 3,4 1v Qbo е Bismuth-214 Bi-214 2.46 pCi/g FAIL pass pass pass pass Pb-212 2.46 pCi/g Lead-212 FAIL FAIL pass pass pass Lead-214 Pb-214 2.39 pCi/g pass pass FAIL pass pass Potassium-40 K-40 34.7 pCi/g pass pass FAIL pass pass Radium 226/228 4.88 pCi/g ċalc. FAIL pass pass Radium-226 Ra-226 2.46 pCi/g pass pass pass pass Radium-228 Ra-228 2.42 pCi/g FAIL FAIL pass pass pass pass pass Thallium-208 TI-208 0.664 pCi/g pass pass pass pass pass Thorium-234 Th-234 2.51 pCi/g FAIL FAIL FAIL pass pass Tritium 0.0565 pCi/g H-3 pass pass pass pass pass pass pass pass pass Uranium-234 U-234 2.21 pCi/g pass pass pass pass pass pass FAIL pass pass U-235/236 Uranium-235/236 0.109 pCi/g pass pass pass pass 2.17 pCi/g Uranium-238 U-238 pass pass pass pass FAIL pass pass pass pass Americium-241 Am-241 -0.00522 pCi/g Cerium-139 Ce-139 -0.0224 pCi/g -0.061 pCi/g Cesium-137 Cs-137 Cobalt-60 Co-60 -0.0162 pCi/g Europium-152 Eu-152 -0.1 pCi/g Lanthanum-140 La-140 -0.093 pCi/g 0.00024 pCi/g Hg-203 Mercury-203 Plutonium-238 Pu-238 -0.0024 pCi/g Plutonium-239/240 Pu-239/240 -0.00101 pCi/g -0.502 pCi/g Radium-223 Ra-223 -0.369 pCi/g Ruthenium-106 Ru-106 -0.0724 pCi/g Sodium-22 Na-22 0.00652 pCi/g Strontium-85 Sr-85 -0.0775 pCi/g Strontium-90 Sr-90 -0.0104 pCi/g Thorium-227 Th-227 Thorium-231 Th-231 -0.502 pCi/g Tin-113 Sn-113 -0.0249 pCi/g U-235 0.0509 pCi/g Uranium-235 Yttrium-88 Y-88 -0.0202 pCi/g

3233

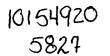
page 3 of 5

SWMU ev 3233 Stockpile Number ev 3233 Radioisotopes a factor I file: AWD 3233 110118 ws\_050empty.xlsm evaluation date: 1/18/2011

| Analyte           | CAS/ Symbol | concen-<br>tration | unit of<br>measure | Qualifier | comments |
|-------------------|-------------|--------------------|--------------------|-----------|----------|
| Bismuth-214       | Bi-214      | 2.46               | pCi/g              | NQ        |          |
| Lead-212          | Pb-212      | 2.46               | pCi/g              | NQ        |          |
| Lead-214          | Pb-214      | 2.39               | pCi/g              | NQ        |          |
| Potassium-40      | K-40        | 34.7               | pCi/g              | NQ        |          |
| Radium 226/228    | calc.       | 4.88               | pCi/g              |           |          |
| Radium-226        | Ra-226      | 2.46               | pCi/g              | NQ        |          |
| Radium-228        | Ra-228      | 2.42               | pCi/g              | NQ        |          |
| Thallium-208      | TI-208      | 0.664              | pCi/g              | NQ        |          |
| Thorium-234       | Th-234      | 2.51               | pCi/g              | NQ        |          |
| Tritium           | H-3         | 0.0564979          | pCi/g              | NQ        |          |
| Uranium-234       | U-234       | 2.21               | pCi/g              | NQ        |          |
| Uranium-235/236   | U-235/236   | 0.109              | pCi/g              | NQ        |          |
| Uranium-238       | U-238       | 2.17               | pCi/g              | NQ        |          |
| Americium-241     | Am-241      | -0.00522           | pCi/g              | U         |          |
| Cerium-139        | Ce-139      | -0.0224            | pCi/g              | U         |          |
| Cesium-137        | Cs-137      | -0,061             | pCi/g              | U         |          |
| Cobalt-60         | Co-60       | -0.0162            | pCi/g              | U         |          |
| Europium-152      | Eu-152      |                    | pCi/g              | U         |          |
| Lanthanum-140     | La-140      | -0.093             |                    | U         |          |
| Mercury-203       | Hg-203      | 0.000237           | pCi/g              | U         |          |
| Plutonium-238     | Pu-238      | -0.0024            | pCi/g              | U         |          |
| Plutonium-239/240 | Pu-239/240  | -0.00101           | pCi/g              | U         |          |
| Radium-223        | Ra-223      | -0.502             | pCi/g              | U         |          |
| Ruthenium-106     | Ru-106      | -0.369             | pCi/g              | U         |          |
| Sodium-22         | Na-22       | -0.0724            | pCi/g              | U         |          |
| Strontium-85      | Sr-85       | 0.00652            | pCi/g              | U         |          |
| Strontium-90      | Sr-90       | -0.0775            | pCi/g              | U         |          |
| Thorium-227       | Th-227      | -0.0104            |                    | U         |          |
| Thorium-231       | Th-231      | -0.502             | pCi/g              | U         |          |
| Tin-113           | Sn-113      | -0.0249            | pCi/g              | U         |          |
| Uranium-235       | U-235       | 0.0509             |                    | U         |          |
| Yttrium-88        | Y-88        | -0.0202            | pCi/g              | U         |          |

#### Additional Constituents - RAD volume of waste: 200 kg assoc

Sampling event ID 3. SWMU ev 3233 Stockpile Number ev 3233 associated Excel file: AWD 3233 110118 ws\_050empty.xlsm evaluation date: 1/18/2011


| Analyte         | CAS/ Symbol | Max<br>Result | Min<br>Result | Unit  | % of total<br>rad from<br>Max<br>values | % of total<br>rad from<br>Min<br>values | Max Total<br>Ci from<br>isotope | Min Total<br>Ci from<br>isotope | comments                       |
|-----------------|-------------|---------------|---------------|-------|-----------------------------------------|-----------------------------------------|---------------------------------|---------------------------------|--------------------------------|
| Bismuth-214     | Bi-214      | 2.460         | 1.650         | pCi/g | 4.50                                    | 4.09                                    | 4.9E-07                         | 3.3E-07                         |                                |
| Lead-212        | Pb-212      | 2.460         | 2.220         | pCi/g | 4.50                                    | 5.50                                    | 4.9E-07                         | 4.4E-07                         |                                |
| Lead-214        | Pb-214      | 2.390         | 2.010         | pCi/g | 4.38                                    | 4.98                                    | 4.8E-07                         | 4.0E-07                         |                                |
| Potassium-40    | K-40        | 34.700        | 28.000        | pCi/g | 63.55                                   | 69.36                                   | 6.9E-06                         | 5.6E-06                         |                                |
| Radium-226      | Ra-226      | 2.460         | 1.650         | pCi/g | 4.50                                    | 4.09                                    | 4.9E-07                         | 3.3E-07                         |                                |
| Radium-228      | Ra-228      | 2.420         | 1.950         | pCi/g | 4.43                                    | 4.83                                    | 4.8E-07                         | 3.9E-07                         |                                |
| Thallium-208    | TI-208      | 0.664         | 0.589         | pCi/g | 1.22                                    | 1.46                                    | 1.3E-07                         | 1.2E-07                         |                                |
| Thorium-234     | Th-234      | 2.510         | 0             | pCi/g | 4.60                                    | 0                                       | 5.0E-07                         | 0                               |                                |
| Tritium         | H-3         | 0.054         | 0.044         | pCi/g | 0.10                                    | 0.11                                    | 1.1E-08                         | 8.8E-09                         |                                |
| Uranium-234     | U-234       | 2.210         | 1.060         | pCi/g | 4.05                                    | 2.63                                    | 4.4E-07                         | 2.1E-07                         |                                |
| Uranium-235/236 | U-235/236   | 0.109         | 0.056         | pCi/g | 0.20                                    | 0.14                                    | 2.2E-08                         | 1.1E-08                         |                                |
| Uranium-238     | U-238       | 2.170         | 1.140         | pCi/g | 3.97                                    | 2.82                                    | 4.3E-07                         | 2.3E-07                         |                                |
|                 | TOTAL       | 54.61         | 40.37         |       | 100.0                                   | 100.0                                   | 1.1E-05                         | 8.1E-06                         | all detected isotopes from all |

NOTE 1: This table contains all detected radioisotopes

pages were added for this total

NOTE 2: If only one detected result exist, 0 is listed as minimum, if more than one detect exist, lowest detect is listed as minimum.

3233



Water Quality and RCRA Group Los Alamos National Laboratory

### **Request for Land Application of Drill Cuttings Form**

| ENV-RCRA must approve any deviation(s) from this request prior to lan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | d application.                   |            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------|
| Date: <u>1</u> <u>24</u> / <u>11</u> Project: <u>MDA C Phase</u> , <u>TI</u><br>Location of Land Application: <u>TA: 50(SWN</u><br>Estimated Quantity: <u>3</u> / <u>0</u> <u>4</u> / <u>3</u> (cubic feet or tons)<br>Composition (e.g., 98% tuff and 2% quick gel, etc.): <u>10070</u> <u>5011</u><br>Proposed Method of Land Application (describe): <u>111 be</u> <u>Jand Application</u> (describe): <u>111 be</u> <u>Jand Application</u> (describe): <u>10070</u> <u>5011</u><br>Within <u>400</u> <u>A01007</u> <u>40050</u> <u>1017</u> , <u>400</u> <u>40050</u> <u>1017</u> , <u>400</u> | nu 50-0                          | 109)<br>-  |
| Decision Tree—Decision Point Evaluation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                  |            |
| The following questions require yes or no answers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Yes                              | No         |
| 1. D1: Is existing characterization data consistent with WCSF? Attach a summary table of results, validated raw data, etc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  |            |
| 2. D2: Do drill cuttings contain RCRA Hazardous Waste or Hazard constituents above RCRA limits? If yes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                  |            |
| Has a Due Diligence been conducted for this waste? Attach a copy of the due diligence documentation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Π                                |            |
| Has a No Longer Contained In been approved for this waste? Attach a copy of the No Longer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |            |
| Contained In approval.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  | Ľ          |
| 3. D6: Do drill cuttings meet the 5 criteria in D6, Attachment 1?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  | <u> </u>   |
| 4. Do drill cuttings meeting the criteria in the Radiological Decision Tree, Attachment 3?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\mathbf{V}$                     |            |
| Generator or Project Leader Certification: I certify that the drill cuttings described in this request application per the Decision Tree and that the drill cuttings will be land applied as described.<br>SHOMAN FURC Signature Title                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | est meet the crit<br>Ə ( H<br>Da | <u>   </u> |
| ENV-RCRA Review (below):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |            |
| Does request provide all the required information, and do the drill cuttings meet all the criteria f<br>Yes No Note deficiency in the space provided:<br>Metals are below background; Due Diligence for the second of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | or land applicat                 | tion?      |
| ENV-RCRA Reviewer Name (Print) ENVITION (74) An Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Date                             | 2/28/11    |

///////

Package Expiration Date: 5/28/11

Water Quality and RCRA Group Los Alamos National Laboratory

ENV-RCRA-QP-011.2 Attachment 4, Page 1 of 1

#### **Post Land Application Field Certification Sheet**

| Date(s) of land application: 3/2/11 Project: MDA C ThasLIL                                    |         |
|-----------------------------------------------------------------------------------------------|---------|
| Location of land application: Within project feetphint TA: 50 CSWM                            | u 50009 |
| EX-ID Number: $10\chi - 0815 - 50$ EX-ID Expiration Date: $412201$                            |         |
| Please explain any deviations from original application (Attachment 2) in the space provided: |         |
|                                                                                               |         |
|                                                                                               |         |

Note: ENV-RCRA must approve any deviations from Attachment 2 prior to land application.

Generator or Project Leader Certification (below):

I certify that

- land application complied with the requirements of this procedure (ENV-RCRA-SOP-011.1),
- no free liquids were applied during land application,
- an inspection was conducted to ensure the requirements in Attachment 2 of this procedure was met, and
- the land application of drill cuttings complied with the excavation permit.

Koy Bohn Name (Print)

Hog Sch Signature

Title

Date

#### Solid Waste Evaluation

page 1 of 5

SWMU ev 3233.2089.2097 Stockpile Number ev 3233.2089.2097 Summary Excel file: ev3233.2089.2097.awd.2.23.2011(1).xlsm evaluation date: 2/23/2011

| RCRA                                                                                                                                         |                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| 33 analytes pass<br>between these 31 analytes pass as undetec<br>10 analytes fail                                                            | xted                                                                     |
| Detects                                                                                                                                      |                                                                          |
| Total PCB (ppm)                                                                                                                              | Not analy:                                                               |
| 3 analytes with potential F-code<br>3 analytes with potential K-code<br>1 analytes with potential U-code<br>0 analytes with potential P-code | Non-wastewater LDR: 10 pass 0 FAIL<br>Hazardous soil LDR: 10 pass 0 FAIL |
| Residential Soil (mg/kg):<br>Industrial/ Occupational Soil (mg/kg):                                                                          | 16 pass 0 FAIL                                                           |
| Construction Worker Soil (mg/kg):<br>Recreational Soil (mg/kg):<br>soil background:                                                          | 16 pass 0 FAIL                                                           |
| Canyon Sediment background:<br>Qbt 2,3,4 background:<br>Qbt 1v background:                                                                   | 19 pass 0 FAIL<br>19 pass <u>0 FAIL</u>                                  |
| Qbt 1g, Qct,Qbo background:                                                                                                                  |                                                                          |
| RAD total dose:                                                                                                                              | 0.7200 mRem/year                                                         |
| analysed for H-3                                                                                                                             |                                                                          |
| analysed for Pu-239<br>32 isotopes,                                                                                                          | 10 were detected                                                         |
|                                                                                                                                              | 21 undetected                                                            |
|                                                                                                                                              | 0 FAIL<br>0 FAIL                                                         |
| ······································                                                                                                       | 0 FAIL                                                                   |
| Recrea-tional SAL: 5 pass                                                                                                                    | 0 FAIL                                                                   |
|                                                                                                                                              | 3 FAIL                                                                   |
|                                                                                                                                              | 3 FAIL<br>5 FAIL                                                         |
|                                                                                                                                              | 0 FAIL                                                                   |
| Qbt 1g, Qct, Qbo: 9 pass                                                                                                                     | 0 FAIL                                                                   |
|                                                                                                                                              |                                                                          |

Remark: The Evaluator may overwrite any result of automatic evaluation, but a short written explanation must be added

| associated duplicate |                            |
|----------------------|----------------------------|
| associated blanks    | ST50-11-2089 WST50-11-2097 |
| Sample ID            | WST50-11-2089              |



3233

#### **Detected Chemicals Form**

SWMU ev 3233,2089,2097 Stockpile Number ev 3233.2089.2097

associated Excel file: ev3233.2089.2097.awd.2.23.2011(1).xism evaluation date: 2/23/2011

|                            |             |         |         | Non-       |           |                       |                                                                                                   |                       |               |          |
|----------------------------|-------------|---------|---------|------------|-----------|-----------------------|---------------------------------------------------------------------------------------------------|-----------------------|---------------|----------|
|                            |             | concen- | unit of | wastewater | Hazardous |                       |                                                                                                   | <b>-</b>              | Potential Haz |          |
| Analyte                    | CAS/ Symbol | tration | measure | LDR        | Soil LDR  | Potential Haz F-codes | Potential Haz K-codes                                                                             | Potential Haz U-codes | P-codes       | comments |
| Aluminum                   | Al          | 1680    | mg/kg   |            |           |                       |                                                                                                   |                       |               |          |
| Antimony                   | Sb          | 0.399   | mg/kg   | pass       | pass      |                       | K161,K021,K177,                                                                                   |                       |               |          |
|                            | Ba          |         |         | pass       | pass      |                       |                                                                                                   | -                     |               |          |
| Beryllium                  | Be          | 0.158   | mg/kg   | pass       | pass      |                       |                                                                                                   |                       |               |          |
| Bis(2-ethylhexyl)phthalate | 117-81-7    | 0.0869  | mg/kg   | pass       | pass      |                       |                                                                                                   | U028,                 |               |          |
| Calcium                    | Ca          |         | mg/kg   |            |           |                       |                                                                                                   |                       |               |          |
| Chromium                   | Cr          | 4.69    |         | pass       | pass      |                       | K090,                                                                                             |                       |               |          |
| Cobalt                     | Co          | 1.06    | mg/kg   |            |           |                       |                                                                                                   |                       |               |          |
| Copper                     | Cu          | 3.97    | mg/kg   |            |           |                       |                                                                                                   |                       |               |          |
| Iron                       | Fe          | 4230    | mg/kg   |            |           |                       |                                                                                                   |                       |               |          |
| Lead                       | Pb _        |         |         | pass       | pass      |                       | K002, K003, K005, K048, K049, K051, K<br>052, K064, K066, K100, K176, K046, K0<br>52, K061, K069, |                       |               |          |
| Magnesium                  | Mg          |         | mg/kg   |            |           |                       |                                                                                                   |                       |               |          |
|                            | Mn          |         | mg/kg   |            |           |                       |                                                                                                   |                       |               |          |
| Nickel                     | Ni          | 3.47    | mg/kg   | pass       | pass      |                       |                                                                                                   |                       |               |          |
| Potassium                  | к           |         | mg/kg   |            |           |                       |                                                                                                   |                       |               |          |
| Silver                     | Ag          | 0.144   | mg/kg   | pass       | pass      |                       |                                                                                                   |                       |               |          |
| Sodium                     | Na          |         | mg/kg   |            |           |                       |                                                                                                   |                       |               |          |
| Uranium                    | U           | 0.16    | mg/kg   |            |           |                       |                                                                                                   |                       |               |          |
| Vanadium                   | V           | 7.02    | mg/kg   | pass       | pass      |                       |                                                                                                   |                       |               |          |
| Zinc                       | Zn          | 9.75    | mg/kg   | pass       | pass      |                       |                                                                                                   |                       |               |          |

page 3 of 5

# Detected Chemicals: SSL and Background check

| Analyte                    | CAS/ Symbol | concen-<br>tration | unit of<br>measure | Residential<br>Soil (mg/kg) | Industrial/<br>Occupational<br>Soil (mg/kg) | Construction<br>Worker Soil<br>(mg/kg) | Recreational<br>Soil (mg/kg) | soil<br>background | Canyon<br>Sediment<br>background | Qbt 2,3,4<br>background | Qbt 1v<br>background | Qbt 1g,<br>Qct,Qbo<br>background |
|----------------------------|-------------|--------------------|--------------------|-----------------------------|---------------------------------------------|----------------------------------------|------------------------------|--------------------|----------------------------------|-------------------------|----------------------|----------------------------------|
| Aluminum                   | Al          | 1680               | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | pass                 | pass                             |
| Antimony                   | Sb          | 0.399              | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | pass                 | pass                             |
| Barium                     | Ва          | 16.1               | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | pass                 | pass                             |
| Beryllium                  | Be          | 0.158              | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | pass                 | pass                             |
| Bis(2-ethylhexyl)phthalate | 117-81-7    | 0.0869             | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | NA                 | NA                               | NA                      | NA                   | NA                               |
| Calcium                    | Ca          | 1350               | mg/kg              | NA                          | NA                                          | NA                                     | NA                           | pass               | pass                             | pass                    | pass                 | pass                             |
| Chromium                   | Cr          | 4.69               | mg/kg              | pass                        | pass                                        | NA                                     | pass                         | pass               | pass                             | pass                    | FAIL                 | FAIL                             |
| Cobalt                     | Co          | 1.06               | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | pass                 | pass                             |
| Copper                     | Cu          | 3.97               | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | FAIL                 | FAIL                             |
| Iron                       | Fe          | 4230               | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | pass                 | FAIL                             |
| Lead                       | РЬ          | 4.42               | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | pass                 | pass                             |
| Magnesium                  | Mg          |                    |                    | NA                          | NA                                          | NA                                     | NA                           | pass               | pass                             | pass                    | pass                 | pass                             |
| Manganese                  | Mn          |                    | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | pass                 | pass                             |
| Nickel                     | Ni          | 3.47               | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | FAIL                 | FAIL                             |
| Potassium                  | K           | 345                | mg/kg              | NA                          | NA                                          | NA                                     | NA                           | pass               | pass                             | pass                    | pass                 | pass                             |
| Silver                     | Ag          |                    |                    | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | pass                 | pass                             |
| Sodium                     | Na          | 416                | mg/kg              | NA                          | NA                                          | NA                                     | NA                           | pass               | pass                             | pass                    | pass                 | pass                             |
| Uranium                    | U           | 0.16               | mg/kg              | pass                        | pass                                        | NA                                     | pass                         | pass               | pass                             | pass                    | pass                 | pass                             |
| Vanadium                   | V           |                    |                    | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | FAIL                 | FAIL                             |
| Zinc                       | Zn          | 9.75               | mg/kg              | pass                        | pass                                        | pass                                   | pass                         | pass               | pass                             | pass                    | pass                 | pass                             |

page 3 of 5

Sampling event ID

#### SAL and background comparisonev3233.2089.2097.awd.2.23.2011(1).xism evaluation date: 2/23/2011

SWMU ev 3233.2089.2097 Stockpile Number ev 3233.2089.2097

3233

| l   |                   | CAS/       | concen-  | unit of<br>measur | Residen-  | Indust-<br>rial | Constr.<br>Worker | Recrea-<br>tional |           | Canyon<br>Sedi- | QBT2,        | QBt       | Qbt 1g,<br>Qct. |
|-----|-------------------|------------|----------|-------------------|-----------|-----------------|-------------------|-------------------|-----------|-----------------|--------------|-----------|-----------------|
|     | Analyte           | Symbol     | tration  | e                 | tial SAL  | SAL             | SAL               | SAL               | Soil      | ment            | 3,4          | 1v        | Qbo             |
|     | Bismuth-214       | Bi-214     | 2.09     | pCi/g             | $\vee$    |                 | $\sim$            | $\sim$            | pass      | pass            | FAIL         | pass      | pass            |
| NA  | Lead-212          | Pb-212     |          | pCi/g             |           | $\sim$          | $\sim$            |                   |           | FAIL            | pass         | pass      | pass            |
| NA  |                   | Pb-214     |          | pCi/g             |           | $\sim$          |                   |                   | FAIL      | FAIL            | FAIL         | pass      | pass            |
| pro | Potassium-40      | K-40       |          | pCi/g             |           | $\sim$          |                   |                   | pass      | pass            | pass         | pass      | pass            |
|     | Radium 226/228    | calc.      | 4.23     | pCi/g             | /         | $\sim$          | $\sim$            |                   |           | $\sim$          |              | $\vee$    | $\backslash$    |
|     | Radium-226        | Ra-226     | 2.09     | pCi/g             | $\vee$    | $\backslash$    | pass              | pass              | pass      | pass            | FAIL         | pass      | pass            |
|     | Radium-228        | Ra-228     | 2.14     | pCi/g             |           | $\backslash$    | pass              | pass              | pass      | pass            | pass         | pass      | pass            |
|     | Thallium-208      | TI-208     | 0.697    | pCi/g             |           |                 |                   |                   | pass      | pass            | pass         | pass      | pass            |
|     | Uranium-234       | U-234      | 2.23     | pCi/g             | pass      | pass            | pass              | pass              | pass      | pass            | FAIL         | pass      | pass            |
|     | Uranium-235/236   | U-235/236  | 0.131    |                   | pass      | pass            | pass              | pass              | $\geq$    | $\backslash$    | $\backslash$ |           |                 |
|     | Uranium-238       | U-238      |          | pCi/g             | pass      | pass            | pass              | pass              | FAIL      | FAIL            | FAIL         | pass      | pass            |
|     | Americium-241     | Am-241     | 0.00128  | pCi/g             |           | /               | $\square$         |                   |           | /               | /            | Ζ         |                 |
|     | Cerium-139        | Ce-139     | 0.00183  | pCi/g             |           | /               |                   |                   | /         |                 | /            | /         | /               |
|     | Cesium-137        | Cs-137     | -0.051   | pCi/g             | /         | /               |                   | /                 | /         | /               | /            | /         | /               |
|     | Cobalt-60         | Co-60      | 0.0268   | pCi/g             |           | /               |                   |                   | /         | /               | /            | /         |                 |
|     | Europium-152      | Eu-152     | 0.0137   | pCi/g             | /         | /               |                   | /                 | /         |                 | /            | /         | /               |
|     | Lanthanum-140     | La-140     | -0.092   | pCi/g             | /         |                 |                   | /                 | $\langle$ |                 | /            | /         | /               |
|     | Mercury-203       | Hg-203     | 0.0298   |                   |           | /               |                   |                   | /         |                 | /            |           |                 |
|     | Plutonium-238     | Pu-238     | -0.00479 | pCi/g             | /         |                 |                   |                   |           |                 |              | /         | /               |
|     | Plutonium-239/240 | Pu-239/240 | -0.00958 | pCi/g             |           | /               |                   |                   | /         |                 |              |           |                 |
|     | Radium-223        | Ra-223     | -0.00246 | pCi/g             |           |                 |                   |                   | /         |                 | /            | /         |                 |
|     | Ruthenium-106     | Ru-106     | -0.00485 |                   |           | /               |                   |                   | /         |                 | $\geq$       | $\sum$    | $\backslash$    |
|     | Sodium-22         | Na-22      | -0.00266 |                   |           |                 |                   |                   | $\square$ |                 |              |           | $\backslash$    |
|     | Strontium-85      | Sr-85      | 0.0744   |                   |           |                 |                   |                   | $\geq$    |                 |              | $\sum$    | $\backslash$    |
|     | Strontium-90      | Sr-90      | 0.00257  |                   |           |                 |                   |                   | $\sum$    |                 |              | $\square$ |                 |
|     | Thorium-227       | Th-227     | 0.179    |                   |           |                 |                   |                   | $\geq$    |                 |              |           |                 |
|     | Thorium-231       | Th-231     | -0.00246 |                   |           |                 |                   |                   | $\geq$    |                 |              | $\geq$    | $\backslash$    |
|     | Thorium-234       | Th-234     |          | pCi/g             |           |                 |                   |                   |           |                 |              | $\geq$    | $\sum$          |
|     | Tin-113           | Sn-113     | 0.0282   |                   |           |                 |                   |                   | $\geq$    |                 |              | $\geq$    |                 |
|     | Tritium           | H-3        | 0.00777  |                   | $\square$ |                 |                   |                   | $ \geq $  |                 |              |           |                 |
| 1   | Uranium-235       | U-235      | -0.00967 |                   |           |                 |                   |                   |           |                 |              |           |                 |
|     | Yttrium-88        | Y-88       | -0.00098 | pCi/g             |           | $\sim$          |                   |                   |           |                 | $\geq$       |           | /               |

 $U^{238}$  2.32 - 2.29 = 0.03  $\angle$  140 OR for land app.

#### Due Diligence for Waste Drill Cuttings from Boreholes 50-24817, 50-24820, 50-24821, 50-603061, 50-603062, 50-603063, and 50-603064 July 2008

Table 1 shows the detected concentrations of potentially listed organic chemicals in drill cuttings from six boreholes at MDA C, SWMU 50-009. The nine detected compounds—acetone, bis(2-ethyhexyl)phthalate, 2-butanone, di-n-butylphthalate, Endrin, fluoranthene, heptachlor (and some of its isomers), 4-methyl-2-pentanone, and methylene chloride—could cause the drill cuttings to be listed hazardous waste if they originated from listed sources. Additional detected organic chemicals that are not listed waste, and are not included in Table 1, include Aroclor-1242, Aroclor-1260, benzoic acid, TPH-DRO, and TPH-DRO. All were detected at very low or trace concentrations.

- Acetone is a listed waste (F003 or U002) if the source was an unused/unspent material that was disposed of or if present in concentrations such that it is ignitable. The single detected concentration of acetone is 0.0033 mg/kg, far below ignitable concentrations. Therefore, the waste is not listed for acetone.
- Bis(2-ethylhexyl)phthalate is a listed waste (U028) if the source was an unused/unspent material that was disposed of or spilled.
- 2-Butanone is a listed waste (P045, U159, U160) if it was an unused/unspent product that was disposed of or spilled.
- Di-n-butyl phthalate is a listed waste (U069) if the source was an unused/unspent product that was disposed of or spilled.
- Endrin is a listed waste (D012) if its concentration exceeds the regulatory limit for TCLP analysis. The single detected concentration (0.000219 mg/L) does not exceed the regulatory limit of 0.02 ppm, and therefore this waste is not D-listed for Endrin. Endrin is P-listed (P051) if disposed of or spilled as an unused/unspent product.
- Fluoranthene is a listed waste if present as bottom sediment sludge from the treatment of wastewaters from wood preserving processes that use creosote and/or pentachlorophenol (K001) or wastewater treatment sludges generated in the production of creosote (K035). There are no records of these operations occurring at LANL; therefore this waste is not considered K-listed for fluoranthene. Fluoranthene is also listed (U120) if it was an unused/unspent product that was disposed of or spilled.
- Heptachlors are listed wastes (D031) if its concentration exceeds the regulatory limit for TCLP analysis. The single detected concentration of 0.000101 mg/L does not exceed the regulatory limit of 0.008 ppm; therefore this waste is not D-listed for heptachlor. Heptachlors are P-listed waste (P059) if disposed of or spilled as an unused/unspent product.
- 4-Methyl-2-pentanone is a listed waste (U161) if it was an unused product that was disposed of or spilled and is present in concentrations such that it is ignitable. The maximum detected concentration of 4-methyl-2-pentanone was 0.00194 mg/kg, which is below the ignitable concentration. Therefore, this waste is not listed for 4-methyl-2-pentanone.

• Methylene chloride is a listed waste if its source was spent solvents (F001 and/or F002) or if its source was unused/unspent material that was disposed or spilled (U080).

If the detected organic compounds do not meet the specific criteria listed but the waste exhibits hazardous characteristics (toxicity, ignitability, corrosivity, or reactivity), the waste should be considered hazardous waste.

This due diligence is based on the guidance provided by the Environmental Protection Agency's (EPA's) <u>Management of Remediation Waste under RCRA (EPA 530-F-98-026)</u>, Determination of When Contamination is caused by Listed Hazardous Waste, which states:

Where a facility owner/operator makes a good faith effort to determine if a material is a listed hazardous waste but cannot make such a determination because documentation regarding a source of contamination, contaminant, or waste is unavailable or inconclusive, EPA has stated that one may assume the source, contaminant or waste is not listed hazardous waste and, therefore, provided the material in question does not exhibit a characteristic of hazardous waste, RCRA requirements do not apply.

Following is a summary of the good faith effort LANL undertook to determine whether the detected organic compounds were from listed sources.

Figure 1 shows the approximate locations of boreholes 50-603061, 50-603063, and 50-603064 and surrounding SWMUs/AOCs. The SWMUs/AOCs in the vicinity are 50-001(b), 50-002(a), 50-003(b), 50-003(c), Consolidated Unit 50-004(a)-00, 50-006(a), 50-006(d), 50-011(a), and 50-009 (MDA C). SWMUs 50-003(b) and 50-003(c) have been approved for No Further Action, and are therefore not considered sources of contamination.

Figure 2 shows the approximate locations of boreholes 50-24820, 50-24821, and 50-603062 and surrounding SWMUs/AOCs. The SWMUs/AOCs in the vicinity of the three boreholes are 63-001(a), 63-001(b), 52-002(e), and 50-009 (MDA C). SWMU 52-002(e) is not discussed because it was a duplicate of SWMU 63-001(a).

Evaluations of whether each SWMU/AOC is a source of listed contaminants that may have contaminated the drill cuttings from the six boreholes addressed in this assessment are attached (Attachment 1). The only nearby PRS with solvent and other chemical disposal is MDA C (SWMU 05-009). MDA C has been extensively studied but, as documented in Attachment 1, there is no evidence that transport of contaminants from MDA C impacted boreholes the boreholes addressed in this assessment. The area north of MDA C (vicinity of boreholes 50-603061, 50-603063, and 50-603064) is also crossed by lines that carry waste to the Radioactive Waste Liquid Treatment Facility (RLWTF) and treated water to outfalls. The RLWTF does not currently accept listed waste and there is no documentation that it accepted liquid wastes in the past. Based on the reviews of existing documentation identified for each PRS in Attachment 1, there is no evidence that boreholes 50-24820, 50-24821, 50-603061, 50-603063, and 50-603064 were contaminated with listed wastes.

The detected concentrations of the contaminants are extremely low, and the drill cuttings are not classified as characteristic waste because of the detected organic compounds nor any other constituents. Because the waste is not characteristic and is not listed, it need not be managed as hazardous waste.

.

.

| Location ID                      | Sample ID                              | Waste<br>Bin No. | SWMU(s) evaluated                                                      | Acetone  | Bis(2-ethythexyl)phthalate | 2-Butanonë | Di-n-buty (phthatate | Fluoranthene | Heptachlor | 4-Methyl-2-pentanone | Methylane chloride |
|----------------------------------|----------------------------------------|------------------|------------------------------------------------------------------------|----------|----------------------------|------------|----------------------|--------------|------------|----------------------|--------------------|
| 50-24817                         | MD50-08-11823                          | 5797             | 50-001(b), 50-004(a)-00,<br>50-002(a), 50-009                          |          | _                          | _          | _                    | _            | —          | —                    | 0.00286            |
| 50-24817<br>50-24820             | MD50-08-11824                          | 5624             | 50-001(b), 50-004(a)-00,<br>50-002(a), 50-009                          | -        | - <u>-</u>                 | 0.00288    | _                    | _            | -          | 0.00194              | 0.00328            |
| 50-24820<br>50-24821             | MD50-08-11801                          | 5829             | 50-009                                                                 | 0.0033   | -                          | -          | -                    | _            | _          | _                    | -                  |
| 50-24820<br>50-24821             | MD50-08-11802                          | 5829             | 50-009                                                                 |          | 0.079                      | -          | -                    | _            | _          | _                    | _                  |
| 50-24820<br>50-24821             | MD50-08-11814                          | 5836             | 50-009                                                                 | -        | 0.468                      |            | —                    | -            | _          | _                    | _                  |
| 50-24820<br>50-24821             | MD50-08-11816                          | 5836             | 50-009                                                                 | _        |                            |            | _                    | —            | 0.000101   | -                    | -                  |
| 50-24820<br>50-24821             | MD50-08-11817                          | 5836             | 50-009                                                                 | -        | _                          |            | _                    | 0.0188       | _          | <b>—</b>             | _                  |
| 50-603061                        | MD50-08-11821                          | 5787             | 50-001(b), 50-002(a),<br>50-006(d), 50-009,<br>50-011(a)               | -        | 0.122                      | -          | _                    | _            | -          | _                    | 0.00227            |
| 50-603063                        | MD50-08-11822                          | 5799             | 50-001(b), 50-002(a),<br>50-004(a)-00, 50-006(d),<br>50-009, 50-011(a) | _        | _                          | _          | -                    | 0.0148       | _          | _                    | 0.00331            |
| 50-603062<br>50-603064           | MD50-08-11811                          | 5835             | 50-001(b), 50-002(a),<br>50-006(a), 50-009,<br>63-001(a), 63-001(b)    | _        | _                          | -          | 0.0342               |              | -          | -                    | _                  |
| All concentration — Indicates an | ons in mg/kg.<br>alyte was not detecte | d                |                                                                        | <u>.</u> |                            |            |                      |              |            |                      |                    |

## Table 1. Organic Compound Detections in MDA C Waste Samples

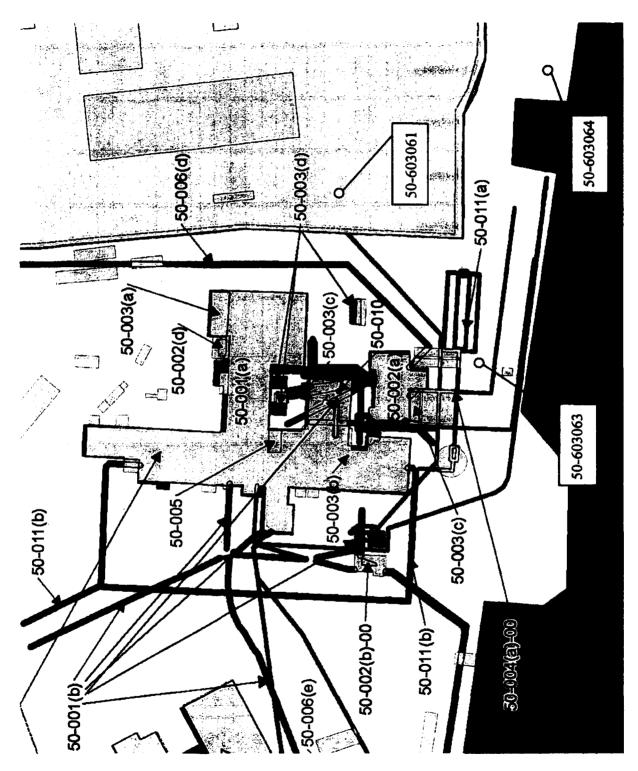



Figure 1. Approximate locations of boreholes 50-603061, 50-603063, and 50-603064 and surrounding SWMUs/AOCs

July 2008

Due Diligence Assessment for MDA C Boreholes Page 5 of 17

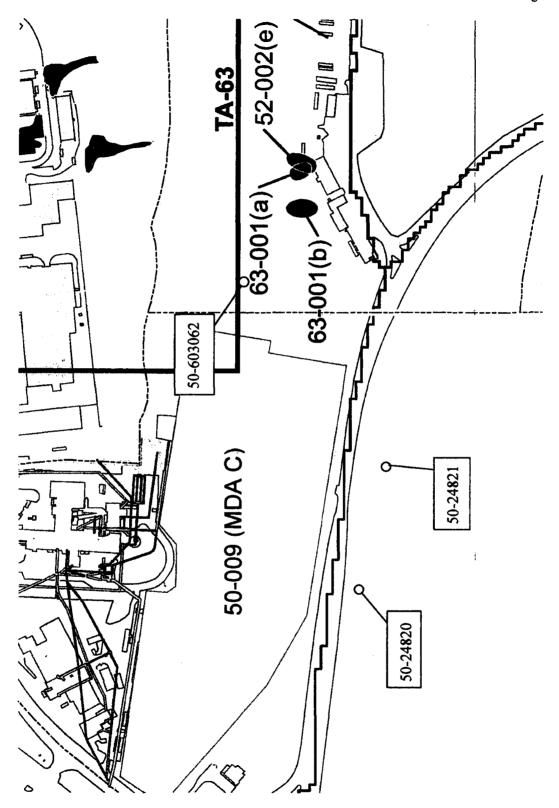



Figure 2. Approximate locations of boreholes 50-24820, 50-24821, and 50-603062 and surrounding SWMUs/AOCs

July 2008

Due Diligence Assessment for MDA C Boreholes Page 6 of 17

# **ATTACHMENT 1**

4

# Potential Release Site Due Diligence Summary for Potentially Listed Organic Compounds at SWMU 50-001(b)

| PRS Numbe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | r: 50-001(b)                                                                                                                                                                                             |                                                                                                                                                    |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Discharge, Spill, or Disposal of: Yes No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                          |                                                                                                                                                    |  |  |  |  |  |
| F-listed wastes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                          | X                                                                                                                                                  |  |  |  |  |  |
| U- or P-listed wastes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                          | X                                                                                                                                                  |  |  |  |  |  |
| PRS De                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | scription                                                                                                                                                                                                | ·                                                                                                                                                  |  |  |  |  |  |
| AOC 50-001(b) is the active underground drainline system, including manholes, through which liquid waste is transferred to the RLWTF (Building 50-1) at TA-50. A manhole (structure 50-0072) is the central collection area for most incoming liquid waste. Three lines feed into the manhole. According to the 1990 SWMU report, there was some concern about contamination from the waste lines carrying TA-55 effluent because the original vacuum seals had lost their integrity. However, the drip pans never collected fluid that showed the inner lines were leaking. The area where the lines run into Building 50-1 and the area west and north of the tank farm (Building 50-2) were sampled in August 1990. Sample results showed no radionuclides above BVs. Samples were collected at 7 locations (surface and to 91.5 ft bgs at one location) in 2001 and 2005. Methylene chloride was detected in one surface sample, but was below the EQL. No other potentially listed compounds were detected. |                                                                                                                                                                                                          |                                                                                                                                                    |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s Reviewed                                                                                                                                                                                               |                                                                                                                                                    |  |  |  |  |  |
| <ul> <li>Solid Waste Management Units Report, Volu<br/>1990, 07513</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                          | gh TA-50), October                                                                                                                                 |  |  |  |  |  |
| • RFI Work Plan for Operable Unit 1147, May                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1992, 07672                                                                                                                                                                                              |                                                                                                                                                    |  |  |  |  |  |
| <ul> <li>Historical Investigation Report for Upper Mo<br/>2007, 98955, pp. 40–42</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                          | te Area, November                                                                                                                                  |  |  |  |  |  |
| <ul> <li>Investigation Work Plan for Upper Mortandae<br/>100750, pp. 50-52</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | d Canyon Aggregate Area                                                                                                                                                                                  | , November 2007,                                                                                                                                   |  |  |  |  |  |
| • Liquid Release Notifications, Los Alamos Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tional Laboratory, April                                                                                                                                                                                 | 990-June 2008                                                                                                                                      |  |  |  |  |  |
| • PRS Database (http://erinternal.lanl.gov/PRS/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (PRSMain.asp)                                                                                                                                                                                            |                                                                                                                                                    |  |  |  |  |  |
| • Holly Wheeler-Benson, personal communicat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tion, July 22, 2008                                                                                                                                                                                      |                                                                                                                                                    |  |  |  |  |  |
| Summary of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Listed Status                                                                                                                                                                                            |                                                                                                                                                    |  |  |  |  |  |
| There was no documentation that F-, U-, or P-lis<br>these RLW lines. According to the HIR, methyle<br>documentation that it was discharged to the RLW<br>and the RLWTF does not accept listed wastes (se<br>detected concentration was below the EQL, so th<br>characteristics. The other potentially listed comp<br>50-24817, 50-603061, 50-603063, and 50-60303<br>di-n-butylphthalate, fluoranthene) were not detect<br>SWMU 50-001(b) is not considered a source of I<br>in this assessment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | the chloride was detected,<br>V as a solvent or as an unu-<br>te the LANL Waste Acce<br>te material would not exhi-<br>ounds detected in cuttings<br>4 (bis[2-ethylhexyl]phtha<br>ted at SWMU 50-001(b). | but there is no<br>used/unspent product,<br>ptance Criteria). The<br>ibit hazardous<br>s from locations<br>late, 2-butanone,<br>For these reasons, |  |  |  |  |  |

#### Potential Release Site Due Diligence Summary for Potentially Listed Organic Compounds at SWMU 50-002(a)

| PRS Numb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | er: 50-002(a)                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Discharge, Spill, or Disposal of:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Yes                                                                                                                                                                                                                                                                                                                                                                                                                      | No                                                                                                                                                                                                                                                                                                                                                                        |
| F-listed wastes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                          | X                                                                                                                                                                                                                                                                                                                                                                         |
| U- or P-listed wastes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                          | x                                                                                                                                                                                                                                                                                                                                                                         |
| PRS D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | escription                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                           |
| SWMU 50-002(a) consists of an underground, n<br>houses an equipment room, six flow-through pr<br>which are associated with the TA-50 RLWTF (J<br>(Building 50-2) through a system of transfer lin<br>(including lines 55 and 67) connecting the RLW<br>vault (Building 50-2); four steel lines added in 1<br>in Building 50-2; five cast iron lines from drain<br>sink in the former vehicle-decontamination bay<br>Building 50-2; an influent line connecting Build<br>50-90); and an effluent line connecting build<br>in the Building 50-2 vault. In 1990, the integrity<br>tied from the vault to Building 50-1 were check<br>September 1974, two separate, unintended oper<br>sump in Building 50-2. Both releases caused un<br>55 and 67 (the waste lines for treated effluent) a<br>Canyon [see SWMU 50-006(a)]. | occess tanks, and several v<br>Building 50-1). Wastes and<br>es. Waste transfer lines in<br>/TF (Building 50-1) to the<br>1984 to connect Room 61<br>in Building 50-1 and or<br>in Building 50-1 to the fit<br>ling 50-2 to a 100,000-gat<br>tank 50-90 to one of the<br>y of the Building 50-2 tan<br>ed, and no leaks were for<br>ational releases occurred<br>treated wastewater to be<br>and into the outfall area a | waste-transfer lines, all of<br>re transported to the vault<br>include six cast-iron lines<br>the equipment room in the<br>to the equipment room<br>he cast-iron line from a<br>former D&D tank in<br>al. holding tank (structure<br>25,000-gal. influent tanks<br>the vault and the pipelines<br>and. In July and<br>from the overflow of a<br>discharged to waste lines |
| Documen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ts Reviewed                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                           |
| <ul> <li>Solid Waste Management Units Report, Vol<br/>1990, 007513</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ume II of IV (TA-26 thro                                                                                                                                                                                                                                                                                                                                                                                                 | ough TA-50), October                                                                                                                                                                                                                                                                                                                                                      |
| • RFI Work Plan for Operable Unit 1147, May                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | y 1992, 007672                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                           |

- Historical Investigation Report for Upper Mortandad Canyon Aggregate Area, November 2007, 098955, pp. 42-43
- Liquid Release Notifications, Los Alamos National Laboratory, April 1990-June 2008
- PRS Database (http://erinternal.lanl.gov/PRS/PRSMain.asp)

#### Summary of Listed Status

The RLWTF does not accept listed wastes (see the LANL Waste Acceptance Criteria) and none of the documents reviewed identified historic releases of F-, U-, or P-listed wastes into the RLWTF. The two known releases of radioactive (not listed) wastes from Building 50-2 resulted in a discharge from the outfall at the head of Ten Site Canyon that is discussed under SWMU 50-006(a). Based on the documents reviewed, the SWMU 50-002(a) is not considered a source of listed contaminants.

#### Potential Release Site Due Diligence Summary for Potentially Listed Organic Compounds at Consolidated Unit 50-004(a)-00

| PRS Number:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50-004(a)-00              |                      |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------|--|--|--|
| Discharge, Spill, or Disposal of:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Yes                       | No                   |  |  |  |
| F-listed wastes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           | x                    |  |  |  |
| U- or P-listed wastes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           | x                    |  |  |  |
| PRS Des                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | scription                 |                      |  |  |  |
| Consolidated unit 50-004(a)-00 consists of SWMUs 50-004(a,b, and c), which are former<br>components of the TA-50 RLWTF, Building 50-1. SWMU 50-004(a) consists of the former<br>locations of underground RLW and industrial waste lines. These waste lines routed wastes to the<br>TA-50 RLWTF from the LANL TAs located along Pajarito Road. The majority of these waste<br>lines were decommissioned and removed in 1975, when excavated soils were characterized for<br>radioactive constituents and remediated to meet ALARA levels.<br>SWMU 50-004(b) is the location of a decommissioned underground vault (structure 50-3) that<br>housed three stainless-steel-lined concrete storage tanks. The tanks were used to collect and store<br>wastewater from the Omega Reactor, formerly at TA-02. Waste lines and manholes to this tank<br>vault included waste line 49 from TA-35 and waste line 50 from Building 50-1. Waste line 49,<br>the vault, and the tanks were removed in 1989.<br>SWMU 50-004(c) consists of 13 industrial waste lines and three associated manholes that<br>discharged to the decommissioned underground tank vault (structure 50-3). With the exception of<br>waste line 56, all of the waste lines and manholes associated with the underground vault [SWMU<br>50-004(b)] were removed between 1981 and 1989. Waste line 56 remains in service.<br>Radionuclide contamination encountered during decommissioning of the waste lines and<br>manholes was remediated to ALARA levels through removal of the pipe and affected soil to<br>approximately 19 ft below grade. Field screening for radionuclides confirmed that ALARA levels |                           |                      |  |  |  |
| had been met. No samples were analyzed for haz<br>Documents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ardous constituents.      |                      |  |  |  |
| <ul> <li>Solid Waste Management Units Report, Volus<br/>1990, 007513</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | me II of IV (TA-26 throu  | gh TA-50), October   |  |  |  |
| • RFI Work Plan for Operable Unit 1147, May                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1992, 007672              |                      |  |  |  |
| <ul> <li>RFI Report for Potential Release Sites 50-004<br/>054836</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (a), 50-004(c), and 50-01 | 1(a), February 1996, |  |  |  |
| <ul> <li>Historical Investigation Report for Upper Mor<br/>2007, 098955, pp. 45–48</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rtandad Canyon Aggrega    | e Area, November     |  |  |  |
| <ul> <li>Investigation Work Plan for Upper Mortandae<br/>100750, pp. 56–57</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | l Canyon Aggregate Area   | , November 2007,     |  |  |  |
| • Liquid Release Notifications, Los Alamos Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tional Laboratory, April  | 990-June 2008        |  |  |  |
| • PRS Database (http://erinternal.lanl.gov/PRS/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PRSMain.asp)              |                      |  |  |  |
| Summary of Listed Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |                      |  |  |  |
| There was no documentation that F-, U-, or P-listed wastes were discharged to these RLW lines,<br>and the RLWTF does not accept listed wastes (see the LANL Waste Acceptance Criteria).<br>According to the HIR and RFI Report, volatile organic compounds and semivolatile organic<br>compounds were analyzed for in 11 samples collected in 1993-1994; acetone, 2-hexanone, and<br>methylene chloride were detected at low concentrations in screening-level samples from SWMU<br>50-004(c) (of 24 detects, only 7 were above the EQL—3 acetone [max 0.038 mg/kg],<br>1 2-hexanone [0.041 mg/kg], and 3 methylene chloride [0.02 mg/kg]). Additional sampling will<br>be conducted as directed by the IWP for Upper Mortandad Canyon Aggregate Area. Theese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           |                      |  |  |  |

sporadic, low levels of contaminants are not indicative of a release. Based on the data and the available documentation, Consolidated Unit 50-004(a)-00 is not considered a source of source of listed contaminants for the boreholes addressed in this assessment.

#### July 2008

#### Potential Release Site Due Diligence Summary for Potentially Listed Organic Compounds at SWMU 50-006(a)

| PRS Numbe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | r: 50-006(a)                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Discharge, Spill, or Disposal of:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Yes                                                                                                                                                                                                                                                                                                                  | No                                                                                                                                                                                                                                                         |
| F-listed wastes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                      | x                                                                                                                                                                                                                                                          |
| U- or P-listed wastes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                      | <u>x</u>                                                                                                                                                                                                                                                   |
| PRS Des                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                            |
| SWMU 50-006(a) is the area at the head of Ten S<br>operational releases when a sump in a pumping s<br>untreated wastewater to be discharged to waste line<br>effluent). The releases occurred in July and Septe<br>plugged at its outfall. Analysis of soil samples co<br>September 1976 showed elevated levels of gross-<br>downgradient from the outfall. In 1981, both was<br>During waste line removal, elevated levels of rad<br>partially decontaminated by the removal of 70 cu<br>location.                                                                                                                                                                                                   | tation (Building 50-2) on<br>nes 55 and 67 (the was<br>suber 1974. In Februar<br>llected below the wast<br>alpha radioactivity ext<br>te lines 55 and 67 were<br>ionuclides were detected                                                                                                                            | overflowed, causing<br>te lines for treated<br>y 1975, waste line 67 was<br>e line 67 outfall in<br>ending 984 ft<br>e completely removed.<br>ed. The outfall area was                                                                                     |
| The ER Project conducted an RFI at SWMU 50-6<br>Site Canyon outfall. Samples were collected belo<br>the drainage channel, and in the canyon drainage<br>approximately 1300 ft downstream from the TA-<br>concentrations of PAHs above their respective sc<br>IA in November 1996. Approximately 0.72 cubic<br>removed. Ten confirmation samples were collected<br>the 1997 IA report showed that residual gross-alp                                                                                                                                                                                                                                                                                   | w the former waste lin<br>channel at regular inte<br>50 boundary. Analytics<br>reening levels. The ER<br>yards of contaminated<br>ed from the excavated                                                                                                                                                              | e outfall, on both banks of<br>rvals over a distance of<br>al results showed<br>Project implemented an<br>I soil was excavated and<br>area. Results reported in                                                                                            |
| Documents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Reviewed                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                            |
| <ul> <li>Solid Waste Management Units Report, Volum<br/>1990, 007513</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | me II of IV (TA-26 thr                                                                                                                                                                                                                                                                                               | ough TA-50), October                                                                                                                                                                                                                                       |
| • RFI Work Plan for Operable Unit 1147, May                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1992, 007672                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                            |
| • Interim Action Report for SWMU 50-006(a),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | May 1997, 055834                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                            |
| <ul> <li>Historical Investigation Report for Upper Mon<br/>2007, 098955, pp. 48–53</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                                                                                                                                                                                                                                                                                                    | gate Area, November                                                                                                                                                                                                                                        |
| • Liquid Release Notifications, Los Alamos Nat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tional Laboratory, Apr                                                                                                                                                                                                                                                                                               | il 1990-June 2008                                                                                                                                                                                                                                          |
| <ul> <li>PRS Database (<u>http://erinternal.lanl.gov/PRS/</u></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                            |
| Summary of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                            |
| Di-n-butylphthalate was the only potentially liste<br>#5835, which contains cuttings from two borehol<br>50-006(a) is in the vicinity of these boreholes. As<br>reviewed for detections of di-n-butylphthalate. A<br>57 locations were analyzed for SVOCs. Trace (es<br>detected at 10 locations. There was no evidence of<br>indicative of a release. The primary use of di-n-b<br>there is no documentation that a plastics producti<br>however, in plastics used to collect and analyze e<br>source of the contamination. The RLWTF does<br>Acceptance Criteria). Nor is there any documenta<br>was historically discharged to the RLWTF. For<br>considered a source of listed contaminants at bot | d contaminant detected<br>es, 50-603062 and 50-<br>vailable documents for<br>ccording to the HIR, a<br>stimated quantities of d<br>of a "plume" of di-n-bu<br>utylphthalate is in the<br>on process discharged<br>nvironmental samples,<br>not accept listed waste<br>ation that unused/unspet<br>these reasons SWMU | 603064. SWMU<br>SWMU 50-006(a) were<br>total of 110 samples from<br>in-butylphthalate were<br>tylphthalate that would be<br>manufacture of plastics;<br>to the RLWTF. It is,<br>, which is the most likely<br>s (see LANL Waste<br>ent di-n-butylphthalate |

#### Potential Release Site Due Diligence Summary for Potentially Listed Organic Compounds at SWMU 50-006(d)

| PRS Number: 50-006(d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                             |                                                                              |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--|--|--|--|--|--|
| Discharge, Spill, or Disposal of: Yes No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                             |                                                                              |  |  |  |  |  |  |
| F-listed wastes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                             |                                                                              |  |  |  |  |  |  |
| U- or P-listed wastes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                             | X                                                                            |  |  |  |  |  |  |
| PRS De                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | scription                                                                                                   |                                                                              |  |  |  |  |  |  |
| SWMU 50-006(d) consists of a TA-50 drainline and associated NPDES-permitted outfall in<br>Mortandad Canyon for treated wastewater from the RLWTF (building 50-01). The 6-indiameter<br>iron pipe extends from building 50-01 northward to Mortandad Canyon. Samples were collected<br>in 1993 from 27 locations downgradient from the outfall. PAHs, benzoic acid and<br>bis(2-ethylhexyl)phthalate were detected at some locations, but most concentrations were below<br>the EQL.                                                                                                                                 |                                                                                                             |                                                                              |  |  |  |  |  |  |
| Documents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s Reviewed                                                                                                  |                                                                              |  |  |  |  |  |  |
| <ul> <li>Solid Waste Management Units Report, Volu<br/>1990, 007513</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | me II of IV (TA-26 thro                                                                                     | ugh TA-50), October                                                          |  |  |  |  |  |  |
| • RFI Work Plan for Operable Unit 1147, May                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1992, 007672                                                                                                |                                                                              |  |  |  |  |  |  |
| <ul> <li>RFI Report for Potential Release Sites 5-006(<br/>049925</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | a), 50-006(c), 50-007, 50                                                                                   | 0-008, September 1995,                                                       |  |  |  |  |  |  |
| <ul> <li>Historical Investigation Report for Upper Mo<br/>2007, 098955, pp. 55–57</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rtandad Canyon Aggreg                                                                                       | ate Area, November                                                           |  |  |  |  |  |  |
| • Liquid Release Notifications, Los Alamos Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | tional Laboratory, April                                                                                    | 1990-June 2008                                                               |  |  |  |  |  |  |
| • PRS Database ( <u>http://erinternal.lanl.gov/PRS/</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PRSMain.asp)                                                                                                |                                                                              |  |  |  |  |  |  |
| Summary of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Listed Status                                                                                               |                                                                              |  |  |  |  |  |  |
| Bis(2-ethylhexyl)phthalate, fluoranthene, and methylene chloride were detected in drill cuttings<br>from bins #5787 and #5799, which contained cuttings from boreholes 50-603061 and 50-603063<br>respectively. Those boreholes are in the vicinity of SWMU 50-006(d). According to the HIR,<br>bis(2-ethylhexyl)phthalate was detected at trace concentrations in 2 of 50 samples collected at<br>SWMU 50-006(d) in 1993. Fluoranthene was also detected at low concentrations in 2 of the 50<br>samples collected. VOCs (including methylene chloride) were not analyzed for in the samples<br>collected in 1993. |                                                                                                             |                                                                              |  |  |  |  |  |  |
| Bis(2-ethylhexyl)phthalate and fluoranthene were<br>low (estimated) concentrations at SWMU 50-006<br>no documentation that unused/unspent products<br>outfall, and the RLWTF does not accept listed we<br>Based on the data and available documentation, S<br>listed contaminants at boreholes 50-603061 or 50                                                                                                                                                                                                                                                                                                      | 5(d); this is not indicative<br>were disposed of through<br>astes (see the LANL Wa<br>SWMU 50-006(d) is not | e of a release. There is<br>a the drainline and<br>ste Acceptance Criteria). |  |  |  |  |  |  |

#### Potential Release Site Due Diligence Summary for Potentially Listed Organic Compounds at SWMU 50-009

| PRS Number: 50-009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                         |                                                                    |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------|--|--|--|
| Discharge, Spill, or Disposal of:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Yes                                                                                     | No                                                                 |  |  |  |
| F-listed wastes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                         | X                                                                  |  |  |  |
| U- or P-listed wastes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                         | X                                                                  |  |  |  |
| PRS De                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | scription                                                                               |                                                                    |  |  |  |
| SWMU 50-009 consists of decommissioned MDA C, established to replace MDA B at TA-21 as<br>a disposal area for LANL derived waste. MDA C operated from May 1948 to April 1974. The<br>northern boundary of MDA C is approximately 50 feet south of the planned south wall of the new<br>RLWTF. Wastes disposed at MDA C included liquids, solids, and gases generated from a broad<br>range of nuclear energy research and development activities conducted at LANL, including<br>uncontaminated classified materials, metals, hazardous materials, and radionuclides. Historical<br>reports indicate that it was common practice for chemicals to be burned in the chemical disposal<br>pit at MDA C. At MDA C, 7 pits and 108 shafts were excavated into the overlying soil and tuff. |                                                                                         |                                                                    |  |  |  |
| Documents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s Reviewed                                                                              |                                                                    |  |  |  |
| <ul> <li>Solid Waste Management Units Report, Volu<br/>1990, 007513</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | me II of IV (TA-26 throu                                                                | gh TA-50), October                                                 |  |  |  |
| • RFI Work Plan for Operable Unit 1147, May                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1992, 007672                                                                            |                                                                    |  |  |  |
| Investigation Work Plan for Material Disposa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | l Area C (MDA C), July                                                                  | 2003, 087392                                                       |  |  |  |
| <ul> <li>Investigation Work Plan for Material Disposa 087152</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | l Area C (MDA C), Revis                                                                 | sion 1, November 2003,                                             |  |  |  |
| Investigation Work Plan for Material Disposa<br>at Technical Area 50, Revision 2, October 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                         | nagement Unit 50-009,                                              |  |  |  |
| Investigation Report for Material Disposal Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ea C, SWMU 50-009, De                                                                   | cember 2006, 094688                                                |  |  |  |
| • Phase II Investigation Work Plan for MDA C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | , Revision 1, July 2007, 0                                                              | 98425                                                              |  |  |  |
| <ul> <li>Drilling and Sampling Results from Borehole<br/>50-009, April 2007, 097285</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s Between Pit 2 and Pit 3                                                               | at MDA C, SWMU                                                     |  |  |  |
| • Liquid Release Notifications, Los Alamos Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tional Laboratory, April                                                                | 1990-June 2008                                                     |  |  |  |
| • PRS Database (http://erinternal.lanl.gov/PRS/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PRSMain.asp)                                                                            |                                                                    |  |  |  |
| Summary of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Listed Status                                                                           |                                                                    |  |  |  |
| Bis(2-ethylhexyl)phthalate, 2-butanone, di-n-but<br>methylene chloride were detected in drill cutting<br>SWMU 50-009.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | lyphthalate, fluoranthene,                                                              | -                                                                  |  |  |  |
| Bis(2-ethylhexyl)phthalate was detected sporadic<br>from 1995 and 2006), with no indication that the<br>contamination from contact with plastics used du<br>documentation that unused/unspent bis(2-ethylhe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | re is a "plume" of the mat<br>ring sampling and analys                                  | terial (more likely, it is is). There is no                        |  |  |  |
| 2-butanone was not detected in any tuff samples<br>there is no evidence that it was disposed of as un<br>sporadically in pore-gas samples in 2006, but bec<br>the mixture rule, derived-from rule, and containe<br>by the vapor. Therefore, any waste contacting the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | used/unspent product. It v<br>cause the vapor is not a so<br>d-in policy do not apply t | was detected<br>blid or hazardous waste,<br>to wastes contaminated |  |  |  |
| Di-n-butylphthalate was detected only in drill cut<br>from borehole locations 50-603062 and 50-60306<br>surface soil or tuff samples in the vicinity of bore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 64. Di-n-butylphthalate w                                                               | vas not detected in                                                |  |  |  |

#### PRS Number: 50-009

eastern portion of the site during 1995 or 2006. It was detected in a single tuff sample at the far western end of MDA C in 2006. Because it was detected only sporadically and at low concentrations, there is no evidence that MDA C is a source of di-n-butylphthalate in the drill cuttings in bin #5835.

Endrin was detected in one waste sample, from bin #5836. Bin #5836 contains drill cuttings from borehole locations 50-24820 and 50-24821, across Pajarito Road to the south of MDA C. The only SWMU in the vicinity of these boreholes is 50-009 (MDA C). There is no documentation that Endrin was disposed of at MDA C as an unused/unspent product. Endrin was not detected in any tuff samples collected from boreholes in 1995, including 5 boreholes between Pit 6 (chemical pit) and locations 50-24820 and 50-24821. There is no evidence that MDA C is the source of Endrin detected in these drill cuttings.

Fluoranthene was detected in only 3 of 74 tuff samples collected in 1995 and 2006, including locations 50-24820 and 50-24821. There is no evidence that fluoranthene was disposed of at MDA C as an unused/unspent product, and the sporadic detects do not support the concept that there is a "plume" of fluoranthene that was transported from MDA C to any of the borehole locations.

Heptachlor was detected in one sample from bin #5836, which includes cuttings from borehole locations 50-24820 and 50-24821 across Pajarito Road south of MDA C. There is no evidence that unused/unspent heptachlor was disposed of or spilled at MDA C, and there are no other SMWUs or AOCs in the vicinity of those two boreholes. Heptachlor was not detected in any tuff samples collected from boreholes in 1995, including the boreholes on the south side of MDA C and closest to boreholes 50-24820 and 50-24821 (pesticides were not analyzed in samples collected in 2006).

Methylene chloride was detected in one tuff sample in one of 11 boreholes drilled in 1995; the borehole was located south of MDA C, Pit 6. Pit 6 is not near any of the boreholes addressed in this assessment. No methylene chloride was detected in tuff samples from any of the six boreholes drilled during 2005 between the borehole where the methylene chloride was detected in 1995 nor in other boreholes in the vicinity. Therefore, there is no evidence of methylene chloride transport from MDA C to the borehole locations. Methylene chloride has been detected in poregas at some MDA C boreholes. However, EPA has documented their decision that uncontained gas is not a solid (or hazardous) waste in 54 Federal Register (FR) 50973 and 56 FR 7200. Because the vapor is not a solid or hazardous waste, the mixture rule, derived-from rule, and contained-in policy do not apply to wastes contaminated by the vapor. Therefore, any waste contacting the vapor is not a listed waste.

Based on the data and available documentation, MDA C is not considered a source of listed contaminants at any of the boreholes addressed in this assessment.

## Potential Release Site Due Diligence Summary for Potentially Listed Organic Compounds at SWMU 50-011(a)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>50-011(8)</b>                         |                   |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------|--|--|--|--|
| PRS Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Yes                                      | No                |  |  |  |  |
| Discharge, Spill, or Disposal of:<br>F-listed wastes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 CS                                     | f                 |  |  |  |  |
| U- or P-listed wastes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          | x                 |  |  |  |  |
| PRS Des                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | crintion                                 | <b>^</b>          |  |  |  |  |
| SWMU 50-011(a) is the location of a former septic system that was installed at TA-50 in 1964 at<br>the south end of the RLWTF (Building 50-1). The septic system consisted of an influent line from<br>Building 50-1 that discharged to a manhole (structure 50-9) and then to a septic tank (structure<br>50-10). The effluent line from the tank tied to a distribution box (structure 50-11), which<br>discharged to four parallel perforated pipes traversing a leach field.<br>In 1978, a 4-ft-diameter x 50-ft-deep shaft was drilled at the east end of the leach field to address<br>problems with standing water on the ground surface. A 4-in. perforated pipe was installed in the<br>shaft, and the annulus was backfilled to within 4 ft of the ground surface. The outlets of the four<br>parallel pipes were then tied into the newly installed perforated pipe.<br>With the exception of the perforated pipe installed in the leach field in 1978, the entire septic<br>system was removed in 1983. Currently, a storage building (Building 50-83) and an asphalt pad<br>cover the area formerly occupied by the septic system. The 50-ft-deep shaft and perforated pipe<br>that remain in place are also located beneath storage Building 50-83.<br>Previous investigations of the area surrounding SWMU 50-011(a) were conducted in 1986,<br>during decommissioning of the RLW line. Excavated soils were characterized for radioactive<br>constituents and remediated to meet ALARA levels.<br>The ER Project conducted an RFI at SWMU 50-011(a) in 1994 to determine the presence of and<br>define the nature and extent of any contamination. The ER project conducted supplemental RFI<br>sampling in 2004 and 2005. Acetone was the only organic chemical detected. |                                          |                   |  |  |  |  |
| In December 2001, geotechnical and waste charac<br>boreholes, including one adjacent to the seepage p<br>new pump house and influent storage tank vault a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | pit, to determine the feas               |                   |  |  |  |  |
| Documents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |                   |  |  |  |  |
| <ul> <li>Solid Waste Management Units Report, Volum<br/>1990, 07513</li> <li>RFI Work Plan for Operable Unit 1147, May</li> <li>RFI Report for Potential Release Sites at TA-<br/>1996, 054460</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | me II of IV (TA-26 throu<br>1992, 007672 |                   |  |  |  |  |
| <ul> <li>Historical Investigation Report for Upper Mon<br/>2007, 098955, pp. 59–60</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tandad Canyon Aggrega                    | te Area, November |  |  |  |  |
| <ul> <li>Investigation Work Plan for Upper Mortandac<br/>pp. 63–64</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |                   |  |  |  |  |
| <ul> <li>Liquid Release Notifications, Los Alamos National Laboratory, April 1990-June 2008</li> <li>PRS Database (<u>http://erinternal.lanl.gov/PRS/PRSMain.asp</u>)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          |                   |  |  |  |  |
| Summary of Listed Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |                   |  |  |  |  |
| There is no evidence that unused/unspent products were disposed of at SWMU 50-011(a). The only organic chemical detected in samples from the SWMU (acetone) was not detected in cuttings from borehole 50-603063, the location nearest the SWMU. SWMU 50-011(a) is not considered a source of contamination for any of the boreholes addressed in this assessment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                          |                   |  |  |  |  |

## Potential Release Site Due Diligence Summary for Potentially Listed Organic Compounds at SWMU 63-001(a)

| PRS Number: 63-001(a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |    |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----|--|
| Discharge, Spill, or Disposal of:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Yes          | No |  |
| F-listed wastes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | X  |  |
| U- or P-listed wastes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              | x  |  |
| PRS Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |    |  |
| SWMU 63-001(a) is an inactive 1000-gal. septic tank (structure 63-12, formerly designated as structure 52-49) and its associated seepage pit and drainline (formerly designated as structure 52-50). The seepage pit is 4 ft in diameter and 50 ft deep. This septic system formerly served Buildings 63-3, -4, -5, and -6. The septic system was removed from service in 1993 when the lines were connected to the TA-46 SWSC. Building 63-3 is a single-story concrete-block building that contains carpentry, welding, plumbing, and paint shops and two offices. Building 63-4 is a modular office building. Buildings 63-5 and 63-6 are trailers that are subdivided into offices. The area now designated as TA-63 has undergone several redesignations. In the 1950s, the area was part of TA-4 and part of TA-00 in the 1960s, 1970s, and 1980s. The site also was part of TA-52. In 1989, the western part of TA-52 was redesignated as TA-63. The dates of the redesignations from TA-4 to TA-00 and from TA-00 to TA-52 are unknown. Potential contaminants at SWMU 63-001(a) are solvents and other unspecified chemicals. No documentation of spills, releases, or incidents at TA-63 has been found. Sampling was conducted at SWMU 63-001(a) in 1995. A total of 31 samples were collected from four locations and submitted for laboratory analysis of inorganic chemicals, organic chemicals, and radionuclides. Two organic chemicals, xylene and di-n-butylpthalate, were detected. In 2004, the ER Project sampled SWMU 63-001(a) to address additional data needs identified |              |    |  |
| following the 1995 RFI sampling activities. Trace concentrations of di-n-butylphthalate and xylene were detected in tuff samples.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |    |  |
| Documents Reviewed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |    |  |
| • Solid Waste Management Units Report, Volume II of IV (TA-26 through TA-50), October 1990, 007513                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |    |  |
| • RFI Work Plan for Operable Unit 1129, May                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1992, 007666 |    |  |
| • Investigation Report for the Middle Mortandad/Ten Site Aggregate, Revision 1, July 2007, 100119, p. D-486                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |    |  |
| • Liquid Release Notifications, Los Alamos National Laboratory, April 1990-June 2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |    |  |
| PRS Database ( <u>http://erinternal.lanl.gov/PRS/PRSMain.asp</u> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |    |  |
| Summary of Listed Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |    |  |
| Di-n-butylphthalate was detected in cuttings from bin #5835, which contained cuttings from<br>boreholes 50-603062 and 50-603064. According to the Investigation Report for the Middle<br>Mortandad/Ten Site Aggregate, Revision 1, p. D-486) di-n-butylphthalate was detected at low<br>(estimated) concentrations in 2 of 3 subsurface tuff samples during the investigation of SWMU<br>63-001(a). The primary use of di-n-butylphthalate is as a plasticizer in plastics manufacture; there<br>is no documentation that plastics production processes occurred in the buildings associated with<br>SWMU 63-001(a). There is also no documentation that any other process disposed of or spilled<br>unused/unspent di-n-butylphthalate to this SWMU. The RFI Work Plan (p. 7-132) states that the<br>suspect contaminants at SMWU 63-001(a) include "organic solvents," however, di-n-<br>butylphthalate is not used as a solvent and there is no documentation that unused/unspent<br>chemicals were disposed of or spilled. Therefore this SWMU is not considered a listed source of<br>di-n-butylphthalate in bin #5835. Di-n-butylphthalate is more likely a contaminant from plastic                                                                                                                                                                                                                                                                                                                                                                                                        |              |    |  |

items used in sampling or analysis.

#### Potential Release Site Due Diligence Summary for Potentially Listed Organic Compounds at SWMU 63-001(b)

| PRS Number: 63-001(b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |    |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|--|--|
| Discharge, Spill, or Disposal of:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Yes | No |  |  |
| F-listed wastes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | x  |  |  |
| U- or P-listed wastes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | x  |  |  |
| PRS Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |    |  |  |
| SWMU 63-001(b) is an inactive 920-gal. septic tank (structure 63-14) and its associated seepage<br>pit and drainlines. The seepage pit is 4 ft in diameter and 50 ft deep. This septic system served<br>Building 63-1 and received only sanitary wastewater. The septic system was removed from<br>service in 1993 when the lines were connected to the TA-46 SWSC. Building 63-1 is a single-<br>story building that houses offices, an electronics shop, and a machine shop. Potential<br>contaminants at SWMU 63-001(b) are solvents and other unspecified chemicals. No<br>documentation of spills, releases, or incidents at TA-63 has been found.                                                                                                                                                                                                                                                                                                              |     |    |  |  |
| Documents Reviewed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |    |  |  |
| <ul> <li>Solid Waste Management Units Report, Volume II of IV (TA-26 through TA-50), October<br/>1990, 07513</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |    |  |  |
| RFI Work Plan for Operable Unit 1129, May 1992, 007666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |    |  |  |
| <ul> <li>Investigation Report for the Middle Mortandad/Ten Site Aggregate, Revision 1, July 2007,<br/>100119, p. D-486</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |    |  |  |
| • Liquid Release Notifications, Los Alamos National Laboratory, April 1990-June 2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |    |  |  |
| <ul> <li>PRS Database (<u>http://erinternal.lanl.gov/PRS/PRSMain.asp</u>)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |    |  |  |
| Summary of Listed Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |    |  |  |
| Di-n-butylphthalate was detected in cuttings from bin #5835, which contained cuttings from<br>boreholes 50-603062 and 50-603064. According to the Investigation Report for the Middle<br>Mortandad/Ten Site Aggregate, Revision 1, p. D-486) di-n-butylphthalate was detected at low<br>(estimated) concentrations in 2 of 3 subsurface tuff samples during the investigation of SWMU<br>63-001(b). The primary use of di-n-butylphthalate is as a plasticizer in plastics manufacture; there<br>is no documentation that plastics production processes occurred in the building associated with<br>SWMU 63-001(b). There is also no documentation that any other process disposed of or spilled<br>unused/unspent di-n-butylphthalate to this SWMU. Therefore this SWMU is not considered a<br>listed source of di-n-butylphthalate listed waste in bin #5835. Di-n-butylphthalate is more likely a<br>contaminant from plastic items used in sampling or analysis. |     |    |  |  |